CHAPTER IV

RESULTS AND CALCULATIONS

The figures showed in this chapter except those of the Onsager plot, are linear. They all are the least square lines.

4.1 The Onsager plot

The Onsager plots, A vs. \sqrt{C} of tetramethyl and tetraethylammonium picratesat $25^{\circ}, 30^{\circ}, 35^{\circ}$ and $40^{\circ} \mathrm{C}$ exhibited nonlinearity. They are shown in Tables 4.1.1 and 4.1.2, Figures 4.1.1 and 4.1.2.

Table 4.1.1
The Onsager plot of tetramethylammonium picrate at $25^{\circ}, 30^{\circ}, 35^{\circ}$ and $40^{\circ} \mathrm{C}$

$C^{*}=$ concentration of tetramethylammonium picrate
in 80% dioxane-water

Fig. 4.1.1 The Onsager plot of $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NPi}$ in 80% dioxane-water.

Fig. 4.1.2 The Onsager plot of $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NPi}$ in 80% dioxanewater.

Table 4.1.2

The Onsager plot of tetraethylammonium picrate at $25^{\circ}, 30^{\circ}, 35^{\circ}$ and $40^{\circ} \mathrm{C}$

$C^{*}=$ concentration of tetraethylammonium picrate in 80% dioxane-water

4.2 Determination of limiting equivalent conductance, \sim using Walden's rule

Equivalent conductances of tetramethyl and tetraethylammonium pirates in various organic solvents including 80% dioxane-water mixture were obtained from conductance measurements. The limiting equivalent conductances were calculated and are shown together with the appropriate viscosities in Tables $4.2 .1,4.2 .2,4.2 .3$ and 4.2 .4 at $25^{\circ}, 30^{\circ}, 35^{\circ}$ and $40^{\circ} \mathrm{C}$.

Table 4.2.1
Limiting equivalent conductance, Λ^{0} of ${ }^{*}\left(\mathrm{CH}_{3}\right)_{4}$ NPi at $25^{\circ} \mathrm{C}$

solvent	$\begin{aligned} & n \times 10^{2} \\ & \text { (poise) } \end{aligned}$	$\frac{1}{\mathrm{R}_{\mathrm{corr}_{\left(\mathrm{ohm}^{-1}\right)} \mathrm{X}^{1}} \mathrm{O}^{6}}$	$\underbrace{}_{\left(\mathrm{cm}^{2} \mathrm{ohm}^{\wedge}-\text { equi }^{-1}\right)}$	人q
cyclohexanone	1.91967	1.420	33.6304	0.645592
ethanol	1.17575	2.300	54.4719	0.640455
water	0.89370	3.045	72.1161	0.644501
methanol	0.56265	4.850	114.8647	0.646292
acetone	0.30475	9.000	- 213.1512	0.648307
			Q average	0.6450294
80\% dioxane-water	1.75550		$\Lambda^{0}=$	36.7424

Table 4.2 .2
Limiting equivalent conductance, \wedge^{0} of ${ }^{*}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NPi}$ at $25^{\circ} \mathrm{C}$

solvent	$\begin{aligned} & \eta \times 10^{2} \\ & \text { (poise) } \end{aligned}$	$\begin{gathered} \frac{1}{\mathrm{R}^{\operatorname{corr}}} \underset{\left(\mathrm{ohm}^{-1}\right)}{ } \mathrm{c}^{6} \\ \hline \end{gathered}$	$\left(\mathrm{cm}_{2}^{2} \wedge^{\wedge}-1 \mathrm{equi}^{-1}\right)$	$\wedge \sim$
cyclohexanone	1.91967	1.30	30.7885	0.591037
ethanol	1.17575	2.10	49.7352	0.584763
water	0.89370	2.77	65.6031	0.586290
methanol	0.56265	4.47	105.8650	0.595655
acetone	0.30415	8.19	193.9675	0.589960
			average	0.58954
80\% dioxane-water	1.75550	-	\wedge°	33.58168

Table 4.2 .3
Limiting equivalent conductance, \wedge° of $\left(\mathrm{CH}_{3}\right) 4^{\mathrm{NPi}}$ at $30^{\circ}, 35^{\circ}$ and $40^{\circ} \mathrm{C}$

solvent	$\begin{aligned} & \eta \times 10^{2} \\ & \text { (poise) } \end{aligned}$	$\begin{aligned} & \frac{1}{R_{\text {oorr }}} \begin{array}{l} \text { X } \\ \left(\mathrm{ohm}^{6}\right) \end{array} \end{aligned}$	$\left(\mathrm{cm}^{2} \hat{o h m}^{-1} \cdot \text { equi }^{-1}\right)$	\wedge_{n}^{0}
ethanol	1.03079	2.65	62.7611.	0.646935
water	0.80070	3.29	77.9186	0.623894
methanol	0.54593	4.90	116.0489	0.633548
acetone	0.28029	9.54	- 225.9402	0.633287
			average	0.634412
80\% dioxane-water	$\begin{aligned} & 30^{\circ} \\ & 1.66645^{\circ} \\ & 1.4559^{\circ} \\ & 1.2643^{40} \end{aligned}$		$\Lambda_{30^{\circ}}^{0}$	38.06953
		-	$\wedge_{35}^{0}{ }^{\circ}=$	43.57475
		-	$\Lambda_{40^{\circ}}^{0}=$	50.17765

Table 4.2.4

Limiting equivalent conductance, 10 of $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) 4^{\mathrm{NPi}}$ at $30^{\circ}, 35^{\circ}$ and $40^{\circ} \mathrm{C}$

4.3 Calculation for dissociation constant, K and the activity coefficient, $f \pm$

For non aqueous media, especially those of low D, the proportion of undissociated molecules may be quite large even at small concentralion. The Onsager equation for incomplete dissociation can be written as follows ${ }^{(17)}$

$$
\begin{equation*}
\Lambda^{\prime}=\Lambda^{0}-(A+B \hat{\Lambda}) \sqrt{\alpha C} \tag{4.1}
\end{equation*}
$$

and the degree of dissociation is

$$
\begin{equation*}
\alpha=\frac{\Lambda}{\Lambda^{\prime}}=\frac{\Lambda}{\Lambda^{-}-\left(A+B \Lambda^{\circ}\right) \sqrt{\alpha C}} \tag{4.2}
\end{equation*}
$$

In the limit, equation (4.2) reduces to $\alpha=\Lambda / \Lambda^{\circ}$, By the simple expedient of successive substitution of equation (4.2) back into its own correction term, $1-\left(A+B \Lambda^{\circ}\right) \sqrt{\infty C} / \Lambda^{\circ}$, the latter may be replaced by the continued function

$$
\begin{equation*}
F(z)=1-z\left\{1-z\left[1-z(\mathrm{etc} .)^{-1 / 2}\right]^{-1 / 2}\right\}^{-1 / 2} \tag{4.3}
\end{equation*}
$$

in which $Z=\left(A+B \Lambda^{\circ}\right) \sqrt{C A} / \Lambda^{03 / 2}$
where $\left(A+B \Lambda^{0}\right)=\frac{82.4}{\eta(D T)^{1 / 2}}+\frac{8.2 \times 10^{5} \Lambda^{0}}{(D T)^{3 / 2}}=\gamma$
Fuoss ${ }^{(17)}$ tabulated numerical values of $F(z)$, for $0 \leqslant z \leqslant 0,209$, so that α can be calculated by

$$
\begin{equation*}
\alpha=\frac{\Lambda}{\Lambda F(Z)} \tag{4.5}
\end{equation*}
$$

By the thermodynamic ionization constant

$$
\begin{equation*}
K=\frac{\alpha^{2} c f_{t}^{2}}{1-\alpha} \tag{4.6}
\end{equation*}
$$

then the obtained expression is

$$
\begin{aligned}
\frac{F(\pi)}{\Lambda} & =\frac{1}{K \Lambda^{02}} \cdot \frac{\Lambda C f_{ \pm}^{2}}{F(Z)}+\frac{1}{\Lambda} \cdots \cdots . .(4.7) \\
\text { where }-\log f_{ \pm}^{2} & =2 \beta K \alpha, \\
\beta & =0.4343 \frac{\varepsilon^{2}}{2 D k T}\left[\frac{8 \pi N \varepsilon^{2}}{1000 D k T}\right]^{1 / 2}
\end{aligned}
$$

and Λ° was obtained from Walden's Rule.

The value of the function $F(Z) / \wedge$ and $\Lambda C f_{ \pm}^{2} / F(Z)$ were plotted as ardinate and abscissa respectively. The intercept of each plot on the axis of ordinates yields the value of \wedge° and the slope yields value of the dissociation constant K of the ion-ion pair equilibrium. Results are shown in Tables $4.3 .1,4.3 .2,4.3 .3$ and 4.3 .4 , Figures 4.3.1, 4.3.2, 4.3.3 and 4.3.4.

จุฬาลงกรณ์มหาวิทยาลัย

Table 4.3.1

Dissociation constant of $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NPi}$ and $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NPi}$
in 80% dioxane-water at $25^{\circ} \mathrm{C}$

electrolyte	$\begin{aligned} & \text { c } \times 10^{5} \\ & \text { (equi/l) } \end{aligned}$	$\left(\mathrm{cm}^{2} \cdot \mathrm{ohm}^{-1} \cdot \text { equi }^{-1}\right)$	F (Z)	$F(Z) / \wedge$	$f_{ \pm}^{2}$	Ac $f_{ \pm}\left(\mathrm{F}(\mathrm{Z}) \times 10^{5}\right.$
$\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NPi}$	1.98	35.56655	0.96978	0.0272666	0.81359	59.0798
	4.96	32.22205	0.95425	0.0296148	0.73148	122.51100
	7.95	30.65805	0.942 .64	0.0307469	0.67811	175.33391
	10.93	29.68937	0.93397	0.0314580	0.63754	221.51386
	13.91	28.74110	0.92645	0.0322343	0.60548	261.28129
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NPi}$	1.98	32.43765	0.96891	0.0298699	0.81396	53.95531
	4.96	30.83070	0.95163	0.0308663	0.72596	116.65667
	7.95	29.87877	0.93933	0.0314380	0.66911	169.20343
	10.93	28.69924	0.92989	0.0324012	0.62878	212.10831
	13.91	28.16041	0.92123	0.0327136	0.55641	236.58812
			${ }^{*}{ }^{\circ}{ }^{\circ}=38.1679$		$K^{*}=2.831 \times 10^{-4}$	
			${ }^{* *} \Lambda^{0}=34.4827$		$\mathrm{K}^{* *}=5.466 \times 10^{-4}$	

${ }^{*} \wedge^{\circ}, K^{*}=$ limiting conductance and dissociation constant of $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NPi}$
$\wedge^{* *}, \mathrm{~K}^{* *}=$ limiting conductance and dissociation constant of
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NPi}$

Table 4.3.2
Dissociation constant of $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NPi}$ and $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NPi}$
in 80% dioxane-water at $30^{\circ} \mathrm{C}$

Table 4.3.3
Dissociation constant of $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NPi}$ and $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NPi}$ in 80% dioxane-water at $35^{\circ} \mathrm{C}$

electrolyte	$\begin{aligned} & \operatorname{c\times 10^{5}} \\ & \text { (equi/1) } \end{aligned}$	$\frac{\wedge}{\left(\text { om }^{2}{ }^{\wedge}{ }^{-1} \text { equi }^{-1}\right)}$	F (Z)	$F(z) / \Lambda$	$f_{ \pm}^{2}$	Mcfol $F(z) \times 10^{5}$
$\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NPi}$	1.98	41.70555	0.86922	0.0242395	0.81021	67.02943
	4.96	37.51861	0.95331	0.0254089	0.72712	141.93854
	7.95	35.24492	0.94243	0.0267394	0.67484	200.63899
	10.93	34.10188	0.93322	0.0273656	0.63387	253.17138
	13.91	32.99758	0.92558	0.0280499	0.60172	298.39373
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NPi}$	1.98	37.82412	0.96881	0.0256135	0.81207	62.77531
	4.96	35.33674	0.95141	0.0269241	0.72529	133.61404
	7.95	33.58773	0.94008	0.0279887	0.67111	190.62359
	10.93	31.96378	0.93118	0.0291323	0.63228	237.22151
	13.91	31.50358	0.92253	0.0292833	0.59704	283.60243
			${ }^{*} \Lambda^{\circ}=45.1467$		$\mathrm{K}^{*}=2.289 \times 10^{-4}$	
			${ }^{* *} \Lambda^{0}=40.6504$		$\mathrm{K}^{* *}=3.444 \times 10^{-4}$	

Table 4.3.4
Dissociation constant of $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NPi}$ and $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{NPi}$ in 80% dioxane-water at $40^{\circ} \mathrm{C}$

electrolyte	$\begin{aligned} & \text { c X } 10^{5} \\ & (\text { equi } / 1) \end{aligned}$	\wedge $\left(\mathrm{cm}^{2} \cdot \text { ohm }^{-1} \mathrm{gequi}^{-1}\right)$	F (Z)	F (Z)/A	$f_{ \pm}^{2}$	Acf_ $f_{ \pm} \mathrm{F}(\mathrm{Z}) \times 10^{5}$
$\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NPi}$	1.98	48.51785	0.96871	0.0199660	0.80668	79.99710.
	4.96	41.81910	0.95352	0.0223681	0.72310	160.34274
	7.95	39.50627	0.94253	0.0238574	0.67437	224.71713
	10.93	38.06237	0.93354	0.0245265	0.63416	282.60633
	13.91	36.84250	0.92590	0.0251313	0.60199	333.19724
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NPi}$	1.98	44.35918	0.96809	0.0218238	0.80798	73.30499
	4.96	40.71235	0.95120	0.0233639	0.72177	153.22683
	7.95	37.97731	0.93998	0.0247510	0.66957	215.06448
	10.93	36.23280	0.93085	0.0256908	0.63023	268.12753
	13.91	35.01024	0.92308	0.0263660	0.59800	315.48887
-			${ }^{*} \Lambda^{\circ}=53.1349$		$K^{*}=1.747 \times 10^{-4}$	
			${ }^{* *} \Lambda^{\circ}=49.0196$		$\mathrm{K}^{* *}=2.164 \times 10^{-4}$	

Fig. 4.3.1 Evaluation of k by equation (4.7), $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NPi}$ and $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NPi}$ in 80% dioxane-water at $25^{\circ} \mathrm{C}$

Fig. 4.3.2 Evaluation of K by equation (4.7), $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NPi}$ and $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NPi}$ in 80% dioxane--water at $30^{\circ} \mathrm{C}$.

Fig.4.3.3 Evaluation of K by equation (4.7), $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NPi}$ and $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NPi}$ in 80% dioxane-water at $35^{\circ} \mathrm{C}$.

Fig. 4.3.4 Evaluation of K by equation $(4.7),\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NPi}$ and $\left(\mathrm{C}_{2} \mathrm{H}_{3}\right)_{4} \mathrm{NPi}$ in 80% dioxane-water at $40^{\circ} \mathrm{C}$.

4.4 Calculation of the distance of closest approach "a"

The values of "a" were calculated from Bjerrum's equation
where $Q(b)=\int_{2}^{b} x^{4} e^{-x} d x$

$$
\begin{aligned}
& x=-\frac{Z_{1} Z_{2} \epsilon^{2}}{D k T r} \\
& 2=\frac{\left.|z 1|^{2}\right|^{2}}{D k T Q}
\end{aligned}
$$

Inserting numerical values into (4.8) and (4.9) the following expression was resulted

$$
\frac{1}{\mathrm{~K}}=\frac{4 \times 3.1416 \times 6.023 \times 10^{23}}{1000}\left[\frac{(1 \times 1) \times\left(4.8 \times 10^{-10}\right)^{2}}{1.38054 \times 10^{-16} \mathrm{DT}}\right]^{3} Q(b)
$$

and K was obtained from section 4.3

Typical calculation

Tetramethylammonium picrate in 80% dioxane-water at $25^{\circ} \mathrm{C}$

$$
\begin{aligned}
\frac{1}{K} & =75.68743 \times 10^{20}\left[\frac{23.04 \times 10^{-20}}{1.38054 \times 10^{-16} \times 10.708 \times 298}\right]^{3} Q(b) \\
& =1082.8051 \mathrm{Q}(\mathrm{~b}) \quad \ldots \ldots(40) \\
\text { since } K & =2.831 \times 10^{-4}, \text { equation }(4.10) \text { becomes } \\
\frac{1}{2.831 \times 10^{-4}} & =1082.8051 \mathrm{Q}(\mathrm{~b}) \\
\text { Hence, } \mathrm{Q}(\mathrm{~b}) & =3.262194
\end{aligned}
$$

values of $Q(b)$ and $\log Q(b)$ as a function of "b" are tabulated and presented in Appendix III. For $Q(b)=3.262194, b=9.185833$

Next "b" was substituted into the equation(4.9) which enabled "a" to be directly obtained and it was $5.6936 \times 10^{-8} \mathrm{~cm}$. Table 4.4 .1 shows the constancy of "a" at various temperature for tetramethylammonium picrate while Table 4.4 .2 shows slight fluctuation of "a" with temperature of tetraethylammonium picrate.

$$
\text { Table } 4.4 .1
$$

The "a" value of $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NPi}$ in 80% dioxane-water at $25^{\circ}, 30^{\circ}, 35^{\circ}$ and $40^{\circ} \mathrm{C}$

temperature ${ }^{\circ} \mathrm{C}$	D	$\mathrm{K} \times 10^{4}$	$Q(\mathrm{~b})$	b	$\mathrm{a} \times 10^{8}(\mathrm{~cm})$
25	10.708	2.831	3.26219	9.1858	5.69
30	10.435	2.509	3.58080	9.37559	5.63
35	10.169	2.289	3.18519	9.3150	5.60
40	9.9083	1.747	4.85304	10.02540	5.36

Table 4.4.2
The "a" value of $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NPi}$ in 80% dioxane-water at $25^{\circ}, 30^{\circ}, 35^{\circ}$ and $40^{\circ} \mathrm{C}$

temperature ${ }^{\circ} \mathrm{C}$	D	$\mathrm{KX} 10^{4}$	$Q(b)$	b	$\mathrm{a} \times 10^{8}(\mathrm{~cm})$
25	10.708	$\frac{5.466}{}$	1.68958	7.46379	7.007
30	10.435	4.607	1.950126	7.91379	6.670
35	10.169	3.444	2.53571	8.56389	6.22
40	9.2083	2.164	3.91786	9.57611	5.62

4.5 Specific rate of self association reaction

The specific rate of the reactions were obtained from the slopes of the rectilinear plot $\frac{1}{a_{0}-x}-\frac{1}{a_{0}}$ vs. time. Data used for the above plots and the resulted graphs are shown in Tables and Figures 4.5.1, $4.5 .2,4.5 .3,4.5 .4,4.5 .5,4.5 .6,4.5 .7$ and 4.5 .8.

The increase in the conductance with time at the beginning of the observations are due to the dissociation reactions and was neglected in the subsequent treatment of the data. Only the portion that showed the association phenomenon was considered here.

Table 4.5.1

The specific rate constant of the association reaction of $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NPi}$ in 80% dioxane-water at $25^{\circ} \mathrm{C}$ from conductivity measurement

time (ain)	$\begin{gathered} 1 / R_{\operatorname{corr}^{X ~}} 10^{6} \\ \left(\text { ohm }^{-1}\right) \end{gathered}$	$\begin{gathered} \left(a_{0}-x\right) 10^{5} \\ \left(\text { mole litre }{ }^{-1}\right) \end{gathered}$	$\begin{gathered} 1 / a_{0}-x \\ \left(\text { litre } \text { mole }^{-1}\right) \end{gathered}$	$\begin{aligned} & 1 / a_{0}-x-1 / a_{0} \\ & (\text { litre mole } \end{aligned}$
5	34.46			
10	34.975	\pm		
15	35.020	-	-	
20	35.025	t considered		-
25	35.035			
30	35.060		-	
35	35.080			
40	35.090			
45	35.095	9.23525	10828.07	0
47	35.090	9.23383	Иย10829.73	1.66
50	35.080	9.23100	10833.06	4.99
52	35.075	9.22958	10834.72	6.65
55	35.060	9.22533	10839.71	11.64
57	35.050	9.22250	10843.04	14.97
60	35.040	9.21967	10846.37	18.30
62	35.030	9.21683	10849.71	21.64
65	35.025	9.21542	10851.37	23.30
67	35.025	9.21400	10853.04	24.97
				$k=2 \times 10^{-2}$ (litre mole ${ }^{-1}$ se

Table 4.5.2
The specific rate constant of the association reaction of $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NPi}$ in 80% dioxane-water at $30^{\circ} \mathrm{C}$ from conductivity measurement

time (\min)	$\begin{gathered} 1 / R_{\text {corr }} \times 10^{6} \\ \left(\mathrm{ohm}^{-1}\right) \end{gathered}$	$\begin{gathered} \left(a_{0}-x\right) 10^{5} \\ \left(\text { mole litre } e^{-1}\right) \end{gathered}$	$\begin{gathered} 1 / a_{0}-x \\ \left(\text { litre mole } e^{-1}\right) \end{gathered}$	$\begin{aligned} & 1 / a_{0}-x-1 / a_{0} \\ & (\text { Iitre mole } \end{aligned}$
5	37.340			
10	38.260			
15	38.340			
20	38.360			
25	38.365	9.56400	10455.87	0
27	38.355	9.56133	10458.79	2.92
30	38.345	9.55866	10461.71	5.84
32	38.340	9.55733	10463.17	7.30
35	38.335	9.55600	10464.62	8.75
40	38.330	9.55466	10466.09	10.22
42	38.325	9.55333	10467.55	11.68
45	38.320	9.55200	10469.01	13.14
				$\begin{aligned} & k=1.333 \times 10^{-2} \\ & \text { tre } \left.\mathrm{mole}^{-1} \mathrm{sec}^{-1}\right) \end{aligned}$

Table 4.5.3
The specific rate constant of the association reaction of $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NPi}$ in 80% dioxane-water at $35^{\circ} \mathrm{C}$ from conductivity measurement

$\begin{aligned} & \text { time } \\ & (\min) \end{aligned}$	$\begin{gathered} 1 / R_{\operatorname{corr}} \times 10^{6} \\ \left(\mathrm{ohm}^{-1}\right) \end{gathered}$	$\begin{gathered} \left(a_{0}-x\right) 10^{5} \\ (\text { mole litre } \\ \text {-1 }) \end{gathered}$	$\begin{gathered} 1 / a_{0}-x \\ \left(\text { litre mole } e^{-1}\right) \end{gathered}$	$\begin{aligned} & 1 / a_{0}-x-1 / a_{0} \\ & \left(\text { litre mole } e^{-1}\right) \end{aligned}$
5	40.820			
10	42.140			
15	42.240			
20	42.245			
25	42.245	9.63286	10381.12	0
27	42.240	9.63164	10382.45	1.33
33	42.230	9.62918	10385.09	3.97
38	42.225	6.62795	10386.42	5.3
40	42.220	9.62673	10387.74	6.62
47	42.215	9.62550 มหา	วท 10389.07	7.95
50	42.210	9.62427 ARI	10390.39	9.27
57	42.200	9.62182	10393.04	11.92
60	42.195	9.62059	10394.37	13.25
65	42.190	9.61936	10395.69	14.57
				$k=6.44 \times 10$ litre.mole ${ }^{-1}$ sec

Table 4.5 .4

The specific rate constant of the association reaction of $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NPi}$ in 80% dioxane-water at $40^{\circ} \mathrm{C}$ from conductivity measurement

Table 4.5 .5

The specific rate constant of the association reaction of $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}$ aPi in 80% dioxane-water at $25^{\circ} \mathrm{C}$ from conductivity measurement

Table 4.5 .6

The specific rate constant of the association reaction of $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) 4_{4} \mathrm{NPi}$ in 80% dioxane-water at $30^{\circ} \mathrm{C}$ from conductivity measurement

time (\min)	$\begin{gathered} 1 / R_{\operatorname{corr}^{X}} 10^{6} \\ \left(\text { ohm }^{-1}\right) \end{gathered}$	$\begin{gathered} \left(a_{0}-x\right) 10^{5} \\ (\text { mole litre } \end{gathered}$	$\begin{gathered} 1 / a_{0}-x \\ \left(\text { litre mole } e^{-1}\right. \text {) } \end{gathered}$	$\begin{aligned} & 1 / a_{0}-x-1 / a_{0} \\ & \left(\text { litre mole } e^{-1}\right) \end{aligned}$
5	35.710			
10	36.775	-		
15	36.865	not considered	-	-
20	36.890			
25	36.895			
26	36.900	9.49050	10536.85	0
27	36.895	9.48915	10538.35	1.5
28	36.890	9.48780	10539.85	3
30	36.885	9.48645	10541.35	4.5
35	36.875	9.48375	10544.35	7.5
35	36.870	9.48240	10545.85	9
				$\begin{aligned} & k=1.538 \times 10^{-} \\ & \text {litre mole }{ }^{-1} \text { se } \end{aligned}$

Table 4.5.7

The specific rate constant of the association reaction of $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) 4_{4} \mathrm{NPi}$ in 80% dioxane-water at $35^{\circ} \mathrm{C}$ from conductivity measurement

$\begin{aligned} & \text { time } \\ & (\min) \end{aligned}$	$\begin{gathered} 1 / R_{\operatorname{corr}^{X} 10^{6}} \\ \left(\text { ohm }^{-1}\right) \end{gathered}$	$\begin{gathered} \left(a_{0}-x\right) 10^{5} \\ \text { (mole litre }{ }^{-1} \text {) } \end{gathered}$	$\begin{gathered} 1 / a_{0}-x \\ \left(\text { litre mole } e^{-1}\right. \text {) } \end{gathered}$	$\begin{aligned} & 1 / a_{0}-x-1 / a_{0} \\ & \left(\text { litre mole } e^{-1}\right) \end{aligned}$
5	40.420			
10	41.440			
15	41.520			
20	41.540	not considered	-	-
25	41.575			
30	41.595		0	
35	41.605			
40	41.605	10.10723	9893.90	0
43	41.600	10.10594	9895.16	1.26
47	41.595	10.104659	9896.42	2.52
50	41.590	10.10337	9897.68	3.78
55	41.585	10.10209	9898.94	5.04
				$\beta=6.00 \times 10^{-3}$ (litre mole ${ }^{-1} \mathrm{sec}^{-1}$)

Table 4.5.8

The specific rate constant of the association reaction of $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NPi}$ in 80% dioxane-water at $40^{\circ} \mathrm{C}$ from conductivity measurement

time (min)	$\begin{gathered} 1 / R_{\operatorname{corr}^{X 1}} 0^{6} \\ \left(\mathrm{ohm}^{-1}\right) \end{gathered}$	$\begin{gathered} \left(a_{0}-x\right) 10^{5} \\ \text { (mole litre }{ }^{-1} \text {) } \end{gathered}$	$\begin{gathered} 1 / a_{0}-x \\ \left(\text { litre mole } e^{-1}\right. \text {) } \end{gathered}$	$\begin{aligned} & 1 / a_{0}-x-1 / a_{0} \\ & \left(\text { litre mole } e^{-1}\right) \end{aligned}$
5	44.430			
10	45.415			
15	45.500			
20	45.540			
25	45.565	9.82706	10175.98	0
26	45.560	9.82588	- 10177.20	1.22
28	45.555	9.82470	10178.42	2.44
29	45.550	9.82353	10179.64	3.66
31	45.545	9.82235	10180.86	4.88
32	45.540	9.82117	10182.07	6.09
33	45.535	9.82000	10183.29	4.31
35	45.530	9.81882	10184.51	8.53
36	45.525	9.81765	10185.74	9.76
37	45.520	9.81647	10186.96	10.98
39	45.515	9.81529	10188.18	12.20
40	45.510	9.81412	10189.40	13.42
				$\begin{aligned} & K=1.48 \times 10^{-2} \\ & \text { (litre mole } \end{aligned}$

Fig. 4.5.1 The second order plot of association reaction of $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NPi}$ in 80% dioxane-water att $25^{\circ} \mathrm{C}$

Fig. 4.5.2 The second order plot of association reaction of $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NPi}$ in 80% dioxane-water a4t $30^{\circ} \mathrm{C}$

Fig. 4.5.3 The second order plot of association reaction of $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NPi}$ im 80% dioxame-watter att $35^{\circ} \mathrm{C}$

Fig. 4.5.4 The second order plot of associatiom reaction off $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NPi}^{\text {im }} 80 \%$ diowame-water at 40 C

Fig. 4.5.5 The second order ploti of associiattiom reactiom off $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}$ NPii in 80% dioxamewatier at 25 C

Chulalongkorn University

Fig. 4.5.6 The secomd onder ploti of associattion reaction off $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NPi}$ im 80% dioxmmewatter att $30{ }^{\circ} \mathrm{C}$

Fig. 4.5.7 The second onder plot of associatiom reactiom of $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}$ NPi in 80% dinoxamematter at $35^{\circ} \mathrm{C}$

Fig. 4.5.8 The second order plot of associattion reactiom off $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NP}$ ii in 30% drioxamematier att $4 \stackrel{\circ}{\circ} \mathrm{C}$

