CHAPTER II
THE INTERPOLATION SCHEME

1. The Basis of the Interpolation Scheme

Although the interpolation scheme for the electronic
energy bands of the irom-group transition metals was
developed empiricallyll’lz, a firm theoretical basis has
been eatablished16’17’l7a through a demonstration of the
connection between the equations underlying the KKR and APW
methods with those characterizing the interpolation scheme.

In first-principles band calculations such as the
KKR and APW methods, the crystal potential is constructed by
superposing suitably chosen atomic potentials and then
empioying the "muffin-tin" approximation, Representing the

electrons by augmented plane waves and regarding each atomic

16 V. Heine, "s-d Interaction in Transition Metals,"

Physical Review B, 153, 673-682 (1967).

17 J. Hubbard, "The Approximate Calculation of Electronic

Band Structure," Proceedings of the Physical Society,
92, 921-937 (1967).

17? Sa-nguansiri Roongkeadsakoon, "The Approximate Electronic
Band Structure of Transition Metals," Unpublished Master's

Thesis, Department of Physics, Chulalongkorn University, 1967.



site as an elastic scatterer characterized by a given phase
shift, the band structure calculation is formulated as a
scattering problem in a periodic array, as apparent in the
KKR equation

A, + K

det LL*

|
cot‘ézl - 0 3 (2.1)

L

where A , (L.= Lym; L' = 4r,m') are structure constants
that depend solely on the symmetry of the scattering array
and %L
energy E = 2 ;

are phase shifts associated with each scatterer for

Zimanls has transformed this equation into a form

appropriate to the solution of the pseudopotential formulation:

get |{|R+E}2-8}8, +vE, | = 0, (2.2)
KK* KK!'
where
(qu)a I ! Q£(r§¥flr ) jlﬁ‘géf'lro)
Vf_. = 5L |= EACONT ttn?ﬁ/ %
w4 a R
x |2 v, () ¥ (k)
! ;

and cot ée = cot 31 - ’zﬁ(}‘(—ro)/:}‘e( Kro) "

¥ and K' are reciprocal lattice vectors, k is the wave vector,

18 J.M. Ziman, '"The T Matrix, the K Matrix, d Bands snd
1-dependent Pseudopotentials in the Theory of Metals,"
Proceedings of the Physical Society, 86, 337-353 (1965).
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o is the radius of the muffin-tin sphere, v is the volume of
the unit cell, and YL’ jz and 1{L are spherical harmonies,
spherical Bessel and Neumann functions, respactively.
ﬁﬁ* may be regarded as the plane-wave matrix elements of a

'
pgzudopotential becauze it deperds on the scatierer through
a trigonometric function of the phase shift aé(?ﬁ} on the
ensrgy shell, A strong potential at an atomic site can be

replaced by a weaker pseudo?az/ntial since the true qu?(W
and a smaller one i;ffgging fé%%iig by integral multiples

/
of 1 preduce t:i:fsﬁg?
Heinel6 5 8

pseudopotential

P 3 < \ b e ->
v R o + ZAEk+K|vp| K4K
H‘ B @ (),ﬁ 4

trh\.,.(r/@n o T e

where

Ed is a2 resonance energy originating from atomic 4 states,
m‘> is an approximate atomic d ket, \ % + E'> ig
associated with the plane wave exp [i(X + K)or) s and P _ is

£
an operator prcjecting out the £ component,
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Qualitatively, this expression may be understood in
terms of the resonant scattering between the overlapping d and
conduction band states. + mey be seen from the schematic
presentation Fig, 21 that, in the iron-series tfransition
metals, the atomic d levels lie above and relatively close to
the atomic zero, They act as rescnant scatterers. The d
character is preserved to some extent even in crystals because
of the centrifﬁgal barrier apising from the repulsive potential
term £([L + 1)/r2 (A£=2 for 4 electrons) in the Schrodinger
equation. This acts 48 a barrier and inhibits their spread
over the crystallg. This accounts for the relatively narrow
width of the d bafd/ /. On the other hand, for the conduction
bands they are taker to be more nearly free and one expects
the bottom of the conduction band, I, to lie close to the
muffin-tin energy, Since tne d=-levels in the iron-series
metals lie above the muffin-tin energy, the d-bande should
thus overlap the conduction bands and act as resonant
scatterers for the conduction electrons,

Substituting £q.(2,2) into Eq.(2.3) we obtain the

secular equation:

15 J.C., Ziman, "Scme Non-Structure Aspects of the Theory
of Metal." Proceedings of the Physical Society, 91,
701=723 (1967).




Figure 2-1

Left : The crystal potential in the muffin-tin
approximation (dashed lines),
Right: The resulting conduction band and d band

overlap.,
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r - R
el c T._.
hh?t hK?® hmt
det | T, . T = 0 (244)
Kht KK? Km?
fm-ﬁ»' L m-»-e-, (Ed - E) smm!
5 J
where
- — 2 - -5 - —
c,, = {Ik+K}-E}6?+E‘£<k+KIV&IR+K'>
KK? KK?
- :
+ (B - B ) E s .
¢ m /ﬁgm K'm

The rows and columns of this determinant are labelled by the
magnetic quantum pumbers m corresponding to o (for 34
electrons) and by the reciprocal vectors E'andlf. K are the
few smallest ones retained in the interpolation scheme in
order to obtain an adequafe description of the conduction
bands and h are. the higher recliprocal lattice vectors which
can be approximately transformed away, |

The secular determinant can then be written in the form

cr. Yy
KK? Km?
det . = (0] (205)
D
'rm-i, mm?
where -
8 ﬁﬁlrﬁh'
D, = (E;=-E)d -3 - . (2.6)
. 4 m' F IR+ B -k
The C_,, and 7Y, describe the conduction bands and the

JKK?T Km!



14

hybridization between these and the d bands, respectivaly.
It should e noted that the Dnm' depend on the crystal

potential through the ayobridization

— s

hm
Physically the preceding transformation corresponds to

the fact that the d-functions centered on easch site can only
interact with aaéh other indirectly via the plane-wave states,
and that the kind of ovexlap integrals which characterize
tight~binding theory must arise from such indirect
interactions, There 1s, therefore, a need to aportion the
reciprocal lattice vectors into those X vectors which, in
addition to producing the conduction bands, provide indirect
interacticn among d functions centered on different sites,

and the h vectors which may be transformed away toc yield the
tight=birding form of the d-bands,

Hodges ot'al,ll and Muellerla appeared to have arrived
at an optimum separaticn of the reciprocal vectors, aund thus
nade possible the retention of the minimum aumber of E's
required to produce an adequate description of the conduction
bands while permitting the description of the d-bands in the
iearest-neighbor &pproximation.

The physical content of the above formalism may be
shown pictorially in’Fig.E-z, which depicts the band structures
2f a paramagnetic fcc metal in the {1C0C] direction. The d
and conducticon bands are shown respectively in Figs.,Z2«2a and

and C

-nl ——

KK *

2-2b, These can be obtained from a sclution of the DP

slocks of Eg.(2,5). TFigure 2-2c¢ shows the actual bands after
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Figure 2-2

Fcc transition metal d bands, conduction bands, and

hybridized bands in (a), (b), and (c), respectively.
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hybridization, The heavy lines are the bands having
the same symmetry.

Eq.(2.5) is closely related to the secular equation
of the interpolation scheme, Eq.(2,24). For fcc lattice,
this determinant is 9x9 and contains four plane waves

labelled by‘z and five d functions labelled by m,



)
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The interpolation scheme for the band structures of
transition metals to be employed in the present work will be
set up for an fecc lattice for 1/48 of the Brillouin zone in
which k:;? kxz k::?' C &s shown in Fig,2-3, All other points
of the reciprocal lattice are related to peints in this part
of the zone by symmetry transformations.

Because of the limitation to the paramagnetic state,
all electron correlation effects, spin-orbit interactions
and other relativistic effects are neglected, Instead of
using the full many-electron Hamiltonian, we consider only

the one~electron Hurtree~Fock Hamiltonian, denoted by

7
Hhand ’ (2.7)

which givesthe results of ordinary nonrelativistic band theory,

The eigenvalue eguation corresponding to Hh& is represented by

nd

B, () = E (O B, (M (2.8)
km m km

where m is the band index, Em{g) is the eigenvalue or the band

energy of the mth band, and the Bloch eigenfunctions B (;),
km
according to the theoretical considerations of the previous

section, are linear combinations of the LCAO's b (T)and
kn
the OP¥'s b (r) :
kK



Figure 2-3

The 1/48 primitive cell in the Brillouin zone of the

fece lattice in which k2> k_ 2 k_ > O,
y X 2z
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B,(¥) = Ta (K v, (r)+ 3 @ v (M . (2.9
km n mn kn mk kK

The LCAO's are
b, (¥ = (Flk Nt Z, R 7 - F,) (2.10)
| N (\ | % \7 ? | 2 |

whoro'ak' labels the positions of the atoms in the solid,
n = ly..y5, labels the atomic 3d orbitals, Cf’n(; - 'f!l),centcrod
at aitolﬁl’ and the summation is over all atoms, totaling N,
The usual convention of solid state physics is used
and (?n are chosen as the basis functions for the irreducible

representations of the cubic point group. Specifically, the d

basis functions will be written in the form

P.F) = CF (%/ryy/rys/r)e(r) (2.11)

with the normalization factors Cn and the cubic harmonics llf’1

chosen as follows:

-]

Q
B

*xj
=

BiN Hkd BN
L ]
HiX NN kg

(2.11.4)
- (3/0)4]
[3(z/r)2 - 1]

(T CTR I S
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and g(r) containz the radial function for 3¢ electrons and the
remaining constants, The present nctation is thus slightly

jifferent from the more common notations:

< i
G = st Z.% 2 ;
Y& = asaMibL 2 ) ;
PaF = sty 202 s , (2,11,
- %1 % v\
‘ﬁ(r) = .(15/1611")'-‘(—2- i, \£(x) s
e r /
32°

*
1Y)

which eatisfy

+ U{r)\ %?n(r) $E . onic Cf;{;} (2.12)

Fae)
=

[

where U(;) iz the atomic potential and the f(r) is the

rormelized radiasl functien of the isolated atom:
£ 2
‘o [rf(2)1% dr = 1 " {(2.13)

It Ls to be nected that with our cholce of breaking up

the normalization conatanic, we have

) 4
N ] L S G e
nulf = rc %
1 2 2 2 1
- Ve . ¢
+ 33 (32 r )] z . {2.1%)
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The QOP¥'s have the form

<

-1

L)

i |

-

-
b,lr) = €

K¥ XK

£+ %) - 2 GIR0GRIT « 7)1 s

where the K are the reciprocal lattice vectors and the

normalization facter is

1

C \ a 1 -5 \(k ilk + K . (2016)
The first terms in the OP¥ts :

are the plane waves where S is the volume of the unit cell,
The index /H runs @ver all core states including the 3d states:
18, 284442409 3d. This is so that the CP¥'s are really
orthogonal to all core and 3d states,

In principle, if the basis is to be fully orthogonal,
ail the OPW's should also be orthogonalized toc each other.
In practice, a satisfactory interpolation scheme may be obtained
without expliciily carrying out these various orthogonalization
steps, In the 1/48 of the Brillouin zone being used for
developing the interpolation scheme, it is sufficient to use

enly four OPW's: hose with the following‘ﬁ values:
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‘izl = '21;'(0,0,0) <
- ar
Kz = G(O,-—lt’a,o) 3
o (2.18)
EZ' = ‘&;("81"8"8) ; |
- i
K, = gz (8,-8,8) .

These are the reciprocal lattice vectors f-forming the
symmetrized linear combinations of orthogonalized plane waves
that give the lowesi snérgy empty-lattice eigenfunctions.
This "4~-0QPW approximation’ was first used by Harrison to
calculate the energy bands for Alzo. The explicit forms of
the OPW's may be found im Appendix A,

Huellerl2 hags introduced an important simplifying
ansatzj namely, the radi.l d-wave functions in & given atomic
¢ell are the same for all |§1 and are independeat of the bhand
index m, Thus the d states are regarded as pari of the
spherically symmetric atomic core. This ansatz was justified
by the accuracy of the inﬁerpolation scheme so developed,

Since the other core states are much lower in energy

than the 3d states, Mueller wrote the OPW's, in a slightly

different notation, in the form [see {2.15)]

20 W.A. Harrison, "Band Structure of Aluminum,”

Physical Review B, 118, 1182-1189 (1960).
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"" - 1 3 e -
¥here Hn(kJ are the orthogonality coefficients:

<L_.Pn \ ‘1;> . (2.20)
i
Uzing the completeness relation, we write (2.20) in the form
(T % 1 ““> '!‘:'] 'ﬁ’> P
..n\:{,! I<Y)n T <\ ar 4

where {?ll‘(fp\) and (?‘;-}:> dencte respectively a

L)

hnkk)

d funciiorn and & piane wWeve, To evaluate this integral,
it is convenlent %o expaAnd the plane wave in terms of

spherical harmonicd shd Apherical Bessel functions:

R 5ol oo 42
{?]’i} - L RN, BT e 3 jp(kr)
A=0 mzeg

o
E x.&n( e-k' ¢k} Yim( 9:" ¢r}

Then, using the completeness relation

the orthopgonaiity condition of the spherical harmonics

*
IY.L‘-m*uZ‘) gf.m(ﬁ') il b '5

i

and the form of the & functions in (2,11), we obtain the

orthogonality coefficient in the form
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nnci") = CuF(k/kyk /ieyk /K)2(Kk) (2.21)

where

it is to be noted that because of the d-isotropy ansatz, f is
function of the magnitude k and not of the vector i;

To summarize, the Bloch eigenfunctions Bﬂh(;b to be
used for evaluating the band structures are to be spanned by

the 9 basis functions, consisting of the 5 d-orbitals:
("fn(;) o cnrn(x/"OY/rgt/r)S(r) s L= 1’0009 5y
and the & OPW's

- =1 - | - — i -t - | - )
b(r) =« COI(r|ik+K) = TM(K+K){(T|2), 4= 1,...4
KK kKi< 1) n B RRCAERT it

=

- P
- Cc [ .i(k + Ki).r

. - DM (k+K) P @]
kKi V& n B * i 7; o

where the vectors E; are listed in Eq.(2,18) and [ = Nva.
For convenience, we introduce the new running index 7V

to indicate the various basis functions used in our work:

-D-by = - 4
(Flev) b, ()
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For V = 14243,4, b_ {(r)are the & OP¢'s corresponding to
k¥
— - - .

Kis %59 Kyy and K, as listed in Eq.{2,18) respectively,

-
For ¥ = 5,5,7,8,9, b_ (r) are the 5 LCAC's corresponding to
kY

% . sy Fuyr ans % as listed in Egs.(2,11) and (2,11,4)

respectively.

The energy eigenvalues are given by the solutions of

the secular ssuation

det

- i Y oe f ’
(¥v | e=5}ky }l
a1 - — -
mdet}'<-}2?)IH!k.’f>—E(k}<kU\ k2/>1i = 0.
(2.23)
We will essume throughout that the § basis functicns form an

orthoncrmal set, then ths secular eguation becomes
I/-v s A 4

This is a 9x9 matrix equition. This iz the point of departure

for the interpolation scheme which was utilized by Hodges

and by Mueller and which was justified by Heine and Hubbard

in the form of (2.5},

entire metrix may be written schematically in the

OPW - OPW CPW = LCAQD

P e

. 1
LOPY - LCAO] LCAC - LCAO

e

T
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% The LCAO-LCAQ Block

To obtain the matrix elements in the LCAO-LCAC bdblock,
the tight-binding approximation as used by Fletcherdl and
by Slater and Kcster22 will be employed. The crystal
potential may be written as a superposition of atomic
potentials centered avout sites ﬁﬁ »

W
£ U/ﬁ/ﬁﬁj 2 (2 26)

The matrix e‘e@gﬂf/jgé;w e obtained by using the LCAO's as

shown in Eg.(2 /s}f/for 2&“' = Ly2y34445, as follows:
I —

V(r1 ﬂkf

TR o we =
ﬁff;,(r - Ry)dr

= GeC. Fletcher, "Density of States Curve for the

34 Electrons in Nickel.," Proceedings of the Physical Society
of London, A65, 192-202 (1952); G.C. Fletcher and E.P. Wohlfarth,
Philosophical Magazine, 42, 106 (1951).

= J.C. Slater and G.F. Koster, "Simplified LCAQ Method

for the Periodic Potential Problem,” Physical Review B, 94,
1498-1524 (1954).
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b T

2 r
= [ (f:(?) ‘igE + v(?}\ P (Ddr

S5

vz E Rt L e g, BF

L£0
= [E +DCShy+ 5,91 b,

Sy x . - - s
+ 2 e-lk'aa,fﬁﬁn(r - RV - U) %fn,(r}dr .

L40
(2.27)
We have used
e ig- - vml P @Far
4 § Tor M= 14,2,3 (t orbital) ’
) ‘{ Eo + By for n = 4,5 £ eg orbital) ,

where A is the cryetal field splitting of the d bands at the
point T 4in the cubic environmsnt,
If only nearest=-neighbor interactions are réfained,

the overlap integrals invelved in a fce structure are :

a = = ‘f,"'i(x - %,y = 5:2)(V = 0) P (x,5,2)ar
r, = [ Lf’:(x,y - 32 = NV - ) P (x,y,2)dr
Ay = I (f:(x ~ 53752 = 3)(V = 1) P (xyy,2)ar
"4 = [ (f;(x - -S,y - %.z)(v - T) Sau(x,y,z)d; ,

=
n

s -f th(x y = — 2 = %)(V - ) (f;*(x'Yozhi; ’

i9)] ‘fh(x,y,z)d? .
(2.28)

=
oN
i

J <{"'2(x,y -3 - D
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The explicit matrix elements of the LCAO-LCAO block

then have the forms (note that # =n + 4) :

ﬁy,’! H 355 = E = Mlcoavgccs § + haacos ‘j’(cos'g + coai’(_)

2!
(o)
o

L

o]

]

o = lta c08 V‘i‘cosﬁ" + 4A2co§E(coa‘f + cosy)

= E = 4A cos Scoa @ + kh co8 ¥ (cos § + cos §)

Hog = B, # /A + hA cos§cos] ~ kajeos T(cos § + cosi])

5
399 = E Kiim (‘4/3)(&1}4- ‘M,J.)coa‘g-coa 1

» (&/3)(2r, - Ag)cos fleosT + cos¥])
356 = H65 S *“ﬁ;ﬂiﬁgﬂ-iﬂy

gp = Bog = -HAzsind sin

e

g5 * -(8/V5)A6uin‘§s;nvt

Hgp = Hog = -lm}sin?ain i

568 = 386 - —4A6sinvtain‘f

H?S = Hs? = L}A6Bin% sin ‘f
- (h/f})AGBin'g sin‘f

389 = 398 o (#N))(ALP + As)coa(f(cos"( - cos?) .
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where the coordinates are

€ - (o, M= @ax, , F= /2K, . (2.30)

The interpolation scheme refers to the fact that the
values of the overlap integrals Al,Aa,...,AG, as well as the
position of the d-level (Eo), and the crystal field
splitting (A), are regarded as adjustable parameters,

In the LCAO-LCAO block of the sccular deterninant,
Al,...,As, Eo, A “are the 8 interpolation parameters

introduced,



)
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4 The OPW-OPW Block

The matyrix elements in the OPW~OPW block are to be
expressed in paramagnetic forms as follows. TUsing {2,19) and

—f —

- /
writing k, = k + K,, , we have, for V,U = 1,009k

H‘Uv’ & <-l:7/l H ["ﬁv'>

. g QT I-E M (kv) (|3

—

ke, |

% H ._Ik,y;> =L M_,(k,") ln'>3

" c%i C";Z],-, SEHEIEMOE : M) | x| j,;b,>

& ﬁsnn-&v') (Fy |1 In')

+ ni:n'uzc’ﬁv)nu.(i'p-) {n]|® In'> . 62:51)

We shall denote this in the form

<§v‘ﬂ “lzu’> - c"l =t gt I gt « 1Tt 4 5TV7 (2.32)
. Ko Ky’
with
gt = <i<’,,,n ,"12,/) |
SR & 5 S : M (%) (n | lfk',,?- E'Mn,(iv:)éipln |n)
;o I (CRUMCRRCTR IR .

n,n'

(2433)
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T
We express the crystal potential in the form of Fourier expansion
of the pseudcopotentisl :
- —:; -
WP = V(D = gv, lKeT | (2.34)
P 'i’t Kt

x 7

Fer Y =7 HI = <-§:u ! Hl; -!Ev> cen be expressed in the

forn

o ey 2 . -
HI 1l fe-l(k-bh,).r ¢ A Y eiK'.r ]
2nm
Nva

- - - 5
Z ei(k+Kv).r =

* ('W 2wl ) 2 1 , FrE
= -2-5 1;-‘; K + KZJ + §'| ﬁ.\'r-; J_i_;' e dr

B ( ﬂ'ya L@ SR /
= -é-?n- e I F Kz, + g'vg{.l 5 {E.)

" St
= 'a_m H k + K?/ + Vo L]

Two parameters are introduced at this point, namely

“ a<' ﬁa(ﬂ\z

« 5 \n) ;
) (2,35)
/,6 = ‘Jo P 'ﬁ-;;- fV(r)d!‘ 9

so that the diagonal terms of Y = <Tc.u l H] Ey> are directly

parametrized in the form of a simple free-electron-like parahola
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B (BlalE)D

" o(|’£+'i<']2 . /5

where (X determines the width of the parabola and /9 determines
the location of the bottom of the parabola, The parameters «
and /_; are discussed further later on.

For v £ ¥, ' can be expressed as follows :

- - - 2 - .
HI = ‘_L g-i(k-rltg).r [ g__ + g v-. oiK'.r ]
“vﬂ - =-p m—. K' K'
x .i(k-l-l(,’).rd';
e s -
T o 2 j ALK =Ky K) 17 g
a ¢ K
- v, b =
o [K*=(K, -k 2]
- ] (2.}6)

v-'l' -
Ky=Ky'

?v refers to one of the reciprocal vectors, expressed in units of

(%) » 88 listed in Eq.(2.18)., The terms V

-

-K

sums of the matrix elements of the c¢rystal potential and the

represent the

repulsive potential between two plane waves characterized by wave
vectors differing in wave-numbers by Eu"ﬁv' e They are formed

by replacing tl{u real crystal pptontin]. with the weaker
paeudopotentia'l.i_" Fo.r_‘t":he L™OPW's that are involved, the
wave=vector difrlerence_;lu aro_au;:h that onl.y two Foui'ier coafficients,

namely V,,, and VZGO” ?t!'é be employed. In the ép_irit of

11799201 %
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Harrison's workaO

s the matrix elements Vlll and Vzoo are
regarded as adjuatable parameters.

The diagonal matrix elements Hw,fﬁ(') = ﬁ-bp‘\.‘ﬁz + 3{’\ £
are viewed as giving rise to a simple parabolic band such as that
of the free-slectron gas, in which case ¥(r) = 0 and X = %; QE%}E.
However, if the terms HII, HIII and HIv are included explicitly,
the diagonal matrix elements are not simply equal to the
pseudopotential parameters Vlll and vZOO‘ - All the matrix
elements in the OFW-OPW block now include complicated terms
involving normelization factors C_ such as those given in
Eq.(2.16), orthogonality integralz Mn(ﬁ) such as those given
in Eq.(2.21), aﬁd hybridisation integrals btetween OPW's and LCAO'S.

In Hodges' work, the orthogonalization eflecis were
included in a simplified manner, Instead of the OPW's,
plane waves were used, The effects of crthogonalization were
included in sn approximate way through adjusting the values of
<Ky Vi13 and V5400 The parameter /3 is just a constant
fixing the zero of energy. All this amounts to a direct
parametrization of the E(k) function.

In the present work, explicit orthogomalization of the
conduction band states to the d-band states is carried out
explicitly, following Mueller, However, #C is taken as a
fixed constant whose value depends on lattice constant as in
Eq.(2.35). Thia is the reason our value of oL differs
slightly from that appearing in the Hodges schemell in which

/< was an adjustable parameter,



Next, we considsr

o b Hu(ky) M, (*}Ep-')-inll-l\n'> .

n.nt

==
]

Using (2.21), we have

Iv -~ .'—. i ¥ i
H = [n}:n'uncn.!“n\,kv)?n,(ky V) S £k, VE(k ), (2.37)
4
where H ., = {nl H\ n'}

Following Muelley?s work, we introduce the isoctropic

hybridization form factor g(k) through

This ie again bas€d on the ancatz of d-isotropy and amounts to the
neglect of nearest-neighbor overlap in the hybridizaticn term,

The mixing is regarded as having been derived from irnteractions in
a spherically symmetric ceatral cell,

¥e have, using Eq.(2,19),

il ¥v) - c; [{a] B|E,) - D Bty (i, )]
v

giving

{'\.n]a}i:'» C‘i <nlﬂ]3€zf> +§'8nn.ﬁn.(¥z/) :
v
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From Eq.(2.38), we have

<n t\ H \ .Ic.zz> | = C—l?,, ann(kv)g(kv) * E'Hnn' nn'(kv) .
(2.39)

Then the cross terma in (2.32) can be shcwn to have the form

I
—
(]
=
L}
(1}

: (8, (a (BIE) - i:'nn,(i',;) CHEIED

Ll N ~ -
= =S M Gy (e, f:nFn(k*g)S(kv:) +ZE M ,0k)]
L,/ n'
- zzﬂn,(s,;) [c_}: CpiFpelk,delk,) + E H M, (k,)]
v

Gy 9a0¥a T, (6 6k )2 (k)

J

- E'cﬁ cn,cn,Fn,(ic’,,)rn,(i,)s(k,,)rtls__,r)
v

i wi
n

. - 5 '
- 3 o0, B @R, (K118,
2
- -
) n?n ' CCp Pk )y, (k) 2(k,) £(ky)Hnn

= -znccF (k)P (K) [c, elk)?(k,)
n ks
k y v
v
-2 CC F (k)F (kA2 )E(KIE ,

n’n' b

where Hr = H
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Thus
P LU L Ay 3 g (2.40)

where

v -

H = -Ecncnrn(ku)Fn(kv;) fc, g(kv:)f(kv)

n kvf
+ C, 8k, (k0] .
kv

From Eqs.(2.11) and (2.,21), we can see that because of
d-isotropy, &3 k = 0, f(k) is of order kz. Mueller has found

hat it would be convenient to represent f£(k) by
f(l{) = Koja(mo) (2-1’1)

where R_ and K, are adjustable parameters, and jz(x) is the
second spherical Bessel function obtained by expanding the plane
waves in terms of Legendre poljnomiala. Muéller found that the
energy bands in the range of interest are pot greatly affected
by interactions for k' 2 2L ( twice the length of the L direction
in 1/48 of the Brillouin zone ), The convergence of the
overlap form factor nay be improved in the range under
consideration if f(k) is cut off befond its second node,
The explicit form of £(k) used by Mueller to fit Burdick's
calculation of Cu is shown schematically in Fig.2-4 .

€imilarly for g(k), introduced in (2.38), it can also

2

be shown that, as k = 0, g(k) - k~ and thus for small k, the

explicit form of g(k) can be written



Figure 2-4

The orthogonalization form factor f(k). Note that it
peaks near the zone edges, The small insert showns the value
at region  of small k. The cut-off point is also shown in
the figure, The value of f(k) shown is for a fit of Burdick's
Cu bands. The explicit algebraic form can be seen in

Subroutine RF listed in Appendix C,
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where K. and

1

&

R

1

are again adjustavle parameters,

The

(2.42)

hybridization form factor z{k) for Cu, used by Mueller to fit

Burdick's ecaliculation of Cu bands including a linear cutoff at

large ky is shown in Fig.2-5.

Te summarize, with explicit orthogonalization between

the conduction band states and/ Afhe d=band

block ¢an be expressed in the form

1

w
w

with

Lo

H =
1

HJ =

'JIV

iy

£

Gl i) B2

= :} G:}r [ H;,+ HII + HIII + H
= ot = ' - gl ]
I

- o % Vs (R AT
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+ o, 8k (k)]

kv'
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natn
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states, the OPV¥-OPW

(2,44)

(2445)
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Figure 2-5

The hybridization form factor g(k) with a linear cutoff
from le. The insert shows its values at region of small k,
This is also the value used to fit the Burdick's Cu bands,

The explicit algebraic expression can be seen in Subroutine RG

listed in Appendix C.
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¢, and F_ are as shown in) Eqe(2.11.A), and B ., are as shown
in Bq.(2.29). The¢ simplified Bq.(2.43) is the starting
equation for calculating all matrix elements of the OPW-OPW
block of the Mueller's interpolation scheme, From this
expression, one ¢an see that the matvix elemenis of this block

are quite complicated, each involving a number of the following

adjustable parameters :

s B Vigys Voger %0 Byo Ky Ry

Some further refinements are necessary for an effectively
functioning interpolatien acheme, If the orthogonalization
effect hss besn neglected, or taken into account cnly through

the paramsters of . Vlll’ and VZ as described by Hodges, then

00

# - o, H = 0, ad ¢ = 1 .
4
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Then the explicit form of the OPW~-OPW block becomes

'

iy D i
p + <l Vaoe V111 V111
&\ K+E. |2 v y
V200 VRS K, | 111 Y111
H—t - - - —n | D

k k) i V111 /° *“l‘“{sl Vaoo
Vina Vi1 Y200 Vs "“‘k‘xk
(2.48)

This has the same form as that used by Harrison““ for the
conduction bands of Al. The diagonal matrix elements correspond
to a band having a simple parabolic form, /6 13 a constant
fixing the zero of energy, The real crystal potential is

represented by the two pseudopotential Fourier coefficients Vll*

and VEOO .

In transition metals and noble metals, V 11 ang VEGO have

fairly large values, It is then necessary to ensure the occurrence

of properly symmetrized combinations of CPW's along symmetry
directions, For example, at 7 the only symmetrized plane waves
that can be formed using the K vectors of Eq.(2.,18) is gt 1

{ involving only f; Jy corresponding to r71 . The other plane
waves, involving Eé, EB, and EL y appear in connection with other
points in the Brillouin zone, The matrix in 24.(2.48) allows
undesirable wave function components i; to occur at points of

high symmetry. For instance, whereas the point X should

— — )
involve only K, and K, in its present form Lq.(2.48) also




)

47

involveq,ﬁ3 and EQ » These components must be suppressed,
godgas accomplished this by introducing arbitrary symmetrizing
factors F_, (E} into the OPW-OFW matrix elements of Eq.(2.48).
There arethree distinct factors denoted by the E vectors; namely

- -
F0§0(k)’ Ffii(k)' and Fiil(k)‘ They have values of 1 or O at

_symmetry points according to whether or not the corresponding

plane wave is present in the symmetrized combinations of plane

~ waves having the lowest empty-lattice energy eigenvalue at that

point, They should-alsc yary their values smoothly Dbetween the
symmetry pcints in the Brillouin zone, Yor the fcc lattices ,
the necessary values oy the F's at high symmetry points are shown

ip Table Z2-1.

Table 2-1 Values of symmefrizing factors F_ (X) at various
sym@etry points, v
050 i1 s
I"too0) 0 0 o
X(080) ¢ 0 0
L{444) 0 1 0
K(660) 0 1 K
W{480) 1 1 k
u(282) 1 1 0
all F(OCG}(E} !
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While it is desirable tc have a smooth variation of the F's
between symmetry points, its precise expression is not important,
There have been many workable prescriptions, such as those used by

23

Hodges i In our work, we use the [ollowing expressions :

i e ]
= T (e =k ) [E:
{ 2 (16-kx-1{3)
. Tk, +k,) £
F".."-{k) e siﬂ - s (2149‘)
p i I 2 (12-k )
b x ”
n ( T, ~k,) ] &
Fiii(k> = sin S
2 (12=-k_)
L oo

The matrix elzsmerts of the OPW-OPW block, including the

—
symmetrizing facters F_(k), Tor the fec lattice, are shown below :

%
)
=212 i
1 T = oo e T o e
peetl | V2007030 bR Lt i
V., F.x a+o¢l§+?[2 Ve oaFax Fres V,..F.x Fs
200f030 A 2 1117030° 11T V1120307111
H4 - =
k k / -— - 2
b - - - - ¥ ‘; -
¢ ViaaFirr VanFosofirr ¢ #| Ry V200  ITIT T2
v - v ™ F v T =t + ml E - ,2
1117111 1117020 111 20071117111 /5 ' Ky,
(2.50)
23

L. Hodges and H, Ehrenreich, Methods in Computational
Physics, edited by Berni Alder, Sidney Fernbach, and Manuel
Rotenberg, V.8, p.149-190, 1968.
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The omission of these symmetrizing factors would result in small
but undesirable energy splittings and shifts of the order of the
average deviation of the interpolated bands from those of

first-principles band calculations according to our calculation,
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5 The OPW-LCAC Block

The matrix.elements in this block can be obtained from
- — 4
(kV[H\kZJ > for 2= 1,2,3,4 labelling the 4 OPW's and
v’ - 5,6,7,8,9 labelling the 5 LCAO's. The matrix elements

are therefore given by (2.38)
(a B0 = GERpsGd. o Vs Lk
with C_, F_ given by (2/Y1ea) and glk,) by (2.42)
glk,) = K350 Ry) .

—

For given K vectors, the matrix elements are

i k. k
Hye = C5F5(kv)3(kv) - —FEEEEI— SEALTER
ko
K.k
. By « EE
v
kK k
— vz vx 4
HU? = C?F?{kv}g(ky} = ka E132(kv31) (2.52)
2
.2 2
k
- 1 Kux 2} .
Hyg = Cgfaliyielky) = ‘a’[""a_'_az Ky 3otk Ry)
k2, K
2
k ]
: R (T Y el s e %l L1
ﬂvg = Cgngky)g(Ku) = 7 3 2 1 Klagkkle) 5
V3 | K,
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It is instructive, however, to examine the argument used
by Hodges. Writing out the integral (2.38) explicitly, and using
the atomic potential V() as given in (2.26), we have

e—i{kd-Ka,}.I' [

%

(vv)7F + V(D]

)

(o] 1 %)

x (N)” ’3:3 HRUDER,) &F

Vil = 2 - - = G
v;'& o~ L(kAK, ) or [ g_rﬁ + U(r) + EEOU(r—RL)]yn(r)dr

- -l(k+K }-r
v, ']ﬂ v [ ratomic + E U(r-Rz)]ﬁp (¥jdr

(2.53)

It was then assumed that the main contribution to the
second integral comes from the regicn near a cell boundary where
there exists maximum overlap between potential and wave function

and E U(rJﬁl) was approximated by a constant value U, so that
Lfo

= - a3 [aE@R)T 0 e
<nl H\ kv> - (U« Eatomic }(?a) ) & 7&;(r)ur i
(2.54)
By expanding the exponential factor in the spherical harmonics
and spherical Bessel functions, and by noting that only the term
£=2 contributes to the integral, the radial part may be reduced to

the parametrized form

{jz(kyr)rzf(r)dr < IR (2.55)
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The integral was evaluated on the assumption that raf(r) is strongly

peaked at r = Rl

The constant factors ( U + E_tomic ) may be combined into

other adjustable parameters. Since U, or the average value for
E U(?;ﬁé) at the cell boundary, may not be necessarily equal for

74

the t28 and eg orbitals, two different adjustable parameters may

be used, K, for the t, orbitals and K for the e orbitals,
2 28 3 B

For the wave vectors

the final parametrized forms of the matrix elements inclading the

symmetrizing factors F_(k) are

K
kK Xk
= " 12X VU g
Ky Ky
k. Kk
v vz
Hyg = 1(232(14”121) 2 F_ (k) )
k2 KV
k, k
Hyp = KpiplgR) =5 F, (k) ; (2.56)
& K K
v 2/
2 2
K k
s { o -]; Hvx - ¥ " X
Hyg = Kadp(igR) 5 2 ;’21 PR' Gk
v v 7
12
; 1 vz
H = K.ji.(k,Ry) 5-—-—--1]?(1{}.
V9 392 M 2 -
Vs | k3, J 4
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In our interpolation scheme, the parametrized form
(2.56), rather than that of (2.52), are used, The
symmetrizing factors Eﬁ(ﬁ) are again introduced for the same
reason as those explaiﬁed in connection with the OPW-0PW
matrix elements of (2,.50). The introduction of two
adjustable parameters K2 and K3 for the two different
symmetries of d-orbitals in the cubic environment amounts to
some relaxation of the d-isotropy ansatz introduced by Mueller,
We have found that this allows for some improvement in the
accuracy of our interpolation scheme, Qur result for fitting

the energy bands of Burdick's calculations for Cu will be

discussed later in Chapter k,
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6 Summary of Parameters

Our interpolation scheme is a hybrid incorporating
features from both Hodges' and Mueller's schemes in what we hope
to be an optimum manuer, This hybrid scheme involves a maximum
of 17 parameters, 0f these, & appear only in the secular matrix
of the LCAO-LCAC blockj namely Eo, which is determined more or
less by the lowest atomic d-levels, A , which is determined by
the crystal field splitting,and ﬁl,...,A6, which are determined
by the extent of the oOverlap between nearest-neighbors in the
fee lattice, Appedying only in the OPW-OPW block are the 6
parameters X A Al Y Vage: K,y and R . K 4 which

o
is allowed to be adjustable in Hodges' scheme, is held fixed at
th 1 Eaffqr)2 in hybrid sch as in Mueller's

e value | 5o 1= 1. our hybrid scheue i
schenme, This 48 to permit aaditional expression of the
effect of the orthogonalization required for the conduction
band states and the core 3d states. /3 , which is the average
of the potential over the crysial, is fixed as the zero of the
eﬁergy scale, vlll and VEOO
of the pseudopotential connected by the 4 reciprocal lattice

are the only Fourier coefficients

vectors employed in the 4-0OPW approximation. KQ and Ro are
parameters which account for the main part of the
orthogonalizatiocn effects, The remaining parameters take care
of the hybridization effects in the OPW-LCAC block; namely

Kl and R, . Kl is replaced by two parameters, K2 and Kj if

U is allowed to have two distinct values for the tag and

es symmetries of the d-orbitals,
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