CHAPTER II

PRELIMINARIES

In this chapter we shall collect some definitions and results from topology and group theory which will be a basic requirement for our investigation. The materials of this chapter were extracted from references [2],[3], [4], [5]. We shall assume that the reader is familiar with common terms used in the set theory.

2.1 Algebraic Concepts

By a group we mean an ordered pair (G,o), where G is a non - empty set and o is a binary operation on G satisfying the following conditions:

- (i) For all x, y, z of G, xo(yoz) = (xoy)oz
- (ii) There exists an element e of G such that eox = xoe = x for each x in G.
- (iii) For each x in G, there is an element x^{-1} in G such that $xox^{-1} = e = x^{-1}ox$.

For convenience, we shall denote the group (G,o) simply by G.

It can be shown that the element e in (ii) is unique, it is known as the identity of G. For each x in G, the element x-1 in (iii) is also unique. It is known as the inverse of x.

A group G is abelian or commutative, if and only if xoy = yox for all elements x, y of G. The number of elements in a group G shall be called the order of G and denoted by G . G is called finite or infinite as its order is finite or infinite. For any element x in G, the order of x is the least positive integer m such that x = e. If no such integer exists we say that x is of infinite order. If G is a group in which every element is of order 2 , G is said to be a boolean group, otherwise, it is said to be a non-boolean group. A boolean group G of order 4 is also known as the Klein four group. It can be shown that any boolean group G is also abelian. If for each x in G there exists y in G such that x = yoy, G is said to be a 2-divisible group. A group H is a subgroup of G if and only if H C G and the group operation of H is the restriction of that of G. It can be shown that any non-empty set H forms a subgroups of (G,o) if and only if xoy = H for any x, y in H. If H is a subgroup of a group G and x, y are elements of G such that xy E H, we say that x is right congruent to y modulo H and denoted by x HR y . If x y & H, we say that x is left congruent to y modulo H and denoted by x HL y . If HR and HL are coincide we shall denote them by H . It can be shown that left (right) congruence modulo H is an equivalence relation on G. The equivalence class of x ∈ G under left(right) congruence modulo H is the set $xH = \{xh : h \in H\}$ ($Hx = \{hx : h \in H\}$), it is called a left(right) coset of H in G. It follows that G = UxH = UHx where the union is taken over all pairwise

of H in G is called the index of H in G and denoted by GH. If H is a subgroup of G such that left and right congruence modulo H coincide, then H is said to be a normal subgroup of G. In an abelian group, each subgroup is normal. If H is a normal subgroup of a group G, then GH is a group of order [G:H] under the binary operation given by (xH)(yH) = xyH, this group is called the quotient group of G by H, and will be denoted by GH.

A mapping h on a group (G,o) into a group (G,*) is said to be a homomorphism provided

h(xoy) = h(x) * h(y) * for all x, y in G.If h is bijective, h is called an isomorphism.

By a <u>field</u> we mean a triple (F, +, .), where +, .

are two binary operations on F, known as addition and

multiplication respectively, such that the followings hold:

- (i) F forms a commutative group under addition.
- (ii) F* = F {0}, where 0 is the additive
 identity forms a commutative group under
 multiplication.
- (iii) For any $a,b,c \in F$, we have a(b+c) = ab + ac.

For convenience, we shall denote a field $(F, +, \cdot)$ simply by F. (F, +) and (F^*, \cdot) will be referred to as the additive group and the multiplicative group of F, respectively. If there is a least positive integer n such that na = 0 for all a \in F, then F is said to have characteristic n. If no such n exists F is said to have characteristic zero. If K is any non - empty subset of a field $(F,+,\cdot)$ such that K form a field under restriction of +, \cdot to KxK, we say that $(K,+,\cdot)$ is a subfield of $(F,+,\cdot)$. If K is a subfield of F, we say that F is an extension field of K.

A function ψ of a field F into a field K is a homomorphism provided that for all a,b \in F:

$$\varphi$$
 (a+b) = φ (a) + φ (b) and φ (ab) = φ (a) φ (b).

If Ψ is bijective, ψ is called an isomorphism. If Ψ is an isomorphism of F into itself, ψ is called an automorphism. If F is a field in which $a^2 \neq -1$ for any $a \in F$, let

$$C(F) = \{(a,b) : a \text{ and b are elements of } F\}.$$

Define addition and multiplication on C(F) as follows:

$$(a, b) + (c, d) = (a + c, b + d)$$
,

and

$$(a, b) (c, d) = (ac - bd, ad + bc)$$
.

It can be shown that C(F) under the above addition and multiplication forms a field. This field contains $\overline{F} = \{(a,0) : a \in F\}$ as a subfield isomorphic to F. Hence we may veiw F as a subfield of C(F). Observe that if we denote the element (a,0) of F by a and denote (0,1) by i, then each element (a,b) of C(F) can be expressed as

$$(a, b) = (a,0) + (b, 0)(0,1)$$

= $a + bi$.

Note that from the definition of i, we have $i^2 = (-1, 0) = -1$. It can be shown that the mapping $\Psi : C(F) \longrightarrow C(F)$ given by

$$\varphi(a+bi) = a - bi,$$

is the unique automorphism of C(F) fixing all elements of \overline{F} and taking i into -i. Since \overline{F} is isomorphic to F, hence we may veiw φ as the automorphism of C(F) fixing all elements of F and taking i into -i. Let $\triangle(F) = \{a + bi \in C(F) : (a + bi) \varphi(a + bi) = 1\}$. It can be shown that $\triangle(F)$ forms a multiplicative subgroup of $C(F)^*$. To each field F, we shall associate a multiplicative group M(F) as follows: if F contains an element F such that F if F contains no element F such that F if F contains no element F such that F if F contains no element F such that F if F contains no element F such that F if F contains no element F such that F if F contains no element F such that F if F contains no element F such that F if F contains no element F such that F if F contains no element F such that F if F contains no element F such that F if F contains no element F such that F if F contains no element F such that F if F contains no element F such that F if F contains no element F such that F is F to F to F that F is F that F is

Lemma 2.1.1 Let G be a group, F be a field of characteristic different from 2 such that $a^2 \not= -1$ for any a in F. Let h be a homomorphism from G into $C(F)^*$. Then for each x in G,

 $\frac{h(x) + h(x^{-1})}{2} \quad \text{and} \quad \frac{h(x) - h(x^{-1})}{2i} \quad \text{belong to F if and only if}$ $h(x) \text{ belongs to } \triangle(F) .$

Proof Let φ be the automorphism of C(F) fixing all elements of F and taking i into -i .

Assume that $h: G \longrightarrow C(F)^*$ is a homomorphism such that $\frac{h(x) + h(x^{-1})}{2}$ and $\frac{h(x) - h(x^{-1})}{2i}$ belong to F.

Therefore

$$\frac{h(x) + h(x^{-1})}{2} = \varphi\left(\frac{h(x) + h(x^{-1})}{2}\right),$$

$$= \frac{\varphi(h(x)) + \varphi(h(x^{-1}))}{2},$$

thus .

$$(2.1,1.1) h(x) + h(x^{-1}) = \varphi(h(x)) + \varphi(h(x^{-1})).$$

Also,
$$\frac{h(x) - h(x^{-1})}{2i} = \left(\psi \left(\frac{h(x) - h(x^{-1})}{2i} \right), \right)$$

$$= \frac{\varphi(h(x)) - \varphi(h(x^{-1}))}{-2i},$$

thus

$$(2.1.1.2) h(x) - h(x^{-1}) = \psi(h(x^{-1})) - \psi(h(x)).$$

It follows from (2.1.1.1) and (2.1.1.2) that

$$2h(x) = 2 \Psi(h(x^{-1}))$$
.

Hence $h(x) \cdot \psi(h(x)) = 1$.

Therefore h(x) belongs to \triangle (F).

Conversely, assume that h is a homomorphism from G into \triangle (F) .

Hence $h(x) \cdot \psi(h(x)) = 1$ for all x in G. It follows that $\psi(h(x)) = h(x)^{-1} = h(x^{-1}).$

Let h(x) = a + bi where a, b $\in F$. Therefore,

$$\frac{h(x) + h(x^{-1})}{2} = \frac{h(x) + \Psi(h(x))}{2}$$

$$= \frac{(a + bi) + (a - bi)}{2}$$

= a,

and

$$\frac{h(x) - h(x^{-1})}{2i} = \frac{h(x) - \varphi(h(x))}{2i}$$

$$= \frac{(a + bi) - (a - bi)}{2i}$$

- h

Hence
$$\frac{h(x) + h(x^{-1})}{2}$$
 and $\frac{h(x) - h(x^{-1})}{2i}$ belong to F.

Let $(F, +, \cdot)$ be a field and (V, +) be a commutative group with a rule of multiplication which assigns to any $a \in F$, $u \in V$, a product au $e \setminus V$. Then V is called a vector space ever F if the following axioms hold:

- 1) For any $a \in F$ and any $u, v \in V$, a(u+v) = au + av.
- 2) For any a, b & F and any u & V, (a+b) u = au + bu.
- 3) For any $a, b \in F$ and any $u \in V$, a(bu) = (ab)u.
- 4) For $v \in V$, 1v = v where 1 is the multiplicative identily of F.

The elements of F and V will be referred to as scalars and vectors, respectively. If V is a vector space over the field F and $\{x_i\}$ (1 \leq i \leq n) is a finite subset of V, then for $a_i \in \mathbb{F}$, 1 \leq i \leq n, $\sum_{i=1}^{n} a_i x_i$ is called a linear i=1 combination of the x_i . The vectors $x_1, \ldots, x_n \in V$ are said to be linearly dependent over F, or simply dependent, if there exist scalars $a_1, \ldots, a_n \in \mathbb{F}$, not all of them zero, such that $\sum_{i=1}^{n} a_i x_i = 0$. An arbitrary set A of i=1 vectors is said to be a linearly dependent set if some finite subset of A is linearly dependent. Otherwise, the set A is called linearly independent or simply independent. If B

is a linearly independent subset of V such that for every $v \in V$, v can be written as a linear combination of vectors in $\mathfrak B$, we say that $\mathfrak B$ is a <u>basis</u> of V. It can be shown that every vector in V has a unique representation as a linear combination of elements of any basis $\mathfrak B$.

Observe that the set $\mathbb R$ of real numbers can be considered as a vector space over the field $\mathbb Q$ of rational numbers. It can be shown that $\mathbb R$ has a basis over $\mathbb Q$. Such a basis is known as a Hamel basis. A proof of the existence of such a basis is given in [6].

2.2 Topological Concepts

Let χ be a set and \Im be a collection of subsets of χ . The collection \Im is called a topology on χ provided \Im satisfies the following conditions :

- a) X and \emptyset are elements of \Im .
- b) The intersection of any two members of 3 is in 3
- c) The arbitrary union of members of \Im is in \Im .

If \Im is a topology on a set X, then (X, \Im) is said to be a topological space. Occasionally, we shall denote any topological space (X, \Im) simply by X. The members of \Im are called \Im - open sets of X, or simply open sets of X. If a topogical space X has the property that for any X, Y in X there exist open sets O_1 , O_2 such that $X \in O_1$, $Y \in O_2$ and

 $x \notin O_2$, $y \notin O_1$, we say that x is a T_1 - space. For any topological space (x, \mathcal{J}) , it can be shown that if Y is any subset of x, then the family $\mathcal{J}_y = \{T \cap y : T \in \mathcal{J}\}$ is a topology on Y; it is called the <u>relative topology</u> of Y and the topological space (Y, \mathcal{J}_y) is called a <u>subspace</u> of (X, \mathcal{J})

A subcollection \mathcal{B} of a topology \mathfrak{J} is said to be a base of \mathfrak{J} provided the following condition hold: for each $T \in \mathfrak{J}$ and $x \in T$, there exists $B \in \mathcal{B}$ such that $x \in B \subset T$, or equivalently, each T in \mathfrak{J} is a union of members of \mathfrak{B} . It can be shown that if a family \mathfrak{F} of subsets of a set x has the properties;

- (i) the union of sets in B is in X,
- (ii) for each B_1 , $B_2 \in \mathcal{B}$, $B_1 \cap B_2$ is the union of members of \mathcal{B} , then \mathcal{B} is a base for some topology for X. This topology consists of all sets that can be written as unions of sets in \mathcal{B} . Observe that the family of all open intervals form a base for a topology on the set R of real numbers. This topology is known as the usual topology on R.

A subfamily S of T is a <u>subbase</u> of the topology T on X if and only if the set of all finite intersections of members of S form a base for T.

Let $\{X_{\alpha}: \alpha \in A\}$ be a family of sets $X = \prod_{\alpha \in A} X_{\alpha}$ denotes the set of all mappings $X: A \longrightarrow \bigcup_{\alpha \in A} X_{\alpha}$ such that

 $x(\alpha) \in X_{\alpha}$ for each $x \in A$. X is called the Cartesian product or product of X_{α} 's. For each $x \in X$ and each $\alpha \in A$, $x(\alpha)$ is called the α -th coordinate of x. We shall denote $x(\alpha)$ by x_{α} . The mapping $P_{\alpha}: X \to X_{\alpha}$ defined by $P_{\alpha}(x) = x_{\alpha}$, is called the α -th projection. It can be seen that P_{α} is a mapping from X onto X_{α} . If $\{X_{\alpha}: \alpha \in A\}$ is a family of topological spaces, then the family of sets of the form $P_{\alpha}^{-1}(T_{\alpha})$, where T_{α} is a T_{α} -open set, forms a subbase of a topology T_{α} for the product T_{α} T_{α} . This topology is known as the product topology. The topological space of T_{α} T_{α}

Let X and Y be two topological spaces. A mapping f of X into Y is said to be continuous if for each open set V in Y, $f^{-1} \left[V \right] = \left\{ x \in X : f(x) \in V \right\} \text{ is an open set of } X \text{. If for each open set U in X, } f(U) = \left\{ f(x) : x \in U \right\} \text{ is an open set of Y, f is said to be open.}$

Let X be a topological space, R be an equivalence relation on X and Y = $\frac{X}{R}$ be the quotient set of X with respect to the relation R. The mapping $\psi: X \longrightarrow Y$ defined by $\psi(x) = \overline{x}$, where \overline{x} denotes the equivalence class of x, will be called the canonical mapping. It can be shown that the family $\Im_{\psi} = \left\{ \ v \subset Y : \psi^{-1}(v) \ \text{ is open} \right\}$ is a topology on Y;

it is called the quotient topology and (Y, \Im_{ψ}) is called the quotient space of X by R .

2.3 Topological Groups

A triple (G,o,3) is a topological group if and only if (G,o) is a group, (G,3) is a topological space and the function whose value at a member (x, y) of $G \times G$ is xoy^{-1} is continuous relative to the product topology for $G \times G$. We sometimes say "G is a topological group".

The followings are examples of topological groups:

- (a) The set \mathbb{R} of real numbers with addition as the group operation and the usual topology form a topological group.
- (b) The set \mathbf{Z} of integers with addition as the group operation and the relative topology of the usual topology of \mathbb{R} form a topological group.
- (c) The set \mathbb{R}^* of nonzero real numbers with multiplication as the group operation and the relative topology of the usual topology of \mathbb{R} form a topological group.
- (d) The set \mathbb{R}^+ of positive real numbers with multiplication as the group operation and the relative topology of the usual topology of \mathbb{R} form a topological group.
- (e) The set \mathbb{R}^n of all real n-tuples with an addition as the coordinate addition and the usual topology of \mathbb{R} form a topological group.

- (f) A complex number can be considered as an ordered pair of real numbers. Hence the usual topology on $\mathbb C$, the set of complex numbers, shall mean the usual topology on $\mathbb R^2$. The set $\mathbb C$ of complex numbers with addition as a group operation and the usual topology on $\mathbb C$ form a topological group
- (g) The set C of nonzero complex numbers with complex multiplication as a group operation and the relative topology of the usual topology of C form a topological group.
- (h) The unit circle $\triangle = \{z \in \mathcal{C} : |z| = 1\}$ with complex multiplication as the group operation and the relative topology of the usual topology of \mathcal{C} form a topological group.

If H is a subgroup of G, H endowed with the relative topology is a topological group; it is called a topological subgroup or simply a subgroup of G. If H is a normal subgroups of G, then G_H , the quotient group with respect to the equivalence relation \widetilde{H} , and the quotient topology form a topological group; it is called the quotient group of G by \widetilde{H} . It can be shown that H is open if and only if each coset of H is open.

If ψ is the canonical mapping of G onto $G/_H$, it can be shown that ψ is an open continuous homomorphism of G onto $G/_H$. The following is a fact about continuous homomorphism. We state this fact for later refference, and it can be seen in [1].

Theorem 2.3.1 Every continuous homomorphism of \mathbb{R} into \mathbb{R}/\mathbb{Z} is of the form $x \longmapsto \psi(ax)$ where $a \in \mathbb{R}$ and $\psi: \mathbb{R} \longrightarrow \mathbb{R}/\mathbb{Z}$ is the canonical mapping.

2.4 Topological Fields. 005253

A topological field is a quadruple $(F, +, \cdot, J)$ such that $(F, +, \cdot)$ is a field, $(F, +, \cdot)$ and (F^*, \cdot, J_{F^*}) are topological groups where J_F^* is the topology induced by J on F^* . We sometimes say "F is a topological field ". If F is a topological field in which $a^2 + 1 \neq 0$ for all $a \in F$, then C(F) endowed with the product topology is a topological field. It can be shown that the multiplicative subgroup $\Delta(F)$ with the relative topology form a topological group.

2.5 Topological Vector Spaces.

A topological vector space is the vector space V over the field F of real or complex numbers and a topology \Im on V such that the function $f: V \times V \longrightarrow V$ and $g: F \times V \longrightarrow V$ defined by f(x, y) = x+y and $g(\Im, x) = \Im x$, are continuous, where the topology on F is the usual topology. The topology \Im is said to be a vector topology.