CHAPTER II
PRELIMINARIES

In this chapter we shall collect some definitions
and results from topology and group theory which will be a
basic requirement for our investigation. The materials of
this chapter were extracted from references [2l],[3] ’

L“ ], [ 5‘] . We shall assume that the reader is familiar

with common terms used in the set theory.

21 7 Algebraic Concepts

By a group we mecan an ordered pair (G,0), where G
is a non - empty seét and o is a binany operation on G

satisfying the following conditions :

(1) For all x, y, z of G, xo(yoz) = (xoy)oz
(ii)  There exists an element ¢ of G such that

eox = xo¢ = x  for each x in G.
(iii) For each x in G, there is an element ! in g

-
e = X 00X ,

such that xox-1

For convenience, we shall denote the group (G,o0) simply by G.
It can be shown that the element e in (ii) is unique, it is
known as the identity of G, For each x in G, the element

x"'1 in (iii) is also unique., It is known as the inverse of x .
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A group G is abelian or commutative, if and only if xoy = yox

for all elements x, y of Go The number of elements in a group
G shall be called the order of G and demoted by |G |. G is
called finite or infinite as its order is finite or infinite.
For any element x in G, the order of x is the least positive
integer m such that x = es If no such integer exists we

say that x is of infinite order. 1If G is a group in which

every element is of order 2 , G/ is said to be a boolean

group, otherwise, it is said to be a non-boolean group. A

boolean group G of order 4 is also known as the Klein four Eroup.
It can be shown that any boolean group G is also abelian. If for
each x in G there exists y in G such that x = yoy, G is said to
be a 2-divisible group.’ A group H is a subgroup of G if and only
if Hc G and the group operation of H is the restriction of
that of Ge It can be shown that any non-empty set H forms a
subgroups of (G,0) if and only if xoy'1<5 H for any x, ¥y in H.
If H is a subgroup of a group G and x, y are clements of G such

that xy-lg H, we say that x is right congruent to y modulo H

and denoted byxiﬁ?y « If x-llyeH, we say that x is left
congruent to y modulo H and denoted by x ﬁi y o If ﬁﬁ and

ﬁi are coincide we shall denote them by H . It can be shown

that left (right) congruence modulo H is an equivalcnce relation
on Ge The equivalence class of x € G under left(right) congruence
modulo H is the set xH ={xh : haH} (Hx:{hx : he H})’

it is called a left(right) coset of H in G. It follows that

¢ =l =UHx where the union is taken over all pairwise



disjoint cosets. The number of distinct left(right) cosets
of H in G is called the index of H in G and denoted by

[G:H ]. If H is a subgroup of G . such that

left and right congruence modulo H coincide, then H is said

to be a normal subgroup of G, In an abelian group, each

subgroup is normal. If H is a normal subgroup of a group G,

then g/ﬁ is a group of order [G:H ] under the binary

operation given by (xH)(yH) = xyH , this group is called

the quotient group of G by H, and will be denoted by G o

A mapping h on a  group (G,0) into a group (G,*)

is said to be a homomorphism provided

h(xoy) = h(x) « h(y) 'y “for all x,y in G.
If h is bijective, h is called an isouorphigm.

By a field we mean a triple (Fy/+, o) , where +, .
are two binary operations on F, known as addition and

multiplication respectively, such that the followings hold :

(1) F forms a commutative group‘under additione.
*
(i) F = F = {o }, where O is the additive
identity forms a commutative group under

multiplication.

(iii) For any a,b,c € F , we have

a(b+c) = ab + ac .



For convenience, we shall denote a field (F, + 4o ) simply

*
by Fo (Fy +) and (F , «) will be refered to as the additive
group and the multiplicative group of F, respectively , If

there is a least positive integer n such that na = O for all

a € F, then F is said to have characteristic n . If no such

n exists F is said to have characteristic zero. If K is any

non - empty subset of a field (F,+,.) such that K form a field
under restriction of +,s to KxK , we say that (K,+,.) is a
subfield of (F,+4e)e If K 'is & subfield of F, we say that F

is an extension field of K.

A function (p of a field F into a field K is a

homomorphism provided that for all a,b ¢ F :

P (a+d) = W(a) + P(b) and WP(ab) = Y(a) P (b) .

If ¢ is bijective, \p is called an isomorphism. If Y is

an isomorphism of F into itself, kP is called an automorphism.

If F is a field in which a2 £ =1 BHr any ac F, let
c(Fr) = {(a;b) : a and b are elements of F} .
Define addition and multiplicgtion on C(F) as follows :
(ag b) + (cy,d) =(a +¢c, b +4d),

and

(ay b) (c, 4) (ac - bd, ad + be) .



It can be shown that C(F) under the above addition and
multiplication forms a field. This field contains

T = {(a,o) taefF } as a subfield isomorphic to Fse Hence
we may veiw F as a subfield of C(F). Observe that if we
denote the element (a,0) of F by a and denote (p,1) by i,

then each element (a,b) of C(F) can be expressed as

(ay b) (aQO) + (b' O)(091)

8 +bixg

Note that from the definition of i, we have i% - (=1, 0) = =1,

It can be shown that the mapping ¥ : C(F) — C(F) given by
kP(a+bi) = & = bi ,

is the unique automorphism of C(#) fixing all elements of ¥
and taking i into -i. Since ¥ is/ isomorphic to F, hence we
may veiw \P as the automorphism of C(F) fixing all

elements of F and taking i into -i. Let

A = { a+bi € c(F) : (a + bi)\P(a + bi) = 1 }.

It can be shown that zﬁ;(F) forms a multiplicgtive subgroup
of C(F)*. To each field ', wec shall associate a multiplicative

group M(F) as follows : if F contains an element i such that

e
n

i

-1, we let M(T) F*; if T contains no element i such

that i = =1, we let M(F) = A (F).



Lemma 247,71 Let G be a group, F be a field of characteristic

different from 2 such that a2 £ =1 for any a in Fe Let h be
%

a homomorphism from ¢ into C(F) . Then for each x in G,

hie) Bonix™l wng BOX) - (™)
2 21

belong to F if and only if
h(x) belongs to A(F) .

Proof Let HP be the automorphism of C(F) fixing all

elements of F and taking i dinto =i .

*
Assume that h v/ G — C(F) is a homomorphism such
-1

-1

that h(x) + h(x /) and h(x)\e B(x ) belong to F

2 i
Thereforo

h(x), + h(X-1) » (p (h(") + h(x-1) ‘»

2 2/
S ¢ Yoy,
2

thus ,

(2.741.1)  h(x) + h(x" )

@ (h(x))+ P(a(x" 1)) .

Also ,

h(x) - h(x_1) LP ( h(x) - h(x-1))’
21 21

@ (h(x)) - P(n(x" M),
=231



thus
(2e10142) n(x) - h(x") = Ymx ) - @(hlx)).

It follows from (2¢14741) and (2¢1.1.2) that

2h(x) - 2@ .
Hence hix) . @ (n(x)) = S
Therefore h(x) belongs to [& () .

Conversely, assume that h is a howmomorphism from G into A (F) .

Y for all™ x in G o« It follows that

i

Hence h(x) . ¥ (h(x))

W (a2 om0" = o .
Let h(x) = a + bi where a, b g F . Therefore,
h(x) '+ h(x—1) . h(x) + Y(n(x))
2 2
_ (a + bi) + (a - bi)
2
= a
and
h(x) - h(x"") ) h(x) - P (b(x)
2i _ 2i

(a + bi) = (a = bi)
2i




h(x) + h(x-1) and h(x) - h(x-1)
2 2i

Hence belong to F .

Let (Fy +4 ) be a field and(V, +) be a commutative group
with a rule of multiplication which assigns to any a € F, u € V,

a product au € V . Then .V is called a vector space eygr I if

the following axioms hold :
1) For any ae¢ F and any u,v ¢ V, a(u+v) = au + av.

au + bu .

2) TFor any a, b¢ F and any ue V, (a+b) u

3) For any a, b €F and any u & V, a(bu) = (ab)u.

1l

4) For ve€ V,/ Av. =.v where 1 is the multiplicative

identily of F.

The elements of F and V will be refered to as scalars
and vectors, respectively., TIf V is & vector space over the
ficld F and {xi} (14en) is a finite subset of V, then

n
fora,& F, 1= 1 <n , T a.x. is called a linear
= i1 —_—

i=1

combination of the X e The vectors x ...,:%16 v are

11
said to be linearly dependent over ¥, or simply dependent,

if there exist scalars B4y eeey 8 € F, not all of them
: n

zero, such that I a,x, = 0 . An arbitrany set A of
i=1

vectors is said to be a linearly dependent set if some finite

subset of A is linearly dependent. Otherwise, the set A is

called 1ihearly independent or simply independent. If i}
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is a linearly independent subset of V such that for every v &V,
v can be written as a linear combination of vectors in i% sy We
say that 3% is a bagis of V. It can be shown that every vector
in V has a unique representation as a linecar combination of

elements of any basis jg .

Observe that the set R of real numbers can be
considered as a vector space over the field €  of rational
numbers. It can be shown that R has a basis over @ .
Such a basis is known as a Hamel basis. A proof of the

existence of such a basis is given in [6] .

2.2 Topological Concepts

Let ¥ be alset and g be a collection of subsets of X ,
The collection ¢J /iis  called a topology on yx provided (J

satisfies the following conditions :
a) X and @ are elements of J .
b) The intersection of any two members of g is in g .
¢) The arbitrary union of members of & is in ¢ .

If &} is a topology on a set ¥, then (X, d ) is said

to be a topological space. Occasionally, we shall denote any

topological space (x, & ) simply by x. The members of J are

called J ~ open sets of x, or simply open sets of x « If a

topogical space X has the property that for any x, y in X there

exist open sets 01, 0 such that x € 01, yeO and

2 2
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X é 02, ¥y * O,], we say that X is a T,‘ - space, For any
topologicallspace (Xy & ), it can be shown that if Y is any

subset of x, then the family ay = {T Ny : T e 53} is

a topology on Y; it is called the relative topology of Y and

the topological space (Y, ,jy) is called a subspace of (X, &)

A subcellection 33 of a topology J 1is said to be
a base of 3 provided the following condition hold : for
each Te¢ ¢ and x € T ), there exists B e B such that
xeB ¢ T, or cquivalently, each T in ¢ is a union of
members of (B e It can be shown that if a family B of

subsets of a set y has/ the properties ;

(1) the union of sets in @ is in ¥,

(i1) for each B, B, € A, B, M B, is the union of V

members of (3 s then f} is a base for some topology for X .
This topology consists of all sets that can be written as unions
of sets in 68 « Observe that the family of all open intervals
form a base for a topology on the set R  of real numbers. This

topology is known as the usual topology on R .

A subfamily 8 of is a subbase of the topology
g on X if and only if the set of all finite intersections of

members of Sform a base for o .

Let X ¢ & € A} be a family of sets . X =TTX
o : qucx

denotes the set of all mappings ¥: A —> &J X, such that
dep



x(et ) @ X, for ecach & e A « X is called the Cartesian product

or product of Xat., 8 o+ For cach x € X and each « € A , x(a& )

is called the c-th coordinate of x . We shall denote x (o )

by . The mapping Pd : X'——axd defined by Pd(x) =Xy s

is called the 4. - th projection . It can be seen that P, is

a mapping from X onto ) VS If { %x: a & A,} is a family of

topological spaces, then the family of sets of the form

=1

B, (T, )9 where T, —isa ﬁjq - open set, forms a subbase

of a topology & for ~the product TT X, - This topology
a8 A

is known as the product topology. The topological space

( TT Xa vy ) will/be called the product space of
ae

{xﬁ,“,\}.

Let ¥ and ¥rbc two topological spaces. A mapping f

of X into Y is ‘said to be continupus if for each open set V in Y,
f-1[V] = {xe RLOMNGKDRS V} is an open set of X , If for

cach open set U in X, £(U) ={ f(x) :x& U } is an open set

of Y, f is said to be opcn.

Let X be a topological space, R be an equivalence
relation on X and Y = X/,2 be the quotient set of X sith respect
3 ¢
to the relation R. The mapping Lp : X—Y defined by @ (x)=x ,

where X denotes the equivalence class of Xy will be called the

canonical mapping. It can bc shown that the family

aLp = { vey: LP-'](V) is open} is a topology on Y ;
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it is called the quotient topology and (Y’a“?) is called the

quotient space of X by R .

2e3 Topological Groups

A triple (G,o,:}) is a topological group if and only if

(G,0) 1is a group, (G,4¢J) is a topological space and the function
whose value at a member (x, y) of @ x G is xoy-1 is continuous
relative to the product topology for G x G « We sometimes

say "G 1is a topological goup. ' .
The followings are examples of topological groups :

(a) The set- R /of real numbers with addition as the

group operation and the usual topology form a topological group.

(b) The set. 4 of integers with addition as the group
operation and the relative topology of the usual topology of R

form a topological group.

*
(¢) The set R of nonzero real numbers with multiplication
as the group operation and the relative topology of the usual

topology of R form a topological group .

(d) The set r* of positive real numbers with multiplication
as the group operation and the relative topology of the usual topology

of R form a topological group.

(e) The set mn of all real n-tuples with an addition as

the coordinate addition and the usual topology of R form a

topological group.
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(f) A conmplex number can be considered as an ordered
pair of real numbers. Hence the usual topology on € , the
set of complex numbers, shall mean the usual topology on iRz .
The set € of complex numbers with addition as a group operation

and the usual topology on ¢ form a topological group

%
(g) The set ¢ of nonzero complex numbers with complex

multiplication as a group operation and the relative topology of

the usual topology of € form a topological group.

(h) The unit circle [ﬁ = { z €€ : ‘z { = 1 } with
complex multiplication as the group operation and the relative

topology of the usual topology of @ form a topological group .

IfTH is a subgrouﬁ of G, H endowed with the relative
topology is a topological group ; it is called a topological
subgroup or simply a subgroup of G . 'If H is a normal subgroups
of G, then Q/h s the quotient group with respect to the
equivalence relation i1 , and the quotient topology form a
topological group ; it is called the quotient group of G by ﬁ o
It can be shown that H is open if and only if cach coset of H is

open.

If Y dis the canonical mapping of G onto q/H s it .can

be shown that kP is an open continuous homomorphism of G onto
Q/H o The following is a fact about continuous homomorphisme

We state this fact for later refference, and it can be seen in [1],
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Theorem 2,3¢7 Every continuous homomorphism of R into B/Z

is of the form x——Y(ax) where a ¢ R and @ : R ._,[R/z is

the canonical mapping .

2.4 Topological Fields.

Il s

N \ ! (
UUakKJJ

A topological field is a quadruple (F, +,e,¢ ) such that

(Fy+q0) 1is a field, (Fy+, o )and (F*,., Z’F* ) are topological
groups where 'HF* ig the topology induced by g on F* "

We sometimes say "F is a topological field ", JIf F is a topological
field in which a2+ 140 for all a € F, then C(F) endowed
with the product topology is a tbpological field. It can be shown

that the multiplicatiwe subgroup- A (F) with the relative topology

form a topological group.

245 Topological Vector Spaces,

A topological &ector space is the vector space V over
the field F of real or complex numbers and a topology ¢ on
V such that the function f : Vx V—V and g : Tx V-7V
defined by f(x, y) = x+y and g(?, x) = Ax, are continuous,
where the topology on F is the usual topology. The topology

< 1is said to be a vector topologye.
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