CHAPTER 3

RESULTS AND DISCUSSION

Purities of Amaranth, Ponceau 4R and Erythrosine were examined by paper chromatographic technique, ultraviolet-visible, infrared, and atomic absorption spectrophotometric techniques before they were used for the study of compound and complex formations with metal ions.

3.1 Dyes

3.1.1 Purity and identification

3.1.1.1 Paper chromatography

The paper chromatogram of Amaranth,

Ponceau 4R, or Erythrosine showed a well defined spot (see Figure 1) whose R_F value was found to be 0.20, 0.49, or 0.56, respectively. These R_F values are slightly different from the literature values (0.19 for Amaranth, 0.51 for Ponceau 4R, and 0.52 for Erythrosine⁽¹⁷⁾) owing to a slight difference in experimental conditions.

3.1.1.2 Absorption spectrophotometry

The ultraviolet-visible spectra of

Amaranth, Ponceau 4R and Erythrosine in aqueous solution were compared to the ones obtained from the literature (18), as shown in Figures 2A-2C. The spectrum of each dye studied indicated an insignificant difference from the literature one . The

a sta. «.

maximum peaks of Amaranth in an acidic solution, of Ponceau 4R in an acidic solution, and of Erythrosine in an basic solution illustrated at 521, 505, and 525 nm, respectively (see Table 1). Their molar absorptivities were determined from the sloped of the curves of absorbances of dyes against their concentrations (see Figures 3 and 4(C)). The molar absorptivity of each dye was found in the order of 10^4 (see Table 1) which indicated the strong absorption of the dye in the visible range.

The IR spectra of Amaranth, Ponceau 4E and Erythrosine in solid KBr pellets were shown in Figures 5A-5C. The spectrum of Erythrosine indicated an insignificant difference from the literature one⁽¹⁹⁾ as well as the spectra of Amaranth and Ponceau 4R showed the azo -N=N- (1630 cm⁻¹), phenolic OH (3458 cm⁻¹), aromatic (1450 cm⁻¹ and 1500 cm⁻¹ - skeleton carbon stretching, and 750 cm⁻¹ aromatic out of plane bending) and ionic sulfonate (1200 cm⁻¹ and 1080 cm⁻¹) characters (see Figures 5A and 5B).

By atomic absorption spectrophotometric study, no absorption of Amaranth, Ponceau 4R, and Erythrosine solutions at the wavelengths where Hg(II), Cd(II), Fe(II), Fe(III) and Pb(II) ions absorbed were observed.

Thus, evidences from paper chromatographic and absorption spectrophotometric data of dyes investigated indicated that the purities of Amaranth, Ponceau 4R and Erythrosine are high enough for use in the study of compound and complex formations with metal ions.

17.

3.1.2 Solubilities of dyes in the buffer systems studied

Amaranth and Ponceau 4R are very soluble in every buffer system studied. However, in the acidic solution at pH 1-2 the acidic form of Erythrosine precipitates completely, at the pH 3.0-4.4 it is very soluble in every buffer system studied except in the acetate buffers pH 4.4 and 6.0 Erythrosine is soluble to some extent.

3.1.3 Dependence of absorbances on concentrations of the dye solutions

A linear relationship between absorbances and concentrations of each dye in the aqueous solution without any buffer was obtained in the range of concentrations of 4.00×10^{-6} – 6.00×10^{-5} M Amaranth, 1.00×10^{-5} M – 1.00×10^{-4} M Ponceau 4R, or $1.00 \times$ 10^{-6} M – 1.40×10^{-5} M Erythrosine. In the acetate buffer pH 4.4, the absorbance of Erythrosine solution is directly proportional to its concentration in the range of 1.00×10^{-6} M – 8.00×10^{-6} M as well as in the nitric acid solution pH 3.3 the absorbance of Erythrosine solution is directly proportional to its concentration in the range of 4.00×10^{-7} M – 1.00×10^{-6} M. At higher concentrations, the absorbances tended to decrease and a curvature was shown in the relationship of the absorbance to the concentration (see Tables 2-a, 2-b and Figures 3 and 4).

3.1.4 Dissociations constants of dyes

Ultraviolet-visible spectra of dyes investigated as seen in Figures 2A-2C indicated the wavelengths of the maximum absorption peaks of Amaranth, Ponceau 4R and Erythrosine shifted with the pH of solutions. Therefore, the dissociation constant

18 .

of each dye was evaluated. The absorbances of each dye solutions at various pH (using hydrochloric acid, acetate buffer and sodium hydroxide for adjusting pH) were measured (see Tables 3-a to 3-c) and the absorbance of the solution was plotted against its pH. The curves of absorbances vs pH of Amaranth, Ponceau 4R and Erythrosine solutions showed the inflection points at pH 10.0, 11.0, and 4.2, respectively (see Figures 6A, 6B and 6C). Thus, the pK_a of Amaranth, Ponceau 4R and Erythrosine are, 10.0, 11.0 and 4.2, respectively.

3.1.5 Dependence of absorbances on concentrations of the metal ion solutions

A linear relationship between absorbances and concentrations of Hg (II) ion solutions or Fe(III) ion solutions was obtained in the range of concentrations $50.00-200.00 \mu g/cm^3$ Hg(II) or 2.00-20.00 $\mu g/cm^3$ Fe(III) (see Table 4-a and 4-c, and Figures 7A and 7B). Even in the acetate buffer pH 4.4 the absorbances of Hg (II) ion solutions did not differ from those obtained in nitric acid (see Table 4-a). The lines drawn in Figures 7A and 7B are least squares lines.

3.2 Compound and complex formations between dyes and metal ions

A study of compound and complex formations between each dye and each metal ion was performed by mixing the dye solution with the metal ion solution at various concentration ratios within an buffer system or without any buffer system.

19:

3.2.1 Mixtures of Amaranth and Hg (II), Pb(II), Fe(II), Fe(II), Fe(III) or Cd(II)

The measurements of visible absorbances of Amaranth concentrations in the mixtures of Amaranth $(8.00 \times 10^{-5} M)$ and various concentrations of each metal ion were made at the wavelength of 521 nm as well as the measurements of absorbances of concentrations of Hg(II), Fb(II), Fe(II), Fe(III) or Cd(II) ion in the mixture solutions were performed by atomic absorption spectrophotometric technique at the wavelengths of 253.7, 217.0, 248.3, 248.3, or 228.8 nm, respectively. These absorption values are listed in Tables 5-a to 5-p. It can be seen that the absorption value of either Amaranth or the metal ion studied does not change in each mixture system. In addition, no physical change in each mixture system, such as color or precipitate was observed except some precipitates of hydrous metal oxides were formed at the pH higher than 6. This meant that no reaction between Amaranth and Hg(II), Pb(II), Fe(II), Fe(III) or Cd(II) ion was occurred in each mixture system. Thus, no compound or complex was formed in the solution mixture of Amaranth and Hg(II), Pb(II), Fe(II), Fe(III) or Cd(II) ion either within an buffer system or without any buffer system.

3.2.2 Mixtures of Ponceau 4R and Hg(II), Pb(II), Fe(II), Fe(III) or Cd(II)

Absorbances of Ponceau 4R concentrations in the mixtures of Ponceau 4R $(6.00 \times 10^{-5} M)$ and various concentrations of each metal ion were measured in the visible region at 505 nm

as well as absorbances of concentrations of Hg(II), Pb(II), Fe(II), Fe(III) or Cd(II) ion in the mixture solutions were measured as the same conditions as mentioned above (3.2.1). The absorption values are shown in Tables6-a to 6-p. The same phenomena as mentioned in 3.2.1 were observed. Therefore, no compound or complex formation between Ponceau 4R and Hg(II), Pb(II), Fe(II), Fe(III) or Cd(II) ion was occurred in any mixture system either within an buffer system or without any buffer system.

3.2.3 Mixtures of Erythrosine and Hg(II), Pb(II), Fe(II), Fe(III) or Cd(II)

Mixtures of this dye and the five metal ions were performed in two series.

3.2.3.1 The first series

Various concentrations of the metal ion solutions desired were added to 2.00x10⁻⁵M Erythrosine solutions which were in a buffer system at some pH. Absorbances of Erythrosine : in these mixtures were measured in visible region at 525 nm as well as absorbances of concentrations of Hg(II), Pb(II), Fe(II), Fe(III), or Cd(II) ion were measured as the same conditions as mentioned in 3.2.1 The absorption values are shown in Tables7-a to 7-o. The same phenomena as notified in 3.2.1 were shown. Therefore, no compound or complex was formed between Erythrosine and Hg(II), Pb(II), Fe(II), Fe(III) or Cd(II) ion in every mixture of this series.

3.2.3.2 The second series

The sequence for mixing the solution was an addition of the metal ion to the dye solution and following with a buffer system if it was desired. This series was performed since the physical changes were observed when Erythrosine solution was mixed with a metal ion solution, such as Hg(II), Fe(II), Fe(III), Cd(II), or Pb(II) ion solution. The red precipitate was formed and the red color of Erythrosine turned to other colors depending on the metal ion mixed. The Hg(II), Fe(II), Fe(III), and Pb(II) ions formed red precipitates with Erythrosine solution. However, Cd(II) ion did not react with Erythrosine since no physical change appeared and visible absorbances of the mixtures at the wavelength 525 nm did not change too (Table 8). The absorptions of Erythrosine and the metal ion in these mixtures were measured from their filtrates and the molar ratio plot served for determining composition of the compound or complex formed.

3.2.3.2.1 Mixtures of Erythrosine and

Hg(II)

An orange-red precipitate

was formed in the mixture of Erythrosine and Hg(II) ion solution as well as the color of the mixture solution was more intense (red color). The mixture solutions were performed within many buffer systems such as nitric acid at pH 3.1-6.8 (pH of the solution depending on the concentration of the metal ion used), the nitric acid pH 4.3 (pH controlled) and the acetate buffers pH 4.4 and 6.0. The absorbances of Erythrosine concentration and Hg(II)ion concentration in each filtrate were measured as shown in Tables 9-a to 9-1. The plot of the absorbances of mixture solutions v.s molar ratios are shown in Figure 8A-8D. By graphical method, the

22 .

composition of the compound formed between Erythrosine and $H_g(II)$ ion is 1:1 for Erythrosine to $H_g(II)$ ion. The IR spectrum of $H_g(II)$ Erythrosinate was compared to the spectrum of Erythrosine as shown in Figure 8E. Since the spectrum was performed in the range of wavelengths 650 cm⁻¹ to 4000 cm⁻¹, the bond between metal ion and Erythrosine could not be seen unless the far IR spectrophotometer was used.

3.2.3.2.2 Mixtures of Erythrosine

and Fe(III)

T.

A red-orange precipitate

was formed in the mixture of Erythrosine and Fe(III)ion solution as well as the color of solution was more intense. The mixture solutions were performed within many buffer systems such as sulfuric acid pH 6.8-3.3 (pH of the solution depending on the concentration of the metal ion used), the sulfuric acid pH 3.3 (pH controlled),

nitric acid pH 5.5-3.5 (pH of solution depending on the concentration of the metal ion used), the mitric acid pH 3.3 (pH controlled) and the acetate buffers pH 4.4 and 6.0. The absorbances of Erythrosine concentration and Fe(III) ion concentration in each f filtrate solution were measured as shown in Tables 10-a to 10-j. Since the precipitate of ferric acetate formed at higher concentrations of Fe(III) ion, the atomic absorption method was not used for determining the composition of the compound formed in the acetate buffers pH 4.4 and 6.0. The molar ratio plots are shown in Figures 9A- 9F. By graphical method, the compositions of the complexes and compound formed between Erythrosine and Fe(III) ion

appeared in the mixture of Erythrosine and Pb(II) on as well as the color of the mixture solution was changed to purple-red. The mixture solutions were performed either without any buffer system or within many buffer systems such as in aqueous solution pH 6.2-5.3 (pH of the solution depending on the concentration of metal ion used) and in the nitric acid pH 5.5 (pH controlled). The visible absorption values of the mixtures at various molar ratios are listed in Table 11-a to 11-c. The molar ratio plot for the mixture system containing 1.20×10^{-5} M Pb(II) and various concentrations of Erythrosine in aqueous solution(see Figure 10A) showed a curvature at the

and Pb(II)

A purple-red precipitate

3.2.3.2.4 Mixtures of Erythrosine

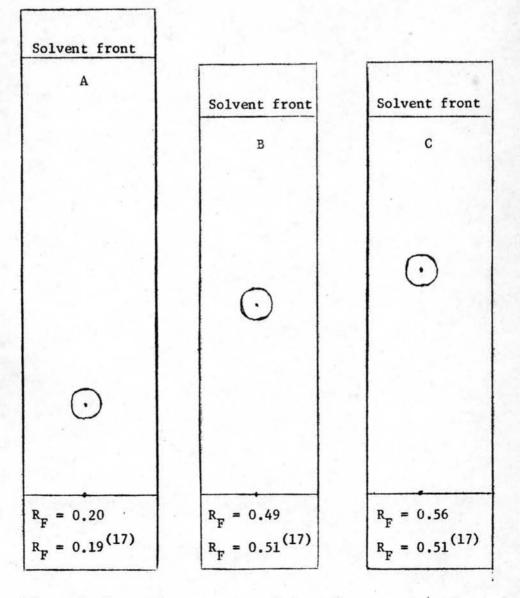
was formed in the mixture of Erythrosine and Fe(II) ion. Since the Fe(II) ion is easily oxidized in aqueous solution and even in an acidic solution, the concentration of Fe(II) ion cannot be as prepared. Therefore, the composition of compound formed between Fe(II) ion and Erythrosine was not determined in this study.

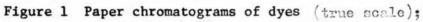
and Fe(II)

3.2.3.2.3 Mixtures of Erythrosine

A red-orange precipetate

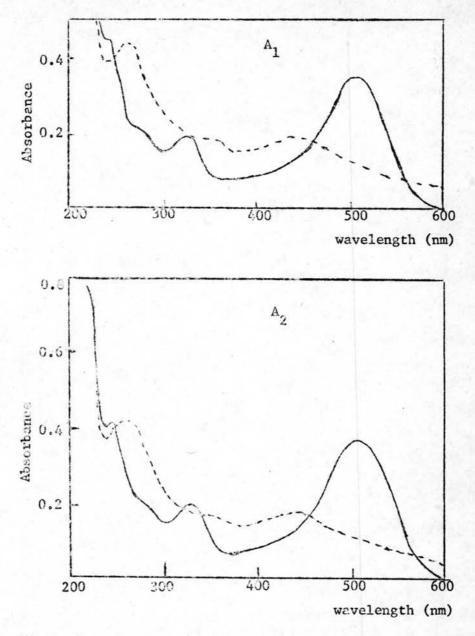
is 1:1, 2:1, and 3:2 for Erythrosine to Fe(III)ion. The IR spectrum of Fe(III) Erythrosinate compound was compared to the spectrum of Erythrosine as shown in Figure 9G. The spectrum showed many new absorption peaks in the wavelengths 1,300 cm⁻¹ to 1,370 cm⁻¹. intersection point. This indicated that the stability of the precipitate formed is not high and some precipitates are soluble in the mixture solution. The solubility of this precipitate was then studied and the result illustrated that this precipitate is very soluble in acetate buffer, soluble in acetic acid, nitric acid and Erythrosine solution. However, the composition of this precipitate was found to be 1:1 for Erythrosine to Pb(II) ion. When the concenrration of Erythrosine in the mixture was held constantly and the concentration of Pb(II) ion was varied, the composition of the complex formed was found to be 1:3 for Erythrosine to Pb(II)ion. This composition value was found both the mixtures in a water and in nitric acid. In addition, at higher concentrations of both Pb(II)ion (2.00x10⁻⁴M) and Erythrosine (0.04x10⁻⁴M - 1.20x10⁻⁴M) in the mixtures the composition of the complex formed was found to be 2:3 for Erythrosine to Pb(I) ion by using atomic absorption method. This meant that polynuclear complexes could be formed in the mixture solution of Erythrosine and Pb(II) ion, especially in the mixture solution of higher concentrations of Pb(II) ion. The IR spectrum of Pb(II) Erythrosinate was compared to the spectrum of Erythrosine as shown in Figure 10d. Both spectra showed an insignificant difference in the range of wavelengths $650-4000 \text{ cm}^{-1}$.

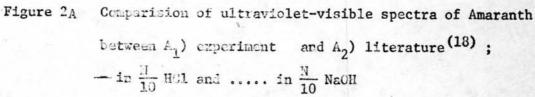

3.3 Stability constants and solubility products of the compounds formed between Erythrosine and metal ions

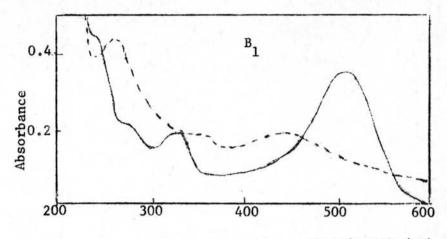

The stability constants and solubility products of the metal ion-Erythrosinate compounds formed under the conditions studied as mentioned in 3.2 were evaluated on the basis of the

L

25 :5

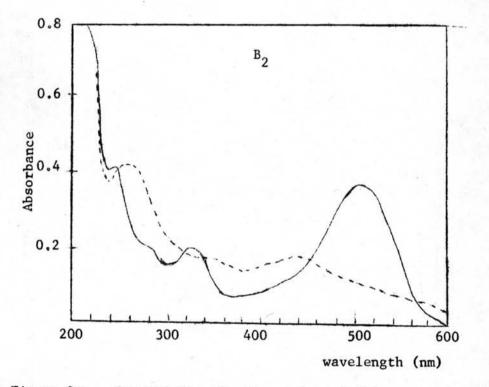

concentrations of compounds formed as precipitates were equal to unity. From the experiment, the initial concentration of the metal ion or Erythrosine as well as the concentration of the metal ion remained or Erythrosine remained in the mixture solution were determined by their absorbances. Since the molar ratio of Hg(II) or Pb(II) ion to Erythrosine to form the precipitated compound was found as minimum as 1:1, its stability constant and solubility product were evaluated for the formula of Me(Eryth) and Me₂(Eryth)₂ where Me is the metal ion and Eryth is Erythrosine. In addition, the stability constant and solubility product of ferric Erythrosinate precipitate were determined as Me₂(Eryth)₃ and Me₄(Eryth)₆. These values are shown in Table\$12-a to 12-c.

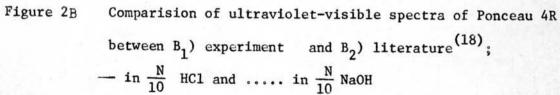


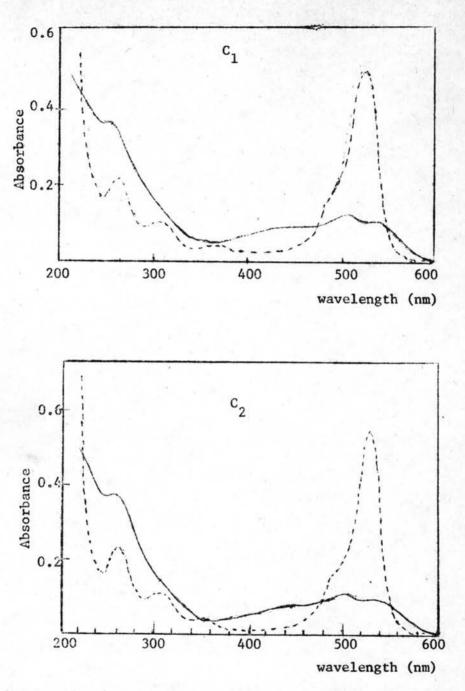

A) Amaranth, B) Erythrosine, and C) Ponceau 4 R

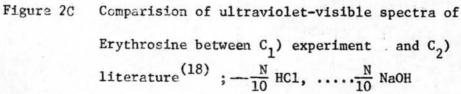
¥

-

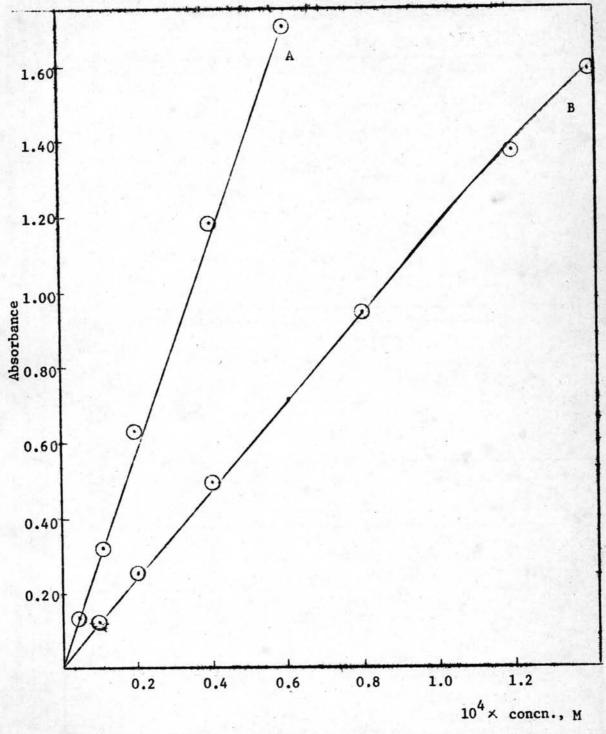





*

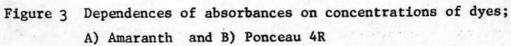

L

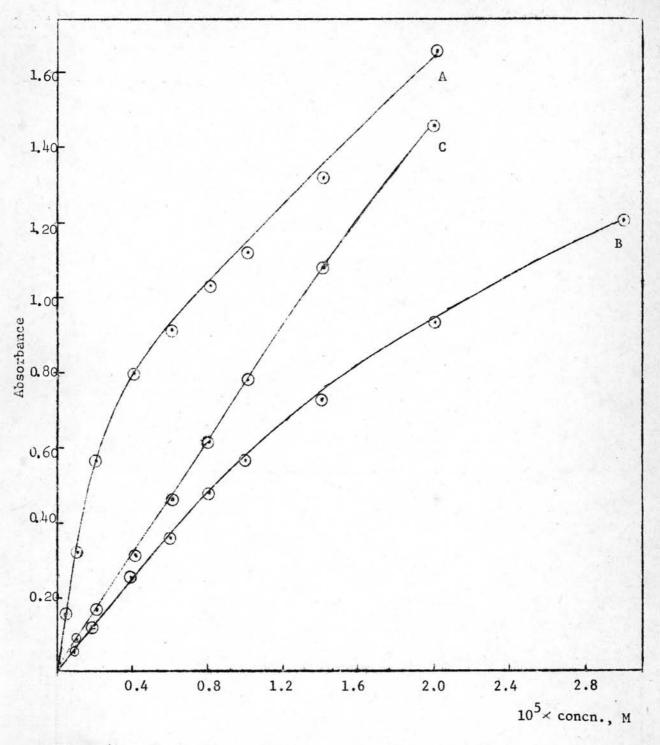
wavelength (nm)


Table 1 Absorption characteristics of dyes in visible

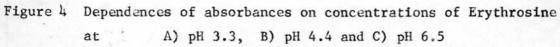
region

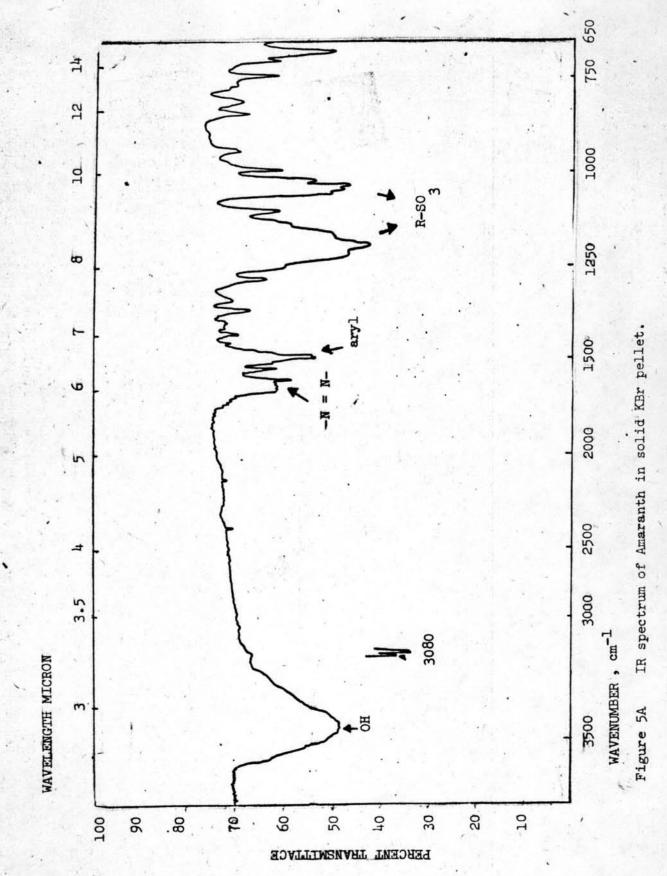
1

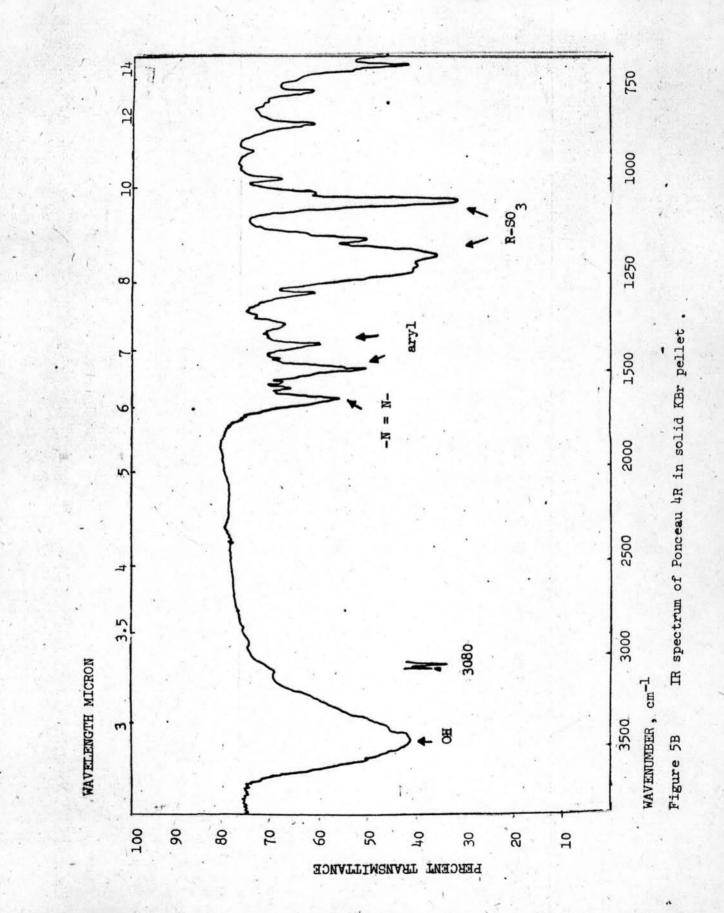

Dye	λ max, nm	molar absorptivity ϵ (calculated)	рК _а
Amaranth	521 in acid solution	29,420	10.0
Ponceau 4.R	505 in acid solution	11,700	11.0
Erythrosine	525 in alkali solution	76,500	4.2


×____31

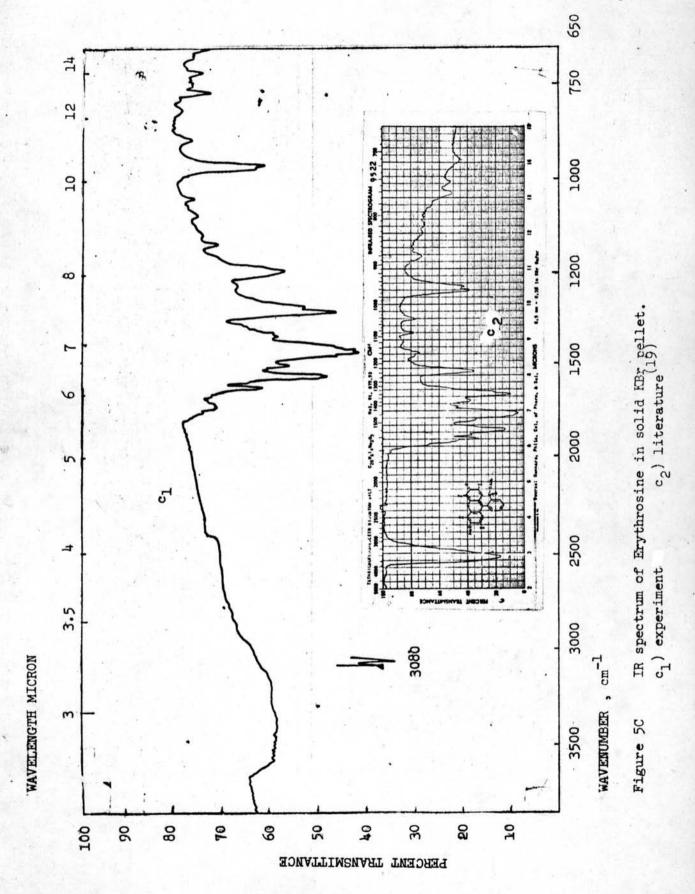
*


X




*

X



×

i 17946256

×

1.00

10 ⁵ Concn, M	Absorbance	
Amaranth	λ max = 521 nm	
0.40	0.134	
1,00	0.316	
2.00	0.632	
4.00	0.177	
6.00	0.698	
8.00	2.120	
Ponceau 4 R	$\lambda max = 505 nm$	
10.00	0.124	
20.00	0.253	
40.00	0.492	
60.00	0.716	
80.00	0.940	
100.00	1.169	
120.00	1.366	
140.00	1.572	
Erythrosine	$\lambda_{max} = 525 \text{ nm}$	
0.10	0.079	
0.20	0.164	
0.40	0.313	
0.60	0.459	
0.80	0.608	
1.00	0.778	
1.40	1.074	
2.00	1.453	

dyes in aqueous solution.

Table 2 - b Dependences of absorbances on concentrations of Erythrosine in various buffer system\$.

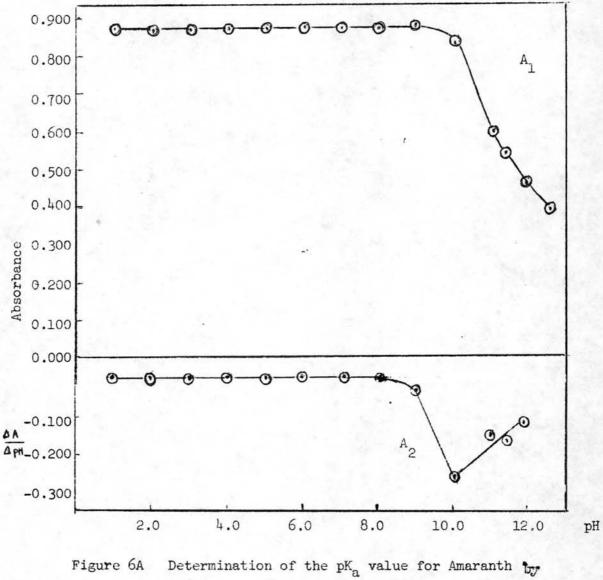
10 ⁵ X Concn, M	Absorbance at $at \land max = 525 \text{ nm}$
in nitric acid pH 3.3	
0.04	0.015
0.10	0,031
0.20	0.055
0.40	0.079
0.60	0.090
0.80	0.102
1.00	0.111
1.40	0.1303
2.00	0.165
3.00	
in acetate buffer pH 4.	4
0.10	0.059
0.20	0.130
0.40	0.252
0.60	0.363
0.80	0.481
1.00	0.561
1.40	0.726
2.00	0.975
3.00	1.200

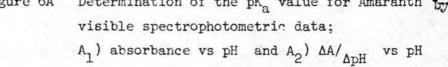
pН	Absorbance at $\bigwedge \max = 521 \ \text{nm}$	∆ A Aph
12.5	0.390	
11.9	0.460	-0.116
11.4	0.540	-0.160
11.0	0.600	-0.150
10.0	0.840	-0.260
9.0	0.870	-0.030
8.0	0.870	0.000
7.0	0.870	0.000
6.0	0.870	0.000
5.0	0.870	0.000
4.0	0.870	0.000
3.0	0.870	0.000
2.0	0.870	0.000
1.0	0.870	0.000

Table 3 - a Dependence of absorbances on pH of Amaranth

solutions.

solutions.


4.


рH	Absorbance at λ max = 505 nm	DA Aph	
12.0	0.250		
11.6	0.300	-0.120	
11.0	0.500	-0,330	
10.0	0.610	-0.110	
9.0	0.630	-0.020	
8.0	0.630	0.000	
7.0	0.630	0.000	
6.0	0.630	0.000	
5.0	0.630	0.000	
4.0	0.630	0.000	
3.0	0.630	0.000	
2.0	0.630	0.000	
1.0	0,630	0,000	

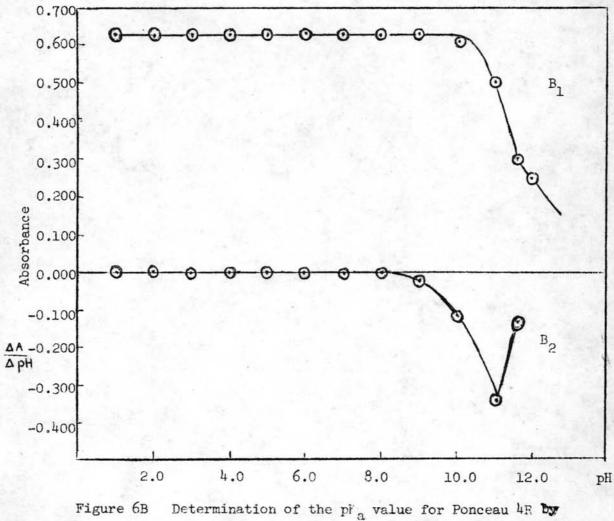

рН	hbsorbance at λ max = 525 nm	Δ in Δ pH	
Erythrosine			
10.0	1.540		
8.0	1.520		0.01
6.8	1.490		0,02
5.9	1.480		0.01
5.2	1.340		0.20
4.5	1.130		0.30
4.3	0.830		1,50
4.2	0.600		2.30
3.5	0,220		0.70
3.3	0.150		0.35
2.0	0.000		0.12
1.0	0.000		0.00

Table 3 - c Dependence of absorbances on pH of Erythrosine

solutions.

visible spectrophotometric data; A_1) absorbance vs pH and A_2) $\Delta A/_{\Delta pH}$ vs pH

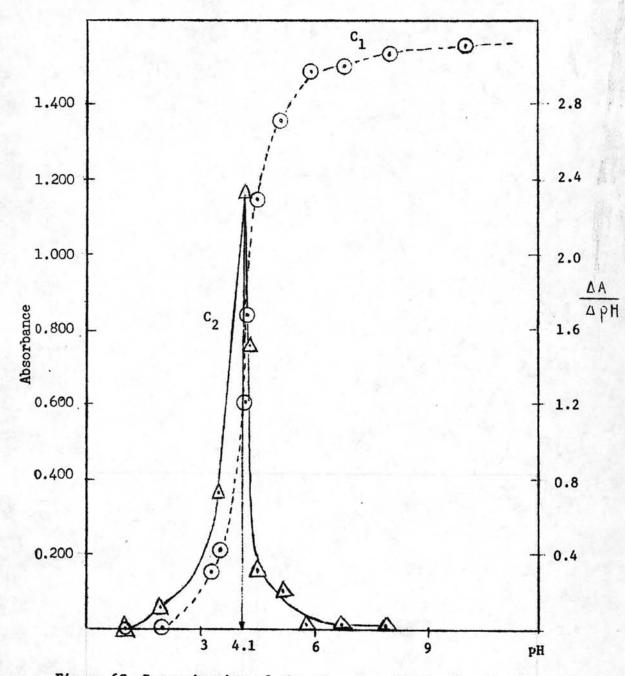
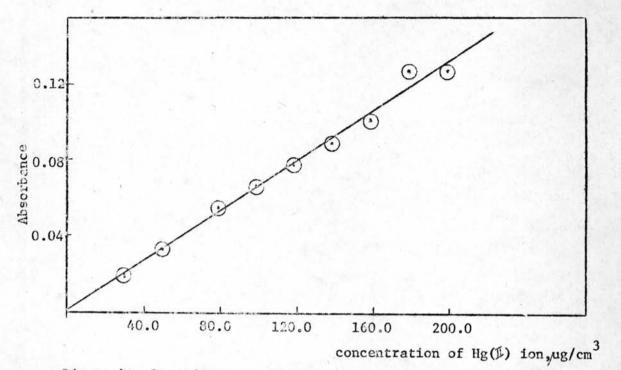


Figure 6C Determination of the pK_a value for Erythrosine by visible spectrophotometric data; C_1) absorbance vs pH and C_2) $^{\Delta A}/_{\Delta}$ pH vs pH

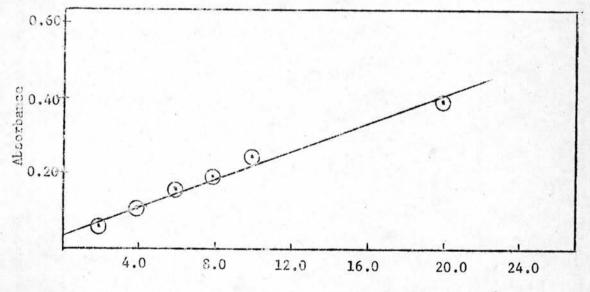
Table 4 - a Dependences of absorbances on concentrations of

Hg (II) ion in nitric acid and the acetate


concentration (ppm)	Absorbance at 253.7 nm in nitric acid	Absorbance at 253.7 nm in acetate buffer pH 4.4
30.0	0.020	0.020
50.0	0.040	0.040
80.0	0.050	0.050
100.0	0.070	0.070
120.0	0.080	0.080
140.0	0.090	0.090
160.0	0.100	0.100
180.0	0.130	0.130
200.0	0.130	0.130

buffer pH 4.4

Table 4 - b Dependence of absorbances on concentrations of


Fe(III)ion in nitric acid.

concentration (ppm)	Absorbance at 248.3 nm	
2.0	0.070	
4.0	0.110	
6.0	0.140	
8.0	0.180	
10.0	0.220	
20.0	0.460	

3

Figure 7A Dependence of absorbances on concentrations of Hg(II) ion.

concentration of Fe(1) ion, ug/cm³

Table 5 - a Molar ratio study of Amaranth and various metal ions in water by visible spectrophotometric technique

Molar ratio, Absorbance of the mixture at λ_{ma} Metal ion:					21 nm
Amaranth	(II)	Hgg (II)	Fe (II)	Fe (III)	Pb (II)
ି C _e 00	1.52 1	1.51.)	1.520	1.520	1.520
1.00	1.520	1.520	1.530	1.520	1.520
· 2.00	1.530	1.520	1.520	1.530	1.520
3.00	1.520	1.510	1.520	1.520	1.520
4.00	1.530	1.520	1.510	1.520	1.520
5.00	1.520	1.510	1.520	1.520	1.520
10,00	1.520	1.520	1.520	1.530	1.520

Table ⁵ - b Molar ratio study of Amaranth and various metal ions at pH 3.0 in acetic acid by visible spectrophotometric technique.

Molar ratio, Metal ion :	Absorbance of the mixture at $\lambda_{max} = 521 \text{ nm}$				
Amaranth	Cd(II)	Hg (II)	Fe (II)	Fe (II))	Pb (II)
0.00	1.520	1.520	1.520	1.520	1.520
1.00	1.520	1,520	1.520	1.500	1 .20
2.00	1.520	1.520	1.520	1.500	1.520
3.00	1.520	1.530	1.520	1.510	1.520
4.00	1.520	1.510	1.520	1.500	1.520
5.00	1,520	1.520	1.520	1.510	1.510
10.00	1.520	1.500	1.530	1,500	1.520

Table 5 - c Molar ratio study of Amaranth and various metal ions in the phosphate buffer pH 6.4 by visible spectrophotometric technique

Molar ratio, Metal ion :	Absorbance of the mixture at $\lambda_{max} = 521 \text{ nm}$				
Amaranth	'Cd(II)	Hg (II)	Fe (II)	Fe (III)	Pb (II)
0.00	1.510	1.510	1.510	1.510	1.510
1.00	1.510	1.500	1.500	1.510	1.510
2.00	1.500	1.500	1.510	1.500	1.510
3.00	1.510	1.500	1.500	1.490	1.510
4.00	1.500	1.520	1.510	1.500	1.510
5.00	1.510	1.500	1.500	1.490	1.520
10.00	1.500	1.500	1.510	1.500	1.510

Table 5 - d Molar ratio study of Amaranth and various metal ions in the phosphate buffer pH 7.4 by visible spectrophotometric technique.

Molar ratio, Metal ion :	Absorbance of the mixture at $\lambda_{max} = 521 \text{ nm}$				
Amaranth	cd(II)	Hg (II)	Fe (II)	Fe (III)	Pb (II)
0.00	1.620	1.630	1.630	1.630	1.620
1.00	1.630	1.620	1.62.	1.620	1.630
2.00	1,620	1.620	1.620	1.630	1.620
3.00	1.620	1.620	1.620	1.620	1.620
4.00	1,620	1.620	1.630	1.630	1.620
5,00	1.620	1.620	1.620	1.630	1.630
10.00	1.630	1.620	1.630	1.630	1.620

48

Table 5 - e Molar ratio study of Amaranth and various metal ions in diethylamine buffer pH. 12.5 by visible spectrophotometric technique

Molar ratio, Metal ion : Amaranth	Absorbance of the mixture at $\lambda_{\max} = 485 \text{ nm}$					
	Cd(II)	Hg (II)	Fe (II)	Fe (III)	Pb (II)	
0.00	0.850	0.860	. 0.890	0.890	0.890	
1.00	0.850	0.850	0.890	0.890	0.890	
2.00	0.860	0.860	0.880	0.890	0.890	
3.00	0,850	0.850	0.890	0.890	0.890	
4.00	0.850	0.860	0.830	0.890	0.890	
5.00	0.850	0.860	0.880	0.880	0.890	
10.00	0.860	0.860	0.880	0.890	0.890	

* KCl + NaOH buffer was used instead since the mixture in the diethylamine buffer pH 12.5 had been done (7)

Table 5 - f Molar ratio study of Amaranth and various metal ions at \$H 3.4 in McIlvain buffer by visible spectrophotometric technique

Molar rati Metal ion]	ance of the	mixtane at	$\lambda_{\text{max}} = 52$?1 nm
Amaranth	Ed (II)	Hg (II)	Fe (II)	Fe(III)	Pb (II
0,00	0.920	0.910	0.910	0.930	0.930
1.00	0.940	0.910	0.910	0.920	0.920
2.00	0.930	0.910	0.900	0.930	0.920
3.00	0.930	0.910	0.910	0.920	0.920
4.00	0.930	0.920	0.900	0.910	0.920
5.00	0.930	0.910	0.910	0.920	0.920
10.00	0.930	0.910	0.900	0.930	0.92

Table 5 - g Molar ratio study of Amaranth and various metal ions in McIlvaint buffer ph 6.4 by spectrophotometric technique

Metal ion			mixture at			
Amaranth	ca (II)	Hg (II)	Fe (II)	Fe (III)	Pb (II)	
0,00	0.820	0.870	0.870	0.860	0.820	
1.00	0.830	0.860	0.860	0.860	0.820	
2.00	0,830	0.860	0.860	0.860	0.810	
3.00	0.830	0.870	0.870	0.850	0.820	
4.00	0.820	0.870	0.860	0.860	0.810	
5.00	0.830	0.870	0.860	0.850	0.810	
10.00	0.820	0.870	0.860	0.850	0.810	

Table 5 - fn Molar ratio study of Amaranth and various metal ions in McIlvain buffer pH 7.6 by visible spactrophotometric technique

Molar ratio, Metal ion : Amaranth	Absorbance of the mixture at $\lambda_{max} = 525$ nm					
	Cd (II)	Hg (II)	Fe (II)	Fe (III)	Pb (II)	
0.00	0.870	0.880	0.670	0.670	0.670	
1.00	0.870	0.880	0.660	0.670	0.670	
2.00	0.860	0.880	0.670	0.660	0.680	
3.00	0.850	0,880	0.660	0.670	0.680	
4.00	0.860	0.880	0.670	0.660	0.670	
5.00	0.860	0.880	0.670	0.650	0.680	
10.00	0.860	0.880	0.660	0.660	0.670	

Table 5 .. i Molar ratio study of Amaranth and various metal ions in water by atomic absorption spectrophot-metric technique.

Molar ratio, Amaranth:	Absorption c the mixture at the wavelength where the metal ion absorbed						
Metal ion	Cd(II)	Hg(II)	Fe (II))	Fe (III)	Pb(II)		
0.00	0,850	0.330	0.900	0.890	0.620		
0.10	0.860	0.340	0.900	0.890	0.620		
0.20	0,8:0	0.350	0.900	0.900	0.620		
0,30	0.850	0,340	0.900	0.890	0.620		
0,50	0.850	0,350	0.900	0.890	0.620		
1.00	0.860	0.340	0.900	0.900	0.620		

Table 5-j Molar motio study of Amaranth and various metal ions in acetic acid at pH 3.0 by atomic absorption spectrophotometric technique.

Molar ratio,	Absorption of the mixture at the wavelength					
Amaranth : Metal ion	where the Cd(II)	Hg(II)	Fe(II)	Fe(IID)	Pb(II	
0.00	0.850	0,300	0.900	0.520	0.620	
0.10	0,850	0,300	0.900	0.530	0.620	
0.20	0.860	0.300	0.900	0.530	0.620	
0.3 0	0.860	0.300	0.900	0.540	0.620	
0,50	0,860	0,300	0,900	0.550	0.620	
1.00	0.86	0.30	0.90	0.53	0.62	

Table 5-& Molar ratio study of Amaranth and various metal ions in the phosphate buffer pH 6.4 by atomic absorption spectrophotometric technique

Molar ratio;	Absorptions	of the mi	xture at t	he wavelen	gth
Amaranth:	where the m	etal ion	absorbed	1	
Metal ion	cd. (II)	Hg(II)	Fe(II)	Fe(III)	Pb(II)
0.00	0.850	0,180	0.020	0.00.0	0.090
0.10	0,850	0e180	0.020	0.000	0.050
0.20	0,850	0.190	0.020	0.000	0.060
0,30	0.850	0,180	0.020	0.000	0.040
0,50	0.840	0.180	0.020	0.000	0.050
1.00	0,850	0.180	0.020	0.000	0.080

Table 5 - & Moltr ratio study of Amaranth and various metal ions in the phosphate buffer pH 7.4 by atomic absorption spectrophotometric technique

Molar ratio,	Absorption	of the mix	ture at th	e waveleng	th
Amaranth:	where the m	etal ion	absorbed		0
Metal ion	Cd(II)	Hg(II)	Fe(II)	Fe(III)	Pb(II)
0,00	0.810	0.100	0,110	0.050	0.010
1.10	0.810	0.100	0,110	0.030	0.010
0.20	0.810	0 . 100	0.110	0.040	0.010
0.30	0.810	0 . 100	0.095	0.030	0.010
0.50	0.810	0.110	0.100	0.030	0.010
1,00	0.800	0.100	0.100	0.030	0.010

Table 5 - m Molar ratio study of Amaranth and various metal ions in diethylamine buffer at pH 12,5 by atomic absorption spectrophotometric technique

Molar ratio, Amaranth:	Absorption of the mixture at the wavelength where the metal ion absorbed.						
Metal ion	cd(II)	Hg(II)	Fe(II)	Fe(II)	Pb(II)		
0.00	0e470	0.200	0.010	0.010	0.540		
0.10	0,470	0,200	0.010	0.010	0.550		
0,20	0,470	0.210	0.010	0.010	0.540		
0.30	0,480	0,220	0.010	0.010	0.490		
0.50	0,480	0,200	0.010	0.010	0.530		
1.00	0,480	0.200	0.010	0.010	0.540		

Table 5 - n Molar ratio study of Amaranth and various metal ions in McIlvainebuffer pH 3.4 by atomic absorption spectrophotometric technique

Molar ratio, Amaranth : Metal ion	Absorption of the mixture at the wavelength where the metal ion absorbed						
	Cd(II)	Hg(II)	Fe(II)	Fe(II)	Pb(II)		
0.00	0,800	0.100	0.570	0.570	0.880		
0.10	0.810	0,100	0.560	0.570	0.880		
0.20	0,800	0.090	0.580	0.560	0.870		
0.30	0.820	0.090	0.560	0.560	0.860		
0.40	0.810	0.100	0.570	0.570	0.880		
0.50	0.800	0,100	0.570	0.570	0.860		
1.00	0,800	0.100	0.570	0.570	0.880		

Table 5 - q Molar ratio study of Amaranth and various metal ions in McIlvain buffer pH 6.4 by atomic absorption spectrophotometric technique.

Molar ratio,	Absorption	of the mix	ture at th	e waveleng	th
Amaranth :	where the m	etal ion	absorbed		
Metal ion	Cd(II)	Hg(II)	Fe(II)	Fe(IIİ)	Pb(II)
0.00	0.810	0.080	0.580	0.590	0.020
0.10	0.810	0.080	0.580	0.590	0.020
0.20	0.810	0.080	0.570	0.580	0.020
0.30	0.800	0.080	0.580	0.590	0.020
0.40	0.810	0.070	0.570	0.580	0.020
0.50	0.810	0.080	0.570	0.590	0.020
1.00	0.800	0.080	0.570	0.580	0.020

Table 5 - p Molar ratio study of Amaranth and various metal ions in McIlvain buffer pH 7.6 by atomic absorption spectrophotometric technique.

Molar ratio, Amaranth : Metal ion	Absorption of the mixture at the wavelength where the metal ion absorbed							
	Cd(II)	Hg(II)	Fe(II)	Fe(III)	Pb(II)			
0.00	0.810	0.070	0.560	0.450	0.020			
0.10	0.800	0.060	0.560	0.440	0.020			
0.20	0.800	0.070	0.560	0.450	0.020			
0.30	0.800	0.080	0.560	0.440	0.020			
0.40	0.810	0.070	0.560	0.450	0.020			
0.50	0.800	0.060	0.560	0.450	0.020			
1.00	0.810	0.070	0.560	0.450	0.020			

Table 6 - Molar ratio study of Ponceau 4 R and various

metal ions in water by visible

spectrophotometric technique

Molar ration;	Absorbance of the mixture at λ_{max} 505 nm						
Metal ion : Ponceau 4 R	Cd(II)	Hg(II)	Fe(II)	Fe(III)	Pb(II)		
0,00	0,690	0.630	0.680	0.650	0,690		
1.00	0,690	0.680	0.690	0,690	0.600		
2.00	0.680	0.680	0,680	0.680	0.680		
3.00	0,690	0.010	0.680	0.690	0.690		
4.00	0.690	0.630	0.690	0,680	0,680		
5,00	0,680	0,680	0.680	0,680	0.690		
10.00	0,690	0.680	0,690	0.680	0.680		

Table 6 - b Molar ratio, study of powceau 4 R and various metal ions in the acetic acid p_{ij}^{ij} 3.0 by visible spectrophotometric technique

Molar ratio, Metal ion :	Absorbance of the mixture at $\lambda = 505$ nm max						
Ponceau 4 R	Cd(II)	Hg(II)	Fe(II)	Fe(III).	Pb(II)		
0.00	0.650	0,650	0.540	0.640	0.640		
1.00	0.620	0,640	0,530	0.630	0,630		
2.00	0.650	0,650	0.630	0.620	0.630		
3.00	0.660	0,650	0.540	0.640	0.640		
4.00	0.650	0.640	0.620	0.630	0.650		
5.00	0.640	0.640	0.630	0.630	0,640		
10.00	0.650	0.640	0.640	0.640	0.640		

Table 6 - c Molar ratio study of Ponceau 4 R and various metal ions in the phosphate buffer pH 6.4 by visible spectrophotometric techique

7

Molar ratio, A Metal ion :	Absorbance of the mixture at $\lambda = 505$ nm max						
Ponceau 4 R.	(II) Hg(II) Fe(II) F	Fe(III)	Pb(II)				
0.00	0.65	0.650	0.650	0.660	0.650		
1.00	0.640	0.640	0,650	0.650	0.660		
2.00	0.650	0,650	0.640	0.650	0.650		
3.00	0.650	0.650	0.650	0.660	0.650		
4.00	0.640	0.640	0.640	0.65 0	0.650		
5.00	0.660	0.640	0.650	0.65 0	0.660		
10,00	0.650	0.640	0.640	0.660	0.650		

Table 6 - d Molar ratio study of Ponceau 4 R and various metal ions in the phosphate buffer pH 7.4 by visible spectrophotometric technique

Molar ratio, Metal ion :	Absorbance of the mixture at $\lambda = 505$ nm max						
Ponceau 4 R	Cd(II)	Hg(II)	Fe(II)	Fe(III)	Pb(II)		
ü.00	0.680	0.690	0.680	0.690	0.680		
1.00	0.670	0.680	0.680	0.680	0.680		
2.00	0.680	0.690	0.670	0.680	0.670		
3.00	0.680	0,670	0.690	0.670	0.680		
4.00	0.680	0.680	0,680	0.680	0.690		
5.00	0.680	0.6 0	0.680	0.690	0.680		
10.00	0.680	0.670	0.670	0.680	0.670		

Table 6 - e Molar ratio study of Ponceau 4 R and various metal ions in diethylamine buffer pH 12.5 by visible spectrophotometric technique

Metal ion : -			ma	ix	
Ponceau 4 R	Cd(II)	Hg(II)	* Fe(II)	Fe(III)	Pb(II
0.00	0.690	0.690	0.690	0.690	0.690
1.00	0.680	0.680	0.680	0.690	0.680
2.00	0.670	0.690	0.680	0.680	0.690
3.00	0.680	0.690	0.690	0.680	0.680
4.00	0.690	0.680	0.690	0.690	0.690
5.00	0.680	0.690	0.680	0.690	0.690
10.00	0.680	0.690	0.680	0.680	0.680

*KCl + NaOH buffer was used instead since the mixture in the diethylamine buffer pH 12.5 had been done⁽⁷⁾

Table 6 - f Molar ratio study of Ponceau 4 R and various metal ions at pH 3.4 McIlvaine buffer by visible spectrophotometric techique

Molar ratio, A Metal ion :	Absorbance of the mixture at λ =505 nm max						
Ponceau 4 R	Cd(II)	Hg(II)	Fe(II)	Fe(III)	Pb(II)		
0.00	0.640	0.630	0.610	0.630	0.610		
1.00	0.640	0.630	0.610	0.630	0.600		
2.00	0.640	0.630	0.600	0.630	0.620		
3.00	0.640	0.630	0.600	0.620	0.610		
4.00	0.640	0.630	0.610	0.630	0.600		
5.00	0.640	0.630	0.610	0.630	0.610		
10,00	0.640	0.630	0.620	0.620	0.620		

Table 6 - g Molar ratio study of Ponceau 4 R and various metal ion in McIlvaint buffer pH 6.4 by visible spectrophotrometric technique

Molar ratio, Al Metal ion: -	Absorbance of the mixture at $\lambda = 505$ nm max						
Ponceau 4 R	cd(II)	Hg(II)	Fe(II)	Fe(IIT)	Pb(II)		
0.00	0.820	0.860	0.860	0.860	0.810		
1.00	0.830	0, 860	C-86Q	C .860	0.820		
2.00	0.830	0.850	0.860	0 860	0 - 810		
3.00	0.830	0.:860	0.850	0.350	0.820		
4.00	0.820	0.8%	0,870	0.860	0, 810		
5.00	0.830	0.870	c.860	0.860	0.810		
10.00	0.820	0.870	0,860	0,860	0.3810		

Table 6 - h Molar ratio study of Ponceau 4 R and various metal ions at in Mc Ilvain buffer pH 7.6 by visible spectrophotometric technique

Metal ion:			m	ax	
Ponceau 4 R	Cġ (II)	Hg(II)	Fe(II)	Fe(III)	Pb(II
0.00	0.570	0.630	0.620	0.570	0,570
1.00	0.570	0.630	0,620	0,560	0,580
2.00	0.580	0,630	0,620	0.560	0.570
3.00	0.580	0,640	0.620	0.570	0.560
4.00	0.580	0,640	0,630	0.560	0.570
5.00	0.580	0.630	0.620	0.560	0,590
10.00	0.580	0.620	0.630	0.560	0.570

Table 6 - i Molar ratio study of Ponceau 4 R and various metal ions in water by atomic absorption spectrophotometric technique

Molar ratio, Ponceau 4 R		e of the min metal ion.		he wavelen	gth .
:Metal ion	Cd(II)	Hg(II)	Fe(II)	Fe(III)	Pb(II)
0.00	0.850	0.350	0.900	0.890	0.620
0.10	0.860	0.360	0.900	0.890	0.620
0.20	0.860	0.350	0.890	0.900	0.620
0.30	0.850	0.360	0.900	0.890	0.620
0. 5 0	0.870	0.360	0.890	0.900	0.620
1.00	0.860	0.350	0.900	0.890	0.620

Table 6 - j Molar ratio study of Ponceau 4 R and various metal ions in acetic acid at pH 3.0 by atomic absoption spectrophotomaric technique

Molar ratio, Ponceau 4 R	Absorption of the mixture at the wavelength Where the metal ion absorbed						
::Metal ion	Cd(II)	Hg(II)	Fe(II)	Fe(III)	Pb(II)		
0.00	0.870	0.300	0.840	0.500	0.620		
0.10	0.870	0.300	0.840	0.500	0.630		
0.20	0.870	0.300	0.850	0.500	0.520		
Q. 30	0.870	0.300	0.840	0.500	0.630		
0.50	0.870	0.300	0.840	0.510	0.630		
1.00	0.870	0.300	0.840	0.500	0.620		

Table 6 - k Molar ratio study of Ponceau 4 R and various metal ions in the phosphate buffer at pH 6.4 by atomic absorption spectrophotometric technique

Molar ratio, Ponceau 4 R	Absorption where the	of the mi: metal ion	absorbed	ne waveleng	gth *
: Metal ion	Cd(II)	Hg(II)	Fe(II)	Fe(III)	Pb(II)
0.00	0.840	0.230	0.020	0.090	0.070
0.10	0.840	0,230	0.020	0.090	0.070
0.20	0.850	0.230	0.020	0.090	0.070
0.30	0,850	0.230	0.020	0.090	0.070
0.50	0.850	0.240	0.020	0.090	0.070
1.0	0.840	0.230	0.020	0.090	0.070

Table 6 - 1 Molar ratio study of Ponceau 4 R and various metal ions in the phosphate buffer at pH 7.4 by atomic absorption spectrophotomet ric technique

Molar ratio, Ponceau 4 R	Absorption of the mixture at the wavelength where the metal ion: absorbed						
:Metal ion	Cd(II)	Hg(II)	Fe(II)	Fe(III)	Pb(II)		
0.00	0.820	0.110	0.020	0.040	0.004		
0.10	0.810	0.110	0.020	0.040	0.004		
0.20	0.810	0.110	0.020	0.040	0.004		
0,30	0,820	0.100	0.020	0.040	0.004		
0.50	0.810	0.110	0.020	0.040	0.004		
1.0	0.820	0.110	0.020	0.040	0.004		

Table 6 - m Molar ratio study of Ponceau 4 R and various metal ions in diethylamine buffer pH 12.5 by atomic absorption spectrophotometric technique

Molar ratio,	Absorption	n of the mi	xture at	the wavele	ngth
Ponceau 4 R	where the	metal ion_	absorbed		
: Metal ion	Cd(II)	Hg(II)	∲e(II)	Fe(III)	Pb(II)
0.00	0,500	0.020	0.020	0.010	0.56
0.10	0.500	0.020	0.020	0.010	0.55
0.20	0,500	0.020	0.020	0.010	0.59
0.30	0.500	0.020	0.020	0.010	0.54
0.50	0.500	C.020	0.020	0.010	0.55
1.00	0.500	¢.020	0.020	0.010	0.54

•KCl + NaOH buffer was used instead since the mixture in the diethylamine buffer pH 12.5 had been done⁽⁷⁾

Table 6 - n Molar ratio study of Ponceau 4 R and various metal ion in McIlvain buffer pH 3.4 by atomic absorption spectrophotometric technique

Absorption	of the mix	ture at th	e waveleng	th
where the m	etal ion	absorbed		
CďII)	Hg(II)	Fe(II)	Fe(IJI)	Pb(II
0.810	0.080	0.530	0.560	0.86
0.800	0.090	0.530	0.550	0.860
0.800	0.080	0.520	0.560	0.870
0.800	0.080	0.530	0.570	0.860
0.800	0.080	0.530	0.570	0.850
0.790	0.080	0.520	0.570	0.860
	where the m CdII) 0.810 0.800 0.800 0.800 0.800	Where the metal ion CdII Hg(II) 0.810 0.080 0.800 0.090 0.800 0.080 0.800 0.080 0.800 0.080 0.800 0.080 0.800 0.080	where the metal ion absorbed Cd(II) Hg(II) Fe(II) 0.810 0.080 0.530 0.800 0.090 0.530 0.800 0.080 0.520 0.800 0.080 0.530 0.800 0.080 0.530 0.800 0.080 0.530	Where the metal ion absorbed Cd(II) Hg(II) Fe(II) Fe(III) 0.810 0.080 0.530 0.560 0.800 0.090 0.530 0.550 0.800 0.080 0.520 0.560 0.800 0.080 0.530 0.570 0.800 0.080 0.530 0.570 0.800 0.080 0.530 0.570

Table 6 - o Molar ratio study of Ponceau 4 R and various metal ions in McIlvain buffer pH 6.4 by atomic absorption spectrophotometric technique

Molar ratio, Ponceau 4 R		n of the mi metal ion		he wavelen	lgth
: Metal ion	Cd(II)	Hg(II)	Fe(II)	Fe(III)	Pb(II)
0.00	0.810	0.080	0.570	0.590	0.0:0
0.10	0.800	0.080	0.570	0,580	0.030
0.20	0.810	0.070	0.560	0.570	0.030
0.30	0.800	0.070	0.570	0.580	0.030
0.50	0.810	0.080	0.570	0.590	0.030
1.00	0.810	0.080	0.560	0.580	0.030

Table 6 - p Molar ratio study of Ponceau 4 R and various metal ions in the phosphate buffer at pH 7.6 by atomic absorption spectrophotometric technique

Molar ratio, Ponceau 4 R	Absorption of the mixture at the wavelength where the metal ion, absorbed						
: Metal ion	Cd(II)	Hg(II)	Fe(II)	Fe(III)	Pb(II)		
0.00	0.800	0.070	0.560	0.450	0.000		
0.10	0.800	0.080	0.560	0.450	0.000		
0.20	0.810	0.070	0.570	0.440	0.000		
0.30	0.800	0.070	0.560	0.450	0.000		
0.40	0,800	0,070	0.51 0	0.440	0.000		
0.50	0.810	0.080	0.570	0.450	0.00.		
1.00	0.800	0.070	0.560	0.440	0.000		

Table 7 - A Molar ratio study of Erythrosine and metal ions in acotic acid pH 3.0 by visible spectrophotometric: technique

ŝ

Molar ratio,	Absorbance	Absorbance of the mixture at $\lambda_{max} = 525 \text{ nm}$						
Metal ion : Erythrosine	Cd (II)	Hg (II)	Fe (II)	Fe(III)	Pb (II)			
0,00	0.170	0,160	0.170	0.150	0.160			
1.00	0.170	0.170	0.180	0.140	0.170			
2,00	0.170	0.160	0.180	0.150	0.160			
3.00	0.170	0.170	0,170	0.150	0.150			
4,00	0.170	0,160	0.170	0.150	0.170			
5,00	0,170	0.160	0.130	0.140	0.160			
10.00	0.170	0,170	0.170	0.150	0.160			

Table 7 - b Molar ratio study of Erythrosine and various metal logis in the phosphate . buffer pH 6.4 by visible spectrophotometric tecnique

Molar ratio, Metal ion :	Absorbanc	Absorbance of the inixture at $\lambda_{max} = 525 \text{ nm}$							
Erythrosine	6a (II)	Hg (II)	Fe (II)	Fe(III)	Pb (II)				
0,00	1.540	1,550	1.540	1.550	1.550				
1.00	1.540	1.530	1.530	1.520	1.540				
2.00	1.530	1.530	1.530	1.540	1.550				
3.00	1.540	1.550	1,520	1.530	1.550				
4.00	1.540	1.550	1.510	1.530	1,540				
5.00	1.540	1.540	1.520	1.520	1,550				
10,00	1.540	1.530	1.510.	1.530	1.530				

Table 7 - c Molar ratio study of Erythrosine and various metal ions in the phosphate buffer pH 7,4 by visible spectrophotometric technique

Molar ratio,	Absorbance of the mixture at $\lambda_{max} = 525 \text{ nm}$					
Metal ion : Erythrosine	Cq (II)	Hg (II)	Fe (II)	Fe (IIÌ)	Pb (II)	
0.60	1.520	1.510	1.510	1.540	1.540	
1.00	1.520	1.500	1.500	1.540	1.550	
2.00	1.520	1.510	1.500	1.540	1.530	
3.00	1.510	1.520	1.510	1.520	1.530	
4.00	1.510	1.510	1.500	1.540	1.540	
5.00	1.520	1.500	1.470	1.520	1.500	
10.00	1.510	1.500	1.500	1.530	1.520	

Table 7 - d Molar ratio study of Erythrosine and various metal ions in KCl + NaOH buffer pH 12.5 by visible spectrophotometric technique

Molar ratio, Metal ion :	Absorbance of the mixture at $\lambda_{max} = 525 \text{ nm}$						
Erythrosine	Cd (II)	Hg (II)	Fe (II)	Fe(III).	Pb (II		
0.00	1.240	1.250	1.260	1.240	1.260		
1.00	1.230	1.260	1.270	1.240	1.250		
2.00	1.240	1.25 0	1.270	1.250	1.260		
3.00	1.230	1.260	1.260	1.250	1.25 0		
4.00	1.220	1.240	1.270	1.250	1.25 0		
5 .00	1.240	1.25 0	1.260	1.240	1.260		
10.00	1.230	1.250	1.270	1.260	1.25 0		

Table 7 - e Molar ratio study of Erythrosine and various metal ions in McIlvain buffer pH 3.4 by visible spectrophotometric technique

7

Molar ratio, Metal ion :	Absorbanc	Absorbance of the mixture at $\lambda_{max} = 525 \text{ nm}$						
Erythrosine	Cd (II)	Hg(II)	Fe (II)	Fe(III.)	Pb (II)			
0.00	0.020	0.020	0.019.	0.020	0.020			
1.00	0.020	0.020	0.013	0.020	0.020			
2.00	0.019	0.019	0.017	0.019	0.020			
3.00	0.020	0.020	0.011	0.020	0.020			
4.00	0.020	0.020	0.011	0.019	0.020			
5.00	0.020	0.020	0.011	0.020	0.020			
10.00	0.020	0.020	0.011	0.020	0.020			

Table 7 - f Molar ratio study of Erythrosine and various metal: ions in McIlvain buffer pH 6.4 by visible spectrophotometric technique

Molar ratio, Metal ion :	Absarbance of the mixture at $\Lambda_{max} = 525 \text{ nm}$					
Erythrosine	Ca (II)	Hg (II)	Fe (II)	Fe(III)	Pb (II)	
0.00	1.440	1.420	1.410	1.45 0	0.980	
1.00	1.43 0	1.420	1.410	1.45 0	0.980	
2.00	1.440	1.42 0	1.410	1,45 0	0.98 0	
3.00	1.44 0	1.42 0	1.410	1.44 0	0.96 0	
4.00	1.44 0	1.410	1.40 0	1.46 0	0.98 0	
5.00	1.45 0	1.42 0	1.40 0	1.45 0	0.970	
10.00	1.44 0	1.42 0	1.410	1.45 0	0.970	

Table 7 - ¢ Molar ratic study of Erythrosine and various metal ions in McIlvain buffer pH 7.6 by visible spectrophotometric technique

Molar ratio, Metal ion :	Absorbance	of the mix	ture at λ	max = 525 r	m
Erythrosine	č a (11)	Hg (II)	Fe (II)	Fe(III)	Pb (II)
0.00	0.340	0.340	0.340	0.340	0.340
1.00	0.350	0,340	0.350	0.330	0.340
2.00	0.340	0.350	0.340	0.340	0.350
3.00	0.340	0.340	0.340	0.330	0.340
4.00	0.350	0.350	0.340	0.340	0.340
5.00	0.340	0.340	0.350	0.330	0.340
10.00	0.340	0.350	0.340	0.320	0.350

Table 7 - M Molar ratio study of Erythrosine and various metal ions in acéticacid at pH 3.0 by atomic absorption spectrophotometric technique

Molar rat	tio,	Absorption the metal		xture at the bed	wavelength	where
Erythros: Metal io	2	, cd(II)	Hg(II)	-Fe(II)	Fe(III)	Pb(II)
0.00	0.8	, 0.840	0.220	0.930	0.520	0.620
0.10	:.3	0.850	0.220	0.930	0.510	0.630
0.20	0.8	0.850	0.230	0.930	0.510	0.600
0.30	C e M	0.850	0.240	0.930	0.520	0.610
0.50	ń įt	0.850	0.230	0.930	0.520	0.600
1.00	C. 31	0.85 0	0.220	2.930	0.510	0.600

Table 7 - i Molar ratio study of Erythrosine and various metal ion in the phosphate buffer pH 6.4 by atomic absorption spectrophotometric technique

T

Molar ratio, Erythrosine: Metal ion	Absorption of the mixture at the wavelength where the metal iou: absorbed							
	cd(II)	. Hg(II)	Fe(II)	Fe(III)	Pb(II)			
0.00	0.850	0.280	0.030	0.000	0.070			
0.10	0.840	0.280	0.030	0.000	0.050			
0.20	0.840	0,280	0.030	0.000	0.050			
0.30	0.840	0.280	0.030	0.000	0.070			
0.50	0.850	• 0.280	0.030	0.000	0.050			
1.00	0.840	0.280	0.030	0.000	0.050			

Table 7 - j Molar ratio study of Erythrosine and various metal ions in the phosphate buffer pH 7.4 by atomic absorption spectrophotometric technique

Molar ratio,	Absorption of the mixture at the wavelength where the metal ion. absorbed-							
Erythrosine:	Cd(II)	U-(TT)	Fe(II)	Fe(III)				
Metal ion	Ca(II)	Hg(II)	Fe(II)	re(III)	Pb(II)			
0.00	0.820	0,110	0.100	0.030	0.010			
0.10	0.820	0.110	0.100.	0.030	0.010			
0.20	0.830	0.110	. 0.090	0.030	0.010			
0.30	0.820	0.110	0.090	. 0.030	0.010			
0,50	0.830	0.110	0.090:.	.: 0.030	0.010			
1.00	0.830	0.110	0.090 .	0.030	0.010			

Table 7 - k Molar ratio study of Erythrosine and various metal ions in KCl + NaOH buffer at pH 12.5 by atomic absorption spectrophotometric technique

7

Mołaż ratio;		Absorption of the mixture at wavelength where the metal ion absorbed						
Erythrosine: Metal ion	Cd(II)	Hg(II)	Pe(II)	Fe(III)	Pb(II)			
0.00	0.490	0,020	0.020	0.010	0.560			
0.10 .	0.490	0,020	0.020	0.010	0.560			
0.20	0,480	0,020	0.020	: 0.010	-0.560			
0.30	0.490	0.020	0.020	0,010	0,560			
0.50	0.480	0,020	0.020	0.010	0.560			
1.00	0.480	0,020	0.020	0.010	20.560			

Table 7 - 1 Molar ratio study of Erythrosine and various matal ions in McIlvain buffe: pH 3.4 by atomic absorption spectrophotometric technique

Molar ratio,	Absorption of the mixture at wavelength where the metal ion absorbed.						
Erythrosine:					.Pb(II)		
Metal ion	Cd(II)	Hg(II)	Fe(II)	Fe(III)	.PD(11)		
0.00	0.790	0,100	0.570	. 0,570	0,870		
0.10	0.790	· 0,100	0.570	0.560	0.870		
0.20	0,800	0.100	0.570	• 0,570 .	10.870		
0.30	0.790	0,100	0.560	0.560	0.870		
0.50 .	0.860	0.100	0.560 +	0,560	0.860		
1.00	0.800	0,100 .	0.560.	0.570	0.860		

Table 7 - m Molar ratio study of Erythrosine and various metal ions in McIlvain buffer pH 6.4 by atomic absorption spectrophoto ometric technique

Molar ratio, Erythrosine: Metal ion	Absorption of the mixture at wavelength where the metal iog: absorbed						
	Cd(II)	₽g(II)	Fe(II)	Fe(III)	Pb(II)		
0.00	0.810	0.080	0.580	0.590	0.020		
0 .1 0	0.810	0.080	0.580	0.580	0.020		
0.20	0.810	0.080	0.580	0.590	0.020		
0.30	0.200	0.070	0.580	0.580			
0.50	0.800	0.070	0.570	0.580	0.020		
1.00	0.800	0.070	0.570	0.590			

Table 7 - n Molar ratio study of Erythrosine and various metal ions in McIlvain buffer pH 7.6 by atomic absorption spectrophotometric technique

Molar ratio,		Absorption of the mixture at wavelength where the metal ion absorbed.						
Erythrosine : Metal ion	Cd(II)	Hg(II)	Fe(II)	Fe(III)	Pb(II)			
0,00	0.800	0.020	0.450	0.560	0.050			
0.10	0.810	0.020 -	0.460	0.570	0.050			
0.20	0.800	0.020	0.480	0.560	0.050			
0.30	0,810	0.020	0.450	0.560	0.060			
0.50	0.800	0.020	0.450	0.570	0.070			
1.00	0.800	0.020	0.050	0.560	0.050			

Molar ratio ₎ Cd(II) : Erythrosine	Absorbance of the mixture at $\begin{array}{l} \lambda \\ max \end{array}$ 525 hm
0.00	1.51 ⁰
0,50	1.510
1.00	1.500
1.50	1.510
2.00	1.500
2.50	1.510
3.00	1.500
4.00	1,510
5.00	1.520
5,00	1.510
10.00	1.500

Table 8 Molar ratio study of Erythrosine and Cd (II) ion in water by visible spectrophotometric method

COTTAL STA

Table 9-a

7

in nitric acid (pH 6.8-3.1) by visible spectrophotometric technique

Mole ratio,	Absorbance
Hg(II) ; Erythrosine	at 525 nr
0.00	1.510
0.20	1.390
0.40	1.100
0.60	0.740
0.80	0.260
1.00	0.060
1.20	0.010
1.40	0.010
1.60	0.010
1.80	0.010
2.00	0.000
3.00	0.000
4.00	0.000
5.00	0.000
6.00	0.000

Table 9-b Molar ratio study of Erythrosine and Hg (II) ion

in nitric acid (pH 6.2-4.2) by

7

×

Mole ratio, Absorbance at 253.7 nm Erythrosine : Hg(II) 0.12 0.100 0.24 0.093 0.36 0.086 0.48 0.078 0.60 0.069 0.72 0.055 0.84 0.056 0.96 0.047 1.08 0.053 1.20 0.064 1.30 0.073 1.40 0.081

atomic absorption spectrophotometric technique

Table 9-c

Y

Molar ratio study of Erythrosine and Hg (II) ion in the nitric acid pH 4.3 by visible spectropho-

tometric technique

Molar ratio,	Absorbance
Hg(II) : Erythrosine	at 525 nm
0.00	0.797
0.20	0.738
0.40	0.537
0.60	0.363
0.80	0.269
1.00	0.256
1.50	0.260
2.00	0.043
2.50	0.017
3.00	0.007
3.50	0.005
4.00	0.003
4.50	0.003
5.00	0.000
6.00	0.000
7.00	0.000
8.00	0.000

Table 9-d Molar ratio study of Erythrosine and Hg (II) ion in the nitric acid pH 4.3 by atomic absorption

spectrophotometric technique

.

Molar ratio,	Absorbance
Erythrosine : Hg(II)	at 253.7 nm
0.00	0.137
0.24	0.120
0.48	0.103
0.60	0.098
0.84	0.080
0.96	0.071
1.08	0.073
1.20	0.088
1.40	0.082
1.50	0.084
1.60	0.077
1.70	0.087
1.80	0.089
2.00	0.094
2.20	0.094
2.40	0.100

Table 9-e

Molar ratio study of Erythrosine and Hg (II) ion in the acetate buffer pH 4.4 by visible spectrophotometric technique

Molar ratio, Hg(II) : Érythrosine	Absorbance at 525 nm
0.00	0.820
0.20	0.667
0.40	0.654
0.60	0,533
0.80	0.351
1.00	0.335
1.20	0.323
1.40	0.308
1.60	0.308
1.80	0.320
2.00	0.280
3.00	0.210
4.00	0.120
5.00	0.098
6.00	0.086

Table 9-f Molar ratio study of Erythrosine and Hg (II) ion in the acetate buffer pH 4.4 by atomic absorption spectrophotometric technique

Molar ratio,	Absorbance
Erythrosine : Hg(II)	at 253.7 nm
0.10	0.066
0.20	0.062
0.30	0.059
0.40	0.055
0.50	0.052
0.60	0.048
0.70	0.045
0.80	0.042
0.90	0.039
1.00	0.035
1.20	0.036
1.50	0.038
2.00	0.046

1

Table 9-g	Molar ratio study of Erythrosine and Hg (11)10n
	in the acetate buffer pH 6.0 by visible spectro-
	photometric technique

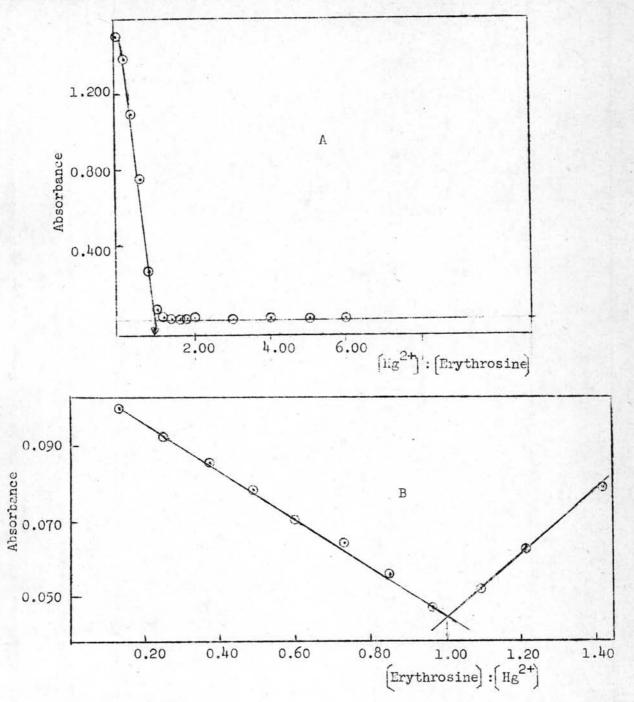

Molar ratio,	Absorbance
Hg(II) : Erythrosine	at 525 nm
0.00	1.027
0.20	0.971
0.60	0.950
0.80	0.949
1.00	0.884
1.50	0.869
2.00	0.861
2.50	0.837
3.00	0.821
3.50	0.782
4.00	0.750
4.50	0.711
5.00	0.711
6.00	0.695

Table 9-h Molar ratio study of Erythrosine and Hg (II) ion

in the acetate buffer pH 6.0 by

atomic absorption spectrophotometric technique

Molar ratio, Erythrosine : Hg(II)	Absorbance at 253.7 nm
0.00	0.190
0.35	0.130
0.48	0.115
0.70	0.085
0.84	0.065
1.20	0.048
1.40	0.056
1.80	0.080
2.00	0.090

4

Figure 8A Molar ratio plots for systems in nitric acid; (pH 6.8-3.1) A) 2.00×10^{-5} M Erythrosine and various concentrations of Hg(II) ion by visible spectrophotometric method and B) 1.00×10^{-3} M Hg(II) ion and various concentrations of Erythrosine by atomic absorption spectrophotometric method

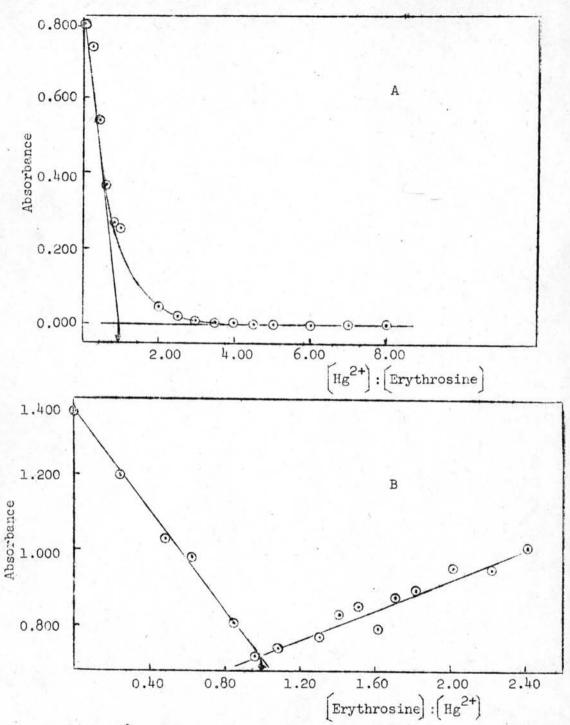


Figure 8B

Molar ratio plots for systems in the nitric acid pH 4.3; A) 2.00 $\times 10^{-5}$ M Erythrosine and various concentrations of Hg(II) ion by visible spectrophotometric method and B) 1.00 $\times 10^{-3}$ M Hg(II) ion and various concentrations of Erythrosine by atomic absorption spectrophotometric method.

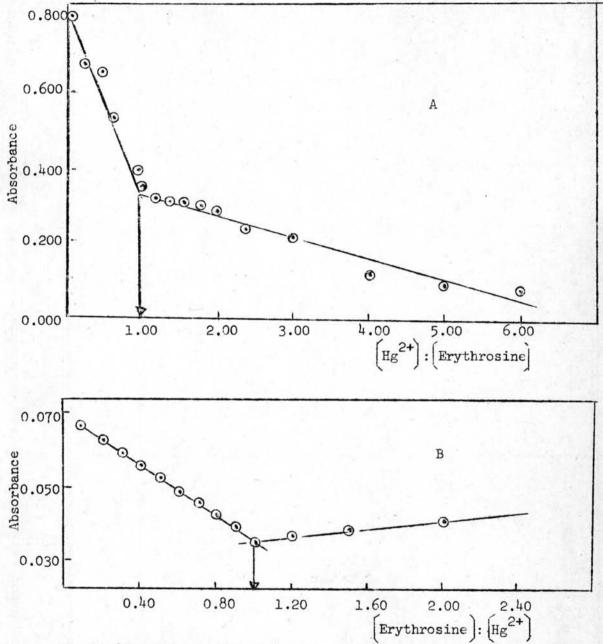
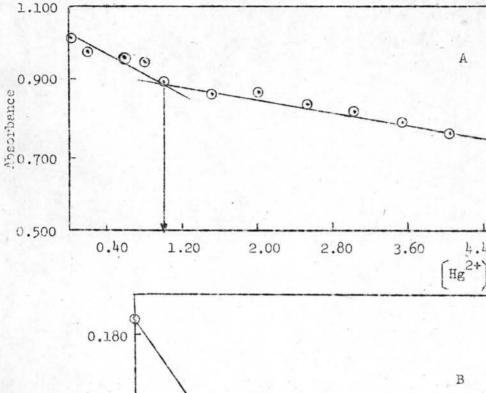



Figure 8C

Molar ratio plots for systems in the acetate buffer pH 4.4; A) 2.00×10^{-5} M Erythrosine and various concentrations of Hg(II) ion by visible spectrophotometric method and B) 1.00×10^{-3} M Hg(II) ion and various concentrations of Erythrosine by atomic absorption spectrophotometric method

В approprietation of the second 0.060 0.020 0.40 0.80 1.60 2.00 1.20 $[Erythrosine]: [Hg^{2+}]$

4.40

5.20

: [Erythrosine]

Molar ratio plots for systems in the acetate buffer pH 6.0; A) 2.00 \times 10⁻⁵M Erythrosine and various concentration of Hg(II) ion by visible spectrophotometric method and B) 1.0×10^{-3} M Hg(II) ion and various concentrations of Erythrosine by atomic absorption spectrophotometric method

82

0

6.00

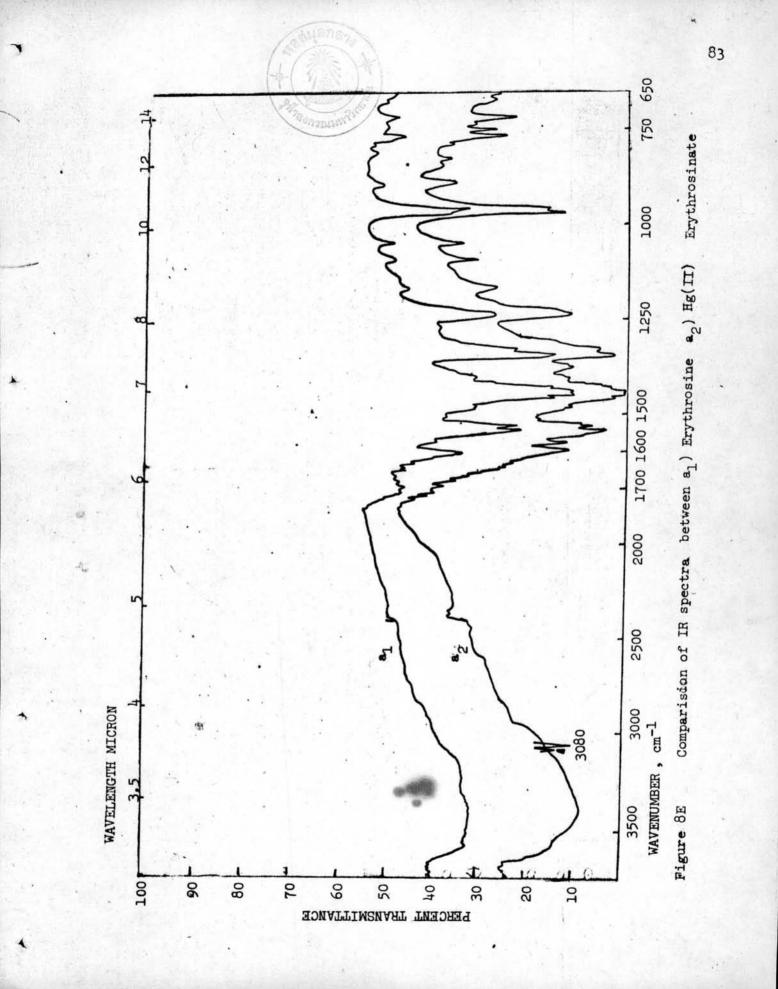


Table 10-a

7

Molar ratio study of Erythrosine and Fe (III) ion in sulphuric acid (pH 6.8-3.3)

by visible spectrophotometric technique

Molar ratio,	Absorbance
Fe(III) : Erythrosine	at 525 nm
0.00	1.540
0.20	1.500
0.40	1.300
0.60	0.720
0.80	0.420
1.00	0.160
1.50	0.120
2.00	0.080
3.00	0.040
4.00	0.020
5.00	0.020
8.00	0.020

Table 10-b

Molar ratio study of Erythrosine and Fe (III) ion

in the sulphuric acid pH 3.3 by

visible spectrophotometric technique

Molar ratio,	Absorbance
Fe(III) : Erythrosine	at 525 nm
0.00	0.100
0.20	0.096
0.40	0.094
0.60	0.075
0.80	0.031
1.00 ·	0.015
1.50	0.015
2.00	0.015
2.50	0.015
3.00	0.011
3.50	0.011
4.00	0.011
5.00	0.020
6.00	0.010

Table 10-c

Molar ratio study of Erythrosine and Fe (III) ion in the sulphuric acid pH 3.3 by

atomic absorption spectrophotometric technique

Molar ratio,	Absorbance
Erythrosine : Fe(III)	at 248.3 nm
0.00	0.061
0.40	0.420
0.80	0.330
1.00	0.320
1.40	0.300
1.60	0.260
1.80	0.240
2.00	0.190
3.00	0.140
4.00	0.200
5.00	0.140
7.00	0.110

Table 10-d Molar ratio study of Erythrosine

7

and Fe(III) ion in sulphuric acid pH

5.5 - 3.3 by visible spectrophotometric technique

Molar ratio,	Absorbance
Fe (III) : Erythrosine	at 525 nm
0.00	1.260
0.20	1.058
0.40	0.630
0.60	0.510
0.80	0.180
1.00	0.120
1.50	0.094
2.00	0.050
3.00	0.030
4.00	0.012
5.00	0.012

Table 10-e

7

Molar ratio study of Erythrosine and Fe (III) io. in the nitric acid pH 3.3 by visible.

spectrophotometric technique.

Molar ratio	Absorbance		
Fe(III) : Erythrosine	at 525 nm		
0.00	0.123		
0.20	0.123		
0.40	0.111		
0.60	0.091		
0.80	0.083		
1.00	0.039		
1.50	0.028		
2.00	0.024		
3.00	0.008		

Table 10-f Molar ratio study of Erythrosine and Fe (III) ion at in the nitric acid pH 3.3 by atomic

absorption spectrophotometric technique

Molar ratio, Erythrosine : Fe(III)	Absorbance at 248.3 nm		
0.00	0.790		
0.20	0.600		
0.40	0.650		
0.60	. 0.490		
0.80	0.380		
1.00	0.330		
1.20	0.260		
1.40	0.220		
1.60	0.200		
1.80	0.180		
2.00	0.140		

Table 10-g Molar ratio study of Erythrosine and Fe (III) ion in the acetate buffer pH 4.4 by visible spectrophotometric technique

Molar ratio, Fe(III) : Erythrosine	Absorbance at 525 nm
0.00	0.841
0.30	0.746
0.60	0.695
0.90	0.639
1.50	0.564
2.50	0.505
3.00	0.580
3.50	0.517
4.00	0.560
5.00	0.525
6.00	0.517

Table 10-h Molar ratio study of Frythrosine and Fe (III) ion in the acetate buffer pH 4.4 by visible spectrophotometric technique

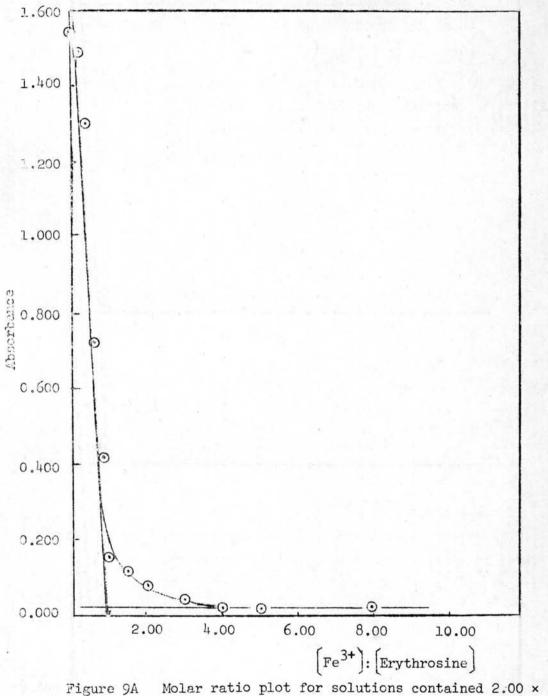
Molar ratio, Fe(III) : Erythrosine	Absorbance at 525 nm		
re(iii) . mounosine			
0.10	1.700		
0.20	1.524		
0.40	0.718		
0.80	0.521		
1.00	0.450		
1.50	0.268		
2.00	0.244		
2.50	0.205		
3.00	0.150		
4.00	0.110		

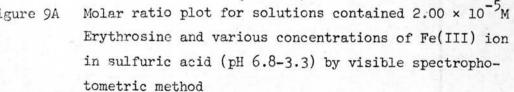
Table 10-i

Molar ratio study of Erythrosine and Fe (III) ion in the acetate buffer pH 6.0

by visible spectrophotometric technique

Molar ratio, Fe(III) : Erythrosine	Absorbance at 525 nm		
0.00	1.040		
0.30	1.010		
0.60	0.980		
1.00	0.960		
1.20	0.910		
1.50	0.905		
2.00	0.875		
2.50	0.070		
3.00	0.900		
3.50	0.880		
4.00	0.900		
5.00	0.840		
6.00	0.800		


Table 10-j


Molar ratio study of Frythrosine and Fe (III) ion

in the acetate buffer pH 6.0

by visible spectrophotometric technique

Molar ratio, Fe(III) : Erythrosine	Absorbance at 525 nm		
0.10	2.300		
0.20	2.200		
0.60	1.510		
0.80	0.750		
1.00	0.630		
1.50	0.390		
2.00	0.280		
2.50	0.250		
3.00	0.190		
4.00	0.130		

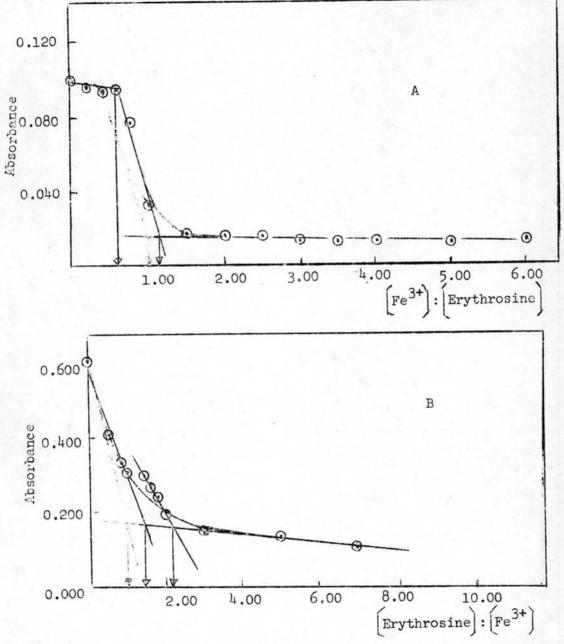
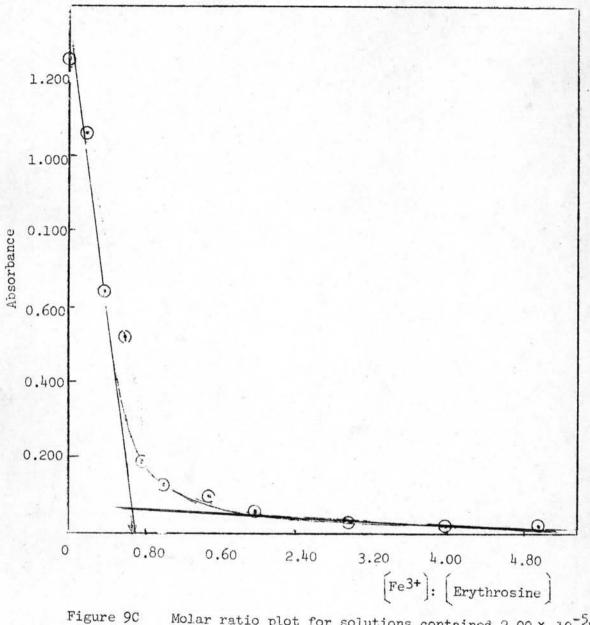
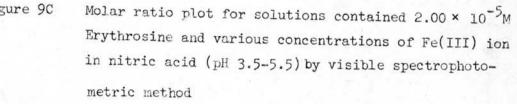
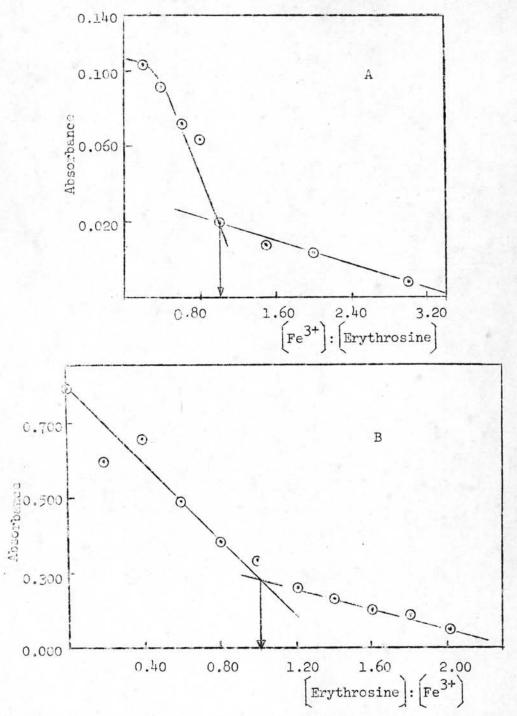
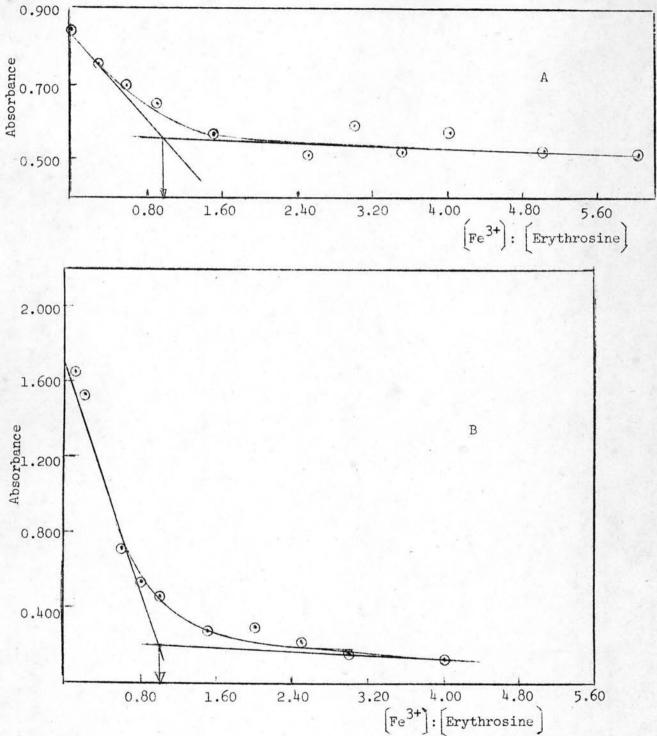



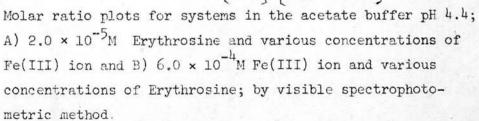
Figure 9B


4


2

Molar ratio plots for systems in the sulfuric acid pH 3.3; A) 2.00×10^{-5} M Erythrosine and various concentrations of Fe(III) ion by visible spectrophotometric method and B) 6.00×10^{-4} M Fe(III) ion and various concentrations of Erythrosine by atomic absorption spectrophotometric method


.....



-

Figure () Molar ratio plots for systems in the nitric acid pH 3.3; A) 2.0×10^{-5} M Erythrosine and various concentration of Fe(III) ion by visible spectrophotometric method and B) 6.0×10^{-11} M Fe(III) ion and varioous concentrations of Erythrosine by atomic absorption spectrophotometric method

98

+

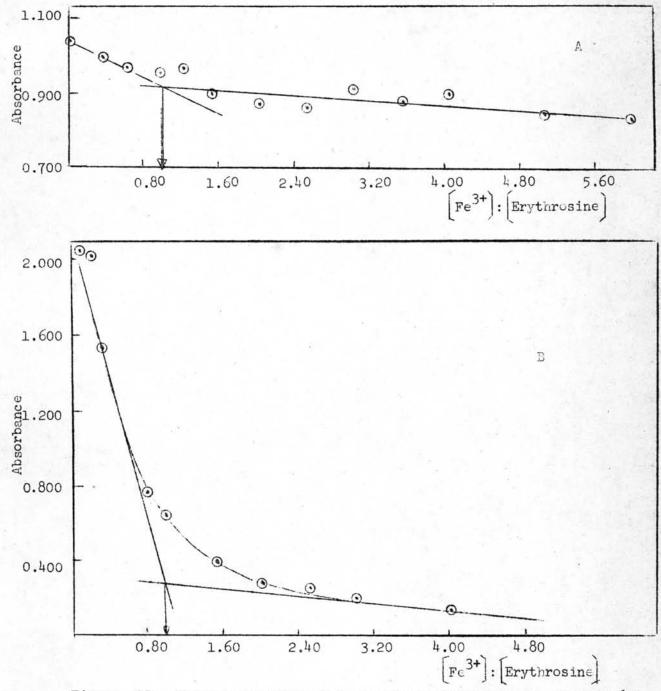
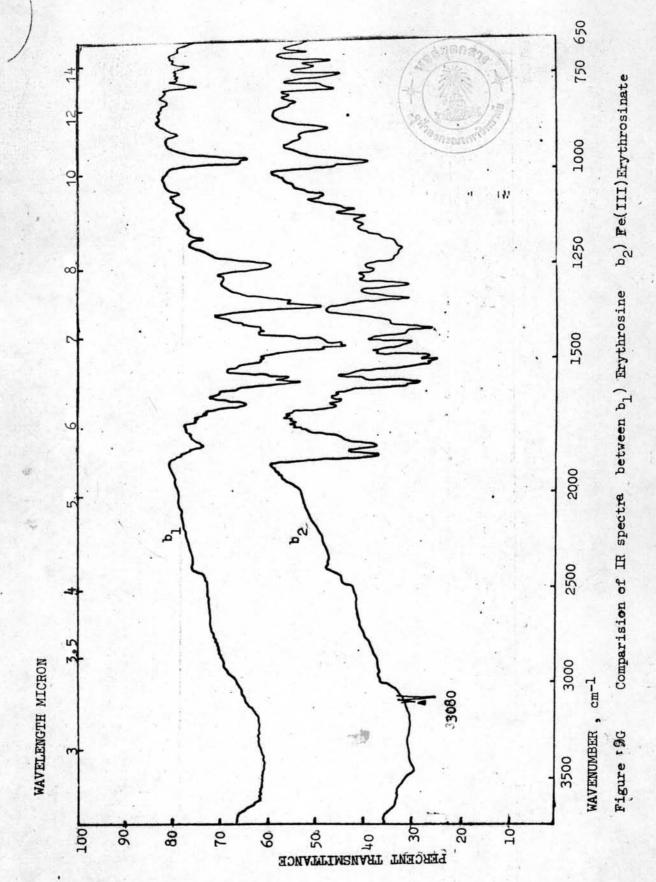



Figure 9F

1

Molar ratio plots for systems in the acetate buffer pH 6.0; A) 2.0 × 10^{-5} M Erythrosine and various concentrations of Fe(III) ion and B) 6.0 × 10^{-4} M Fe(III) ion and various concentrations of Erythrosine, by visible spectrophotometric method

*

Table 11-a Molar ratio study of Erythrosine and Pb(II)ion

in water (pH 5.5-4.6)

*

and in nitric acid pH 5.5 by visible spectrophotometric technique

Molar ratio, Pb(II):Erythrosine	Absorbance at $\lambda_{max} = 525 \text{ nm in}$ aqueous solution	Absorbance at $\lambda_{max} = 525$ nm in nitric acid pH 5.5	
0.00	1.343	1.180	
0.50	1.358	1.120	
1.00	1.295	0.992	
1.50	1.240	1.010	
2.00	1.098	0.900	
2.50	0.940	0.730	
3.00	0.853	0.640	
3.50	0.750	0.620	
4.00	0.718	0.540	
5.00	0.568	0.475	
6.00	0.537	0.430	

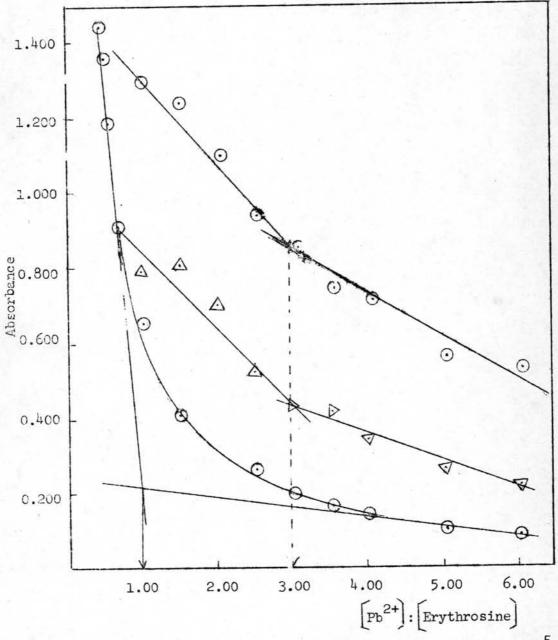
Table 11-b

1

Molar ratio study of Erythrosine and Pb(II) ion in water pH 6.0 by visible spectrophotometric technique

Molar ratio,	Absorbance at		
Pb(II):Erythrosine	$\lambda_{\rm max} = 525 \ {\rm nm}$		
0.50	1.450		
0.60	1.195		
0.70	0.925		
1.00	0.660		
1.50	0.411		
2,00	0.315		
2.50	0.265		
3.00	0.205		
3.50	0.170		
4.00	0.150		
5.00	0.110		
6.00	0.090		

Table 11-c Molar ratio study of Erythrosine and Pb(II) ion


in water pH 7.0-5.8

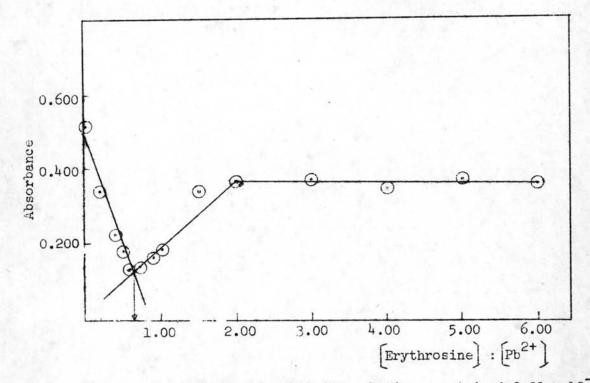
and in nitric acid pH 5.5 by atomic absorption spectro-

photometric technique

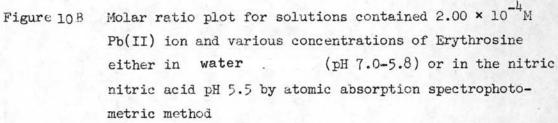
£

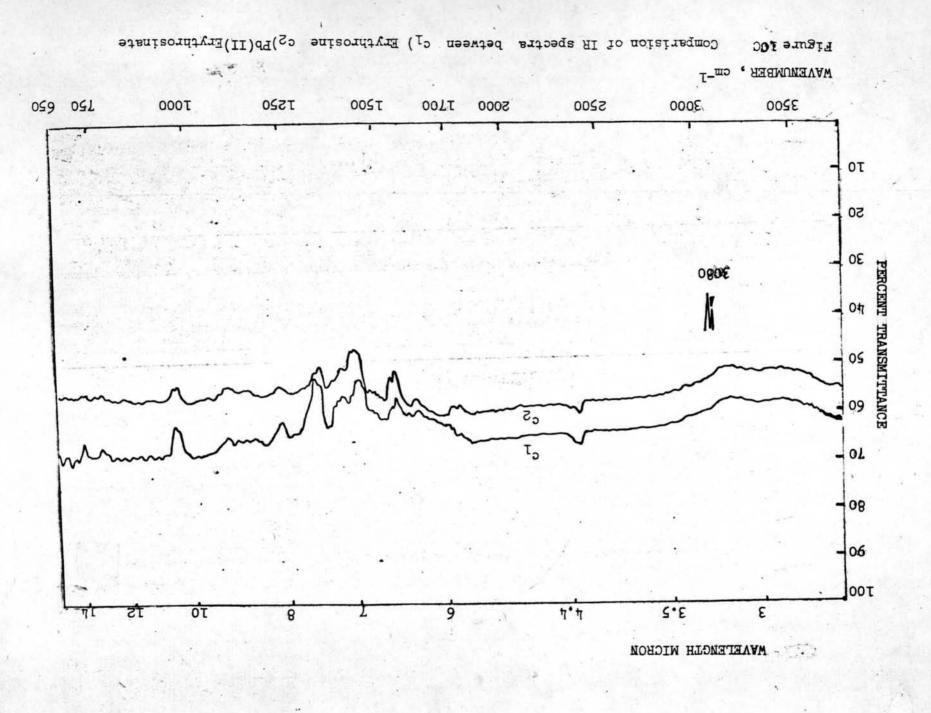
Molar ratio, Erythrosine:Pb(II)	Absorbance at $\lambda_{max} = 217.0$ nm either in water or in HNO ₃ pH=5.5
0.00	0.510
0.20	0.338
0.40	0.225
0.50	0.177
0.60	0.135
0.70	0.140
0.90	0.165
1.00	0.185
1.50	0.345
2.00	0.370
3.00	0.370
4.00	0.355
5.00	0.370
6.00	0.360

94


Figure 10A

-


1


1,

Molar ratio plots for systems; A) 1.20×10^{-5} M Pb(II) ion and various concentrations of Erythrosine in water (pH 6.0) B) and C) 2.00×10^{-5} M and various concentrations of Pb(II) ion in water (pH 5.5-4.6) and in nitric acid (pH 5.5), respectively by visible spectrophotometric method

-4

106

*

Table 12-a Stability constants and solubility products of Hg(II) Erythrosinate in

srellud	SUCTIONS
---------	----------

۲

4

broduct ^a	CJIIIduloS	Stastanos	Stadility			
HES(Erven)2	Hg(Eryth)	Hgs(Ervth)2	Hg(Eryth)	роцтэм	bezu refi	ud bus Hq
7.8 × 10-20	0T-01 × 8°T	6T ^{OT × 9'S}	60T × 5.7	aldiziV	4403	:τ.ε- 8.8
5.8 × 10-20	οτ- ^{Οτ·×} Δ·τ	6τ ^{0τ} × 9.ε	6 ^{01 × 0.9}	əldiaiV		έ ε· η
3'# × T0-50	οτ- ^{Οτ} × 6·τ	5.9 × 10 ¹⁹	6 ^{0T × 4•5}	9.IdiziV	atstass	÷ η·η
6T-0T × T'T	οτ- ^{οτ} × ε·ε	6.2 × το ^{τ6}	6 ^{0T × 0°E}	∍IdiaiV	acetate	: 0.9
ητ-ΟΤ × Ε.Τ	<u></u> _−οτ × τ•τ	ετ ^{01 × 0.8}	9°5 × 70	ZAA	4403	6.2 - 4.2;
ητ- ⁰ τ × 6.2	5°# × T0-1	ετ ^{οτ} × Δ.τ	9 ^{0T × T•} 7	ZAA		÷ ε•η
ST-OT × 8.4	8-01 × 7.9	5'Τ × Τ ⁰ Τψ	λ ^{οτ × ζ•τ}	ZAA	acetate	· 1·11
5.5 × 20-14	οτ × 9.τ	ετ ^{0τ} × 0°η	9 ^{0τ × τ•} 9	BAA	acetate	: 0.9

a Average of at least 3 mixture solutions by visible absorption and stomic absorption

TOT

T

spectrophotometric methods.

product	Solubility product		Stability constant		
Eet (Eryth)	Fe2(Eryth)3	Eet (Eryth) 6	Fe2(Ervth)3	poqtaM	beau reflud bas Hq
98- ^{0T × 8°Z 84-^{0T × 2°9}}	5.6 × 10 ⁻¹⁸ 2.6 × 10 ^{-2μ}	5ε ^{0τ} × 5·τ 4η ^{0τ} × 5·τ	3.9 × 10 ²²	_	3•3 : Н ⁵ со ^р
OT X 0.7	OT & L'T	3.6 × 1035	, TOT × 0.9	ZAA	3.3 : H2SOL

of te(TTT)Erythrosinate	Toubout	Sud Solubility	Justanoo	Stability	Table 12-b
-------------------------	---------	----------------	----------	-----------	------------

Table 12-c Stability constant and Solubility product of Pb(IDErythrosinate

Solubility product		tustenos	Stability		
Po2(Eryth)2	Pb(Eryth)	5p ⁵ (Erley) ⁵	Pb(Eryth)	роцтэм	psu reflud bas Hq
⁸¹⁻ 01 × 7.3	6- ^{0T × E·T}	∠τ ^{οτ} × ≤•τ	8 ^{0T × S.7}	9 ΙdiaiV	suosups ; 0.3 noitulos