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CHAPTER I 

 

INTRODUCTION 

 

 The transformation of alkanes into aromatic hydrocarbons is an area of great 

industrial relevance and also of academic interest for the production of benzene, 

toluene, xylene (BTX), and naphthalene derivatives.  Aromatic hydrocarbons are 

important feedstock in chemical industries; for examples, benzene is an important 

feedstock for the production of polystyrene (PS); toluene is used as feedstock for 

polyurethane (PU) production; p-xylene is employed in poly(ethylene terephthalate) 

(PET) production process; and naphthalene is a substrate for the production of 

phthalic anhydride, an intermediate for dyestuff manufacture [1].  In general, naphtha-

reforming catalysts (Pt/Al2O3) have been used to convert heavy naphtha (C7–C10) into 

aromatic hydrocarbons, but lower alkanes (C2–C6) are hardly transformed over these 

catalysts [2].  Chen and co-workers first found the ability of ZSM-5 zeolite to convert 

light hydrocarbons to BTX; however, these catalysts give poor results for paraffin 

conversion because of excessive methane and ethane formation with low selectivity to 

aromatics [3].  Consequently, there have been numerous reports on various ZSM-5-

based catalysts for the conversion of light paraffins into aromatics.  To improve the 

low paraffin conversion, various types of activating agents (e.g., gallium, copper, 

zinc, and platinum) have been added to zeolite.  Several systematic studies have been 

described [4–11].  However, only a few researchers have studied n-hexane 

aromatization.  Popova et al. reported the batch transformation of n-hexane over 

Cu/ZSM-5 with 82% conversion and 14% aromatic selectivity [12].  Bhattacharya         

et al. found that the aromatization of n-hexane over H-ZSM-5 zeolite in batch mode 

was enhanced by the promoters ZnO and Ga2O3, while Fe2O3 and Cr2O3 decreased its 

aromatization activity [13].  Bhattacharya et al. also reported that ZSM-5 gave the 

highest aromatization activity compared to those of ZSM-22 and EU-1 [14].  

Moreover, Rojasova and co-workers studied the role of zinc in Zn/ZSM-5 zeolite in a 

batch aromatization of n-hexane, of which the conversion of 47.6% with 50.2% 

aromatic selectivity was obtained [15].   
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Surprisingly, although there have been several studies using Pd/ZSM-5 on 

alkanes combustion [16–20], none has reported on the ability of Pd/ZSM-5 toward the 

aromatization, and the present work is the first aromatization reaction upon     

Pd/ZSM-5. 

Aromatization is of industrial interest since it could be employed for the 

conversion of petrochemical byproduct that contains alkane (e.g., natural gasoline and 

light naphtha) into other useful products for other chemical industries.  The natural 

gasoline is a natural gas byproduct, which contains mainly saturated aliphatic 

hydrocarbons, practically free of olefins and also some aromatics [21].  The present 

work is aimed at developing a continuous process for the production of benzene and 

naphthalene derivatives from natural gasoline using n-hexane as a model compound 

and Pd-loaded ZSM-5 as catalyst. 

 

Objectives of this research 

 The objectives of this research are aimed at (a) preparing ZSM-5 catalysts 

with various concentrations of Pd-loaded for the production of aromatic hydrocarbons 

from n-hexane and natural gasoline; (b) determining both qualitative and quantitative 

analyses of the reaction products; and (c) optimization of reaction conditions in order 

to obtain desirable products. 

 

Scope of this research 

 The scope of this research covers the preparation of Pd-loaded ZSM-5 

catalysts (0, 0.2, 0.3, and 0.5 wt%).  These catalysts were characterized by XRD and 

XRF techniques.  Product distributions, when using n-hexane and natural gasoline as 

substrates, are qualitatively and quantitatively determined by GC and GC/MS 

techniques. 



CHAPTER II 

 

THEORY AND LITERATURE REVIEW 

 

2.1 Catalysis  

 In the early years of the 19th century, when many important discoveries of 

chemistry and physics were being made, it was noticed that a number of chemical 

reactions were affected by trace amount of substances that were not consumed in the 

reaction.  Berzelius introduced the term catalysis in the early of 1836 in order to 

explain various decomposition and transformation reactions [22,23].  He assumed that 

catalysts possess special powers that can influence the affinity of chemical substances 

[22,23]. 

 The basic concept of a catalyst is that of a substance that in small amount 

causes a large change in reaction rate.  More precise definitions of catalysis have been 

gradually presented since the understanding of catalysis phenomena has grown.  

Nevertheless, even today there is no universal agreement on catalyst definitions, the 

point of view varying depending upon the investigator.  A definition, which was given 

in the term of physical chemistry law, that is still valid today was presented by 

Ostwald in 1895, stated that “catalyst is a substance that accelerating a chemical 

reaction without affecting the position of the equilibrium.”  While it was formerly 

known that the catalyst remained unchanged in the course of the reaction, it is now 

known that the catalyst is involved in chemical bonding with the reactants during the 

catalytic process.  Thus, catalysis is a cyclic process: the reactants are bound to one 

site of the catalyst, and the products are released from another, regenerating the initial 

site.  In theory, an ideal catalyst would not be consumed, but this is not the case in 

practice.  Owing to competing reactions, the catalyst undergoes chemical changes, 

and its activity becomes lower (catalyst deactivation).  Catalysts also have another 

important property, apart from accelerating reaction; they can influence the selectivity 

of chemical reactions.  This means that completely different products can be obtained 

from a given starting material by using different catalyst system.  Industrially, this 

targeted reaction control is often even more important than the catalytic activity               

[22–26]. 
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2.1.1 Catalysis activity [23,24,26] 

 The activity of a catalyst refers to the rate at which it causes the reaction to 

proceed to chemical equilibrium [24].  Generally, in kinetic treatment, the reaction 

rate is measured in a temperature and concentration ranges that will be present in the 

reactor.  The reaction rate r is calculated as the rate of change of the amount of 

substance nA of reactant A with time relative to the reaction volume or the mass of 

catalyst: 

 

      r  =                                                                                (mol L-1 h-1 or mol kg-1 h-1) 
converted amount of substance of a reactant

volume or catalyst mass × time 
(1-2-1) 

  

Kinetic activities are derived from the fundamental rate laws, for example, that 

for a simple irreversible reaction A→ P: 

                      

                     =  kV f(cA)       (1-2-2) 
dnA
dt 

 

The temperature dependence of rate constants is given by the Arrhenius 

equation: 

 k = k0 e-(E /RT)a         (1-2-3) 

 Ea = activation energy of the reaction 

 k0 = pre-exponential factor 

 R  = gas constant  

 As Equations (1-2-2) and (1-2-3) show, there are three possibilities for 

expressing catalyst activity: reaction rate, rate constant k, and activation energy Ea 

[23]. 

 Another measure of catalyst activity is the turnover number (TON) or turnover 

frequency, which is the number of molecules that react per site per unit time.  As a 

basic measure of true catalytic activity, this is a useful concept, but it is limited by the 

difficulty of determining the true number of active sites.  In general, it is easier to do 

this for metals than for non-metal catalysts since techniques such as selective 

chemisorption are available to measure the exposed surface area of metals.  For acid 

catalysts, the measurement of site concentration by poisoning or adsorption of bases 
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may lead to erroneously high value since sites may be active for sorption but not for 

reaction.  As with rates of reaction, the turnover number is a function of pressure, 

temperature, and composition of reactants [24]. 

  Catalysts are often investigated in continuously operated test reactors, in 

which the conversions attained at constant space velocity are compared [23].  The 

liquid hourly space velocity (LHSV) is the volumetric flow rate V0 relative to the 

reactor volume (unpacked) V:  

  

LHSV  =  
V
V0          (h-1)      (1-2-4) 

 

The volumetric flow rate may be calculated at the inlet or reactor conditions, or at 

standard temperature and pressure (STP) and usually based on the volume of entering 

reactant.  The reciprocal of this is contact time or superficial contact time, which has 

unit of time.  In some cases the LHSV is given in term of volumetric feed rate of a 

liquid, even though it may be vaporized and mixed with other reactants before 

entering the catalyst bed. 

 If the volumetric flow rate and reactor volume in Equation (1-2-4) were 

replaced by mass flow rate and catalyst mass, respectively, it will give the weight 

hourly space velocity (WHSV) [23,24].  

  

2.1.2 Catalysis selectivity [24] 

 The selectivity of the reaction usually defined as percentage of reactant that is 

converted to the desired product.  The selectivity usually varies with pressure, 

temperature, reactant composition, and extent of conversion as well as nature of the 

catalyst. 

 Yield is an engineering or industrially used term which refers to the quantity 

of product formed per quantity of reactant consumed in overall reactor operation.  

Within this overall operation there may be recycle of various reactants, as after 

separation.  Yield is frequently reported on a weight basis, so a yield exceeding              

100 wt% may be obtained [24]. 
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2.1.3 Catalysis deactivation  

 A catalyst may lose its activity or its selectivity for a wide variety of reasons.  

The four most common causes of catalyst deactivation are: [23,24]  

1. Poisoning of the catalyst.  Typical catalyst poisons are H2S, Pb, Hg, and S. 

2. Fouling 

3. Reduction of active area by sintering or migration 

4. Loss of active species via the gas phase 

 

2.1.3.1 Catalyst poisoning 

 Catalyst poisoning is a chemical deactivation effect, which is happened by 

forming strong adsorptive bonds between the catalyst poisons and the active catalyst 

surfaces, thus blocking the active centers.  Therefore, even very small amounts of 

catalyst poisons can influence the adsorption of reactants on the catalyst.  The term 

catalyst poison is usually applied to foreign materials in the reaction system.  If the 

substances that blocked the active centers are the reaction products that slowly diffuse 

away from the catalyst surface, these substances are referred as inhibitors. 

 Metal catalysts are highly sensitive to small amount of impurities in reaction 

medium.  Catalytically active metals make their d-orbitals available for adsorption, 

and this is the key to understanding both their catalytic activity and their sensitivity to 

poisons.  Particularly strong catalyst poisons are the ions of elements group 15 (P, As, 

Sb, and Bi) and 16 (O, S, Se, and Te).  The poisoning activity depends on the 

presence of electron lone pairs, which have been shown to form bonds with transition 

metals on chemisorption.  If these are involved in bonding to other elements, then the 

ions are nonpoisons.  Catalyst poisoning can be reversible or irreversible, depending 

on the reaction conditions [23]. 

 

2.1.3.2 Fouling 

 Fouling is a physical blockage of the catalyst active sites, which might be 

caused by the deposition of fine powder or carbonaceous deposit (coke). In the case of 

fouling by carbonaceous deposit, the catalyst activity can be restored by burning to 

remove the coke from the catalyst surface [24]. 
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2.1.3.3 Sintering [23,24] 

 Sintering is an irreversible physical process leading to a reduction of effective 

catalytic area.  It may result from growing of metal crystallites on a support or 

decreasing of area of non-support catalyst.  The rate of sintering increases with 

increasing temperature, decreasing crystallite size, and increasing contact between 

crystallite particles.  Other factors are the amount and type of impurities on the 

crystallite surface and the support composition in supported catalysts.  

 

2.1.3.4 Loss of catalyst species via the gas phase  

 High reaction temperatures in catalytic processes can leads to loss of active 

components by evaporation.  This does occur with compounds that are known to be 

volatile, but also by reaction of metals to give volatile oxides, chlorides, or carbonyls 

[23,24].  

 

2.2 Classification of catalyst 

 According to the state of aggregation that they incorporate, catalysts can be 

classified into two groups: heterogeneous catalyst and homogeneous catalyst (Figure 

1-2-1). 
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-1: Classification of catalysts 

t catalysts used are the heterogeneous catalysts [23]. 

ce between several phases.  Generally, the catalyst is 
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a solid, and the reactants are gases or liquids.  In supported catalysts the catalytically 

active substance is added to a support material that has a large surface area and that is 

usually porous.  

 

2.2.1 Comparison of homogeneous catalysis and heterogeneous catalysis [22–25] 

 Generally, in the heterogeneous catalysis, phase boundaries are always present 

between the catalyst and the reactants, while in the homogeneous catalysis, catalyst, 

reactants, and products are in the same phase.  Homogeneous catalysts have a higher 

degree of dispersion than heterogeneous catalysts since each individual atom can be 

catalytically active.  In heterogeneous catalysts only the surface atoms are active.  

Due to high degree of dispersion, homogeneous catalysts exhibit a higher activity per 

unit mass of metal than heterogeneous catalysts.  The major disadvantage of 

homogeneous transition metal catalysts is the difficulty of separating catalyst from the 

product.  Heterogeneous catalysts are either automatically removed in the process 

(e.g., gas phase reaction in fixed bed reactor), or they can be separated by simple 

method such as filtration or centrifugation.  In case of homogeneous catalysts, more 

complicated process such as distillation, liquid-liquid extraction, and ion exchange 

must be often used.  Table 1-2-1 summarizes the advantages and disadvantages of the 

two classes of catalysts.  
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Table 1-2-1: Comparison of homogeneous and heterogeneous catalysts [23] 

 

 Homogeneous Heterogeneous 

Effectivity   

Active centers all metal atoms only surface atoms 

Concentration low high 

Selectivity high lower 

Diffusion problems practically absent present (mass-transfer 

controlled reaction) 

Reaction conditions mild (50−200 oC) severe (often > 250 oC) 

Applicability limited wide 

Activity loss irreversible reaction with 

products; poisoning 

sintering of the metal 

crystallites; poisoning 

Catalyst properties   

Structure/ stoichiometry defined undefined 

Modification possibilities high  low 

Thermal stability low high 

Catalyst separation  sometimes laborious 

(distillation, extraction) 

fixed bed: unnecessary 

suspension: filtering 

Catalyst recycling possible easy 

Cost of catalyst losses high  low 

 

2.3 Heterogeneous catalysis 

2.3.1 Individual steps in heterogeneous catalysis [22–24] 

 Heterogeneously catalyzed reactions are composed of purely chemical and 

purely physical reaction steps.  For the catalysis process to take place, the reactants 

must be transported to the catalyst surface.  Thus, apart from the actual chemical 

reaction, diffusion, adsorption, and desorption processes are of importance for the 

progress of the overall reaction.  The total process may be divided into the following 

seven steps, any one of which can be rate determining.  

1. Diffusion of the reactants through the boundary layer to the catalyst 

surface 

2. Diffusion of the reactants into the pores (pore diffusion) 

3. Adsorption of reactants on the inner surface of the pores 



 

10

4. Chemical reaction on the catalyst surface 

5. Desorption of the products from the catalyst surface 

6. Diffusion of the products out of the pores 

7. Diffusion of the products away from the catalyst through the boundary 

layer and into the gas phase  

Steps 1, 2, 6, and 7 involve no chemical change. Steps 1 and 2 are the physical 

processes whereby the reactant are brought through the gaseous or liquid phase 

surrounding the solid catalyst to the active sites on the catalyst’s surface. This is a 

diffusion process and the phenomenon is called mass transport or mass transfer.  Step 

6 and 7 is the process for getting products away from the surface.  When either of 

these is slower than the catalytic rate itself, the rate is determined by the rate of arrival 

of reactants (or removal of products), which is referred as diffusion limitation or 

mass-transport limitation.  Diffusion limitation at the external surface of catalyst 

particles is recognized by the following characteristics. 

1. The rate is proportional to catalyst weight (or to the concentration of active 

component) and raised to a power less than unity 

2. The rate is increased by improving the movement of the gas or liquid with 

respect to the catalyst 

3. The temperature coefficient and the apparent activation energy are low 

[22]. 

 

2.3.2 Promoters 

 Promoters are substances that they are not catalytically active, but increase the 

activity of the catalysts.  The function of these substances, which are added in the 

catalyst in small amounts, has not been elucidated.  There are four types of promoters: 

(a) structural promoters; (b) electronic promoters; (c) textural promoters; and (d) 

catalyst-poison-resistant promoters [23]. 

Structural promoters increase the selectivity by influencing the catalyst surface 

so that the number of possible reactions for the adsorbed molecules decreases and a 

favored reaction path dominates.   

Electronic promoters influence the electronic character of the active phase by 

dispersing in the phase and therefore chemically binding with the adsorbate. 
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Textural promoters inhibit the growth of catalyst particles to form larger and 

less active structures during the reaction.  They prevent loss of active surface by 

sintering, thereby increasing the thermal stability of the catalyst. 

Catalyst-poison-resistant promoters protect the active phase against poisoning 

by impurities, either present in the reactant feed or formed during the reactions. 

A catalyst may contain one active component and one or more promoters.  

Since the above four effects tend to overlap in practice, it is sometimes difficult to 

precisely define the function of a promoter [23]. 

 

2.4 Zeolites 

2.4.1 Structure of zeolites [23–27] 

 Zeolites are water containing crystalline aluminosilicates of natural or 

synthetic origin with highly ordered structures.  They consisted of SiO4 and AlO4
- 

tetrahedra, which are linked through common oxygen atoms to give a three-

dimensional network through which long channel run.  In the interior of these 

channels, which are characteristic of zeolite, are located water molecules and mobile 

alkali metal ions, which can be exchanged with other cations.  These compensate for 

the excess negative charge in the anionic framework resulting from the aluminum 

content.  The interior of the pore system, with its atomic scale dimensions, is the 

catalytically active surface of the zeolite.  The inner pore structure depends on the 

composition, zeolite type, and the cations. 

 The general formula of zeolite is 

 MIMII
0.5[(AlO2)x·(SiO2)y·(H2O)z]    (1-2-5) 

Where MI and MII are alkali and alkali earth metals.  The indices x and y denote the 

oxide variables, and z is the number of molecules of water of hydration.  The 

composition is characterized by the Si/Al atomic ratio and the pore size of zeolites. 

 Zeolites are mainly distinguished according to the geometry of the cavities and 

channels formed by the rigid framework of SiO4 and AlO4
- tetrahedra.  The tetrahedra 

are the smallest structure units into which zeolite can be divided.  Linking these 

primary building units together leads to 16 possible secondary building blocks 

(polygons), the interconnection of which produces hollow three-dimensional 

structures. 
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 The entrances to the cavities of the zeolites are formed by 6-, 8-, 10-, and 12-

ring apertures (small, medium, and wide-pore zeolite).  A series of zeolites is 

composed of polyhedra (sodalite or β-cage, Figure 1-2-2), composed of 4- and 6-

rings, which can be connected in various manners to give the fundamental zeolite 

structures.  The sodalite cage, which consists of 24 tetrahedra, is generally depicted 

schematically as a polygon, generated by connecting the center of neighboring 

tetrahedra with a line.  Each vertex of this polyhedron represents a silicon or 

aluminum atom, and the midpoint of each edge, an oxygen atom. 

     

 
 

Figure 1-2-2: Structural unit of sodalite cage (β-cage) 

 

 

 Examples of medium-pore zeolites are the pentasils, which belong to the 

silicon-rich zeolites.  Their polyhedra are composed of 5-rings as secondary building 

units.  These so-called 5–1 units are structurally analogous to methylcyclopentane.  

Linking of the resulting chains give a two-dimensional pore system, one consisting of 

zig-zag channels of near circular cross-section and another of straight channels of 

elliptical shape.  All the intersections in pentasil are of the same size [25].  The three-

dimensional structure of pentasil is represented in Figure 1-2-3a.  The 10-membered 

rings provided access to a network of intersecting pore within the crystal.  The pore 

structure is depicted schematically in Figure 1-2-3b; there is a set of straight, parallel 

pores intersected by a set of perpendicular zig-zag pores.  Many molecules are small 

enough to penetrate into this intracrystalline pore structure, where they may be 

catalytically converted [23,26].  An advantage of these zeolites is the uniformed 

channel structure, in contrast to zeolites A and Y, in which the pore windows provide 

access to larger cavities.  A well-known representative of this class of zeolites is 

ZSM-5 (from Zeolite Socony Mobil no.5) [23,27]. 
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Figure 1-2-3: Three-dimensional structure of ZSM-5 (a) structure formed by stacking 

of sequences of layers (b) intracrystalline pore structure  (After Gates 

[26]). 

 

 

The aluminosilicates structure is ionic, incorporating Si4+, Al3+, and O2-.  

When some of the Si4+ ions in the SiO4 tetrahedra in this framework are replaced by 

Al3+ ions, as in the ZSM-5, an excess negative charge is generated.  A compensating 

source of positive charge must be added, namely cation, in addition to the framework 

Si4+ and Al3+.  These nonframework cations play a central role in determining the 

catalytic nature of zeolites.  The zeolites are ion exchanger.  Bringing an aqueous salt 

solution in contact with the zeolite leads to incorporation of cations from the salt into 

the zeolite, replacing some of the nonframework cation initially present [25,26].   

 

Table 1-2-2: Characteristics of important zeolites [23] 

 

Type Pore diameter (nm) Pore aperture  

Zeolite Y 0.74 12-ring 

Pentasil zeolite 0.54 × 0.56 and 0.51 × 0.55 10-ring (ellipsoid) 

Zeolite A 0.41 8-ring 

Sodalite 0.26 4-ring 
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2.4.2 Catalytic properties of zeolites [23,26] 

 In 1962, zeolites were introduced by Mobil Oil Corporation as new cracking 

catalyst in refinery technology.  They were characterized by higher activity and 

selectivity in cracking and hydrocracking.  At the end of 1960s, the concept of shape-

selective catalysis with zeolite was introduced to petrochemistry (Selectoforming 

process), and then zeolite becoming the importance topics in catalysis research and 

applied catalysis [23,26].  There advantages over conventional catalysts can be 

summarized as follows:   

1. Crystalline and precisely defined arrangement of SiO4 and AlO4
– 

tetrahedra resulted in good reproducibility in production. 

2. Shape selectivity: only molecules that are smaller than the pore diameter 

of the zeolite can undergo the reaction. 

3. Controlled incorporation of acid centers in the intracrystalline surface is 

possible during synthesis.  

4. At above 300 oC, pentasil and zeolite Y have acidities comparable to 

mineral acid. 

5. Catalytically active metal ions can be easily applied to the catalyst by ion 

exchange or impregnation. 

6. Zeolite catalysts are thermally stable up to 600 oC, and can be regenerated 

by burning of carbon deposit [23]. 

 

2.4.2.1 Shape selectivity 

 The shape selectivity of zeolites is based on the interaction of reactants with 

the well-defined pore system.  A distinction is made between these factors, which can 

overlap: (a) reactant selectivity; (b) product selectivity; and (c) restricted transition 

state selectivity. 

 

2.4.3 Acidity of zeolites [23,25–27] 

 Acid strength of zeolite can be varied by numerous preparation methods (ion 

exchange, partial dealumination, and substitution of the framework of Al and Si 

atoms). Direct replacement of the alkali metal ions with protons by treatment with 

mineral acids is only possible in exceptional cases (e.g., mordenite and ZSM-5 

zeolite). The best method is exchanging of the alkali metal ions by NH4
+ ions, 
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followed by heating the resulting ammonium salts at 500 to 600 oC (deammonization; 

Equation 1-2-6) 

 

Al
O

Si
O

O

O

O
Al

O

Si
O

O

O

O
Al

HO

Si
O

O

O

O

-NH3

+NH3

NH4
+

- -

H
+

OO O O O O    (1-2-6)                   

 

   Infrared investigations have shown that the protons are mainly bound as 

silanol groups but have a strongly acidic character due to strongly polarizing influence 

of the coordinative unsaturated ammonium center.  Bronsted acid center are generally 

the catalytically active sites of the H-zeolites.  Weak to moderate strong acid sites can 

be generated in zeolite by ion exchange with multivalent cations. Owing to the 

polarizing effect of the metal cations, water is dissociatively adsorbed, and the 

equilibrium of Equation 1-2-7 is established. 

 

 [M(H2O)]n+           [M(OH)](n-1)+ + H+     (1-2-7)     

 

The following order of Bronsted acidity is given for cation-exchanged zeolite:  

H form >> La form > Mg form > Ca form > Sr form > Ba form.  The influence of the 

exchanged ions is considerable, as shown by the example of cumene dealkylation on 

faujasite (Table 1-2-3).  Reasons for the large differences in reactivity are the different 

charges on the ions, and the decreasing ionic radii from Na+ to H+ and the associated 

polarizing power of the ions.  The incorporation of transition metal ions into zeolites 

leads to interesting bi-functional catalysts in which metal and acid centers can act 

simultaneously. 
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Table 1-2-3: Effect of metal ion in faujasite on cumene dealkylation [23] 

 

Cation Relative activity 

Na+       1 

Ba2+       2.5 

Sr2+     20 

Ca2+     50 

Mg2+   100 

Ni2+ 1100 

La3+ 9000 

H+ 8500 

SiO2/Al2O3       1 

 

 

  

 Another major influence on the acidity of zeolites is the Si/Al ratio.  The 

zeolite can be classified into three groups, according to the Si/Al ratio and the 

associated acid/base properties (Table 1-2-4).  Since the ion exchange capacity 

corresponds to the Al3+ content of the zeolites, those with lower Si/Al ratios have 

higher concentrations of active centers. 
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Table 1-2-4: Classification of acidic zeolite according to Si/Al ratio [26] 

 

Si/Al ratio Zeolite Acid/base properties 

Low (1 to 1.5) A, X relatively low stability of lattice; 

low stability in acids;  

high stability in base;  

high concentration of acid 

groups of medium strength 

Medium (2 to 5) erionite,  

chabazite,  

chinoptilolite,  

mordenite,  

Y 

 

High (ca.10 to ∞) ZSM-5, 

dealuminated erionite, 

mordenite,  

Y 

relatively high stability of lattice; 

high stability in acids;  

low stability in base;  

low concentration of acid groups 

of high strength 

 

 

  

 Zeolites with high concentrations of protons are hydrophilic and have high 

affinities for small molecules that can enter the pores.  Zeolites with low H+ 

concentrations, such as silicalite, are hydrophobic and can take up organic 

components from aqueous solution.  The boundary lies at a Si/Al ratio of around 10.  

The stability of the crystal lattice also increases with increasing Si/Al ratio.  The 

decomposition temperatures of zeolites are in the range of 700 to 1,300 oC.  The 

highest proton donor strengths are exhibited by zeolites with the lowest concentration 

of AlO4
- tetrahedra such as ZSM-5 and the ultrastable zeolite HY.  These are 

superacids, which at high temperature (ca. 500 oC) can even protonate alkanes.  It was 

found that the acid strength depends on the number of Al atoms that are adjacent to a 

silanol group.  Since the Al distribution is non-uniform, a wide range of acid strengths 

results. 
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2.4.4 Metal-doped zeolites [23,25] 

 Zeolites are especially suitable as support materials for active components 

such as metals.  Suitable metals are effective catalysts toward hydrogenations and 

oxidations, whereby the shape selectivity of the carrier is retained.   

 

 

Reaction at the metal 

 

 
Reaction at the zeolite 

 

 

Figure 1-2-4: Bifuctionality of metal-doped zeolites: isomerization and hydrogenation 

 

 

Important factors influencing the reactions of bifunctional catalysts are the 

location of the metal, the particle size, and the metal-support interaction.  The 

bifuctionality of the metal-doped zeolite catalysts is explained as for the important 

example of isomerization and hydrogenation.  The metal content facilitates the 

hydrogenation and dehydrogenation steps, while the acid catalyzed isomerization step 

takes place under the restricted conditions of the zeolite cavities (Figure 1-2-4) [23].   
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Bifunctional catalysts are used in many reactions, including hydrocracking, 

reforming, and dewaxing process [25].  They usually contain ca. 0.5% Pt, Pd, or Ni.  

 

2.5 Literature review of n-hexane and natural gasoline aromatization over zeolite 

catalysts 

 In 1989, Kawata et al. [28] studied the batch aromatization of n-hexane over 

galloaluminosilicate and gallosilicate. They found that proton forms of 

galloaluminosilicate and gallosilicate exchanged with ammonium nitrate solution 

have much higher activity for the aromatization of n-hexane than Ga3+-exchanged 

HZSM-5 or Ga2O3-supported ZSM-5.  They implied that large amounts of gallium 

species are uniformly introduced into zeolite crystalline of galloaluminosilicate and 

gallosilicate, which promote the dehydrogenation of n-hexane to n-hexene.  On the 

other hand, a proton form of gallosilicate exchange with hydrochloric acid showed 

lower activity for the aromatization of n-hexane, but the activity of the proton form of 

galloaluminosilicate is increased by a small addition of Ga3+.  They suggested that 

actives gallium species over galloaluminosilicate and gallosilicate are not gallium 

species in the framework but those outside the framework. 

 Popova et al. [12] reported the batch transformation of n-hexane over ZSM-5 

zeolite with various metals-loaded, which are 2.2% NaZSM-5, 1.0% CuHZSM-5, 

1.75% Cu-0.5% NaZSM-5, and HZSM-5.  The results are shown in Table 1-2-5.   

 

Table 1-2-5: Transformation of n-hexane over zeolite catalysts at 380 oC 
Catalyst Quantity 

2.2% NaHZSM-5 1.0% CuHZSM-5 1.75% Cu - 

0.5% NaZSM-5 

HZSM-5 

Conversion, % 6 81 68 88 

Cracking   

products, % 

  

 2.4 

 

48 

 

37 

 

62 

Aromatics, % -    16.5    7.6   18.5 

 

 

They also found that the degree of aromatization is related to carbonium ion 

formation and depends on the acid strength and copper content of the zeolite. 
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 Alario and co-workers [29] investigated the aromatization of light naphtha, 

which composed of 90% C5-alkane, 5.4% C6-alkane, 3.7% C5-cycloalkane, and 0.9% 

C6-cycloalkane, using zeolite ZSM-5 that is modified by treatment with a 

fluorosilicate solution (e.g., aqueous (NH4)2SiF6) and ZSM-5 zeolites (Si/Al ratio = 

27) doped with Ga.  The results are presented in Table 1-2-6.  From the results, they 

concluded that modification of ZSM-5 zeolite with both fluorosilicate solution and 

gallium significantly improved the aromatic products. 

 

Table 1-2-6: Aromatization of light naphtha on zeolite catalysts at 480 oC and 2.5 bar 
Selectivity (wt%) Catalyst Conversion 

(wt%) methane ethane + 

ethylene 

propane + 

propylene 

butane + 

butene 

olefins + 

C5 + C6

aromatics 

ZSM-5 93 30 26 14 18 1 11 

NH4ZSM-5 78 27 24 13 17 1 18 

3.5% GaZSM-5  95 7 17 28 8 1 39 

3.45% Ga-

NH4ZSM-5 

  

86 

 

6 

 

16 

 

28 

 

7 

 

1 

 

42 

 

 Bhattacharya et al. [14] reported the batch aromatization of n-hexane by three-

medium pore zeolites with different pore geometry, which are ZSM-5, ZSM-22, and 

EU-1 zeolites.  The conversion of n-hexane over ZSM-5 is nearly 100% at all 

temperatures in the range of 450 to 540 oC.  In the same range of temperatures, there 

is between 60 to 90% conversion in the case of ZSM-22 zeolite and between 43 to 

51% in the case of EU-1 zeolite.  The lower conversions recorded over ZSM-22 and 

EU-1 zeolites suggested that the reaction is probably constrained by diffusion 

limitations in the case of the above two zeolites that have small pore apertures (0.55 × 

0.45 nm for ZSM-22 zeolite and 0.58 × 0.41 nm for EU-1 zeolite) than kinetic 

diameter of n-hexane (0.47 nm). 

 Smirniotis and co-workers [30] investigated the performance of the L, β, and 

USY zeolites supported platinum and of composites of Pt/BaKL with either Pt/β, or 

Pt/USY zeolite on the reforming reaction of n-hexane, methylcyclopentane, 

methylcyclohexane, and their mixtures.  They found that the reactions of different 

mixtures of the above three hydrocarbons over the composite resulted in increased 

selectivities for C7+ aromatics compared to those calculated as molar averages by 
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multiplying the selectivities corresponding to the individually reacting feed 

hydrocarbons with their molar fractions in the feed mixture.  They suggested that this 

behavior is attributed to the synergism caused by the components of the composites in 

combination with the components of the feed mixture. 

    Zheng et al. [31] studied the activities of zeolites Kβ and KL supported 

platinum as a bifunctional catalyst for the reforming of n-hexane.   They found that 

due to the stronger acidity of zeolite β, Pt/Kβ exhibited more skeletal isomerization 

and cracking than does Pt/KL zeolite, while the latter shows superior aromatization 

activity (54% benzene compared to 8% benzene in the case of Pt/Kβ zeolite).  They 

also reported that ion exchange of β zeolite with Cs+ could reduce the acidity and 

increase benzene selectivity as well as ion exchange with Ba2+ that could lead to 

better dispersion of platinum and so can improve the aromatization activity. 

 Yashima and co-workers [32] reported the isomerization of n-hexane over Pt-

loaded Hβ, HZSM-5, and H-dealuminated mordenite at temperatures lower than                   

300 oC under atmospheric pressure.  They found that Pt loaded Hβ showed the highest 

activity and selectivity of these three catalysts.  The conversion of n-hexane was 76% 

and selectivities to dimethylbutanes, methylpentanes, and cracking products were 

19.4, 76.2, and 4.4%, respectively, under the following conditions: reaction 

temperature, 275 oC; W/F, 5 g h mol-1; molar ratio of hydrogen to n-hexane, 4.  They 

also found that Pt/Hβ catalyst showed a good stability because Hβ has medium 

strength acid sites and three-dimensional large pores. 

Bhattacharya et al. [13] studied the influence of promoters such as ZnO, 

Ga2O3, Fe2O3, and Cr2O3 on the aromatization of n-hexane over HZSM-5.  They 

found that while ZnO and Ga2O3 increase aromatization, Fe2O3 and Cr2O3 decrease 

the aromatization.  They suggested that the promoting action of both Ga- and Zn-

oxides has been attributed to their ability to dehydrogenate alkanes and the production 

of allylic species.  They also added that the addition of N2 to the feed increases 

aromatization over HZSM-5, while H2 decreases aromatization. 

 Chatterjee et al. [2] investigated the aromatization of n-hexane over medium 

pore zeolites e.g. ZSM-5, ZSM-22, and EU-1, using density functional theory (DFT).  

They found that aromatization was not always determined by the Bronsted acidity but 

also by the pore architecture and geometry of the different zeolites, which is 

determined by the change in electronic environment of the respective zeolite.  They 
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also used DFT to observe the reactivity order (ZSM-5 > ZSM-22> EU-1) as well as 

product selectivity order (ZSM-5 > EU-1 > ZSM-22) of the reaction.  From the DFT 

results, they concluded that ZSM-5 was more suitable zeolite in the aromatization 

reaction than other medium pore zeolites. 

 Rojasová et al. [15] studied the role of zinc in Zn/ZSM-5 zeolite in a batch 

aromatization of n-hexane, of which the conversion of 47.6% with 50.2% aromatic 

selectivity was obtained.  Moreover, they also studied the effect of incorporation of 

Zn into ZSM-5, which are ion exchange, mechanical mixing, and impregnation 

methods.  They found that incorporation of Zn by ion exchange into cationic positions 

of NH4-ZSM-5 zeolite causes acid site strength redistribution and generation of new 

relatively strong Lewis acid sites in zeolite, increasing the selectivity of n-hexane 

aromatization in comparison with the parent NH4-ZSM-5 zeolite. 

 Ali and co-workers [33] reported the hydroconversion activities of 0.35 wt% 

of Pt/Al2O3 promoted by addition of a second metal (0.35 wt%) such as Ir, Rh, Re, or 

U, in the conversion of n-pentane and n-hexane at different temperatures of 300 to 

500 oC, except for Rh catalyst (from 150 to 500 oC) in the presence of H2 atmosphere, 

0.049 mol/h.  They also investigated the reaction by the addition of 3.0 wt% F into the 

mono- and bimetallic catalysts.  The studies revealed that reaction temperature 

influenced the acidity and selectivities.  Incorporation of second metal and 

fluorination improved the activity of Pt/Al2O3.  They suggested that incorporation of 

3.0 wt% F leads to the formation of newly acidic sites, crystallinity improvement, and 

creation of pore available for the reactant molecules.  The orders of selectivities of 

fluorinated bimetallic catalysts were: PtRe (15.4 wt%) > PtU (9.6 wt%) > PtIr (4.7 

wt%) > PtRh (0.2 wt%) for hydroisomerization; PtRh (54.6 wt%) > PtIr (30.0 wt%) > 

PtU (27.1 wt%) > PtRe (17.7 wt%) for hydrocracking; and PtRe (1.3 wt%) > PtU (1.2 

wt%) > PtIr (0.9 wt%) > PtRh (0.07 wt%) for dehydrocyclization of n-pentane at    

500 oC. 

 Essayem et al. [34] investigated the hydroisomerization of n-hexane using 

heteropolyacids (HPA) such as 12-tungstophosphoric acid, H3PW12O40, and a series 

of its acid alkalis salts (e.g., Cs, Ru, K, and ammonium salts) associated with silica-

supported platinum as well as platinum-supported dealuminated mordenite as 

catalysts.  They found that the protons in the HPA bifunctional catalysts are more 

efficient than those of zeolites such as mordenite probably because they were more 
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acidic and also because the reaction was less affected by diffusion since, on HPA 

material only, nonconstraint surface protons interfered in the reaction. During                    

n-hexane conversion the selectivity toward isomerization is similar when the reaction 

is carried out over heteropolyacid catalysts and over H-mordenite.  The studies 

revealed that the Pt-(NH4)2.6H0.4PW12O40 gave the highest conversion (82.0%) with 

87.6% isomerization activity at 225 oC.  They also found that the isomer product 

distributions depended mainly on the conversion level at a given reaction temperature.  

The formation of dibranched alkanes, i.e., dimethylbutanes, required to improve fuel 

octane number, apparently is not more effectively obtained over HPA than over                

H-mordenite. They suggested that the reason was that the formation of                        

2,2-dimethylbutane, which contained a quaternary carbon, is kinetically limited even 

over HPA.  Thus, the low reaction rate for the conversion of 2,3-dimethylbutane into 

2,2-dimethylbutane accounted for the limited amounts of dibranched isomers. 

 

2.6 Practical applications 

2.6.1 Cyclar process [35]  

 The Cyclar process converts liquefied petroleum gas (LPG) directly into a 

liquid aromatics product in a single operation, developed jointly by BP and UOP.  

LPG consists mainly of the propane and butane fraction recovered from gas and oil 

fields and petroleum and refining operations.  The reaction is described as 

dehydrocycloisomerization, and is thermodynamically favored at temperatures above 

425 oC.  The dehydrogenation of light paraffins (propane and butanes) to olefins is the 

rate-determining step.  Once formed, the highly active olefins oligomerized to form 

larger intermediate, which then rapidly cyclized to naphthenes.  These reactions, 

dehydrogenation, oligomerization, and cyclization are all acid catalyzed.  The shape 

selectivity of the zeolite component of the catalyst also promotes the cyclization 

reaction and limits the size of the rings formed.  The major liquid products from the 

Cyclar process are benzene, toluene, xylenes, and heavier aromatics.  In general, the 

aromatic yield increases with the carbon number of the feedstock.  In a low pressure 

operation, the overall aromatic yield increases from 61 wt% of fresh feed with an all-

propane feedstock, to 66% with an all-butane feed, with a corresponding decrease in 

fuel gas production.  Butane feedstocks produce a product that is leaner in benzene 
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and richer in xylenes than that produced from propane.  With either propane or butane 

feeds, the liquid product contains about 91% BTX and 9% heavier aromatics. 

 BP commissioned the first commercial Cyclar unit at its refinery in 

Grangemouth, Scotland in January 1990.  This unit was designed to process propane 

and butane feedstock at either high or low pressure, over a wide range of operating 

conditions.   

 

2.6.2 RZ–Platforming Process [36] 

 The RZ–Platforming process selectively reforms naphtha feed (C6 and C7 

paraffins and naphthenes) to aromatics (BTX).  Four major reactions occur in 

Platforming reactors to produce the desired products: 

1. Dehydrocyclization 

2.   Isomerization of 5-membered to 6-membered rings 

3.   Dehydrogenation of 6-membered rings to aromatics 

4. Hydrocracking of large hydrocarbons to smaller hydrocarbons 

The RZ-100 catalyst offers constant aromatic selectivity, in the range of 80% 

or higher, even when processing the most difficult C6 and C7 paraffin feed 

components. 

The first RZ-Platforming unit was brought on stream and has been operating 

continuously since August 1998.  The RZ-100 catalyst system performance continues 

to meet all expectations of activity, selectivity, and stability [36]. 

 

2.6.3 Alpha process [37] 

 The alpha process converts olefin-rich hydrocarbons (C4 or C5 raffinates from 

ethylene plant) into aromatics (BTX) by using a zeolite-type catalyst.  The catalyst 

developed is Zn-doped HZSM-5 zeolite, followed by hydrothermal treatment.  The 

catalyst shows high aromatic selectivity (14% benzene, 44% toluene, 3% 

ethylbenzene, 26% xylenes, and 13% C9+ aromatics). 

 This process had been operating since July 1993, with capacity of 3,500 BPSD 

of feed, in Mizushima plant, Okayama, Japan [37]. 
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2.6.4 Toray TAC9 Process [38] 

    The Toray TAC9 process is used to selectively convert C9 and C10 aromatics 

into mixed xylenes.  The typical feedstock derived either from reformates or 

hydrotreated pyrolysis gasoline (an aromatic-rich by product from ethylene cracker).   

The TAC9 process involves several types of reactions of C9 and C10 aromatics, 

which are disproportionation (rearrangement of alkyl groups within a molecule), 

transalkylation (transfers of groups across molecules), and dealkylation (complete or 

partial removal of an alkyl group.  In the TAC9 process, the dealkylation of the alkyl 

groups occurs such that the methyl groups are retained.  The highly active TAC9 

catalyst converts almost all ethyl, propyl, and butyl groups to methyl groups and 

benzene by dealkylation.  The methyl groups react via disproportionation and 

transalkylation.  By dealkylation of ethyl groups, a methyl balance for xylene 

production is achieved.  The optimal xylene yield is a function of both the methyl to 

phenyl ratio as well as the ratio of ethyl group to methyl group in the fresh feed.  

Higher ratio results in higher xylene yields. 

As of mid-2002, two commercial units had been brought on-stream, with 

feeding rates of 210,000 MT/Y and 850,000 MT/Y.  Both units had consistently 

performed to expectation since the initial commercialization in 1996 [38]. 



CHAPTER III 

 

EXPERIMENTAL SECTION 

 

3.1 Materials and general methods 

Zeolite NaZSM-5 (SiO2/Al2O3 = 58 and dp = 10-1000 nm) was obtained from 

Nissan Girdler Co. Ltd., Japan.  The structure of zeolite was confirmed by a JEOL 

(model JDX-8030) X-ray powder diffractometer.  All reagents (n-hexane, PdCl2, 

AgNO3, and NH4Cl2) were of analytical grade from Fluka.  Nitrogen and hydrogen 

(99.999% purity) was obtained from Praxair Ltd.  The Pd and S contents in each 

reactant and catalyst, as well as the SiO2/Al2O3 ratio, were determined using a Phillips 

(model PW-2400) X-ray fluorescence spectrometer.  Natural gasoline was obtained 

from the PTT Public Co. Ltd., Thailand, and was analyzed and quantified in the same 

manner as that for reaction products by GC/MS.  The reaction products were analyzed 

and quantified by two techniques: (A) a Hewlett-Packard (model 6890) gas 

chromatograph (GC) equipped with a HP-5 capillary column (30 m × 0.32 mm i.d.) 

and flame ionization detector (FID); and (B) a Fisons Instruments (model 8060) gas 

chromatograph equipped with a HP-5 capillary column (30 m × 0.32 mm i.d.) using a 

Fisons Instruments (model Trio 2000) mass spectrometer as a detector.  All products 

were identified by comparison with their authentic compounds obtained from Fluka. 

 

3.2 Aromatization reactor 

The aromatization reactor (Figure 1-3-1) was constructed from a stainless steel 

tubing of 120 cm long (105 cm long catalyst bed), 0.62 cm i.d., and 0.68 cm o.d. bent 

into a spiral shape, and was heated in an old GC oven equipped with 3000W heating 

coil.  The temperature of the column was controlled by a temperature-controlled unit.  

Each column was separately packed between two glass wool plugs with 8.0 g of 

ZSM-5 catalysts with various amounts of Pd.  Nitrogen and hydrogen, supplied from 

cylinder, were mixed before entering the top of the column.  Prior to each experiment, 

the catalyst was reduced in situ under constant flow of nitrogen and hydrogen mixed 

gas.  Subsequently, both nitrogen and hydrogen streams were removed from the 

system, and the reactant was continuously introduced into the top of the column at 

various feeding rates using a Waters (model 510) HPLC pump.  The reactor effluent 
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was collected in an acetone/dry ice cooling-unit, which composed of a condenser 

cooled with acetone/dry ice and a reservoir that was dipped in an acetone/dry ice bath 

(Figure 1-3-1).  
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Figure 1-3-1. Reactor for continuous aromatization of n-hexane and natural gasoline 

 

 

3.3 Aromatization procedure 

All experiments were carried out in a home-built tubular reactor (Figure                   

1-3-1).  Prior to each experiment, the catalyst was reduced in situ at 450 oC for 5 h 

under constant flow of nitrogen and hydrogen mixed gas.  Subsequently, both 

nitrogen and hydrogen streams were removed from the system, and the reactant was 

continuously introduced into the top of the column at various feeding rates using a 

HPLC pump.  The reactant volume that was fed through each column was kept 

constant at 48 ml in each experiment.  The reactor effluent was collected in an 

acetone/dry ice cooling-unit and subsequently analyzed by GC and GC/MS.  
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3.4 Preparation of Pd/ZSM-5 catalyst 

3.4.1 Preparation of 0.2%Pd/ZSM-5 catalyst 

Pd/ZSM-5 catalysts were prepared by an ion-exchange technique.  Aqueous 

solutions of palladium (II) chloride (0.0019 M, 500 ml) were vigorously stirred with 

30 g of NaZSM-5 at 80 oC for 15 h.  The cation-exchanged zeolite was filtered and 

washed with deionized water (ca. 1000 ml) to remove chloride ions until it tested 

negative with an aqueous solution of silver nitrate.  Then, the zeolite catalyst was 

dried at 110 oC, calcined at 550 oC for 4 h, and stored as powdered form in a 

desiccator.   

 

3.4.2 Preparation of 0, 0.3, and 0.5%Pd/ZSM-5 catalysts 

The procedure of 3.3.1 was repeated except that aqueous solutions of 

palladium (II) chloride (0 M, 0.0028 M, or 0.0047 M) were used instead of an 

aqueous solution of palladium (II) chloride (0.0019 M). 

 

3.5 Characterization of Pd/ZSM-5 catalyst 

 The Pd and S contents in each calcined Pd/ZSM-5 catalyst, as well as the 

SiO2/Al2O3 ratio, were determined using an X-ray fluorescence spectrometer, while 

the structure of each calcined Pd/ZSM-5 catalysts was confirmed by an X-ray powder 

diffractometer. 

 

3.6 Aromatization of n-hexane 

3.6.1 Various effects on aromatization of n-hexane  

3.6.1.1 Effect of Pd contents in ZSM-5 zeolite 

 The effects of Pd contents (0, 0.2, 0.3, and 0.5%) in ZSM-5 zeolite on both 

conversion and aromatic contents in reaction product of n-hexane were investigated at 

400 oC reaction temperature and 0.4 ml/min n-hexane feeding rate.  The Pd/ZSM-5 

catalyst that gave the highest conversion and aromatic contents in reaction products 

was regarded as the optimum amount of Pd in ZSM-5 zeolite. 

 

3.6.1.2 Effect of reactant feeding rate and reaction temperature 

 The effects of reactant feeding rate (0.4, 0.6, 0.8, and 1.0 ml/min) on both 

conversion and aromatic contents in reaction product of n-hexane over different 
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temperatures (300, 350, 400, and 450 oC) were studied using the optimum Pd/ZSM-5 

catalyst from the Section 3.6.1.1. 

 

3.6.2 Regeneration of spent catalyst   

The catalyst was regenerated when its catalytic activity was reduced ca. 20%.  

Each spent catalyst was taken out of a tubular column and heated in a furnace at                  

650 oC for 10 h.  After that, these regenerated catalysts were used for the 

determination of their S contents by an X-ray fluorescence spectrometer.  Their 

structures were also confirmed using an X-ray powder diffractometer.  Each 

regenerated catalyst was repacked again in a column and reduced in situ as mentioned 

in the Section 3.2, prior to each experiment. 

 

3.6.3 Activity of regenerated catalyst 

 The activity of regenerated catalyst was studied, on both conversion and 

aromatic contents in reaction product of n-hexane, over different temperatures (300, 

350, 400, and 450 oC) at 0.4 ml/min n-hexane feeding rate using the optimum 

Pd/ZSM-5 catalyst from the Section 3.6.1.1. 

 

3.7 Aromatization of natural gasoline 

 Since the comparison of S content in fresh and regenerated catalyst of each 

reactant has to be made, aromatization of natural gasoline was carried out using a 

newly packed catalyst. 

 

3.7.1 Various effects on aromatization of natural gasoline  

3.7.1.1 Effect of Pd contents in ZSM-5 zeolite 

The procedure of 3.6.1.1 was repeated except that natural gasoline was used 

instead of n-hexane. 

 

3.7.1.2 Effect of reactant feeding rate and reaction temperature 

The procedure of 3.6.1.2 was repeated except that natural gasoline was used 

instead of n-hexane. 
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3.7.2 Regeneration of spent catalyst   

 The catalyst was regenerated as described in the Section 3.6.2. 

 

3.7.3 Activity of regenerated catalyst 

The procedure of 3.6.3 was repeated except that natural gasoline was 

employed instead of n-hexane. 

 

3.8 Characterization of products obtained from n-hexane and natural gasoline  

      aromatization 

The reaction products were analyzed and quantified by two techniques: (A) a 

Hewlett-Packard (model 6890) gas chromatograph equipped with a HP-5 capillary 

column (30 m × 0.32 mm i.d.) and flame ionization detector (FID); and (B) a Fisons 

Instruments (model 8060) gas chromatograph equipped with a HP-5 capillary column 

(30 m × 0.32 mm i.d.) using a Fisons Instruments (model Trio 2000) mass 

spectrometer as a detector. 

The conditions for the characterization of products from n-hexane and natural 

gasoline aromatization are: H2 carrier gas; 30 m × 0.32 mm i.d. fused silica column 

coated with a 0.25 µm film of HP-5; flame ionization detector or mass spectrometer 

detector; linear temperature program from 45 oC to 180 oC with heating rate of            

5 oC/min). 

 

3.9 Properties of n-hexane and natural gasoline 

 The S contents in n-hexane and natural gasoline were observed using an X-ray 

fluorescence spectrometer. Compositions of natural gasoline were analyzed and 

quantified as described in the Section 3.8. 



CHAPTER IV 

 

RESULTS AND DISCUSSION 

 

4.1 Characterization of ZSM-5 zeolite 

 Zeolite ZSM-5 was characterized before using for the preparation of Pd/ZSM-

5 catalysts by XRD and XRF techniques (XRD spectrum is shown in the Appendix    

1-1A).  The Si/Al ratio of 58 obtained from XRF techniques, showing that this zeolite 

is a high acidity zeolite. 

 

4.2 Preparation of Pd/ZSM-5 catalyst by ion-exchange method 

 Pd/ZSM-5 catalysts were prepared using an ion-exchange technique.  Fully 

hydrated NaZSM-5 zeolite, which was prepared by storing NaZSM-5 in saturated 

ammonium chloride (NH4Cl2) atmosphere for ca. 7 days, was ion-exchanged with 

aqueous solution of palladium (II) chloride.  The ion-exchange reaction is shown in 

the Equation (1-4-1). 

 

    2 NaZSM-5 (s)   +   PdCl2 (aq)                    PdZSM-5 (s)   +   2 NaCl (1-4-1) 

 

Preparation of 0.2% Pd/ZSM-5 catalyst was a model procedure to find the 

optimal ion-exchange time by vigorously stirring aqueous solutions of palladium (II) 

chloride (0.0013 M, 200 ml) with 8.0 g of NaZSM-5 at 80 oC for 9, 12, 15, and 18 h.  

Then, the cation-exchanged zeolite was filtered and washed with deionized water   

(ca. 1,000 ml) to remove chloride ions until it tested negative with an aqueous 

solution of silver nitrate.  After that, this zeolite catalyst was dried at 110 oC, calcined 

at 550 oC for 4 h, and stored as powdered form in a desiccator.  The concentrations of 

Pd in ZSM-5 zeolite were measured using XRF technique, and the results are shown 

in Table 1-4-1. 
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Table 1-4-1: Relationship between concentrations of Pd in ZSM-5 zeolitea and 

various ion-exchange times 

 

Ion-exchange time (h) Concentration of Pd in ZSM-5 zeolite (wt%)b

9 0.09 ± 0.01 

12 0.14 ± 0.00 

15 0.17 ± 0.01 

18 0.18 ± 0.01 
a Determined by X-ray fluorescence spectrometer 
b Average ± standard deviations, n = 2 

 

 

 From these data, ion-exchange time of 15 h was the optimal ion-exchange 

time for the preparation of Pd/ZSM-5 catalyst and was used for further Pd/ZSM-5 

catalyst preparations. 

 

4.2.1 Preparation of 0, 0.2, 0.3, and 0.5% Pd/ZSM-5 catalysts 

 Pd/ZSM-5 catalysts with various amounts of Pd (0, 0.2, 0.3, and 0.5%) were 

successfully prepared by ion-exchange techniques at 80 oC.  After calcination at               

550 oC, the SiO2/Al2O3 ratios of all of catalysts, which were determined using an      

X-ray fluorescence spectrometer, were changed from 58 to 63 due to partial 

dealumination caused by high temperature.  However, the structures of the calcined 

Pd/ZSM-5 catalysts, as revealed by X-ray powder diffractometer, were found to be 

the same as that of non-calcined ZSM-5 zeolite (XRD spectra are shown in the 

Appendices 1-1A and 1-2A).  Moreover, the Pd contents of the exchanged catalyst, 

which were determined by an X-ray fluorescence spectrometer, were found close to 

the expected values as shown in Table 1-4-2. 
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Table 1-4-2: Comparison of expected values and experimental valuesa of the Pd 

contents of the prepared catalysts 

 

Catalyst Expected value (wt%) Experimental value (wt%)b

0% Pd/ZSM-5 0.00 0.00 ± 0.00 

0.2% Pd/ZSM-5 0.20 0.17 ± 0.01 

0.3% Pd/ZSM-5 0.30 0.27 ± 0.02 

0.5% Pd/ZSM-5 0.50 0.46 ± 0.01 
a Determined by an X-ray fluorescence spectrometer 
b Average ± standard deviations, n = 2 

 

 

4.3 Aromatization of n-hexane 

4.3.1 Various effects on aromatization of n-hexane  

4.3.1.1 Effect of Pd contents in ZSM-5 zeolite 

The experiments were carried out in a home-built tubular reactor (Figure                      

1-3-1).  The effects of Pd contents (0 to 0.5%) in ZSM-5 zeolite on both conversion 

and aromatic contents of n-hexane aromatization were investigated at 400 oC reaction 

temperature and 0.4 cm3/min n-hexane feeding rate.  As seen in Figure 1-4-1,                       

n-hexane conversion and aromatic contents in reaction product of all catalysts 

increased when Pd contents in ZSM-5 zeolite increased. 

 

 

 

 

 

 

   

 

 

 

 

 



 

34

 

 

 

 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5

Pd content (wt%)

n
-H

ex
an

e 
co

nv
er

si
on

 o
r 

ar
om

at
ic

 
co

nt
en

ts
 

in
 r

ea
ct

io
n 

pr
od

uc
ts

 (%
)

% Conversion

% Aromatics

 

Figure 1-4-1: Effect of Pd contents in ZSM-5 zeolite on conversion and aromatic 

contents in reaction product of n-hexane aromatization. Conditions: 

reaction temperature, 400 oC; feeding rate, 0.4 cm3/min.  

 

 

 

Although the n-hexane conversion at 0% Pd content in ZSM-5 zeolite was 

relatively high (50.2%), the aromatic contents in reaction product was considerably 

low (1.2%) (Figure 1-4-1).  This might be because n-hexane was cracked and 

converted to other products, e.g. small hydrocarbon molecules, without 

oligomerization and aromatization.  It can further be noticed that n-hexane conversion 

(99.7%) and aromatic contents in reaction product (92.3%) attained their 

corresponding maximum when using 0.5% Pd in ZSM-5 zeolite. 

 

 

4.3.1.2 Effect of reactant feeding rate and reaction temperature 

The effects of reactant feeding rate on both conversion and aromatic contents 

of n-hexane aromatization over different temperatures were studied (Figure 1-4-2). 
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Figure 1-4-2: Effect of the feeding rate on n-hexane conversion and aromatic contents 

in reaction product over 0.5% Pd in ZSM-5 zeolite at different 

temperatures (C and A represent conversion and aromatic contents in 

reaction product, respectively).  

 

 

 

It was found that when the reaction temperatures increased, both conversion 

and aromatic contents in the reaction products proportionally increased (Figure                     

1-4-2).  However, the aromatic contents in the reaction product at 450 oC was lower 

than that at 400 oC (Figure 1-4-2), and this might be due to the enhanced degradation 

of aromatic products to small hydrocarbon molecules.  Decreasing trends in their 

conversion and aromatic contents in the reaction products, at all reaction 

temperatures, were observed when the feeding rate increased (Figure 1-4-2).  These 

results indicated that both conversion and aromatic contents in the reaction products 

were affected by the contact time between n-hexane and catalyst (Table 1-4-3).   
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Table 1-4-3: Contact time between reactants (n-hexane and natural gasoline) and 

catalyst at different reactant feeding rates 

 

Reactant feeding rate (cm3/min) 
Contact time (

0V
V , min) 

0.4 79.25 

0.6 52.83 

0.8 39.63 

1.0 31.70 

 

 

 

The feeding rate of 0.4 cm3/min at the reaction temperature of 400 oC provided 

the highest n-hexane conversion (also highest contact time) and aromatic contents in 

the reaction products as compared to other conditions.  For high contact time 

condition, n-hexane generally has more time to oligomerize on the acid active sites in 

the zeolite channels and undergo dehydrocyclization to aromatics via the Pd-function 

than that at low contact time [8,9].  

 

4.3.1.3 Activity of regenerated catalyst 

The activities of fresh and regenerated catalysts on n-hexane aromatization 

were also studied (Figure 1-4-3).  The catalysts were regenerated when their activity 

was ca. 80% of fresh catalyst (after feeding 3,024 cm3 of n-hexane for 86 h).  It was 

found that all catalysts showed similar increasing trends in their n-hexane conversion 

and aromatic contents when reaction temperature increased (Figure 1-4-3).  Fresh 

catalyst generally provided higher n-hexane conversion and aromatic contents in 

reaction product than did regenerated catalysts (Figure 1-4-3).  The margin 10% 

activity loss was observed between fresh and regenerated catalyst.  The regenerated 

catalyst might have some carbon deposits that covered the catalyst surface, thus 

reducing the catalyst activity [24,39].  Considering the structures of the regenerated 

catalysts, as revealed by X-ray powder diffractometer, it was found to be the same as 

that of fresh catalyst (XRD spectra are shown in the Appendices 1-2A and 1-3A). 
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Figure 1-4-3: Comparison of activity between fresh and regenerated catalysts on          

n-hexane conversion and aromatic contents in reaction product at different 

temperatures.  Conditions: feeding rate, 0.4 cm3/min; catalyst, 0.5% Pd in 

ZSM-5 zeolite (C and A represent conversion and aromatic contents in 

reaction product, respectively). 

 

4.3.2 Aromatic contents in reaction product and product distributions 

The aromatic contents in reaction product and product distributions of                      

n-hexane were explored at the suitable conditions (reaction temperature, 400 oC; 

reactant feeding rate, 0.4 cm3/min; catalyst, 0.5% Pd in ZSM-5), and the results are 

shown in Table 1-4-4.  GC and GC/MS analysis revealed that this continuous process 

for n-hexane aromatization yielded not only benzene and its derivatives but also 

naphthalene derivatives.  Typical GC chromatogram of n-hexane aromatization is 

shown in the Appendix 1-4A.  The product distributions were benzene (5.67%), 

toluene (23.63%), xylenes (24.97%), 4-ethyltoluene (3.50%), 1,3,5-trimethylbenzene 

(4.86%), 1-methylnaphthalene (4.33%), and 1,5-dimethylnaphthalene (3.57%).  

Among these aromatics, xylenes were obtained as the highest percentage (25.0%).  

When comparing among three isomers of xylene, the percentage of p-xylene was 

higher than that of m- and o-isomers (Table 1-4-4).  This can be explained 
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theoretically by comparing pore aperture of ZSM-5 zeolite (0.54 × 0.56 nm and 0.51 

× 0.55 nm) with kinetic molecular diameters of m-, o-, and p-isomers of xylene, 

which are 0.63, 0.64, and 0.57 nm, respectively [8].  On the basis of these data, only             

p-xylene possesses a certain size that could easily exit from the pore system.                     

In addition, the slimmer shape of p-xylene molecule, which exhibits a rate of 

diffusion faster by a factor of 104 than the other two isomers, also explains the favor 

formation of p-xylene [23].    

 

Table 1-4-4: Product distributions from continuous aromatization of n-hexane at the 

suitable conditionsa compared to the corresponding reactant compositions 

and commercial mixture of benzene, toluene, and xylene. 

 

n-Hexane  

Before 

aromatizationb

After 

aromatizationb

Commercial mixture 

of benzene, toluene, 

and xyleneb  

Conversion (%) – 99.73 ± 0.0070 – 

Product distributions (%) 

   Less than C6 hydrocarbons   2.19 ± 0.0446 6.83 ± 0.0084   7.03 ± 0.0017

   Hexane 96.69 ± 0.0729 0.27 ± 0.0070   1.11 ± 0.0000

   Total aromaticsa – 92.25 ± 0.0226 91.03 ± 0.0035

   Benzene – 5.67 ± 0.0057   6.50 ± 0.0004

   Toluene – 23.63 ± 0.0085 19.99 ± 0.0017

   Xylenes – 24.97 ± 0.1476 29.54 ± 0.0013

       m-Xylene – 2.17 ± 0.0082 5.19 ± 0.0000

       o-Xylene –   5.20 ± 0.0247 8.11 ± 0.0008

       p-Xylene – 17.59 ± 0.1312 16.24 ± 0.0003

   4-Ethyltoluene –  3.50 ± 0.0083   5.73 ± 0.0007

   1,3,5-Trimethylbenzene –  4.86 ± 0.0072   7.75 ± 0.0003

   1-Methylnaphthalene –  4.33 ± 0.0105 – 

   1,5-Dimethylnaphthalene –  3.57 ± 0.0071 – 
a Conditions: catalyst, 0.5% Pd in ZSM-5; reaction temperature, 400 oC; feeding rate, 0.4 cm3/min 
b Average ± standard deviations, n = 2 
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On the basis of the products formed from n-hexane aromatization, the main 

reaction pathways converting n-hexane to aromatics may be explained as follows.  

Due to the bi-functional property of the Pd loaded ZSM-5, in the presence of metal 

and acidity, n-hexane is cracked to small hydrocarbon molecules and then 

oligomerized on the acid sites in the zeolite channels.  The oligomerized products can 

undergo either cracking to light hydrocarbons (C2–C4) or dehydrocyclization to 

aromatics via the Pd-function [8,9].  At higher conversion levels (high temperature), 

naphthalene derivatives were formed because mononuclear aromatics might condense 

into polynuclear aromatics, especially naphthalene and its derivatives [8].

Under the suitable conditions (reaction temperature, 400 oC; reactant feeding 

rate, 0.4 cm3/min; catalyst, 0.5% Pd in ZSM-5), n-hexane aromatization gave higher 

conversion (99.7%) and aromatic contents in reaction product (92.3%) than those 

previously reported by Rojasova et al. [15], from which the conversion of 47.6% with 

50.2% aromatic contents in reaction product was obtained in a batch aromatization of 

n-hexane using Zn/ZSM-5 zeolite as a catalyst.  Previous works on the aromatization 

of alkanes were conducted in a batch system [4–15], and this present work is the first 

aromatization carried out using a continuous mode.   

Concerning the catalyst performance (under the suitable conditions), we found 

that 2.28 g of the total products formed per g catalyst per h for the aromatization of    

n-hexane (or 455 g product formed per g Pd per h).  This continuous aromatization 

process is expected to be employed for the conversion of petrochemical byproducts 

that contains alkane (e.g., natural gasoline and light naphtha) into high-value-added 

products.  The following experiments were performed using the eventual continuous 

system for the aromatization of natural gasoline, which is one of the major 

petrochemical byproduct from natural gas separation industry. 

 

4.4 Aromatization of natural gasoline 

4.4.1 Various effects on aromatization of natural gasoline 

4.4.1.1 Effect of Pd contents in ZSM-5 zeolite 

The aromatization of natural gasoline was conducted in the invented 

continuous system (Figure 1-3-1).  The effects of Pd contents (0 to 0.5%) in ZSM-5 

zeolite on both conversion and aromatic contents of natural gasoline aromatization 
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were investigated at 400 oC reaction temperature and 0.4 cm3/min natural gasoline 

feeding rate.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-4-4: Effect of Pd contents in ZSM-5 zeolite on conversion and aromatic 

contents in reaction product of natural gasoline. Conditions: reaction 

temperature, 400 oC; feeding rate, 0.4 cm3/min. 
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Natural gasoline conversion and aromatic contents in reaction product of all 

catalysts increased when Pd contents in ZSM-5 zeolite increased (Figure 1-4-4).  It 

was found that natural gasoline conversion (94.3%, calculation based on 21.57% of  

2-methylbutane in natural gasoline) and aromatic contents in reaction products 

attained their corresponding maximum when using 0.5% Pd in ZSM-5 zeolite.  It was 

also noticed that the effect of Pd contents in ZSM-5 zeolite on natural gasoline 

aromatization was similar to that of n-hexane aromatization. 
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4.4.1.2 Effect of reactant feeding rate and reaction temperature 

The effects of natural gasoline feeding rate on both conversion and aromatic 

contents in reaction product over different temperatures were studied (Figure 1-4-5). 
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Figure 1-4-5: Effect of the feeding rate on natural gasoline conversion and aromatic 

contents in reaction product over 0.5% Pd in ZSM-5 zeolite at different 

temperatures (C and A represent conversion and aromatic contents in 

reaction product, respectively). 

 

 

 

When the reaction temperature increased, both conversion and aromatic 

contents in reaction product proportionally increased (Figure 1-4-5).  However, the 

aromatic contents in reaction product at 450 oC were lower than that at 400 oC (Figure 

1-4-5).  The feeding rate of 0.4 cm3/min at the reaction temperature of 400 oC 

provided the highest natural gasoline conversion.  It was found that the effect of 

reaction temperature and reactant feeding rate on natural gasoline aromatization was 

also similar to that of n-hexane aromatization.   
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4.4.1.3 Activity of regenerated catalyst 

The activities of fresh and regenerated catalysts on natural gasoline 

aromatization were studied (Figure 1-4-6).  The catalysts were regenerated when their 

activity was ca. 80% of fresh catalyst (after feeding 2,160 cm3 of natural gasoline for 

61 h).  It was found that all catalysts showed similar increasing trends in their natural 

gasoline conversion and aromatic contents in reaction product (Figure 1-4-6).  Fresh 

catalyst generally provided higher natural gasoline conversion and aromatic contents 

in reaction product than did regenerated catalysts (Figure 1-4-6).  The margin 7% 

activity loss was observed between fresh and regenerated catalyst.  Similarly to that of 

n-hexane, the regenerated catalyst might have some carbon deposits, thus reducing the 

catalyst activity [24,39]. 
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Figure 1-4-6: Comparison of activity between fresh and regenerated catalysts on 

natural gasoline conversion and aromatic contents in reaction product at 

different temperatures.  Conditions: feeding rate, 0.4 cm3/min; catalyst, 

0.5% Pd in ZSM-5 zeolite (C and A represent conversion and aromatic 

contents in reaction product, respectively). 
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Additionally, sulfur present in natural gasoline (0.0030 wt%, Table 1-4-5) 

could also deactivate the catalyst.  It is known that sulfur poisoning in catalysts leads 

to the deactivation of catalyst performance [40].  In the suitable system, the amount 

(2,160 cm3) of natural gasoline (sulfur containing substrate) that caused 20% 

reduction of the catalyst activity was less than that (3,024 cm3) of n-hexane (AR grade 

reagent with a sulfur content less than 0.0020 wt%, Table 1-4-5), clearly 

demonstrating that the presence of sulfur had a negative effect to the catalytic 

performance. 

 

Table 1-4-5: Sulfur contents in reactants (n-hexane and natural gasoline), fresh 

catalysts, and regenerated catalysts. 

 

 Sulfur content (wt%)a

n-Hexane 0.0019 ± 0.0001 

Natural gasoline 0.0030 ± 0.0003 

Fresh catalyst before n-hexane aromatization 0.0180 ± 0.0028 

Regenerated catalyst after n-hexane aromatization 0.0425 ± 0.0021 

Fresh catalyst before natural gasoline aromatization 0.0180 ± 0.0028 

Regenerated catalyst after natural gasoline aromatization 0.0625 ± 0.0035 
a Average ± standard deviations, n = 2 

 

 

4.4.2 Aromatic contents in reaction product and product distributions 

The aromatization of natural gasoline was conducted in the continuous system 

(Figure 1-3-1).  It was found that the effects of Pd contents in ZSM-5 zeolite, reaction 

temperature and reactant feeding rate, and the activity of regenerated catalyst, on 

natural gasoline aromatization were similar to that of n-hexane aromatization.  The 

suitable conditions for natural gasoline conversion (94.3%, calculation based on 

21.57% of 2-methylbutane in natural gasoline, Figure 1-4-5) and aromatic contents in 

reaction product (92.6%, Figure 1-4-5) were at 400 oC reaction temperature (Figure            

1-4-5) and 0.4 cm3/min natural gasoline feeding rate (Figure 1-4-5) with 0.5% Pd 

content in ZSM-5 catalyst (Figure 1-4-4) 
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Typical GC chromatogram of natural gasoline aromatization is shown in the 

Appendix 1-5A.  GC and GC/MS analysis (Table 1-4-6) demonstrated that the present 

continuous aromatization of natural gasoline yielded benzene (8.08%), toluene 

(23.31%), xylenes (22.75%), 4-ethyltoluene (4.30%), 1,3,5-trimethylbenzene (3.65%), 

1-methylnaphthalene (4.06%), and 1,5-dimethylnaphthalene (2.87%).  However, 

similar to n-hexane aromatization, toluene, and xylenes were found to be the major 

percentage of products (23.31% and 22.75%, respectively) from the natural gasoline 

reaction.   
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Table 1-4-6: Product distributions from continuous aromatization of natural gasoline 

at the suitable conditionsa compared to the corresponding reactant 

compositions and commercial mixture of benzene, toluene, and xylene. 

 

Natural gasoline  

 Before 

aromatizationb

After 

aromatizationb

Commercial mixture 

of benzene, toluene, 

and xyleneb  

Conversion (%) – 94.30 ± 0.0530 – 

Product distributions (%) 

   Less than C6 hydrocarbons 61.62 ± 0.0328c 5.32 ± 0.0131   7.03 ± 0.0017

   Hexane 6.54 ± 0.0047 0.30 ± 0.0044   1.11 ± 0.0000

   Total aromatics 27.34 ± 0.0275 92.64 ± 0.0241 91.03 ± 0.0035

   Benzene 8.24 ± 0.0018   8.08 ± 0.0113   6.50 ± 0.0004

   Toluene 3.29 ± 0.0046 23.31 ± 0.0077 19.99 ± 0.0017

   Xylenes 1.28 ± 0.0030 22.75 ± 0.0220 29.54 ± 0.0013

       m-Xylene –   3.31 ± 0.0026 5.19 ± 0.0000

       o-Xylene 0.22 ± 0.0070   4.45 ± 0.0167 8.11 ± 0.0008

       p-Xylene 1.06 ± 0.0039 14.99 ± 0.0079 16.24 ± 0.0003

   4-Ethyltoluene –   4.30 ± 0.0028   5.73 ± 0.0007

   1,3,5-Trimethylbenzene –   3.65 ± 0.0034   7.75 ± 0.0003

   1-Methylnaphthalene –   4.06 ± 0.0167 – 

   1,5-Dimethylnaphthalene –   2.87 ± 0.0230 – 
a Conditions: catalyst, 0.5% Pd in ZSM-5; reaction temperature, 400 oC; feeding rate, 0.4 

cm3/min 
b Average ± standard deviations, n = 2 
c Compositions of less than C6 hydrocarbons in natural gasoline were 2-methylpropane 

(0.25%), n-butane (2.25%), 2,2-dimethylpropane (0.06%), 2-methylbutane (21.57%),                  

n-pentane (20.07%), 2,2-dimethylbutane (0.82%), cyclopentane (1.50%), 2,3-

dimethylbutane (1.99%), 2-methylpentane (8.64%), and 3-methylpentane (4.47%). 

 

 

Concerning the catalyst performance (under the suitable conditions), we found 

that 2.23 g of the total products formed per g catalyst per h for the aromatization of 

natural gasoline (or 446 g product formed per g Pd per h).  The above experiments 
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provided the evidence that this continuous aromatization process may be applied for 

the conversion of petroleum byproduct into high value-added products.  



CHAPTER V 

 

CONCLUSION 

 

The model process for the production of aromatic hydrocarbons using             

n-hexane as a model substrate was successfully performed over Pd-loaded ZSM-5 

zeolite in a continuous mode.  The suitable conditions were at 0.5% Pd content in 

ZSM-5, 400 oC reaction temperature, and 0.4 cm3/min reactant feeding rate, providing 

n-hexane conversion and aromatic contents in reaction product at 99.7% and 92.3%, 

respectively.  GC and GC/MS analysis revealed that this n-hexane aromatization 

preferably yielded benzene and naphthalene derivatives, including benzene (5.67%), 

toluene (23.63%), xylenes (24.97%), 4-ethyltoluene (3.50%), 1,3,5-trimethylbenzene 

(4.86%), 1-methylnaphthalene (4.33%), and 1,5-dimethylnaphthalene (3.57%). 

Under the same reaction conditions, natural gasoline gave 94.3% conversion 

and 92.6% aromatic contents in reaction product, and the aromatization products were 

benzene (8.08%), toluene (23.31%), xylenes (22.75%), 4-ethyltoluene (4.30%), 1,3,5-

trimethylbenzene (3.65%), 1-methylnaphthalene (4.06%), and 1,5-

dimethylnaphthalene (2.87%).   

 Up to date, there have been only few applications in turning natural gasoline 

into other useful products, besides burnt out as fuel.  The present work demonstrated 

that the continuous process for the aromatization of natural gasoline might be another 

option for the conversion of natural gasoline into high value-added products. 



 

 

 

 

 

 

 

 

 

 

 

 

PART II 

 
OXIDATION OF PHENOL ON FIXED BED OF ACTIVE CARBON 

 



CHAPTER I 

 

INTRODUCTION 

 

 The increasing release of concentrated toxic organic pollutants contained in 

many industrial end stream effluents has been the driving force for developing 

alternative effluent treatments prior to their discharge to conventional biofilters or 

sewage plants. Incineration though widely used in industry for simplicity may be a 

hazardous process depending on the nature of pollutants and is always expensive as 

far as organic pollution is not very concentrated to produce the energy for water 

vaporisation. A suitable solution to the destruction of rather dilute organic pollutants 

is catalytic wet air oxidation (CWAO) that provides milder operating conditions and 

more attractive process economics than wet air oxidation. It is noteworthy that 

catalysts with improved stability for CWAO have been recently developed based on 

either noble metals or mixed oxides. 

On the other hand, activated carbon (AC) as catalyst is a promising low price 

alternative for the remediation of phenol and various substituted phenols due to its 

proven high adsorption capacity and oxidation activity at low oxygen pressures. By 

employing AC, unit operations of adsorption and chemical reaction are naturally 

combined in an adsorptive oxidation reactor (AD-OX process). Moreover, CWAO 

over AC becomes especially attractive when integrated with biological end-

treatments. Such processes provide a superior cleaning effectiveness compared to 

single step oxidation and avoid the need of complete organic pollutant mineralisation, 

which is difficult to obtain with CWAO alone. 

Given the range of liquid flow rates commonly to be treated, continuous reactor 

operation should be considered in industrial CWAO applications. Within the category 

of common gas-liquid-solid catalytic reactors, fixed bed reactors are more convenient 

than slurry or fluidised bed reactors to carry out CWAO studies, as they provide both 

higher catalyst loading and close to plug flow operation.  

Three phase fixed bed catalytic reactors are most often operated with cocurrent 

gas and liquid flow. Downflow operation in trickle bed reactors is widely used in 

many industrial applications especially in petrochemistry but also in biotechnology.  

Upflow reactors or flooded beds are less frequently used, but they may have some 
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advantages concerning liquid distribution and thermal stability. These two flow 

modes have yet been compared at LGC Toulouse for selective hydrogenation, proving 

the flooded bed to perform better conversions and selectivities.  

In the case of phenol oxidation trickle bed could have determining advantage 

due to its smaller liquid hold-up at low liquid flow rate as many aromatic pollutants 

show a high ability to undergo homogeneous condensation reactions in the liquid 

phase via oxidative coupling.  These unwanted side reactions could lead to fast 

catalyst deactivation due to irreversible adsorption or deposition of the condensation 

products on AC particles.    

The present work is aimed at developing and modelling a continuous process 

for the CWAO of phenol using AC as catalyst. Optimal operation conditions 

including temperature, pressure, reaction time, air flow rate, and upflow or downflow 

mode are to be found. 

 In order to involve complex heat and mass transfers coupling phenomena as in 

large industrial reactors, a three phase fixed bed of intermediate scale will be operated 

and modelled for subsequent scale up.   

 

Objectives of this research 

 The objectives of this research are aimed at  

(a) thoroughly investigating the CWAO of phenol over AC in a pilot scale fixed 

bed reactor;  

(b) providing qualitative and quantitative analyses of the reaction products;  

(c) finding convenient reaction conditions in order to obtain the highest phenol 

degradation.  

(d) modelling the continuous reaction process at pellet and reactor scales, where 

hydrodynamics, heat and mass transfers interfere with reaction kinetics.  

 



CHAPTER II 

 

THEORY AND LITERATURE REVIEW 

  

2.1 Wastewater treatment 

 Pollution control of aquatic environments is of primary concern, especially in 

regions where water is not easily available. New legistration is progressively 

imposing more stringent environmental constraints for the discharge of industrial 

aqueous effluents. Thus, wastewater reduction and treatment is increasingly gaining 

more attention. In the actuality, chemical and related industries generate large 

quantities of wastewater containing organic compounds, such as phenol and 

derivatives, which are poorly biodegradable or even toxic for the microorganisms [1].  

Phenol and substituted phenols are commonly present in industrial waste 

streams especially in industrial wastewater from oil refineries, coal conversion plants, 

petrochemicals, polymeric resins, coal tar distillation, pharmaceuticals, etc. [2]. 

Phenol concentration in the range of 0.05 g/l causes a rapid decline of the active 

biomass due to the inhibition of reproduction of microorganism, and the concentration 

exceeding 1 g/l even leads to their total destruction [3]. Generally, the most common 

depolluting technology for wastewater is the conventional biological treatment [4]. 

However, direct biological treatment is not advisable for wastewater stream having 

phenol concentration more than 0.5 g/l [4]. Alternative methods have been developed 

for the remediation of these effluents; the most important are the adsorption on 

activated carbon, the thermal incineration, and the liquid phase chemical oxidation. 

Adsorption on activated carbon is very effective for a broad range of organic 

pollutants [4]. Nevertheless, it requires an additional step of regeneration of the 

adsorbent during which the pollutant is usually transferred to a vapor or an organic 

phase. In this step, pollution is generally concentrated but not converted to less 

hazardous materials [5]. Incineration is the other well-established technology for the 

treatment of concentrated and toxic organic waste streams. Organic pollutants are 

burnt at atmospheric pressure and high temperatures between 1,000 oC and 1,700 oC. 

Thus, incineration can offer almost complete pollutant destruction, although at very 

high energy costs, because an organic load above 25% is necessary to guarantee 
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autothermal oxidation. Furthermore, this technique has been accused for the emission 

of toxic byproducts such as dioxins and furans [4]. 

Wet Air liquid phase Oxidation process is known to have a great potential in 

advance wastewater treatment facilities by destroying the pollutant while being 

dissolved in the liquid phase [4,6]. Several emerging liquid phase oxidation methods 

can be distinguished in terms of the different oxidants, catalysts and operating 

conditions selected. However, for the non-catalytic process, the reaction conditions 

required to achieve oxidation are severe, typically being in the range of temperature of 

200 to 300 oC and pressure of 70 to 130 atm [7]. Under such extreme conditions, the 

selection of material for construction becomes critical, as corrosion rates are rather 

high due to the presence of a variety of oxygenated compounds. Oxidation of dilute 

aqueous solutions of organic pollutants over a solid catalyst offers an alternative to 

non-catalytic wet air oxidation as means of purifying of wastewater [8]. In this 

process organics are oxidized to carbon dioxide and water at relatively mild 

temperatures and pressures: less than 200 °C and 100 bar [5].  

The incorporation of a catalyst has also been considered in combination with 

all types of oxidants (air, oxygen, hydrogen peroxide, and ozone) aiming to reduce the 

operating temperature and pressure, and to treat pollutants that cannot be destroyed 

during non-catalytic liquid phase oxidation processes. Homogeneous catalysts, such 

as copper ions in solution, were very effective in oxidizing several organics when air 

was used as oxidant [9]. Nevertheless, the addition of a homogeneous catalyst has the 

inherent disadvantage of the posterior catalyst removal from the treated effluent, 

because the metal ions are pollutants themselves in the range of concentrations used. 

Heterogeneous catalysts, on the other hand, do not need any extra separation step and 

are thus more attractive. Solid catalysts, mostly noble metals and base metal oxides, 

have been tested in combination with all types of oxidants. Less frequently, active 

carbon (AC) also has been chosen as a catalyst without any additional active phase 

[1,10–13]. The incorporation of heterogeneous catalysts has exhibited promising 

results in laboratory tests, but industrial applications have been hindered because of 

the lack of stable catalytic performance over sufficiently long periods.  
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2.2 Wet air oxidation fundamentals 

Wet Air Oxidation (WAO) process, first developed and applied as a 

commercial process by Zimmerman and Diddams [14,15], is an effective destruction 

method for the treatment of hazardous organic wastes, especially when these are too 

dilute to incinerate or too toxic to biotreat [16]. WAO is a process by which 

components are oxidized in a liquid phase by oxygen. The process takes place at 

elevated pressures, to enhance the solubility of oxygen in the aqueous solution and to 

keep water in the liquid phase, and at elevated temperatures to make possible a rapid 

reaction. In this process, the organic waste is oxidized to carbon dioxide, water, and 

intermediate oxidation products that are predominantly low molecular weight organic 

compounds including carboxylic acids, acetaldehydes, and alcohols. Although the 

degree of oxidation depends upon the process conditions, retention time, and feed 

composition, in most operations low molecular weight compounds will accumulate as 

they tend to be refractory to further oxidation [17]. An advantage of WAO is that the 

majority of contaminants remain in the aqueous phase. The final aqueous liquid 

effluent will contain a considerable quantity of low molecular weight organics, 

ammonia (from nitrogen-containing compounds), inorganic acids (from elemental 

sulphur or phosphorus), and inorganic salts (from elemental sulphur or phosphorus). 

This effluent is usually biologically treated, allowing the majority of organics and 

ammonia to be removed. WAO has successfully been used to treat a range of 

industrial wastewaters including pulp and paper mill black liquor wastes, spent caustic 

scrubbing liquids, and cyanide/nitrile bearing wastes such as acrylonitrile plant 

wastewater. Still, most of the installed wet air oxidation units are used for the 

treatment of sewage sludge. [18,19]. 

 

2.3 Catalytic Wet Air Oxidation catalysts 

 Although Catalytic Wet Air Oxidation (CWAO) processes have not been yet 

as widely implemented as WAO, they have received special research efforts to 

develop active and stable catalyst. 

 The heterogeneous catalysts that have been employed in CWAO can be 

divided into three major groups, i.e. supported noble metals, metal oxides, and active 

carbon. 
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2.3.1 Noble metals 

 The use of noble metals catalysts has been shown to enhance the reaction rate 

in wet air oxidation processed. The most frequent uses for noble metals are Pt and Ru, 

while Pd, Ir, and Rh have also been tested. Applications of noble metal catalysts in the 

CWAO are summarized in Table 2-2-1.  

 

Table 2-2-1: The applications of noble metal catalysts in the CWAO 

Noble metal Support Substrate T (oC) PT (bar) Reference 

Pt TiO2 phenol 150−205 45 [20] 

Pt γ-Al2O3 phenol  155−200 20 [21] 

Pt, Pd, Ru C phenol 120−160 50−80 [22] 

Pt, Ag MnO2, 

CeO2

phenol 80−130 5 (PO2) [23] 

Ru C phenol,  

acrylic acid 

160 20 [24] 

Ru TiO2 phenol 175−200 3.4−13.8 [25] 

Ru CeO2 phenol 200 10 [26] 

Pt-Ru C phenol 35−60  - [27] 

Pt C p-chlorophenol 170 26 (PO2) [28] 

Pt C low MW 

carboxylic acid 

200 6.9 (PO2) [29] 

Ru, Ir, Pd, Ag CeO2, 

TiO2, ZrO2

acetic acid 200 20 [30] 

Ru TiO2 carboxylic acid 150−200 50 [31] 

Pt γ-Al2O3, 

resin 

carboxylic acid 80 1 (PO2) [32] 

 

 

From Table 2-2-1, numerous noble metal catalysts are available for the 

CWAO, however the optimum metal depends on the pollutant that is considered. In 

the case of acetic acid oxidation, Barbier et al. [30] reported that the catalytic activity 

decreases in the order Ru > Ir > Pd, while for the oxidation of p-chlorophenol, Qin     

et al. [28] found out that catalytic activity decreases in a reverse order Pt > Pd > Ru. 

The noble metal support also influences significantly on the catalyst performance. 

 



 

55

Metal oxides, e.g. alumina, ceria, titania, and zirconia, as well as active carbon or high 

specific area graphite, have been mainly studied [4]. 

 

2.3.2 Metal oxides 

Pure or mixed metal oxides also provided high efficiency to catalyze wet air 

oxidation processes.  

The catalytic activity of metal oxides during phenol oxidation showed the 

following typical order: CuO > CoO > Cr2O3 > NiO > MnO2 > Fe2O3 > YO2 > Cd2O3 

> ZnO > TiO2 > Bi2O3 [33,34]. 

Copper oxide, alone or combined with other oxides, has thus received special 

attention in the CWAO of aqueous effluents oxidation [35–39]. A commercial 

Harshaw Cu-0803 T1/8 catalyst, comprising 10% copper oxide supported over          

γ-Al2O3, was successfully investigated for phenol oxidation [35–37]. Baldi et al. [39] 

tested a commercial CuO/ZnO catalyst to oxidize formic acid. 

Mixtures of metal oxides often exhibited greater activity than the single oxide. 

Pintar and Levec [40] reported that CuO/ZnO/γ-Al2O3 catalyst (42/47/10 wt%) and 

CuO-ZnO-CoO catalyst (9.3/6.9/1.4 wt%) supported on steam-treated porous cement 

are more effective for phenol oxidation and more stable in a hot oxidizing phenolic 

aqueous solution than a catalyst containing 10% CuO on γ-Al2O3 used in earlier 

works [35].  Kochetkova et al. [41] also observed that a mixture of CuO-CoO-

TiO2/Al2O3 oxides on a cement carrier provided more activity and stability, in the 

oxidation of phenol in aqueous solutions below 200 °C, than supported CuO/γ-Al2O3. 

Other metal mixed oxide catalysts, not based on copper, have also been successfully 

tested to oxidize organic compounds, like manganese-ceria mixed oxides [42].  

 

2.3.3 Active carbon  

 Active Carbon (AC) has most often been used as a support for active metal 

dedicated to CWAO. It is well known that AC alone can perform as a true catalyst for 

several reactions [13,43]. However, the potential of AC, in the absence of an active 

metal, as direct catalytic material for CWAO has only been recently proved for the 

destruction of phenol and other bio-toxic compounds [10,43,44]. It is noticeable that 

AC can perform better activity than other supported catalysts based on transition 
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metals in the oxidation of phenol [10]. This better performance could be due to the 

phenol adsorption capacity of the AC that may enhance the oxidation environment 

conditions. Nevertheless, the performance of different ACs can be significantly 

different [44], which strongly suggests that not only adsorption but also other specific 

characteristics of the ACs affect their behaviors in the CWAO. In all the above studies 

using AC [10,43,44], the only compound tested was phenol and less attention was 

devoted to other organic compounds. 

The underlying mechanisms that are responsible for the catalytic activity of 

AC in CWAO are far from being well understood. The most important conclusion is 

that the phenol oxidation over AC seems to proceed through the formation of a 

carbonaceous layer on the AC surface. Indeed, it has been reported that during the 

CWAO of phenol over powdered AC in a semi batch slurry reactor it was impossible 

to balance the total carbon mass over the liquid and gas phase: only a certain quantity 

of the destroyed phenol was found as intermediate products in the liquid phase, or end 

product carbon dioxide [1]. Related trickle bed reactor studies using AC at 140oC and 

oxygen partial pressure ranging from 0.1 to 0.9 MPa showed an initial increase of the 

AC weight of 20% at 0.9 MPa. Then, the AC weight (as well as the phenol 

conversion) continuously decreased to result in a loss of 33% after 10 days [44]. In 

the same run, a final reduction of the initial AC surface area of about 63% occurred, 

most probably due to blockage of micropores by some organic deposit. 

A possible explanation of these results can be deduced from related studies. 

Active carbon is known to catalyze other reactions, like the oxidative 

dehydrogenation of ethylbenzene [45–47]. For these reactions, the AC surface 

functional groups oxidize the substrate and are consequently reoxidized by oxygen in 

a redox cycle, in which the functional groups present on the AC surface participate. In 

the gas phase oxydehydrogenation of ethylbenzene over AC, Pereira et al. [45–47] 

observed conversion and AC weight evolution in three-day long runs that are similar 

to the trends observed by Fortuny et al. [44] for the CWAO of phenol. The former 

authors reported the initial formation of coke deposit in the AC surface and found out 

by measurements of the total and micropore surface area that the formed coke layer 

completely blocked the micropores of AC. An elemental analysis of their carbons 

samples indicated a temporal change in its composition, i.e. a decrease of carbon 

content with a corresponding increase of oxygen and hydrogen at higher run times. 

 



 

57

Due to this composition change of the coke layer, the rate of gasification 

progressively became dominant, as the new oxygen containing surface groups formed 

with run time were shown by TPO analysis to be only effective in the coke 

gasification but not in its formation. Milder conditions of oxygen pressure and 

temperature delayed, but not avoided, both the consumption of AC and the shift of 

active surface groups to groups not available for the organic redox cycle. In the case 

of the phenol oxidation, the application of milder conditions (lower oxygen pressure) 

also had a positive effect on AC weight, as shown in Table 2-2-2, although in this 

case the activity towards phenol oxidation remained practically constant over 10 days. 

 

Table 2-2-2: Influence of the oxygen partial pressure on the carbon consumption [44]. 

PO2 (bar) 1 2 4 9 

Weight consumption (%)a -18 -3 16 33 
aWith respect to the initially active carbon loaded. 

 

Two additional trickle bed reactor runs of phenol oxidation were conducted at 

0.9 MPa using either air with a phenol free feed or pure nitrogen with a phenol feed. 

Without phenol fed to the reactor, the combustion rate of AC is greatly enhanced, 

leading to its total consumption after nine-day running. In the absence of oxygen, the 

phenol conversion dropped rapidly to zero after the adsorption step and no 

intermediates were found in the reactor effluent. Apparently, the oxygen containing 

surface groups of the AC alone are not capable of oxidizing the adsorbed phenol in 

significant quantities. Given that there are similarities between the findings of the 

work of Pereira et al. [45–47] and Fortuny [44], the assumption of the formation of a 

coke-like layer and its participation in the liquid phase oxidation of phenol seems to 

be reasonable. According to the work on the oxidative dehydrogenation of 

ethylbenzene, a redox cycle can be figured out to take place on the formed coke layer. 

However, differences certainly will arise compared to the oxidative dehydrogenation 

of ethylbenzene, because the oxidation of phenol is carried out in the liquid phase and 

seems to follow a much more complex mechanisms. For instance, the rate of 

combustion of the AC is greatly enhanced in the liquid phase and the adsorption of 

water on the AC surface also should play an important role in the coke formation 

during the CWAO of phenol. 
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2.4 Industrial application of Wet Air Oxidation 

 Some industrial applications, as summarized by Luck [48] and Kolaczkowski 

et al. [49], are given in Table 2-2-3. The major differences between each process are 

the reactor type used and the incorporation, or not, of a catalyst. 

 

Table 2-2-3: Industrial processes of wet air oxidation 

 
Process Waste type No. Plants Reactor Type T (oC ) P (MPa) Catalyst 

1) Non-catalytic system       

Zimpro sewage sludge, 

spent AC 

regeneration, 

industrial 

200 

20 

 

50 

bubble column 150−250 

200−250 

2−12 

2−12 

none 

Wetox N/Aa N/A stirred tanks 200−250 4 none 

Vertech sewage sludge 1 deep shaft  < 280 8.5−11 none 

Kenox N/A N/A recirculation 

reactors 

< 240 4.5 none 

Oxyget N/A N/A tubular jet < 300 N/A none 

       

2) Catalytic system 

2a)Homogeneous catalyst 

      

Bayer 

Loproxb

industrial >1 bubble column < 200 5−20 Fe2+

2b)Heterogeneous catalyst       

NS-LC N/A N/A monolith 220 4 Pt−Pd/ 

TiO2−ZrO2

Osaka Gas coal gasifier, 

coke oven, 

cyanide, 

sewage sludge 

N/A slurry bubble 

column 

250 7 ZrO2 or TiO2 

with noble 

or basic 

metals 
a Not available 
b This process uses organic quinone substances to generate hydrogen peroxide. 

 

 

For the heterogeneous CWAO process, in Japan, two CWAO technologies 

have been developed in the late eighty’s by Nippon Shokubai (NS-LC process) and 

Osaka Gas. Both processes rely on heterogeneous catalysts based on precious metals 
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deposited on titania or titania-zirconia carriers. Compared to standard wet oxidation, 

these processes are able to oxidize two refractory compounds, both acetic acid and 

ammonia, thus allowing direct discharge of treated water or reuse as industrial water 

[48]. 

 

2.4.1 NS-LC process  

 The NS-LC process involves a Pt-Pd/TiO2-ZrO2 honeycomb catalyst. Two-

phase flow in vertical monoliths gives in a broad range of gas-liquid velocities a very 

beneficial flow pattern, the slug flow (segmented gas-liquid flow). Since each liquid 

plug is sandwiched between two gas plugs, a recirculation pattern is developed within 

each liquid plug, which significantly improves mass transfer and prevents solids 

deposition. In addition, a thin liquid film is formed between the gas and the channel 

wall, which allows high mass transfer rates while keeping the catalyst continuously 

wetted. Typical operating conditions of the NS-LC process are at temperature of               

220 °C, pressure of 4 MPa, and space velocity of 2 h-1. In these conditions the 

oxidation of compounds such as phenol, formaldehyde, acetic acid, glucose, etc. 

reaches or exceeds 99%. In the absence of catalyst the removal efficiencies would be 

limited to 5–50% [48,49]. 

 

2.4.2 Osaka Gas process 

 The Osaka Gas CWO process is based on a mixture of precious and base 

metals (such as iron, cobalt, nickel, ruthenium, palladium, platinum, copper, and gold) 

on titania or titania-zirconia carriers (honeycomb or spheres). The operating 

conditions including temperature, pressure, and initial pH vary depending on the 

composition of the waste and required destruction efficiency, with the catalyst 

retaining activity for a long service life. For example, in the treatment of gas liquor 

wastewater from coke ovens over 11,000 h of continuous operation was obtained at 

250 oC and 6.86 MPa, with no change in catalytic activity. After a residence time of 

24 min the waste was decomposed from an initial chemical oxygen demand (COD) of 

5870 g/l to a value of less than 10 mg/l. Further, the process can be used to destroy a 

variety of wastewaters and sludge including sewage sludge, ammonium nitrate 

wastewater, domestic wastes, and pharmaceutical waste. In addition, catalysts used 

for the treatment of various nitrogen containing compounds (e.g. ammonia, 
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ammonium salts and nitrates) will achieve a virtually complete conversion of nitrogen 

content to nitrogen gas [48,49].         

Given the range of liquid flow rates commonly to be treated, continuous 

reactor operation should be considered in industrial CWAO applications. Within the 

category of common gas-liquid-solid catalytic reactors, Fixed Bed Reactors have been 

preferred over slurry or fluidised bed reactors to carry out recent CWAO studies 

[1,10,11,40,44]. 

 

2.5 Three phase fixed-bed reactors 

2.5.1 Introduction 

 In this type of reactor, the two fluid phases move over a stationary bed of 

catalyst particles. The various modes of operation of fixed bed reactors are (a) 

cocurrent downflow of both gas and liquid, (b) cocurrent upflow of both gas and 

liquid, and (c) downflow of liquid and countercurrent upflow of gas. These operations 

are schematically shown in Figure 2-2-1. The reactor, in which liquid and gas flow 

downward (Figure 2-2-1a), is referred to as a trickle bed reactor [50]. On the other 

hand, a reactor with cocurrent upflow of gas and liquid (Figure 2-2-1c) is generally 

referred to as a packed bubble-bed reactor [51]. The upflow configuration is used 

sparingly in industrial practice where trickle bed reactor is prevailed [52], because of 

its relative lower pressure drop and the absence of flooding [53].  

 

(a) (b) (c)

 
Figure 2-2-1: Schematic diagrams of three-phase packed-bed reactors  

(After Ramachandran and Chaudhari [54]) 
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 Among the three-phase gas-liquid-solid reaction systems encountered in 

industrial practice, trickle bed reactors (TBRs) are the most widely used. They are 

employed in petroleum, petrochemicals and chemical industries, in waste treatment, 

and in biochemical and electrochemical processing, as well as other applications. 

Table 2-2-4 lists some of the processes which are carried out in this reactor. 

 

Table 2-2-4 Some examples of reactions carried out in trickle bed reactors 

            1. Hydrocracking for production of high-quality middle distillate fuels [55] 

 2. Sweetening of diesel, kerosene, jet fuels, and heating oils [55] 

3. Hydrogenation: of glucose to sorbitol [56], butadiene to butene [57], from 

benzene to cyclohexane [58], and α-methylstyrene to cumene [59] 

4. Oxidation: of formic acid [60], acetic acid [61], and ethanol [62] 

 

 A comparison between the cocurrent upflow and the cocurrent downflow 

reactor is shown in Table 2-2-5. This comparison shows that the upflow reactor gives 

higher mixing (both radial and axial), higher gas-liquid mass-transfer coefficients, 

higher liquid holdup, better liquid distribution, better heat transfer between liquid and 

solid and to reactor wall, less solids plugging, and, sometimes better aging of the 

catalyst than the downflow reactor under equivalent flow conditions. However, it is 

also reported to give higher pressure drop, poorer conversion (due to axial mixing), 

more homogeneous reactions (higher liquid-to-solid ratio), larger catalyst attrition 

(due to lower mechanical stability of the bed), and more intraparticle diffusional 

effects than downflow operation (due to full internal wetting; nevertheless full 

internal wetting is the most common situation in both reactors due to capillarity). 

Partial external wetting may occur in downflow mode, especially at low liquid 

flow rate. It may have very important positive effect when the reaction process is 

limited by mass transfer of the gaseous reagent due to fast direct gas particle transfer. 

On the contrary when the main mass transfer limitation concerns the liquid reagent, 

partial wetting will have negative effects due to less solid liquid area. 
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Table 2-2-5: Upflow versus downflow cocurrent fixed bed reactors according to [63] 

 

Upflow versus downflow cocurrent fixed bed reactors 

1. Larger pressure drop in an upflow reactor 

2. Better mixing in an upflow reactor. This may give better heat transfer, but larger 

axial mixing would give poorer conversion in an upflow reactor. 

3. At low flow rates upflow behaves like a bubble column, i.e., gas as a dispersed 

phase, liquid as a continuous phase. In downflow trickle bed operation, gas is a 

continuous phase and liquid flows as a film. 

4. High pressure drop in an upflow reactor would cause significant drop in partial 

pressure of the reactant across the length of the reactor. 

5. Under similar flow conditions, a higher gas-liquid mass-transfer coefficient is 

obtained in an upflow operation than in downflow operation. 

6. High liquid holdup and liquid-to-solid ratio in an upflow reactor.  

7. At low liquid flow rate, upflow will provide better liquid distribution of liquid, and, 

in many cases, better performance of the reactor than the downflow reactor under 

similar operating conditions. 

8. If the reaction is rapid and highly exothermic, heat transfer between liquid and solid 

is more effective in an upflow reactor. 

9. In an upflow reactor, the catalyst must be kept in place by suitable mechanical 

methods; otherwise the bed will be fluidized. In a downflow reactor, the catalyst is 

held in place tightly by the flow. 

10. In an upflow reactor, the catalyst pores are more likely to be filled completely with 

liquid than in a downflow reactor. The catalyst effectiveness factor is lower when 

the catalyst pores are completely filled with liquid compared to the case when they 

are only partially filled with liquid.  

11. Better sweeping of the catalyst by liquid in an upflow reactor may sometimes give 

better aging of the catalyst. If the solid reactant were used (e.g., coal liquefaction), 

an upflow would therefore cause less solid plugging problems than in the downflow 

operation. 

12. In an upflow reactor, flooding may be a problem. 
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2.5.2 Hydrodynamics of cocurrent gas-liquid fixed bed reactor 

2.5.2.1 Flow regimes 

2.5.2.1.1 Flow regimes of cocurrent downflow fixed bed reactor  

 For cocurrent gas-liquid downflow over a packed bed, various flow regimes 

such as trickle-flow (gas continuous), pulse flow, spray flow, and bubble flow (liquid 

continuous), can be obtained, depending upon the gas and liquid flow rates, the nature 

and size of packing, the properties of the liquid and gas. Hernandez [57] classified 

flow regimes of cocurrent downflow fixed bed reactor into two main categories: 

a) The poor interaction regime 

This regime, which is also referred to the gas continuous flow regime or trickle 

flow regime, is obtained for the low gas and liquid flow rates. The liquid flows over 

the packing in the shape of films, rivulets, and drops, while the continuous gas phase 

flows in the center core of the catalyst bed [63,64].  In this regime, the flow in one 

phase is not significantly affected by the flow in the other phase. The catalyst can be 

partially externally wetted at low liquid velocities leading to hot spot problem, which 

is resulted from bad heat evacuation from exothermic reaction. When the liquid flow 

rate is increased, the catalyst will become completely externally wetted with the liquid 

film.                                                                                                                                                          

b) The high interaction regime 

This flow regime, in which significant interaction between gas and liquid 

exists, is composed of many types of flow. For the non-foaming systems, the flow 

regimes can be classified into three categories: 

- pulse flow occurs at high gas and liquid flow rates. The characteristics of this 

flow is the formation of the gas-rich region and liquid-rich region, which tend to 

propagate down the catalyst bed as pulses or waves with a frequency that depends on 

the liquid flow rate; 

- spray flow occurs at very high gas flow with relatively low liquid flow rate. 

In this flow regime, the gas phase is continuous, with part of the liquid being carried 

through the column suspended as a heavy mist in the gas stream;  

- bubble flow occurs at very high liquid flow rate and low gas flow rate. The 

liquid becomes the continuous phase and gas flows as a dispersed phase in the form of 

bubbles; but if the gas flow rate is increased, the bubbles may coalesce. 
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 In practice, industrial processes are carried out predominantly in the gas 

continuous flow regime, and also, in recent years, in the lower range of flow rates 

which correspond to the pulsing flow region [65]. Among many flow-pattern 

diagrams, which were established for the representation of different flow regimes, the 

diagram from Charpentier and Favier [66] is generally recommended (Figure 2-2-2).  
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2.5.2.1.2 Flow regimes of cocurrent upflow fixed bed reactor 

  The flow regimes for cocurrent upflow through a packed column can be 

classified in three major categories, namely: 

a) Spray flow 

The spray flow occurs at high gas flow rate with relatively low liquid flow rate 

and represents a situation where the gas is the continuous phase and the liquid is the 

dispersed phase. 

b) Bubble flow 

The bubble flow regime occurs at low gas flow rate. It is usually characterized 

by a continuous liquid phase containing small spherical bubbles, but elongated 

bubbles can be observed at medium gas flow rates.  

c) Slug flow 

The slug flow (or pulsed flow) is obtained at high gas flow rate and moderate 

to high liquid flow rate. The slug flow characteristics are alternate portions of more or 

less dense phases passing through the column. At very high gas flow rate, the zones 

merge and tend to become gas-continuous. 

 

Among many flow-pattern diagrams which were proposed to represent flow 

regimes in cocurrent upflow reactor, the diagram of Turpin and Huntington [69] is 

often recommended, although established for air-water system (Figure 2-2-3). On this 

figure was superposed the flow map of Charpentier for downflow mode. 

 

For high interaction regimes, hydrodynamics are mainly governed by inertia 

(gravity and flow direction do not play an important role), thus the hydrodynamic 

characteristics of the two flow modes become comparable [70]. 
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Figure 2-2-3: Flow regime boundaries (air-water system) for cocurrent gas-liquid 

upflow and downflow fixed-bed reactor ([70]). 

 

 

2.5.2.2 Pressure drop 

 The pressure drop is one of the main factors controlling the reactor design 

because it is directly related to the energy required to move the fluids through the bed 

and thus to the sizing of equipment for pumping and compression.  

According to Larachi [71], the major physical resistances during the time that 

gas and liquid flow through the porous catalyst are due to (a) inertia force; (b) 

frictional force; (c) static or dynamic capillary force which becomes an important 

factor if the liquid is foaming or when the size of catalyst particles is small enough; 

and (d) gravity force. The importance of these forces depends on the flow regime in 

the reactor. Thus, in the high interaction regime, the flowing resistance is mainly 

controlled by the gas flow through the reactor; while in the poor interaction regime 

(trickle flow in cocurrent downflow fixed bed reactor), the frictional force, capillary 

force, and gravity force are the parameters that controlled the flowing resistance. 

 The total pressure drop is composed of both static component (gravitational 

term) and dynamic component (provoked by the two-phase flow through the catalyst 

packing). Table 2-1A (in the Appendix) proposes some correlations for estimating the 
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pressure drop in both the cocurrent downflow (references [69,72–75]) and upflow 

fixed bed reactors (references [69,71,76]). 

 In general, two different approaches are proposed to correlate the two-phase 

pressure drop in cocurrent gas-liquid fixed bed reactor. The first approach follows the 

method of Lockhart-Martinelli who defines two-phase pressure drop using single-

phase pressure drops of each fluid, determined at the same flow rate as that in two-

phase flow [77]. Generally, the single-phase pressure drops can be calculated by the 

Ergun equation. The second approach regroups empirical correlations based on 

operating conditions, fluid and bed characteristics, and their application domain is 

therefore limited [69–71]. 

 Literature reports the following conclusions concerning the influence of the 

operating parameters on two-phase pressure drop: 

(a) liquid and gas flow rates  

Two-phase pressure drop is an increasing function of both gas and liquid flow 

rates, the latter having the largest effect [71,76]. 

(b) liquid properties 

Physico-chemical properties of the liquid phase (e.g. viscosity, surface 

tension, foaming or non-foaming behavior) influences two-phase pressure drop. For 

example, an increase of liquid viscosity can provoke a significant pressure drop in the 

reactor [71,77].   

(c) catalyst size and reactor diameter 

Pressure drop is a decreasing function of particle size, while the influence of 

the column diameter is found negligible when DC/dp > 18 [76]. 

(d) operating pressure and gas properties 

At constant gas and liquid mass flow rates, an increase of operating pressure 

results in higher gas density and thus lower gas superficial velocity and inertia, 

leading to a pressure drop decrease. On the contrary, when superficial velocity is kept 

constant, rising the reactor pressure will increase gas mass flow rate and thus pressure 

drop [71]. 

When the pressures of gases of different molecular weights are set to have 

equal densities at constant liquid throughputs, they bring about identical pressure 

drops  [68]. 
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Larachi [71] also studied in both two flow directions the effect of gas viscosity 

on the pressure drop, and found that the gas viscosity did not affect the pressure drop. 

(e) flow direction 

The comparison between downward and upward flow showed that, for the 

same operating conditions, upflow fixed bed reactor always gives higher pressure 

drop [78].  

However, for high liquid and gas flow rates, the contribution of static 

component tends to be negligible, and the total pressure drops in upflow and 

downflow reactor become comparable [78]. Moreover, Yang et al. [79] found also an 

hydrodynamic similarity between both modes of operation in high interaction regime, 

so that the correlation of Ellman et al. [73], originally developed for trickle beds, 

could satisfactorily fit their pressure drop results in upflow mode for non-foaming 

liquids.  

 

2.5.2.3 Liquid holdup 

 Liquid saturation (or holdup) plays a fundamental role in hydrodynamics as 

well as in mass and heat transfers, in both downflow and upflow cocurrent fixed-bed 

reactors. From the hydrodynamic viewpoint, it is affected strongly by the flow regime 

occurring in the reactor. Liquid saturation also affects both wetting efficiency and 

mass transfer: high liquid saturations are needed for the processes in which reaction 

occurs exclusively on the wetted catalyst. However, a low value is desirable if both 

gas-solid and liquid-solid reactions can occur [63,80]. Furthermore, numerous 

reactions are exothermic, for which the knowledge of liquid saturation becomes 

necessary to prevent hot spots and thermal runaway [80]. 

 The total liquid holdup, εL, is the total volume of liquid held in the reactor bed 

per unit bed volume. An alternative definition, sometimes referred to as the liquid 

saturation, is the total volume of liquid held in the reactor bed per unit void volume, 

βL. These two definitions are related as follows: εL = βLε (where ε is the bed void 

fraction) [81].  

For a bed of porous particles the total liquid holdup may be divided into the 

internal or intraparticle holdup (εL,int or εL,int) and the external or interparticle holdup 

(εL,ext or εL,ext). The latter can be divided into a dynamic holdup (εL,dyn) and a static 
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holdup (εL,sta). The dynamic holdup can be taken as that volume of liquid in the 

reactor which is continually being renewed, whereas the static holdup is defined as the 

amount of liquid at the contact points between particles and between particles and 

reactor wall, that remains in the bed after the liquid inlet is shut off and the column is 

allowed to drain [82]. 

εL,tot = εL,int +  εL,ext = εL,int + εL,dyn +  εL,sta

Table 2-2A (in Appendix) proposes some correlations for calculation of liquid holdup 

or liquid saturation in fixed bed reactors (references [69,72,81–86]). 

The static liquid holdup is the result of the balance between capillary and 

gravity forces and can be related to the Eötvös number: 
L

2
pLgd

Eö
σ

ρ
= [74]. 

 According to numerous studies on different operating parameters related to 

liquid holdup, we can summarize some influences on total or dynamic liquid holdup 

in cocurrent downflow and upflow fixed bed reactors as follows: 

(a) liquid and gas velocities 

Total liquid holdup is an increasing function of liquid superficial velocity and 

a decreasing function of gas velocity in both two flow directions.  In upflow, Larachi 

[71] and Yang [77] confirmed that the effect of gas velocity is more important than 

liquid velocity, while in downflow liquid holdup is largely influenced by liquid flow 

rate [71]. Similarly, in downward flow, the dynamic fraction of the liquid ϕ = εL,dyn / 

εL,tot increases when increasing liquid velocity, while this fraction is much less 

dependent of the liquid velocity in upflow mode [87].  

(b) particle size and reactor diameter 

According to Gutsche [88] and Goto et al. [89], a larger particle diameter 

would result in a higher liquid holdup in upflow mode, while the column diameter 

does not influence this parameter [77]. 

(c) liquid properties 

Liquid holdup is generally slightly increased when increasing the liquid 

viscosity in both flow directions [71,81]. However, Yang [77] did not observe any 

significant effect of this parameter on liquid saturation for cocurrent upflow (the more 

viscous liquid they studied was a 4 mPa.s liquid). 
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Foaming liquids lead to lower liquid holdups than non-foaming ones [77]. In 

general, in upflow reactor, liquid holdup is slightly improved by increasing liquid 

velocity, but Yang et al. [77] reported the opposite effect for foaming liquids. 

(d) operating pressure and gas properties 

Liquid holdup was found to be a function of operating pressure [74,75,80,81, 

84,85,90,91]. Larachi [71] and Larachi et al. [80] reported that, for given gas and 

liquid mass flow rates, an increase of total pressure increases liquid retention. This 

can be explained by the fact that the same gas mass flow rate would occupy less space 

under elevated pressure. However liquid retention is pressure-independent for very 

low gas velocity in trickle beds (uG ≤ 1 cm/s) [80].  

Gas viscosity appears to have little effect on liquid holdup [81]. 

(e) flow direction 

Total liquid saturation obtained in upflow is always larger than that measured 

under the same conditions in downflow regardless of the operating pressure [85]. At 

high gas superficial velocities (uG > 0.1 m/s), the authors observed that liquid holdup 

becomes independent of the flow direction. Such an asymptotic behavior was pointed 

out by Yang et al. [79] who showed the hydrodynamic equivalence between the high 

interaction regimes observed for both flow modes. 

 

2.5.2.4 Axial dispersion in the gas and liquid phases 

 The design of trickle bed reactors is usually based on the assumption of plug 

flow, that is, all reactants reside in the reactor for the same time, as determined by the 

flow rate and bed volume. However, different phenomena can result in deviations 

from the ideal plug flow (e.g. non-uniformity of the velocity profiles, flow turbulence, 

wall effect), and this is usually treated as axial dispersion [92]. Many theoretical 

models concerning these deviations were proposed in the literature for the explanation 

of axial dispersion [57,63]. The axial dispersion plug flow model is the simplest and 

the most popular one among the proposed models [57,93]. The axial flux describing 

the axial dispersion plug flow model is:  

 − CuF ×=
z
CDZS ∂

∂  

where u is the superficial velocity of the fluid and Dzs the axial dispersion coefficient 

based on superficial velocity.  
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Generally, a dimensionless number is defined to characterize the extent of 

axial dispersion, either based on the particle size (Bodenstein number, Bo, for 

correlations), or the reactor length (Peclet number, Pem, for reactor performance 

calculations): 
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Although axial dispersion can occur in both gas and liquid phases, gas-phase 

dispersion is not ordinary of concern in cocurrent gas-liquid fixed-bed reactor, where 

gas plug flow may be assumed, because axial profiles of concentration in the gas 

phase are usually much flatter than those in the liquid phase [92].  

The liquid axial dispersion coefficient increases with an increase of the liquid 

flow rate. In the case of downflow reactor, gas flow rate has nearly no influence on 

the liquid axial dispersion. Conversely, in upflow mode, Dzs depends also on the gas 

flow rate [63,94].  

 

2.5.2.5 Catalyst wetting 

 As mentioned in Table 2-2-5, partial wetting of the catalyst may occur in 

down flow and its effects are positive if the overall reaction rate is controlled by mass 

transfer of the gaseous reactant and negative in other cases. The catalyst wetting 

efficiency depends upon the liquid holdup as well as proper distribution of liquid. 

Generally, in commercial trickle bed reactors, all the catalyst particles are completely 

wetted by the liquid, while, in the lab-scale reactors, liquid velocities are low and the 

liquid flows downwards in form of rivulets, which tend to maintain their position with 

time. Some particles are covered with a trickling liquid film while others, although 

internally wet, are without a liquid film on the surface. This type of flow 

nonuniformity causes an ineffective wetting of the particles [63]. In general, catalyst 

wetting can be classified into two types:  

(a) internal wetting or pore filling, (i.e. the liquid volume inside the catalyst 

pores). It defines the amount of internal (active) surface potentially available for the 

reaction. As catalyst pellets are almost always porous, internal wetting is in most 

cases eventually total, due to capillary effects;  
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(b) external effective wetting, (i.e. the amount of external area of the catalyst 

effectively contacted by the flowing liquid). Unlike internal wetting, the external 

catalyst wetting efficiency increases with the liquid velocity and is unity only at high 

liquid velocities [63,95].  

Depending on the flow pattern of the flowing liquid in the trickle flow regime 

(in downflow reactor), the catalyst can be partially externally wetted at low liquid 

velocities or completely externally wetted at higher liquid velocities, as illustrated in 

Figure 2-2-4. 

Recent work at LGC Toulouse proves the nature of the liquid-solid interface to 

have more effect on the wetting efficiency than the liquid flow rate on a monolayer of 

beads: at high contact angle (close to 90°), corresponding to poor solid-liquid affinity, 

the wetting efficiency is much less than at low contact angle even at much higher 

liquid flow rate.   

 

 
Figure 2-2-4: Flow patterns in trickle flow regime for externally completely and 

partially wetted particles. (After Al-Dahhan and Dudukovic [64]) 
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2.5.3 Mass transfer 

 In gas-liquid-solid catalytic reaction, there are many different mass transfer 

steps between phases. Consider a reaction with two reactants (one gas, A, and one 

liquid, B) that generated a nonvolatile product, and a fully externally wetted catalyst, 

the total process may be divided into the following steps: 

1. Transport of reactant A within the gas phase. 

2. Mass transfer of reactant A from the bulk gas phase to the gas-liquid interface. 

3. Mass transfer of gas reactant A from the gas-liquid interface to the bulk liquid 

phase. 

4. Transport of reactants A and B within the bulk liquid phase. 

5. Mass transfer of reactants A and B in the liquid film to the external surface of 

the catalyst particles.  

6. Intraparticle diffusion of reactants A and B into the catalyst pores. 

7. Adsorption of reactants A and/or B on the catalyst active sites. 

8. Reaction on the catalyst. 

9. Desorption of product from the catalyst. 

10. Intraparticle diffusion of product in the catalyst pores. 

11. Mass transfer of the product in the liquid film from the catalyst surface. 

12. Transport of the product within the bulk liquid. 

 

When reactant in the gas phase is highly soluble in the liquid phase, the gas-side 

film resistance at the gas-liquid interface is negligible comparing to the liquid-side 

film resistance. When all mass transfer resistances have to be considered, the typical 

concentration profiles of the gaseous reactant A and liquid reactant B are shown in 

Figure 2-2-5. 
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Figure 2-2-5: Concentration profiles for the gaseous reactant A  

and liquid reactant B. 

 

 

2.5.3.1 Gas-liquid mass transfer 

 Generally the molar flux of gas reactant A at the gas-liquid interface can be 

written as:  

NGL = KLa (C*
L – CL) = kLa (Ci

L – CL) = kGa (CG – Ci
G) 

With  a  = gas-liquid interfacial area 

Ci
G, Ci

L = respectively gas-side and liquid-side concentrations of 

reactant A at gas-liquid interface 

CL = concentration of reactant A dissolved in the liquid 

CG = concentration of reactant A within the gas phase 

C*
L = saturation concentration of reactant A in the bulk liquid 

kG, kL = respectively gas-side and liquid-side mass transfer 

coefficients at the gas-liquid interface 

kLa = volumetric liquid-side mass transfer coefficient 

KL = overall gas-liquid mass transfer coefficient 

 

According to the two-film concept, with assumption of thermodynamic 

equilibrium at the gas-liquid interface, the overall gas-liquid mass transfer coefficient 

is related to the liquid-side and gas-side coefficients as follows: 
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ak
1

akHe
1

aK
1

LGL
+

×
=  

 (He =  Henry constant of gas reactant defined as the ratio Ci
G/Ci

L). For the case of the 

pure or sparingly soluble gases, KLa is not much different from kLa.  

 

 Gas-liquid mass transfer depends mainly on liquid and gas flow rates, catalyst 

characteristics, and liquid properties. It may be obtained by absorption measurements 

with or without chemical reaction. 

Many correlations were established for the cocurrent gas-liquid fixed-bed 

reactors. Table 2-3A (in the Appendix) lists the most representative ones (references 

[78,96–106]).  

  

The following conclusions emerge from a literature survey on gas-liquid mass 

transfer in fixed bed reactors: 

 In downflow mode, kLa and a decrease when decreasing gas and liquid 

throughputs, increasing particle size or decreasing liquid viscosity [97,102,103]. 

 In upflow mode, same trends are observed, excepting that kLa seems to 

slightly decrease when increasing liquid viscosity [106]. 

Regarding the pressure effect, it was observed in trickle beds that, at constant 

gas and liquid mass flow rates, kLa and a decrease when gas density is increased. For 

gas superficial velocities about 10 mm/s, neither kLa nor a depends on gas density and 

can be estimated at atmospheric pressure. Above this limit, when gas superficial 

velocity is kept constant, kLa and a are improved by increasing gas density [106]. 

Gas-liquid mass transfer is also influenced by a flow direction; it is generally 

reported that the upflow mode results in larger kLa [78,98]. In low interaction regime, 

kLa was found to be greatly affected by gas flow rate in upflow mode, while in 

downflow mode kLa depended mainly on liquid velocity [98]. 

 

2.5.3.2 Liquid-solid mass transfer 

 The general expression for the reactant molar flux at the liquid-solid interface 

is written as:  

 NLS = kLS aLS (CL– CS) 
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Where  kLS  = liquid-solid mass transfer coefficient 

 aLS = liquid-solid interfacial area per unit reactor volume 

 CL = reactant concentration within the liquid phase 

 CS = reactant concentration at the catalyst surface 

 

 Liquid-solid mass transfer depends also mainly on liquid and gas flow rates, 

particle characteristics, and liquid properties. 

 In downflow mode, kLSaLS is a decreasing function of the particle size 

[107,108] and an increasing function of the liquid flow rate. Concerning the gas flow 

rate, its effect is small in the poor interaction regime, but it greatly improves liquid-

solid mass transfer in the pulse regime [97,107]. 

In upflow mode, kLSaLS is an increasing function of the gas flow rate, even at 

low flow rates [108]. At same gas and liquid velocities, upflow mode leads to higher 

liquid-solid mass transfer than downflow mode [98,108]. 

 

2.5.4 Heat transfer 

 Trickle bed reactors are usually considered as adiabatic reactors with a flat 

radial temperature profile in their main applications of hydrotreatment. In large 

industrial units, however, considerable radial temperature gradient can exist, 

especially when heat losses are significant or when large reaction heat fluxes are 

produced in other applications. Many papers on fixed bed reactors have been 

published, but very few dealt with heat transfer phenomena.  

 Models proposed in literature consist of: 

(a) one-parameter model (an effective radial thermal conductivity of the bed, 

Λr) 

(b) two-parameter model (Λr and a wall heat transfer coefficient, hW) 

It is generally assumed that there is not any significant temperature difference 

between the phases (homogeneous model) and the heat axial dispersion is negligible. 

  Lamine et al. [109] studied heat transfer in upflow fixed bed reactor. They 

reported that for small particles (dp = 2 mm), heat transfer was well described by the 

one-parameter model, while in the case of large particles (dp = 6 mm), the wall heat 

transfer resistance became important and should be included.  
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Λr and hW are increasing functions of the liquid flow rate, but the effect of the 

gas flow rate is more complex and depends also on the flow regime [109–111]. 

Studies on the effect of the flow direction reported that heat transfer is 

generally improved in upflow mode [109,112]. Nakamura et al. [112] obtained for the 

upward flow radial thermal conductivity and wall heat transfer coefficient values up 

to four times larger than for the downward flow. 

 

2.5.5 Application of fixed bed reactors to the CWO of phenol  

Literature provides successful examples of CWO of phenol in continuous 

fixed bed reactors, most often trickle bed reactors. Some of the most relevant studies 

are summarized below. 

The Tarragona group (Fortuny et al. [10,37,113], Eftaxias [4], and Eugenia 

Suarez-Ojeda et al. [13]) published about ten articles on this topic. 

Fortuny et al. [10,37,113] compared different types of catalyst in a lab-scale 

trickle bed reactor (20 cm long and 1.1 cm i.d.) to evaluate the catalyst activity and 

stability, and found that a commercial supported copper oxide (Harshaw Cu0803 

T1/8) and a wood-based active carbon (Merck AC) were suitable for the continuous 

treatment of phenolic wastewater under mild conditions of air pressure (< 5 MPa) and 

temperature (< 160 oC). However, the Cu0803 underwent a rapid deactivation by 

losing the active species as a consequence of its poor stability in the hot acidic 

aqueous medium. Thus, after a short induction period (24 h), the highest phenol 

conversion was of 78% (PT = 4.7 MPa (PO2 = 0.9 MPa), T = 140 °C, and WHSV = 2.4 

h-1), and then it felt sharply to stabilize at a remaining phenol conversion of 30% after 

240 working hours. The AC catalyst gave higher phenol conversion despite working 

at much higher liquid WHSV (8.2 h-1), but it also presented a progressive fall in 

phenol conversion. Thus, the phenol conversion went from an initial 100% to final 

48% in 240 h tests. It was observed that 33% (in weight) of initial AC was consumed 

by combustion during the runs and that AC surface area was nearly divided by 3, 

which, besides some decrease of catalytic efficiency, explained the loss of activity 

observed. However, this carbon loss was found to be faster in absence of phenol, 

suggesting phenol and carbon oxidation to be competitive reactions. Both catalytic 

substances showed similar selectivity to carbon dioxide, about 70%, even AC yielding 

higher phenol conversion than Cu0803. The selectivity to harmful partial oxidation 
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products was lower for AC, approximately 5%, than for Cu0803, around 12%, thus 

indicating the beneficial effect of the AC on the product yield. Lowering the oxygen 

partial pressure from 9 bar to 2 bar allowed to highly reduce the AC combustion, 

while maintaining acceptable phenol conversion. The authors also reported that the 

physical properties and the source of the active carbon could be hardly related to the 

phenol conversion, suggesting that the catalytic performance of the active carbon was 

rather related to the chemical surface characteristics, in particular, to the number and 

type of oxygen-containing groups. 

Eftaxias [4] used also both copper oxide and AC catalysts in same lab-scale 

reactor and found that the mechanism over AC differed from that over the CuO 

catalyst, proceeding via two distinct routes: one in agreement with classical pathway 

to give benzoquinone then lower molecular-weight compounds intermediates to final 

carbon dioxide and water, the other conducting to the formation of 4-hydroxybenzoic 

acid which was not detected in the previous works. As found previously, AC 

exhibited both stable and higher activity compared to cupper oxide catalyst. In 

tricking flow, almost complete phenol conversion (> 99%) along with a COD 

reduction of 85% were obtained at low space times (0.4 h), 160 °C and low oxygen 

partial pressures ranging from 0.1 to 0.2 MPa. At low conversion of phenol, 

mineralisation of reacted phenol to CO2 and H2O was almost complete, while the 

difference between phenol and COD conversion became larger as the phenol 

conversion increased. The main intermediates detected were 4-hydroxybenzoic acid, 

benzoquinone, maleic acid, formic acid, and acetic acid as well as traces of 

hydroquinone and oxalic acid. Also, downflow mode of gas-liquid resulted in 

considerably higher conversions than upflow mode for all operating conditions tested 

due to the positive effect of partial catalyst wetting and gaseous oxygen being the 

limiting reactant. The experiments in the small TBR were shown to be kinetically 

controlled by the typical diagnostic criteria and served thus to assess the reaction 

kinetics of phenol and intermediate oxidation by non-linear regression. 

A recent experimental study [13] indicated that CWAO over AC trickle bed 

reactor was also active for different toxic pollutants, such as o-cresol, 2-chlorophenol, 

and dodecylbenzene sulfonate, giving conversions between 30 and 55% at 140 °C, 

13.1 bar total pressure, and 8.2 h-1 WHSV. The selectivity to the production of carbon 

dioxide was very high with total organic carbon abatement between 15 and 50%. 
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 Tukac et al. [114,115] studied the impact of partial wetting on CWO of phenol 

in trickle bed reactor by using two different catalyst beds: a bed of randomly filled 

catalyst, and a catalyst bed diluted with fine inert particles (to avoid liquid 

maldistribution and improve catalyst wetting). In steady state operation mode, with 

temperature range of 125 to 170°C and total pressure of 1 to 7 MPa, they found that at 

low residence time values the highest conversion was obtained from the undiluted 

catalyst bed. The authors explained this result by the enhanced oxygen transfer from 

gas phase to catalyst surface on the dry zones existing in the undiluted bed. They also 

found that periodic ON-OFF modulation operated on the undiluted bed could 

significantly improve phenol conversion in comparison to that measured in the steady 

state operation at the same mean feed rate. 

 

 Singh et al. [116] performed CWO of phenol over CuO/Al2O3 catalyst in a 

2.54 cm diameter trickle bed reactor with a bed length of 60 cm. They obtained higher 

phenol conversions with computer designed shape pellets compared to extrudates due 

to the reduction of wall effects. Phenol conversion was affected by the liquid and gas 

flow rates (respectively in the range of 0.6 to 1.2 l/h and 0.03 to 0.07 kg/m2/s). Phenol 

destruction decreased with the increasing of liquid flow rate, while gas flow rate had 

however a marginal effect. Phenol conversion increased when temperature and reactor 

pressure increased. However, the temperature having more significant effect on the 

conversion. An axial dispersion model assuming full catalyst wetting explained their 

experimental results with a deviation of ± 15%. 

 



CHAPTER III 

 

EXPERIMENTAL SECTION: MATERIALS AND METHOD 

 

3.1 Materials  

Analytical grade phenol was obtained from Scharlau and used without further 

purification. Phenol solutions (53 mmole/l or 5 g/l) were prepared in bidistilled water 

and used as feed solution. High purity synthetic air, oxygen, and nitrogen were 

obtained from Linde Gas. Activated carbon (AC) was supplied by Merck (Reference 

No. 2514) in the form of 1.5 mm pellets. This AC is obtained from wood and has low 

ash content (3.75%). Prior to use, the AC was sieved to obtain the 1.25−1.60 mm 

fraction, which was selected as catalyst throughout this experiment without further 

treatment. Other properties of the AC are reported in Table 2-3-1. 

 

Table 2-3-1: Physical properties of Merck activated carbon 2514 

Sieved particles size (mm) 1.25−1.6 

Volume weighted mean diameter, D[4,3] (mm) 1.025 

Carbon density (g/l) 2000 

Apparent density (g/l) 935 

Pore volume (cm3/g) 0.57 

BET specific surface area (m2/g) 975 

Average pore diameter (nm) 2.3 

 

 

3.2 Characterization of products 

The reaction products were analyzed and quantified by a Thermofinnigan 

HPLC equipment using a ProntoSIL C18 reversed phase column and a UV detector. 

The products were identified by comparison with pure compounds purchased from 

Aldrich. The chemical oxygen demand (COD) of reaction products was recorded 

using a Hach spectrophotometer operating at 620 nm. 
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3.2.1 HPLC analysis 

The reaction products were analyzed by two methods: (a) fast analysis method 

(lasting less than 10 minutes) for the analysis of phenol concentration in the reaction 

products until the steady state was reached (only phenol peak was well separated from 

the others); and (b) full analysis method for the analysis of intermediate 

concentrations.  

Both methods were analyzed using the Thermofinnigan HPLC system 

equipped with a degas unit (model SCM1000), an isocratic pump (model P1000XR), 

an autosampler (model AS1000), a ProntoSIL C18 reversed phase column (250 mm × 

4 mm × 5 µm), and a UV detector operating at the absorbance of 254 nm for fast 

analysis and 210 nm for full analysis. Prior to injection into the analytical HPLC 

column, the collected reaction samples were diluted with bidistilled water in order not 

to overload the column. In the case of fast analysis sample preparation, 0.15 g of 

reaction solution was weighed into 2 ml vial and made up the volume with bidistilled 

water to obtain the final solution at 1.0 g. In the case of sample preparation for full 

analysis, 0.7 g of reaction solution was diluted with bidistilled water to 1.0 g of the 

final solution. 

 The conditions of fast analysis for the determination of phenol concentration 

before reaching the steady state were as follows. Isocratic mobile phase was a mixture 

of solutions A and B (70:30, v/v). Solution A was ultra pure water adjusted pH with 

H3PO4 to pH 2.5, while solution B was acidified acetonitrile. The column was 

thermostated at 30 °C and a total flow rate of 1 ml/min was employed. UV detector 

was set at 254 nm. A sample volume of 10 µl was injected for each analysis.  

Prior to each oxidation experiment the phenol calibration curve was checked 

to correct deviations in peak area, which could be caused by small changes in column 

performance. 

For the full analysis, longer analysis and mobile phase gradients had to be 

operated to separate intermediate reaction products: 0−3 minutes isocratic of 100% of 

solution A; 3−16 minutes linear mobile phase gradient from 100% of solution A to a 

mixture of solutions A and B (60:40, v/v); and 16−25 minutes isocratic of a mixture 

of solutions A and B (60:40, v/v). UV detector was set at 210 nm. Total flow rate, 
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column temperature, and sample volume were similar to the values described 

previously.  

The intermediates in the reaction products were identified by comparison with 

their corresponding pure commercial samples. Then, the calibration curves for each 

intermediate detected were established in the concentration ranges that they were 

found in the reaction products. 

 

3.2.2 Determination of chemical oxygen demand (COD) of reaction products 

 The COD of reaction solution was measured by the reactor digestion method 

(Hach method 8000). The mg/l COD results were defined as the mg of O2 consumed 

per liter of sample solution under the conditions described in this procedure. In this 

method, the sample was heated for 2 h with a strong oxidizing agent, potassium 

dichromate. Oxidizable organic compounds reduced the dichromate ion (Cr2O7
2-) to 

green chromic ion (Cr3+). The amount of Cr3+ produced was subsequently determined 

colorimetrically using a UV spectrophotometer operating at 620 nm and expressed as 

COD. The COD reagent also contained silver and mercury ions. Silver acted as a 

catalyst, and mercury was used to form complex with the chloride interferences. 

Prior to use, each reaction solution was diluted by weighing 1.66 g of sample, 

and then made up to 25.0 g with bidistilled water to obtain solutions with the COD 

ranges of 0−1500 mg/l. The COD reactor was turned on and preheated at 150 oC. 2 ml 

of diluted solution (or bidistilled water for blank preparation) was precisely pipetted 

into the COD digestion reagent tube. The closed tube was inverted gently several 

times to mix the contents, and placed in the preheated COD reactor to be heated for          

2 h at 150 °C. The tubes were then cooled down to room temperature and carefully 

cleaned with a paper towel before analysis. The blank was first placed into the 

spectrophotometer to set the zero. 

The accuracy of the method was checked by analyzing standard phenol 

solutions at respectively 1 g/l, 3 g/l, and 5 g/l, for which expected COD were obtained 

within ± 5%. 
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3.3 Catalytic reactors  

The fixed bed reactor, originally developed by Stüber [117] for the study of 

hydrogenation selectivity of cyclododecatriene in cocurrent upflow fixed bed reactor, 

was adapted to study the continuous oxidation of phenol in both upflow and 

downflow of gas and liquid. This fixed bed reactor was composed of two distinct 

parts: the main circuit of reaction (air or oxygen and phenol solution) and the 

temperature-controlling circuit of the reactor (controlled by the circulation of thermal 

oil).  

In parallel to the continuous CWAO of phenol, the evaluation of the reaction 

kinetics was performed in a stirred semi-batch autoclave. 

 

3.3.1 Autoclave reactor 

3.3.1.1 Description 

For the determination of kinetic parameters, batch phenol oxidation was 

performed in a 300 ml-stirred autoclave (Parr Instruments) using uncrushed 1.5 mm 

AC pellets to minimize fast and continuous catalyst deactivation as reported with 

powder in previous studies [1].  

The Hastelloy C-276 reactor was equipped with a gas inducing turbine with 

variable stirring speed up to 2000 rpm. The equipment was provided with automatic 

temperature control and pressure recording system. The temperature of the liquid in 

the reactor could be maintained within 1 K, by means of a PID regulator controlling 

the heating power of the annular furnace and the opening time of an electro-valve 

allowing cold water to enter the serpentine coil. 

The AC pellets were placed in an annular fixed basket around the turbine in 

order to prevent catalyst attrition.  

The gas outlet was equipped with a mass-flow controller to ensure a 

continuous renewing of the reactor gas phase, and a condenser to prevent the 

vaporizations of solvent and light products. 

A schematic diagram of the apparatus is shown Figure 2-3-1.  
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Figure 2-3-1: Schematic diagram of an autoclave reactor 

1 gas inducing turbine, 2 hollow tube, 3 gas mass-flow controller, 4 pressure 

transducer, 5 Pt-100 probe, 6 cooling serpentine coil, 7 furnace, 8 gas reservoir, 9 Pt-

100 probe, 10 pressure transducer, 11 pressure regulation valve, 12 liquid sampling 

valve, 13 condenser, 14 catalyst basket, 15 magnetic drive 

 

3.3.1.2 Operating the reactor 

Kinetic experiments of phenol oxidation were carried out batchwise for the 

liquid and continuous for air at a flow rate of 60 Nl/h to ensure a constant oxygen 

partial pressure (a calculation from initial reaction rate gave an O2 consumption of 

0.22 Nl/h for the reference conditions: T = 150°C, PO2 = 3.3 bar). The reactor was 

loaded with 9 g of AC pellets disposed in the fixed basket and 200 ml of 2.5 to 5 g/l 

phenol solution. To pre-saturate the catalyst, the reactor was pressurized with nitrogen 

and heated under mild stirring to the desired reaction temperature. After 2.5 h, when 

adsorption equilibrium was reached, a liquid sample was taken to measure the initial 

phenol concentration. Then, the stirring was turned off and nitrogen was carefully 

purged and replaced by fresh air. Once the required air pressure was reached again, 

vigorous stirring was switched on to start the reaction. The stirrer speed had been set 

at 800 rpm such as to avoid on one hand catalyst attrition and on the other hand 
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eventual external mass transfer limitations. During the course of reaction, liquid 

samples were periodically taken, filtered, and immediately analyzed by the HPLC to 

get the evolution of phenol concentration. 

The same AC sample was used for the entire series of 15 experiments. 

Activity tests were regularly performed to ensure that only experimental results at the 

same catalytic activity were used for the kinetic modelling.  

Physical damage of the catalyst due to attrition was not detected. The 

withdrawn liquid samples had been found all free from suspended fine solids, and a 

granulometry analysis of the used AC showed that the particle size had not changed 

after reaction experiments. 

 

3.3.2 Fixed bed reactor 

3.3.2.1 Description 

3.3.2.1.1 Principal circuit of reaction 

 The schematic diagram for an experimental set-up of the fixed bed reactor is 

presented in Figure 2-3-2. The reactor unit consisted of a jacketed packed-bed 

stainless steel column (1) with an inner diameter of 2.5 cm and a bed height of                 

120 cm. The column was filled with 326 g of activated carbon (1.25–1.60 mm sieved 

fraction). A flexible grid was put at the top of the reactor to prevent fluidization of 

particles during the upflow mode operation. 
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Figure 2-3-2: Schematic diagram of cocurrent gas-liquid fixed bed reactor 

1 jacketed packed bed column, 2 gas-liquid separator, 3 liquid storage tank,                        

4 condenser, 5 gas mass-flow controllers, 6 feed tank, 7 balance, 8 dosing pump,                    

9 sampling device, 10 liquid sample valves, 11 pneumatic valve, 12 expansion vase, 

13 gear pump, 14 heater, 15 cooling exchanger, V1-V5 three-way valves for up- or 

downflow mode 

 

 The liquid was fed to the column by a dosing pump (8). The liquid flow rate 

was controlled by adjusting the graduating valve (and/or motor frequency) of the 

calibrated pump. This flow rate was also checked by measurement of the mass of the 

feeding tank that was placed on a balance (0−16 kg). The liquid was mixed with 

synthetic air or a mixture of O2 and N2 before entering the catalyst bed. The mass 

flow rate of each gas was controlled by a Brooks mass flow controller (0−500 Nl/h) 

(5). 
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The fluid circulation mode (upflow or downflow) was controlled by five 

valves located along this circuit. Eight liquid sampling valves (10) and nine 

temperature sensors were located along the reactor length in order to measure the 

axial concentration and temperature profiles under non-isothermal conditions and 

wall-to-bed heat transfer in both modes of operation. One of these sensors was made 

of three thermocouples to monitor radial temperature gradients. Other sensors were of 

the type Pt100-resistance thermometers. Temperatures were monitored using a data 

acquisition system implemented in a microcomputer. Additionally, there was a 

sampling device (9) connected directly to the bottom of the gas-liquid separator to 

collect liquid only, and to the N2 line for drying. 

Soon after the two-phase mixture was running off the column, it was directly 

separated in a stainless-steel gas-liquid separator (2) equipped with a pressure 

transducer for controlling the pressure of the system (West PID regulator). After gas-

liquid separation, the liquid was kept in an 8 l stainless-steel receiver (3), while the 

gas went through a condenser (4) to recover light organic compounds and was 

eventually diluted with N2, in order to obtain a N2:O2 ratio close to air, before 

releasing to the atmosphere. 

 

3.3.2.1.2 Temperature control circuit 

 Temperature control in the reactor was achieved by the fast circulation of a 

heating oil, Marlotherm S (whose properties are shown in Appendix 2-4A), in the 

jacket of the reactor. This oil was circulated at a nearly constant temperature in a 

closed loop system by a gear pump (13) (Pmax = 0.5 MPa, maximum flow rate = 2.5 

m3/h).  

 The temperature controlling circuit of the Marlotherm was composed of: 

1) Three heat resistances of 2 kW (14) 

2) A stainless-steel multiple tube exchanger (15), with refrigerated water 

flowing countercurrent to the oil in order to cool it 

3) A three-way valve, which distributed the oil flow to the cooling exchanger 

(15), and/or to a simple tube  

4) A PID regulator (Eurotherm 818) self-adjustable and self-adapting, that 

continuously commanded, according to the difference between set-point 
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and actual oil temperature measured at the jacket inlet, the heating power 

as well as at the opening position of the three-way valve.  

 

3.3.2.1.3 Data acquisition 

Rough data signals of temperatures, pressure, gas flow rates, and mass of the 

feeding tank were sent to an interface and acquisition card (Analog Device RTI 820), 

connected to a microcomputer (Pentium III 550 MHz). A data acquisition software 

(DASYLab 7) allowed both visualising on the PC screen and recording time-

evolutions of the measured variables. 

 

3.3.2.2 Procedure for operating continuous oxidation reactor 

3.3.2.2.1 Catalyst packing  

 The loading of catalyst was carried out by a slow introduction of the particles 

into the column, followed by a vibration at the wall of the reactor, in order to get a 

uniform distribution of the catalyst particles. 

After packing, the reactor was checked for leaks by pressurizing the system 

with nitrogen or air up to working pressure. 

 

3.3.2.2.2 Operating the reactor 

The start up of oxidation experiment series consisted in saturating the AC bed 

with the 5 g/l phenol solution (operating either at reaction temperature and under 

pressure with cocurrent nitrogen flow, or at room temperature and atmospheric 

pressure with no gas flow). During transient adsorption, samples were regularly 

withdrawn at the reactor outlet and analyzed by the HPLC to monitor the 

experimental breakthrough. 

Typical operation of continuous CWAO (either in upflow or downflow mode) 

proceeded then as follows.  

First, the reactor unit was pressurized to reach the selected pressure with 

synthetic air or adjusted O2/N2 mixture (setting gas flow rate(s) on Brooks control unit 

and pressure on West regulator).  After the pressure was stabilized, the reactor was 

fed with phenol solution, liquid flow rate having been adjusted by tuning the 

graduating valve (and/or adjusting motor frequency) of the dosing pump. In the same 
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time, the Marlotherm oil was circulated in the reactor jacket and heated to desired 

temperature. The data acquisition on the computer was started in order to record the 

evolutions of the measured variables.  

The liquid flow rate was also re-checked for each experimental run by 

measuring in 30 minutes intervals the mass of the feeding tank, which was placed on a 

balance. Four liquid samples were taken hourly at different positions of the system, 

including the feeding tank, the reactor inlet and outlet, and after the separator. Two 

extra samples were also collected each 30 minutes from the outlet of the reactor and 

from the separator. After the steady state was reached, samples were collected 

additionally from each sampling valve along the reactor (four positions), to obtain the 

axial concentration profiles of reaction products. 

 

3.3.2.2.3 Reactor shutdown 

 When the steady state was reached and all of the samples were collected, the 

experiment was stopped by setting the oil temperature to 20 °C, turning off the liquid 

feeding pump and gas-flow meters, as well as the data acquisition on the computer.  

When the reactor was cooled down to around 40 oC, the pump for Marlotherm 

was turned off. Then, the pressure was gradually reduced to 1 atm. 

After completion of each experiment, the liquid storage tank was emptied by 

passing N2 directly through the tank until all liquid was completely removed.  

 



CHAPTER IV 

 

RESULTS AND DISCUSSION: EXPERIMENTAL AND MODELLING 

 

This chapter gathers experimental results concerning phenol adsorption on a 

fixed bed of active carbon, batch kinetics of phenol oxidation performed in an 

autoclave reactor, and more importantly all the data of continuous three phase fixed 

bed operation obtained at various conditions of pressure, temperature, and gas and 

liquid flow rates. A systematic comparison of upflow mode (flooded bed) and 

downflow mode (trickle bed) is presented.  

The discussion of results also contains an attempt to modelling of: unsteady 

adsorption with breakthrough curves, kinetic parameter optimisation including pore 

diffusion, and complete three phase catalytic reaction in fixed bed reactor accounting 

for transport phenomena, typical hydrodynamics with stagnant liquid zones and partly 

wetted catalyst, and even mass transfer limited vaporisation of water during                     

non-isothermal reactor operation. 

 

4.1 Phenol adsorption on active carbon 

            Before starting oxidation experiments, the bed of active carbon (AC, whose 

properties was shown in Tables 2-3-1 and 2-4-3) was first saturated using the same 

feed solution (5 g/l of phenol) and the evolution of the outlet phenol concentration 

during this adsorption step was monitored to get the typical breakthrough curve 

corresponding to the first step of the adsorption-oxidation (AD-OX) process. 

In previous studies [5,10,13], the adsorption isotherms for the same Merck AC 

obtained in stirred batch vessels were found to be best-fitted by a Freundlich-type 

model: 

qe = a [Ph]eq
n    (2-4-1) 

where qe is the amount of phenol adsorbed per unit weight of activated carbon and 

[Ph]eq is the remaining phenol equilibrium concentration in the liquid phase. 

The corresponding Freundlich parameters optimised from these studies at 

room temperature are reported in Table 2-4-1.  

The parameters (and the corresponding adsorption capacities) differ quite 

appreciably, might be due to some variations of BET surface between carbon lots and 
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also different operating conditions. The experiments of Polaert et al. [5] were carried 

out under nitrogen atmosphere, while the isotherms of Suarez-Ojeda et al. [13] and 

Fortuny et al. [10] were obtained in oxic conditions, i.e. the solution was always in 

contact with air, allowing some degree of oxidative coupling to take place as the 

result of the presence of dissolved oxygen. 

 

Table 2-4-1: Parameters of the Freundlich equation and adsorption capacity at 5 g/l 

phenol solution from Fortuny et al. [10], Polaert et al. [5], and Suarez-Ojeda et al. 

[13] 

 qe
* (mol/g AC)  a (mol(1-n)/gAC × 1n) n 

Fortuny et al. (1998) 

      T = 20 °C, air 

4.2 × 10-3 9.07 × 10-3 0.265 

Polaert et al. (2002) 

      T = 25 °C, N2

3.2 × 10-3 5.75 × 10-3 0.199 

Suarez-Ojeda et al. (2005) 

      T = 20 °C, air  

4.3 × 10-3 1.00 × 10-2 0.29 

* for [Ph]eq = 5 g/l 

 

 In this study, the adsorption experiment was carried out in a fixed bed reactor 

with upflow of liquid (no gas flow) (Figure 2-3-2) under the following conditions: 

atmospheric pressure, wall temperature 25 °C, liquid flow rate 5.0 kg/h, and feed 

concentration of phenol 5 g/l. 

The corresponding breakthrough curve is presented in Figure 2-4-1.  

This transient fixed-bed adsorption was modelled by a classical 

chromatographic model developed by Félis [118] and modified by Polaert: axial 

dispersion was modelled by series of perfectly mixed tanks and the model also 

included transient adsorption/diffusion inside the pellets, as well as the external liquid 

to solid mass transfer limitation. The effective diffusivity of phenol was predicted 

using Wilke-Chang correlation [119] and assuming a tortuosity factor of 3. Liquid-

solid mass transfer coefficient was calculated from Ranz and Levenspiel correlation 

[120]. Number of series tanks (Ncell) was estimated from Villermaux [121], leading to 

Ncell = 299. 
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The experimental breakthrough was much less stiff than the modelled one, 

especially at the end when exit concentration tends to the inlet concentration as 

complete bed saturation is achieving. This asymmetrical experimental behaviour 

could be simulated by using a much larger value of the “n” parameter than proposed 

previously (n = 0.6−0.7); nevertheless such high “n” isotherm curves are not at all in 

agreement with all previous works. Other possible explanations are deviation from 

plug flow due to imperfect filling of the AC bed, much slower adsorption-diffusion 

phenomena in AC porous particles, or lower external liquid to solid mass transfer 

coefficient due to gas stagnant pockets.  

Here, “n” was set to values reported previously (0.2 and 0.3, respectively), 

while only the value of “a” was freely set to be optimised from the experimental 

breakthrough curve using a Gauss-Newton method (Figure 2-4-1).  
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Figure 2-4-1: Experimental and modelled breakthrough curves. T = 25 °C, FL = 5.0 

kg/h, Wcat = 326 g, dp = 1.25–1.60 mm, and upflow operation. 

 

The identifications led to the parameters reported in Table 2-4-2, with 

corresponding isotherms presented in Figure 2-4-2. 
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Table 2-4-2: Optimised values of Freundlich “a” parameter from experimental 

breakthrough curve. 

a (mol(1-n)/gAC × ln) n (fixed) criteria* 

8.26 × 10-3 0.2 4.73 

1.10 × 10-2 0.3 4.03 

* Σ(Cexp,i-Cmod,i)2
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Figure 2-4-2: Adsorption isotherms of phenol on Merck AC at room temperature. 

 

While the optimised isotherms were quite sensible to the value given to n (0.2 

or 0.3), it did not much change the modelled breakthrough curve, which was above all 

sensible to the adsorption capacity at feed concentration.  

Finally, the best agreement was found with n = 0.3 and experimental isotherms 

obtained under oxic conditions in batch stirred reactor. 
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4.2 Kinetic study on catalytic wet air phenol oxidation on active carbon 

To provide a sound interpretation of the data obtained in the pilot plant fixed 

bed reactor, a kinetic model for the main reaction is needed. It is derived in the first 

part by batch experiments in autoclave, using the same active carbon particles.    

 

4.2.1 Evaluation of kinetic parameters 

4.2.1.1 Interpretation of experimental results 

As mentioned before, determination of kinetic parameters in batch reactor was 

performed using the same uncrushed 1.25−1.6 mm AC pellets as in the fixed bed 

reactor. 

Experimental procedure was explained in Section 3.3.1.2, showing two 

distinct steps: adsorption step (around 2.5 h) under nitrogen to saturate the AC at 

reaction temperature, followed by oxidation step (5 to 7 h) where nitrogen was 

replaced by continuously renewed air. 

Operation conditions are reported in Table 2-4-3: 

 

Table 2-4-3: Operating conditions of the kinetic study in batch reactor 

Size of sieved particles (mm) 1.25−1.6 

Volume weighted diameter of particles, D[4,3] (mm) 1.025 

Catalyst load, Wcat (g) 9.0 

Reactor volume (ml) 300 

Liquid volume, VL (ml)  200 

Phenol inlet concentration, [Ph] (g/l) 2.5−5 

Oxygen partial pressure, PO2 (bar) 1.2−3.7 

Total operating pressure, PT (bar) 10.5−20.5 

Temperature (°C) 130−160 

Stirring speed, ω (rpm) 800 

Fair (Nl/h) 60 

 

 

The same AC sample was used for the entire series of 15 experiments. Two 

problems had to be solved to allow for a significant estimation of kinetic parameters. 
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First, a fast deactivation occurred during the first runs as shown in Figure 2-4-3, 

however, after a steep decrease during the first three experiments, the time-

concentration profiles in the liquid phase were found to be very similar. Only 

experiments at similar AC activity were thus considered to estimate kinetic 

parameters. Second, the active carbon being a very efficient adsorbent, during a batch 

oxidation of phenol, due to fast adsorption desorption processes driven by liquid-solid 

equilibrium and phenol oxidation, phenol concentration is decreasing in both liquid 

and solid phases. Then, calculations of the reaction rate should account for the total 

phenol disappearance. Nevertheless, it was observed a severe decay of the adsorption 

capacity of the AC particles after a few runs so that the amount of phenol re-adsorbed 

during the first hours under nitrogen became much lower than the value predicted 

using isotherms with fresh AC [5]. This evolution was explained by a large decrease 

of the BET surface area, due to the deposition of polymeric compounds, as reported 

by Suarez-Ojeda et al. [13] and also found during the fixed bed experiments (Section 

4.2.2.3).  
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Figure 2-4-3: Time-evolution of phenol concentration in the liquid phase (normalized 

by initial phenol concentration). T = 150 °C, PO2 = 3.3 bar, Wcat = 9 g, 

VL0 = 200 ml, and ω = 800 rpm. 
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The rough amounts of phenol consumed in the liquid phase by the reaction and 

re-adsorbed during the first hours under nitrogen are reported in Table 2-4-4.  

 

Table 2-4-4: Amounts of phenol consumed and re-adsorbed during the experimental 

series 

Exp. 

No. 

PO2 

(bar) 

T 

(°C) 

WPhenol (re)adsorbed 

after 2.5 h under 

nitrogen (g)(*)

τoxidation 

(min) 

[Ph]0 

(g/l) (***)

[Ph]f 

(g/l) 

WPhenol 

consumed in 

the liquid phase 

(g)(*)

1 (**) 3.3 150 1.27 211 2.78 2×10-3 0.55
2 (**) 3.3 150 0.65 150 3.79 1.07 0.54
3 (**) 3.3 150 0.12 224 2.94 0.86 0.42
4 (**) 3.3 150 0.15 391 3.79 0.75 0.61
5 3.5 140 0.20 363 4.03 1.38 0.53
6 3.7 130 0.10 414 3.74 1.78 0.39
7 3.0 160 0.018 353 3.45 0.12 0.67
8 3.3 150 0.22 405 4.58 0.58 0.80
9 1.3 150 0.083 335 4.86 2.00 0.57
10 2.3 150 3.6 × 10-3 384 3.24 0.60 0.53
11 3.4 140 0.13 364 4.50 1.17 0.61
12 3.4 130 0.058 411 3.97 1.96 0.40
13 Not usable
14 3.3 150 0 328 2.54 0.5 0.41
15 1.8 150 0.13 387 4.38 1.42 0.59

(*) calculation based on constant VL = 200 ml
(**) not used for kinetics evaluation 
(***) after adsorption step 
 

A calculation for experiment no. 7 corresponding to the highest phenol 

conversion in the liquid phase showed that an evaluation of kinetics based on the 

evolution of phenol concentration in the liquid phase only (neglecting the 

disappearance of adsorbed phenol) would lead to an underestimation of phenol 

consumption of around 30% (0.22/0.67). Most often this ratio remained under 15%. 

As the determination of new adsorption parameters at each experiment would be a 

delicate task, it was decided to estimate the kinetic parameters based on the liquid 

phase only. Moreover, the error committed mainly affected the phenol degradation 

rates measured at the end of experiments (corresponding to very low phenol 

concentrations in the liquid phase and thus steeper part of the isotherm) and for which 

associated reaction volume was overestimated in the model: a mean constant value 
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was indeed implemented (around 175 ml), while due to sampling and vaporisation 

(even limited by the condenser), the solution volume was decreased up to 55 ml 

between the beginning and the end of each run. These two errors are then balancing at 

least partly. 

A first order towards phenol was then found by plotting the logarithm of 

phenol concentration (in the liquid phase) as a function of time (not shown here). 

Finally, the calculation of the Weisz modulus φ’:  

2
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app
2Op
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CD
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⎠

⎞
⎜⎜
⎝

⎛ρ
=φ      (2-4-2) 

at initial time (oxygen being the limiting reactant) led to: 0.45 < φ’ < 1.5 (based on 

complete phenol oxidation to H2O and CO2), indicating that the reaction within the 

pores of the 1.5 mm pellets occurred in the intermediate diffusion regime, however 

close to kinetic control. 

 

4.2.1.2 Modelling of batch reaction and evaluation of intrinsic kinetic parameters 

In agreement with previous kinetic studies [4,44], a simple power law was 

convenient to accurately describe the phenol oxidation over AC assuming a first order 

of phenol (as seen previously), while the oxygen order had to be determined by the 

optimisation algorithm. The following rate equation for phenol destruction was thus 

used: 

α⎟
⎠
⎞

⎜
⎝
⎛ −

−= 2OPh0phenol xC
RT

EexpkR      (2-4-3) 

Based on the Weisz modulus values, the intrinsic kinetics of phenol destruction was 

optimised from the autoclave experiments using a batch reactor model that accounted 

for transient diffusion of both oxygen and phenol inside the catalyst pores [122]. 

In the model, spherical geometry was assumed with D[4,3] = 1 mm as 

reference diameter, and a tortuosity value of 3 to determine the effective diffusivities 

of oxygen and phenol. 

Other assumptions were: 

- variations of phenol amount adsorbed on AC were neglected (as 

previously discussed),  
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- complete mineralisation of reacted phenol to CO2 and H2O was assumed, 

so that RO2 = 7 × Rphenol, 

- external mass-transfer limitation was negligible (intense mechanical 

stirring), 

- pellets were assumed to be isothermal, and 

- liquid volume variations were neglected (a mean value was implemented). 

 

In these conditions the mass balances led to the following classical equation: 
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with boundary conditions: 

• ∀ t, r = 0 0
r

C j =
∂

∂
 (condition for symmetry)  (2-4-5) 

• ∀ t, r = rp  Cj = CL,j  (negligible external mass-transfer resistance) 

and 
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∂
××

ρ

×
−=  for phenol  (2-4-6) 

The LHS term of Equation 2-4-4 (negligible regarding the ratio of catalyst to liquid 

volume) was kept for numerical reasons.  

The proposed model led to a partial differential equations system (PDE). It 

was solved by the method of lines: spatial derivatives were discretized using central 

difference formulas (50 spatial divisions) and the resultant ODE system was solved by 

the software package DISCo [123,124], using the Gear method [125].  

A Gauss-Newton method was used to optimise, from the time-evolution of 

phenol concentration in the liquid phase, the oxygen order at 140 ºC, 1.2 to 3.7 bar of 

oxygen partial pressure, and the rate constants at different temperatures (see Figures 

2-4-4a, b, and c). 
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 Figure 2-4-4: Experimental and calculated time-concentration profiles in the liquid 

phase (Wcat = 9 g, stirrer speed of 800 rpm): (a) PO2 = 3.3 bar, T =              

150 °C; (b) PO2 = 1.8 bar, T = 150 °C; (c) PO2 = 3.0 bar, T = 160 °C 
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A 0.5 oxygen order was found to match the experimental phenol 

concentrations and the rate constants optimised at 130, 140, 150, and 160 °C are 

reported in Table 2-4-5. The corresponding Arrhenius plot (Figure 2-4-5) gave a slope 

and ordinate of –8,895.7 K-1 and 12.834, respectively, resulting in an activation 

energy and pre-exponential factor for phenol oxidation of 74 kJ/mol and 3.75 × 105 

m3 s-1 kg-1, respectively. Finally the reaction rate was  

 

5.0
2

5 74000exp -3.75x10 OPhphenol xC
RT

R ⎟
⎠
⎞

⎜
⎝
⎛ −

=    (2-4-3’) 

 

 

Table 2-4-5: Intrinsic rate constants at different temperatures from batch phenol 

destruction experiments with: Wcat = 9 g, stirrer speed of 800 rpm. 

 

Temperature (K) k (m3 s-1 kgcat
-1) 

403.15 1.00 × 10-4 

413.15 1.63 × 10-4 

423.15 2.71 × 10-4 

433.15 4.62 × 10-4 
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Figure 2-4-5: Arrhenius plot of intrinsic kinetics obtained in batch reactor. 

 

 

4.2.2 Continuous oxidation in fixed bed reactor 

The continuous oxidation experiments were carried out in a jacketed fixed bed 

reactor (Figure 2-3-2) in both upflow and downflow cocurrent modes, in order to 

compare the results between these two flow modes.  

 

4.2.2.1 Operating conditions and flow regimes 

The AC bed dimensions and operating conditions for phenol oxidation study 

are summarized in Table 2-4-6.  

These investigated conditions were calculated as to give water vaporisation 

rate below 30%, and gaseous oxygen flow rate well above stoichiometry.  
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Table 2-4-6: AC bed dimensions and operating conditions for phenol oxidation in 

fixed bed reactor 

 

Reactor diameter (mm) 25.4 

Reactor height (m) 1.2 

Size of sieved particles (mm) 1.25−1.6 

Volume weighted diameter of particles, D[4,3] (mm) 1.025 

Catalyst load, Wcat (g) 326 

Phenol inlet concentration, [Ph] (g/l) 5 

Oxygen partial pressure, PO2 (bar) 

     (equilibrium pressure at reactor outlet) 

0.5−2.0 

Total operating pressure, PT (bar) 7.0−11.2 

Oil temperature, Toil (oC) 120−160 

Liquid flow rate, FL (kg/h) 0.5−3.5 

Space time, τ (h) 0.095−0.65 

Liquid superficial velocity (inlet), uL,inlet (mm/s) 0.3−2 

Gas flow rate, FG (Nl/h) 50−200 

Gas superficial velocity (inlet), uG,inlet (mm/s) 5−25 

 

 

To define the flow regimes of each condition used in this experiment, liquid 

mass superficial flow rate (L) and gas mass superficial flow rate (G) for each 

condition are calculated accordingly to the Equations 2-4-7 and 2-4-8.  

2

4
c

L

D
mL

×

=

π

&
        (2-4-7) 

2
c

NTP,GNTP,G

4
D

F
G

×π

ρ×
=        (2-4-8) 

(NTP = Normal conditions of Temperature and Pressure) 

  

 



 

103

The ratio of liquid mass superficial flow rate to gas mass superficial flow rate 

(L/G) was plotted as a function of gas mass superficial flow rate (G) and compared 

with the flow map obtained from Turpin and Huntington [69] (for upflow mode) and 

from Charpentier [66] (for downflow mode) as displayed in Figure 2-4-6. 

 For the conditions used in the cocurrent upflow and cocurrent downflow 

modes (FL = 0.5 to 3.5 kg/h and FG = 50 to 200 Nl/h), the upflow mode was operated 

either in bubble flow regime or transition to pulsed flow regime, while the downflow 

mode was clearly operated in trickle flow (Figure 2-4-6).  
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Figure 2-4-6: Location of our experimental conditions in the flow map of three phase 

fixed bed reactors for air-water system (cocurrent upflow: Turpin and 

Huntington [69]) cocurrent downflow: Charpentier [66]). 

 

 

4.2.2.2 Transient profiles 

Steady state conditions of reaction were verified through regular sampling as 

shown in Figure 2-4-7. The figure illustrates typical time-concentration profiles 

obtained from upflow and downflow at a given set of operating conditions. Transient 
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lengths to reach steady state mainly depend on the liquid flow rate selected as well as 

the operating conditions of the previous run, leading to different preliminary 

adsorption times. 
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Figure 2-4-7: Transient phenol concentration profiles for cocurrent upflow and 

downflow fixed bed reactors. Conditions: oxygen partial pressure 1.2 

bar, oil temperature 160 oC, gas flow rate 175 Nl/h, and liquid flow rate 

0.55 kg/h. 

 

 

4.2.2.3 Activity of catalyst 

Catalyst activity had been regularly checked at the following standard 

conditions: heating-oil temperature of 140 ºC, liquid flow rate of 1 kg/h, gas flow rate 

of 100 Nl/h, and oxygen partial pressure of 1.2 bar. After more than 300 working 

hours corresponding to 5 g of phenol treated per g of AC, no deactivation was 

observed when operating the reactor at 120 and 140 °C. However, the catalyst activity 

 



 

105

was reduced by 20% after only a few runs (30 h) at the highest reaction temperature 

of 160 ºC. 

The analysis of samples of aged AC from different parts of the bed showed 

that during experimental series the AC surface area dramatically dropped to                  

35–70 m2/g, and pore volume to less than 0.15 cm3/g. These large variations seemed 

to occur very soon and have more effects on the adsorption performance than on 

catalytic activity.  

Thermogravimetric analysis (TGA) of fresh and aged ACs (see Appendix                

2-5A) showed different behaviour of the two carbons: for the fresh one, weight loss 

was very small (less than 3%) up to 700 °C when combustion started to occur, while 

for the aged one, significant weight loss started at lower temperatures (around                  

200 °C), showing that some low volatile and/or uneasily accessible compounds might 

be deposed on the AC. 

 

4.2.2.4 Influence of operating parameters on phenol conversion 

In the experimental series, the four main operating parameters (Toil, PO2, uL, 

and uG) and flow direction have been investigated varying adequately the standard 

conditions (see Table 2-4-6). 

 

4.2.2.4.1 Effect of temperature 

The effects of oil temperature (120 to 160 oC) on phenol conversion over 

different space times (τ) (0.095 to 0.65 h) were investigated at constant gas inlet 

velocity of 1.1 to 1.2 × 10-2 m/s. The total pressure was changed accordingly to the 

temperatures in order to keep constant partial oxygen pressure at around 1.2 bar 

(based on thermodynamic equilibrium). 
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Figure 2-4-8: Phenol conversion versus the liquid contact time for downflow (open 

symbols) and upflow (filled symbols) at different oil temperatures: (Ο) 

120 °C, (□) 140 ºC, (∆) 160 ºC; uG,inlet = 1.1–1.2 × 10-2 m/s, PO2 = 1.12–

1.2 bar. Grey symbols show experimental results without correction by 

catalyst deactivation. 

 

 The phenol conversion was significantly increased when the oil temperature 

increased. For instance, same phenol conversion was roughly obtained at τ = 0.16 h, 

Toil = 160 °C and at τ = 0.33 h, 140 °C (i.e. at about half liquid flow rate) indicating 

that the overall reaction rate approximately doubled within 20 °C. Such temperature 

effect suggested that phenol destruction in the pilot fixed bed reactor might be only 

marginally limited by external mass transfers, which are not much influenced by 

temperature. At given temperature, pressure and gas velocity, the phenol conversion 

was increased with the increase of space time (or decrease in liquid flow rate). 

 When comparing phenol conversions obtained in same conditions from the 

upflow and downflow experiments (Figures 2-4-8 to 2-4-10), they were found to be 

quite similar in the investigated range of liquid space time, oil temperature, oxygen 
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partial pressure, and gas velocity. This result was confirmed by the standard deviation 

between upflow and downflow that was calculated to about 12% without any clear 

correlation to the four operating parameters. 

 

4.2.2.4.2 Effect of oxygen partial pressure 

The effects of oxygen partial pressure (0.5, 1.2, and 2.0 bar) on phenol 

conversion at various space times (τ) (0.095 to 0.65 h) were studied at 140 oC and gas 

inlet velocity of 1.1 to 1.2 × 10-2 m/s. The gas composition (O2 to N2 ratio) was 

changed accordingly to the oxygen partial pressure. 

As shown in Figure 2-4-9, the phenol conversions were noticeably increased 

in both flow modes when the oxygen partial pressure increased (from 0.5 bar to 1.2 

bar) in rough agreement with kinetics. However, at oxygen partial pressure of 2.0 bar, 

the oxygen partial pressure seemed to have less effect on phenol conversion. This 

might be due to the catalyst deactivation; the four experiments at low space time were 

conducted at the end of the experimental set (and after the experiments at 160 °C), 

therefore the catalyst was yet partly deactivated.  

Corrected values taking roughly into account this catalyst deactivation (see 

Section 4.2.2.3) showed more expected trends. 
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Figure 2-4-9: Phenol conversion versus the liquid contact time for downflow (open 

symbols) and upflow (filled symbols) at different oxygen partial 

pressures: (◊) 0.5 bar, (□) 1.2 bar, (Ο) 2 bar; uG,inlet = 1.1–1.2 × 10-2 m/s, 

Tw = 140 °C. Grey symbols show experimental results without correction 

by catalyst deactivation. 

 

 

4.2.2.4.3  Effect of gas inlet velocity 

The effects of gas velocity (uG,inlet) (0.53 × 10-2, 1.1 × 10-2, and 2.1 × 10-2 m/s) 

on phenol conversion over different liquid flow rates (1.0 and 2.0 l/h) and different 

oxygen partial pressures (0.5 and 1.2 bar) were studied at temperature of 140 oC. The 

results are reported in Figure 2-4-10.  
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Figure 2-4-10: Phenol conversion versus gas velocity for downflow (open symbols) 

and upflow (filled symbols) at different operating conditions (Tw = 140 

°C): (◊) PO2 = 0.5 bar and FL = 2 l/h, (□) PO2 = 1.2 bar and FL = 1 l/h. 

 

 The phenol conversion appeared to be slightly sensitive to gas inlet velocity in 

upflow mode, while almost no effect was found in downflow system. Other operating 

conditions being fixed, phenol conversions obtained from upflow experiments were 

improved when the gas inlet velocities increased, while in downflow mode phenol 

conversions were relatively similar whatever the gas inlet velocities (above 

stoichiometric value). This may be due to an increase of the external mass transfer 

coefficients in upflow mode, while in downflow operation they were known to 

depend mostly on the liquid velocity. 

For the upflow experiment, when the gas inlet velocity increased, the number 

of bubbles of nearly same size (rising at higher or same velocity) increased and the 

flow transition from bubble to pulse flow regime could also occur (cf. Figure 2-4-6), 

enhancing thus oxygen transfer to the liquid phase (larger interfacial area and regime 

transition) and from the liquid phase to the catalyst surface (increased frequency of 

bubbles over the catalyst) [126].  
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In contrast, in the downflow experiments, the two-phase flow is completely 

segregated at the moderate gas and liquid velocities operated, with no significant 

interaction between the gas and the liquid flowing in the interparticle space. Therefore 

the increase in gas velocity did not significantly improve gas-liquid and liquid-solid 

mass transfer coefficients. Moreover a fraction of the external particle surface was 

covered by an extremely thin liquid layer or directly exposed to the gas phase, this 

partial wetting having a quite huge influence on external mass transfer and being only 

affected by liquid velocity.  

However, vaporisation of the solvent having to be accounted for, the scenario 

was even more complex, as an increase of gas flow rate enhanced water vaporisation, 

which increased phenol concentration in the remaining liquid. Surprisingly, this last 

effect was not experimentally noticeable and will be discussed in more details in the 

modelling section.  

Shortly, the poor effect of gas flow rate in the two modes could be explained 

either by marginal effect of external mass transfer in quasi-kinetic control or by its 

balanced influences on mass transfer and on vaporisation.   

 

Based upon the experiments mentioned above, it was concluded that the 

phenol destruction was significantly improved with the increase of operating 

temperature, oxygen partial pressure and liquid space time, and that the flow mode 

did not much affect the phenol destruction in this pilot reactor. The highest phenol 

conversion (69%) was obtained under the following conditions: 160 oC, 1.2 bar of 

oxygen partial pressure, 0.59 h of space time, and 175 Nl/h of gas flow rate. However, 

under this high temperature condition the catalyst deactivation was much higher than 

that observed in the 140 oC experiments (the highest phenol conversion obtained from 

140 oC experiments was 51%, at oxygen partial pressure of 1.2 bar, and 0.65 h space 

time).  

 

4.2.2.5 Characterisation of reaction products 

4.2.2.5.1 Main intermediates 

 Before the steady state was reached, the collected reaction samples were 

analysed by means of HPLC analysis (using fast analysis method which was 

previously described in the Section 3.2.1) to obtain the transient phenol concentration 
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profiles for each experiment. After the steady state was attained, reaction samples 

were also analysed to evaluate the concentration of intermediate compounds (using 

full analysis method as previously described in the Section 3.2.1). The intermediates 

in the reaction products were identified by comparison with pure commercial samples. 

HPLC analysis revealed that phenol oxidation process (in both two flow modes) 

yielded numerous intermediates (about 20 compounds). Among them, only twelve 

compounds could be successfully identified, including oxalic acid, formic acid, 

malonic acid, acetic acid, maleic acid (cis-2-butenedioic acid), fumaric acid (trans-2-

butenedioic acid), hydroquinone (benzene-1,4-diol), 1,4-benzoquinone, catechol 

(benzene-1,2-diol), 4-hydroxybenzoic acid, and 2-hydroxybenzoic acid. According to 

Devlin and Harris [127] and Eftaxias [4] other compounds were searched: propanoic 

acid, muconic acids (trans,trans- and cis,cis-), succinic acid, acrylic acid, pyrogallol, 

phloroglucinol, glyoxal, and glyoxylic acid, but they were either not found or present 

in trace amounts in the reaction products. 

Typical HPLC chromatograms of (a-b) fast analysis of phenol standard and 

reaction sample, (c) full analysis of standard solution including some of the principle 

intermediates, and (d) full analysis of phenol oxidation product are presented in the 

Appendix 2-6A to 2-9A. 

 The concentration profiles of six principal intermediates (formic acid, acetic 

acid, malonic acid, oxalic acid, 1,4-benzoquinone, and 4-hydroxybenzoic acid) 

obtained from phenol oxidation in both two flow modes are shown in Figures 2-4-11 

to 2-4-16. It should be noted that the concentrations of other identified intermediates 

were lower than 0.5 mmol/l, therefore their concentration profiles are not shown here.  
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Figure 2-4-11: Formic acid concentration profile after phenol conversion in both 

upflow and downflow fixed bed reactors. Inlet phenol concentration                 

53 mmol/l, temperature 140 to 160 oC, oxygen partial pressure 0.5 to 2.0 

bar, liquid flow rate 0.5 to 3.5 kg/h, and gas flow rate 50 to 200 Nl/h. 
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Figure 2-4-12: Acetic acid concentration profile after phenol conversion in both 

upflow and downflow fixed bed reactors. Inlet phenol concentration                 

53 mmol/l, temperature 140 to 160 oC, oxygen partial pressure 0.5 to 2.0 

bar, liquid flow rate 0.5 to 3.5 kg/h, and gas flow rate 50 to 200 Nl/h. 
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Figure 2-4-13: Malonic acid concentration profile after phenol conversion in both 

upflow and downflow fixed bed reactors. Inlet phenol concentration                 

53 mmol/l, temperature 140 to 160 oC, oxygen partial pressure 0.5 to 2.0 

bar, liquid flow rate 0.5 to 3.5 kg/h, and gas flow rate 50 to 200 Nl/h. 
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Figure 2-4-14: Oxalic acid concentration profile after phenol conversion in both 

upflow and downflow fixed bed reactors. Inlet phenol concentration                  

53 mmol/l, temperature 140 to 160 oC, oxygen partial pressure 0.5 to 2.0 

bar, liquid flow rate 0.5 to 3.5 kg/h, and gas flow rate 50 to 200 Nl/h. 
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Figure 2-4-15: 1,4-Benzoquinone concentration profile after phenol conversion in 

both upflow and downflow fixed bed reactors. Inlet phenol concentration 

53 mmol/l, temperature 140 to 160 oC, oxygen partial pressure 0.5 to 2.0 

bar, liquid flow rate 0.5 to 3.5 kg/h, and gas flow rate 50 to 200 Nl/h. 
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Figure 2-4-16: 4-Hydroxybenzoic acid concentration profile after phenol conversion 

in both upflow and downflow fixed bed reactors. Inlet phenol 

concentration 53 mmol/l, temperature 140 to 160oC, oxygen partial 

pressure 0.5 to 2.0 bar, liquid flow rate 0.5 to 3.5 kg/h, and gas flow 

rates 50 to 200 Nl/h. 
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Formic and acetic acids were the major intermediates detected in the reaction 

products (Figures 2-4-11 to 2-4-16). Formic acid concentration in reaction products 

was found up to 35 mmol/l (Figure 2-4-11), while acetic acid concentration in 

reaction products was found up to 5 mmol/l. Indeed it was often reported 

[4,13,38,127] that the major intermediates from the WAO of phenol (both non-

catalytic and catalytic reactions) were the highly oxidized and highly stable final 

organic products, which were formic acid, acetic acid, and oxalic acid. According to 

Figures 2-4-11 to 2-4-16, it was found that formic acid, acetic acid, and                        

4-hydroxybenzoic acid concentrations were clearly increased when phenol conversion 

increased, while other major intermediates had no clear correlation to phenol 

conversion. Therefore, it is no doubt that at high phenol conversion observed in this 

present study, higher amounts of formic acid and acetic acid were obtained, because 

these acids are the final organic compounds derived from oxidative process. However, 

formic and acetic acids are regarded as non-hazardous chemicals, since these acids 

can be utilized as carbon source by microorganism (Pseudomonas sp., Alcaligene sp., 

and cocci sp.) [128–130]. When comparing the identified intermediates obtained from 

this study with other studies on catalytic aqueous phenol oxidation similar 

intermediate distributions were obtained.  

Ohta et al. [36] reported the formation of catechol, hydroquinone, maleic acid, 

and oxalic acid as the intermediates from CWAO of phenol using copper oxide as 

catalyst. With similar system to that of Ohta et al. [36], Fortuny et al. [38] found 

additional intermediates including benzoquinone, malonic acid, acetic acid, and 

formic acid. Pintar and Levec [131] also reported the formation of acetic acid, in 

considerable quantities, as a final organic product, while benzoquinone and dihydric 

phenols were present in small quantities. Moreover, Pintar and Levec [131] reported 

that neither maleic nor oxalic acids was found in the reaction products obtained from 

the CWAO of phenol using ZnO, CuO, and γ–Al2O3 as catalysts.  

Eftaxias [4] investigating CWAO of phenol on active carbon (Merck) found 

additional two compounds: 4-hydroxybenzoic acid and 2-hydroxybenzoic acid which 

could only appear via carbon coupling. These acids were also found in our reaction 

media suggesting that phenoxide ions (generated from phenol) could undergo 

electrophilic aromatic substitution with generated CO2. The reaction mechanisms to 

form these two acids are shown in the Appendix 2-10A. 
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4.2.2.5.2 Determination of chemical oxygen demand  

As previously mentioned, there were about twenty intermediates found as the 

result of phenol oxidation, while only twelve could successfully be identified. 

Therefore, chemical oxygen demand (COD), an alternative measurement for organic 

contents, was employed in order to evaluate organic materials in the reaction 

products. The comparison of measured COD values and HPLC-based COD values is 

presented in Figure 2-4-17.  
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Figure 2-4-17: Comparison of measured COD values and HPLC-based COD values in 

both upflow and downflow fixed bed reactors. Inlet phenol concentration 

53 mmol/l, temperature 140 to 160oC, oxygen partial pressure 0.5 to 2.0 

bar, liquid flow rate 0.5 to 3.5 kg/h, and gas flow rate 50 to 200 Nl/h. 

 

As seen in Figure 2-4-17, HPLC-based COD values were systematically lower 

than that of measured COD values. This may be due to the reason that HPLC-based 

COD values were calculated based only on the identified intermediates, while there 

were some unidentified compounds that were not taken into account, therefore HPLC-

based COD values were underestimated. It should be noted however that nearly all the 
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data points were in + 0–20% error ranges, so that it could be concluded that main 

reaction intermediates were actually detected.  

 

4.2.2.5.3 Proposed mechanism for oxidative destruction of phenol over activated 

carbon in fixed bed reactor 

 Wet air oxidation (both catalytic and non-catalytic) of phenol seems to result 

in a similar intermediate distribution. Most intermediates detected in this study, as 

well as in other previous works [4,36,38,131], were already described by Devlin and 

Harris [127], for the non-catalytic WAO of phenol at elevated temperature and 

pressure (Figure 2-4-18a).  

  Due to some differences in intermediates and especially the above mentioned 

production of 4-hydroxybenzoic acid and 2-hydroxybenzoic acid (salicylic acid), this 

reaction scheme was simplified and modified according to Figure 2-4-18b.  
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Figure 2-4-18a: Mechanism for phenol WAO according to Devlin and Harris [127]. 
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Figure 2-4-18b: Proposed reaction pathway for phenol CWAO based on the identified 

intermediates in the reaction products. 
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The reaction mechanisms are also proposed based on the identified 

intermediates. Details are presented in the Appendix 2-10A.  

 

4.2.2.6 Axial temperature and concentration profiles 

The pilot plant reactor is provided with 7 thermocouples and 5 liquid sampling 

valves axially dispatched.  Axial temperature profiles are required to know whether 

the reactor is isothermal i.e. quickly at the oil temperature and without hot spot. Axial 

concentration profiles may be helpful when analysing reactor performance and reactor 

models.   

 

4.2.2.6.1 Axial temperature profiles 

 Axial temperature profiles in upflow and downflow cocurrent fixed bed 

reactors were investigated for each experimental condition, and similar trends of 

temperature profile were observed. Typical axial temperature profiles in both upflow 

and downflow modes are presented in Figure 2-4-19. Experimental conditions were: 

oxygen partial pressure 1.2 bar, oil temperature 140 °C, gas inlet velocity 1.1 ×10-2 

m/s (gas flow rate 100 Nl/h), and liquid flow rate 1 kg/h. 
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Figure 2-4-19: Axial temperature profiles for PO2 = 1.2 bar, Toil = 140°C, uG,inlet = 1.1 

× 10-2 m/s (FG = 100 Nl/h), and FL = 1 kg/h in cocurrent upflow and 

downflow fixed bed reactors. Symbols show experimental results, lines 

show simulation 

 

As seen in Figure 2-4-19, the upflow mode provided steeper temperature 

profiles due to higher wall-to-bed heat transfer coefficient (continuous liquid phase in 

upflow mode). However, in the downflow mode, the reactor temperature was found to 

be nearly the same as the wall temperature at only 30 cm of the catalytic fixed bed, 

suggesting that the reactor temperature rapidly reaches the wall temperature. Thus, as 

a first approximation the reactor can be considered to operate quasi isothermally even 

in a downflow mode. 

 

4.2.2.6.2 Axial concentration profiles 

Axial concentration profiles of phenol and identified intermediates in upflow 

and downflow cocurrent fixed bed reactors were investigated in all experimental 

conditions. It was found that similar trends of concentration profiles were observed 

for all conditions explored. Typical axial concentration profiles of phenol and 

intermediates in both upflow and downflow modes are displayed in Figures 2-4-20 
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and 2-4-21, respectively. Experimental conditions were as follows: oxygen partial 

pressure of 2.0 bar, oil temperature of 140 °C, gas inlet velocity of 1.1 × 10-2 m/s (gas 

flow rate of 100 Nl/h), and liquid flow rate of 0.5 kg/h.  
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Figure 2-4-20: Axial concentration profiles for PO2 = 2.0 bar, Toil = 140 oC, uG,inlet = 

1.1 × 10-2 m/s (FG = 100 Nl/h), and FL = 0.5 kg/h in cocurrent upflow 

fixed bed reactor. 
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Figure 2-4-21: Axial concentration profiles for PO2 = 2.0 bar, Tw = 140 oC, uG,inlet = 

1.1 × 10-2 m/s (FG = 100 Nl/h), and FL = 0.5 kg/h in cocurrent downflow 

fixed bed reactor. 

 

 As shown in Figures 2-4-20 and 2-4-21, concentrations of acetic acid and 

moreover formic acid continually increased along the reactor, as phenol concentration 

decreased. As mentioned before, concentrations of other intermediate compounds 

were quite low. 

Axial concentration profile of phenol seemed to be first steeper in upflow 

mode than downflow mode and then flatter, which could be due to the presence of 

higher axial dispersion in the upflow reactor leading to a larger Danckwerts 

concentration jump at the reactor inlet or to faster temperature increase. This will be 

analysed in more details in the modelling section.  

 

4.2.2.7  Considerations on scale-up of phenol oxidation over AC 

In a previous study (Eftaxias, [4]), continuous CWAO of phenol over AC was 

investigated in an isothermal laboratory trickle bed reactor (D = 1.1 cm and                        
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L = 20 cm) filled with 7 g of Merck AC (dp = 0.5 mm). The experiments in the small 

TBR were shown to be kinetically controlled by using the typical diagnostic criteria. 

The reactor performance is illustrated in Figure 2-4-22 for 0.2 MPa of oxygen 

partial pressure and different temperatures. 
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Figure 2-4-22: Phenol concentration for downflow (open symbols) and upflow (filled 

symbols) oxidation over active carbon at 0.2 MPa of O2; lines indicate 

trends. 

 

 

Operating this small-scale reactor (SSR) with much lower liquid and gas 

velocities (0.04–0.5 mm/s and 3.3–7.4 mm/s, respectively) than in the pilot fixed-bed 

reactor, downflow mode of gas-liquid resulted there in considerably higher 

conversion than upflow mode for all operating conditions tested. Eftaxias [4] 

explained this important difference by the positive effect of very low catalyst wetting 
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efficiencies in downflow, while the fully wetted upflow mode was affected by gas-

liquid mass transfer limitations due to low gas velocity and some axial dispersion due 

to the low liquid velocity. 

When comparing principle intermediate compounds found in both reactors 

(laboratory and pilot), phenol oxidation in the small-scale reactor yielded much less 

amounts of malonic acid and oxalic acid (traces), but provided much more amounts of 

maleic acid (1.7 mmol/l in SSR and < 0.3 mmol/l in pilot reactor). 

Regarding the contents of main intermediates, formation of formic acid in the 

pilot FBR was found twice higher than that in the SSR, while acetic acid content in 

the pilot FBR was only one-fourth of that found in the SSR. However, concentrations 

of remaining aromatic compounds remain similarly low in both the small and pilot 

FBRs. 

 

On the whole, it can be concluded that the scale-up of phenol CWAO over AC 

based on mere liquid space-time analogy would lead to erroneous reactor design, 

which clearly highlights the need for developing detailed reactor models to predict the 

reactor performance on different reactor length scales. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4.3 Modelling of continuous CWO 

It was shown in Section 4.2.2.7 that a liquid space-time analogy based scale-

up of results obtained at a smaller scale (with much lower liquid and gas velocities) 

would have failed to correctly predict our pilot reactor performance, demonstrating 

the need for a reactor model including thorough description of hydrodynamics and 

heat and mass transfers phenomena. 

 

4.3.1 Fixed bed model and numerical solution  

4.3.1.1 Model equations 

The non-isothermal model used was based on the previous work of Eftaxias et al. 

[4,132] and focused on gas-liquid-solid packed-bed reactors incorporating the 

complex oxidation of phenol over an AC catalyst. The main model variables were the 

axial liquid phase temperature and the axial liquid phase concentrations of dissolved 

oxygen and organic compounds, in particular the conversion of the phenol reactant. 

The model reflected the complex interplay of reaction kinetics, gas-liquid 

hydrodynamics and heat and mass transfers on both the pellet and reactor length scale. 

For downflow mode, partial wetting and splitting of the total liquid hold-up into 

stagnant and dynamic parts were considered to establish weighted effectiveness 

factors that address both the gas limiting and liquid limiting reactant situation. 

Furthermore, to simulate non-isothermal reactor operation, two limiting cases of water 

vaporisation were described, i.e. either instantaneous vapour-liquid equilibrium or 

progressive axial saturation of the gas phase with water. On the whole, the model 

accounted for: 

• Static and dynamic liquid portions 

• Constant partial catalyst wetting in trickle flow regime throughout the reactor 

• Axial dispersion in the dynamic liquid phase 

• Pore diffusion and gas-liquid and liquid-solid mass transfer 

• Axial concentration and temperature gradients without radial gradients (DR/dp=25) 

• Heat transfer between catalytic fixed bed and reactor wall (constant wall 

temperature) 

• Instantaneous water vapour-liquid equilibrium or mass transfer limited axial 

saturation of gas phase with water 
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The following assumption were made in the model development: 

• Stable catalyst activity 

• Complete internally wetted catalyst pores 

• No temperature gradient between gas liquid and catalyst 

• Negligible pressure drop, i.e. the total pressure is constant 

• Ideal gas phase behaviour 

• Non-volatile organic reactants 

For simulations presented in following sections, only complete mineralisation of 

reacted phenol to H2O and CO2 was considered, as intermediates represented in most 

cases less than 20% of total COD and do not significantly increase at high phenol 

conversion.    

 

Pellet scale model 

To describe the simultaneous diffusion–reaction of reactants and products 

within the liquid filled catalyst pores, the following mass balance equations were 

solved numerically, assuming spherical symmetry of pellets:  
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Note that the last RHS-term of Equation (2-4-12) was necessary only for 

oxygen in the downflow mode. Equation (2-4-12) accounted thus for the effect of 

stagnant liquid pockets and partial wetting without the need of assuming limiting 

reactants. By superimposing the diffusive fluxes coming from the wetted and dry 

areas of the pellet, this definition gave a better flexibility for systems that lied 

between the asymptotic cases of mainly gas-limited or liquid-limited reactions. 

However, this approach considered a uniform concentration of reactants on the 

catalyst surface (required by the use of a one dimensional-diffusion model) assuming 

infinite radial diffusion. The boundary condition at the pellet surface as listed above in 

the Equation (2-4-12) was based on the reactant concentration j in the liquid bulk or 

gas bulk phases, which had to be calculated by the reactor scale model. To link the 

fluid and surface concentration of each compound j, a weighted effectiveness factor 

that accounted for the fluid-solid mass transfer resistance was defined for each of the 

fraction of the pellet surface in contact with the liquid or gas phases: 
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Reactor scale model 

Axial dispersion in the liquid phase can alter the reactor performance and the 

one-dimensional Piston Dispersion Exchange (PDE) model was used to calculate the 

bulk liquid concentrations of reactants and products. The gas phase was assumed to be 

in plug flow, since the Peclet number is usually several orders of magnitude higher 

than that of the liquid phase. As catalyst wetting might not be as complete as in the 

trickle bed regime, the following equation resulted for the oxygen gas phase 

concentration: 
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The dynamic liquid concentrations were given by the following mass balance 

equation, which includes axial dispersion: 
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(2-4-15) 

Note that the last LHS-term of Equation (2-4-15) was only necessary for the balance 

over the dissolved oxygen reactant. 

For the stagnant liquid pockets that might exist on the reactor length scale, the 

convection term dropped out and algebraic equations could be developed to describe 

the stagnant liquid concentrations: 
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Finally, based on the approach of Van Gelder et al. [133], the energy balance 

for the pseudo-homogeneous gas-liquid fluid incorporating water evaporation and bed 

to wall heat transfer gave: 
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The apparent rate of the ith reaction (ri
app) was calculated from the stoichiometry 

and the compound overall reaction rates (ηjRj). Here as mentioned before only one 

reaction of complete oxidation was considered. Thermal fluid was circulated at a high 

volumetric flow rate through a thermally isolated double jacket to maintain the reactor 

wall temperature constant. This allowed dropping out the differential heat balance 

over the thermal fluid  

The water evaporation rate (ϕ) per unit reactor length was determined 

assuming that the gas stream reached either instantaneously liquid-vapour equilibrium 

or was progressively saturated while flowing through the catalytic fixed bed. 
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Denoting the total molar gas flow rate by and the water vapour molar flow 

rate by , instantaneous saturation of the gas stream with water vapour resulted 

in the following equality: 
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 If the mass transfer of water from the liquid to the gas phase were not fast 

enough, the gas phase would become progressively saturated along the axial reactor 

coordinate, leading to: 
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The total system pressure, PT, being only marginally affected by the pressure drop 

throughout the bed under the giving operating conditions was considered constant in 

the model. 

Assuming that the cold gas entered already saturated in the reactor, then it 

followed: 
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The fluid temperature and the total molar gas and liquid flow rates underwent 

changes along the fixed bed reactor length and the gas and liquid superficial velocities 
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had to be adjusted accordingly. For the gas phase, the axial variation of the superficial 

velocity was calculated assuming ideal gas behaviour: 
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which led by differentiation to:  
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For the dynamic liquid phase, the change in superficial velocity was calculated 

respectively, using the liquid density of pure water:  
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The boundary conditions for the reactor scale model were the following. 

At the reactor entrance (z = 0): 

2O,G
C =        (2-4-26) 

inlet
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   (2-4-27) 

T = Tinlet        (2-4-28) 

At the reactor outlet (z = LR): 

0
z

Cdyn
j,L =

∂

∂
        (2-4-29) 

 

4.3.1.2 Numerical solution 

The pellet and reactor scale models led to a set of algebraic-differential 

equations that involved non-linear reaction rate expressions. To solve these model 

equations with boundary constraints, the robust numerical method of orthogonal 

collocation on finite elements was used [134]. In brief, the unknowns yi(x) in each 

finite element were written as an expansion of orthogonal polynomials yk(x) 

(Legendre polynomials with degree 6): 
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α=        (2-4-30) 

The coefficients αik were determined so as to nullify the values of the PDE 

L[yi(x), yi’(x), yi’’(x)] at prescribed points, the resulting set of algebraic equations 

being solved by the Newton method. Boundary conditions of each finite elements, 

apart from that applied in the first and the last ones, was simply the continuity 

function, i.e. yi(x)=yi+1(x) and yi’(x)=yi+1’(x). In most cases, 8 collocation points were 

necessary to obtain readily model convergence both for reactor and pellet length 

scales with only one finite element. 

The numerical solution of the whole equation system was done by performing 

a sequential approach. In a first step, the PDE reactor scale model was solved with the 

given reactor inlet values and estimated of the effectiveness factors to predict the 

spatial temperature and concentrations, i.e. dynamic liquid and surface concentrations, 

at each reactor collocation point. Once these profiles were known, the boundary 

conditions of the pellet scale model could be determined and the diffusion equations 

were subsequently solved to calculate the concentrations inside the pellet at each 

pellet collocation point. Then, the local concentrations of the PDE model were 

updated with the newly obtained surface concentrations. This procedure was repeated 

until convergence had been achieved, i.e. when the latest concentrations calculated 

with the PDE model matched within a given error tolerance the ones used in the 

previous iteration. 

 

4.3.2 Evaluation of physicochemical properties and fixed bed parameters  

4.3.2.1 Physicochemical and thermodynamic properties 

Pure water and air or gas mixtures properties were considered for the bulk 

liquid and gas phases. Water and gas heat capacities, heat of evaporation, heat of 

phenol combustion, water vapour pressure, water density as well as phenol diffusion 

coefficients were obtained from data or methods included in Reid et al. [119]. 

Dissolved oxygen diffusion coefficient and Henry constants for oxygen solubility in 

water are taken from Diaz et al. [135] and Himmelblau [136], respectively. Table             

2-4-7 gives the values of these parameters calculated for the three selected 

temperatures. 
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Table 2-4-7: Values of physical properties in the range of operating conditions  

Property  120 ºC 140 ºC 160 ºC 

ρH2O (kg/m3) 943 926 908 
µH2O (Pa s)*104 2.34 1.93 1.75 

σH2O (N/m)*102 5.69 5.38 5.08 

Pv
H2O (MPa) 0.199 0.362 0.619 

cpL (kJ/kg/K) 4.24 4.28 4.34 

cpG(kJ/kg/K) 1.05 1.05 1.05 

∆Hv (kJ/mol) 40.2 39.13 38 

∆Hr (kJ/mol)  (1) 3000 3000 3000 

DO2 (m2/s)*10-8 1.72 2.35 3.12 

DPhenol (m2/s)*10-8  (2) 0.528 0.671 0.779 

H (MPa)*10-3 6.83 6.25 5.53 
(1) Heat of phenol combustion to form CO2 and H2O 
(2) from Wilke-Chang (1955) in [119] 
 

 

4.3.2.2 Hydrodynamic, mass, and heat transfers parameters 

The quality of prediction of the packed-bed model depends primarily on the 

accuracy of the involved model parameters that are used to describe the complex 

interaction of reaction kinetics, hydrodynamics, and heat and mass transfers. The 

determination of these parameters is very important and needs to be carefully 

addressed. Therefore, the recommended literature correlations were examined for 

each specific parameter to select the appropriate values.  

Hydrodynamic and transport key parameters strongly depend on the nature of 

contacting the gas-liquid flow through the catalytic fixed bed. For cocurrent two-

phase upflow and bubble flow regime, the liquid phase is a continuous phase and the 

packed-bed column operates with high liquid hold-ups and fully wetted pellets. 

External mass transfer and axial dispersion are thus gaining importance for reactor 

performance. When the packed-bed is operated in a trickle downflow regime, the gas 

phase becomes the continuous phase and partial wetting of pellets may occur. In this 
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situation, external mass transfer and axial dispersion are less influent, whereas the 

pellet wetting efficiency is thought to be crucial for the reactor conversion.  

The accurate estimation of all these parameters is a very critical task as it 

largely determines the accuracy of reactor modelling. Various correlations exist for 

the main model parameters, although a dramatic prediction spreading up to two orders 

of magnitude could result from their applications, as in the case of the volumetric 

mass transfer coefficient. A large difference is also found for the liquid axial 

dispersion coefficient in upflow operation. Moreover, for the most refined trickle bed 

model, some model parameters could hardly be estimated due to the lack of specific 

correlations. Table 2-4-8 lists both the literature correlations selected for the two 

distinct gas-liquid flow modes and a set of values of key model parameters calculated 

at typical operating conditions. 

 

Table 2-4-8: Parameter values and correlations used in up- and downflow reactor 

models of pilot plant at: T = 140 ºC, PT = 6 bar, FG = 100 Nl/h, and FL= 0.5 l/h. 

Parameter Downflow operation mode Upflow operation mode 

Dad, m2/s 2.2×10-5 Michell & Furzer [137] 6.4×10-5 * 
Deff (Ph/O2), m2/s 1.2/4.2×10-9 ** 1.2/4.2×10-9 ** 

kGS, m/s 3.8×10-2 Dwivedi et al. [138] ---- ---- 

kLS
dyn (Ph/O2), m/s 1.4/3.1×10-4 Tan & Smith [139]  3.2/7.3×10-4 Specchia et al. [108] 

kLS
sta (Ph/O2), m/s 0.9/2.1×10-6 Iliuta et al. [140] 0.9/2.1×10-6 Iliuta et al. [140] 

(ka)LL, s-1 1.0×10-2 Hochmann-Effron [141] 1.0×10-2 Hochmann-Effron [141] 

kLa, s-1 8.1×10-2 Morsi [103] 1.3×10-1 Saada [105] 

εL,dyn 0.10 Ellman et al. [81] 0.22 Yang et al. [86] 

εL,sta 0.05 Saez et al. [142] 0.05 Saez et al. [142] 

f 0.68 (or 1) El-Hisnawi et al. [143] 1.0 ---- 

hw (W/m2/K) 1.1×102 *** 5.1×102 Sokolov-Yablokova [144]

* Axial dispersion estimated from Stüber [117] (correlation derived from Syaiful [145]) 

** Calculated assuming tortuosity factor = 3 

*** Estimated from axial temperature profiles (correlation of Mariani et al. [146] is used to describe hw 

evolution with operating conditions) 
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The static, fsta, and dynamic, fdyn, components of the wetting efficiency, f, were 

obtained from the approximation of Rajashekharam et al. [147]: 

dynL

staL

dyn

sta

f
f

,

,

ε
ε

=         (2-4-31) 

 

4.3.3 Prediction of pilot plant reactor performance 

Pilot reactor data were thoroughly analysed with the detailed PDE model 

developed in Section 4.3.1.1. 

In the case of phenol CWAO, heat transfer and axial temperature profiles 

could be analysed separately due to relatively high heat transfer (small tube diameter), 

very low heat production by reaction (diluted phenol), and moderate heat 

consumption for water vaporisation. 

 

4.3.3.1 Axial temperature profiles 

As shown in Figure 2-4-19 (Section 4.2.2.6.1) the predicted temperatures fit 

well with the experimental temperature profiles when using the correlation of Sokolov 

and Yablokova [144] for the upflow operation and a modified correlation of Mariani 

et al. [146] (divided by 2) for the downflow operation. These correlations resulted in a 

much larger wall-to-bed heat transfer coefficient for upflow than downflow modes (cf. 

Table 2-4-8). 

 

4.3.3.2 Outlet phenol conversions and axial concentration profiles 

4.3.3.2.1 Upflow mode 

The situation of gas-liquid upflow operation being less complex was first 

examined. The sensibility of the reactor performance to oxygen mass transfer and to 

water vaporisation was not straightforward. In the non-isothermal reactor zone (first 

20 to 30 cm of the fixed bed) the water vapour pressure increased exponentially and 

the induced water vaporisation reduced gradually the oxygen partial pressure in the 

gas phase and at the same time increased the phenol concentration in the remaining 

liquid. As yet mentioned the effect of vaporisation is rarely accounted for in 

modelling and therefore two vaporisation rates were implemented and compared: 

either instantaneous vapour-liquid equilibrium, i.e. infinitely fast vaporisation, or 
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mass transfer limited vaporisation, involving the gas side volumetric mass transfer 

coefficient (kGa). This parameter is not well known neither for upflow nor downflow 

operations where it was supposed to be at least equal to the liquid side mass transfer 

coefficient [148]. 

 

4.3.3.2.1.1 Outlet phenol conversions 

To assess the influence of water vaporisation on reactor performance a set of 

simulations with kGa = kLa, kGa = 5×kLa and kGa = infinite (equilibrium) was carried 

out. Saada correlation [105] was used to calculate kLa (then kLa values obtained were 

also multiplied or divided by 5). The results of the sensitivity study are summarised in 

Table 2-4-9 for the reference conditions of Toil = 140 ºC, FG = 100 Nl/h and PO2 = 

1.2 bar. A lower liquid flow rate of FL = 0.5 l/h was however selected to achieve a 

larger phenol conversion. Also, the effect of axial dispersion in the liquid phase was 

tested. 

 

Table 2-4-9: Influence of kLa, kGa, and Dad on upflow model conversion: comparison 

with reference case and experimental conversion at Toil = 140 ºC, FL = 

0.5 l/h, FG = 100 Nl/h, and PO2 = 1.2 bar. 

kLa/kLa(Saada) kGa/kLa Dad/Dad
(Stüber) ∆Xrel (%) 

(compared to case of line 1)

∆Xrel (%) 

(compared to experiments) 

1 infinite 1 0 -5.5 

1 5 1 7.7 1.8 

1 1 1 26.7 19.7 

0.2 infinite 1 -84.3 -85.2 

0.2 5 1 -56.2 -58.7 

0.2 1 1 -15.5 -20.1 

5 infinite 1 30.1 23 

5 5 1 31.4 24.2 

5 1 1 35.3 27.8 

1 infinite 4.2 -4 -9.3 

5 1 4.2 26.9 19.8 
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In the studied range of relevant values of the axial dispersion coefficient, only a 

limited change of phenol conversion (always less than 7%) was observed in the 

simulation runs. Thus, it could be concluded that axial dispersion effects on phenol 

conversion remain moderate under the given operating conditions. Simulation results 

were first compared with the simulated reference case (kLa from Saada [105], 

equilibrium and dispersion from Stüber [117]) then to the experimental conversion (as 

show in the last column of Table 2-4-9). With respect to the gas-liquid mass transfer, 

at high kLa values (5 times higher), the vaporisation rate had nearly no influence 

(conversion increases slowly from 30.1 to 35.3%) and the experimental outlet 

conversion was overestimated from 23 to 27.8%. The situation became very different 

at low kLa values (0.2 × kLa from Saada) that could generate very large 

underestimation of conversion up to –85% depending on the vaporisation rate. 

Experimental data and simulations suggested thus that the gas-liquid mass transfer 

was only moderately limiting the reactor conversion. The Saada correlation giving the 

best agreement with experimental data will be further used in the model predictions. 

Figures 2-4-23a, b, c, and d present profiles of experimental exit concentration 

and corresponding simulations for upflow operation. It was seen that the best 

agreement with experimental data was found with kG/kL = 5. Nevertheless in the 

range of conditions studied in this work it appeared that the rate of water evaporation 

did not significantly change the outlet concentration and vapour-liquid equilibrium 

could be assumed for simplicity. 
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Figure 2-4-23: Outlet phenol concentrations: experimental (◊) and corresponding 

simulations for fully wetted catalyst (Dad = Dad
(Stüber)): kGa = kLa (solid line),                      

kGa = 5 × kLa (long dotted line), and instantaneous liquid-vapour equilibrium (short 

dotted line).  

(a) PO2 =0.5 bar, Tw=140°C, FG=100 Nl/h; (b) PO2=1.2 bar, Tw=140°C, FG=100 Nl/h;  

(c) PO2=1.2 bar, Tw=160°C, FG=175 Nl/h; (d) PO2=2 bar, Tw=140°C, FG=100 Nl/h. 

Grey symbols show experimental results without correction of catalyst deactivation. 
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However, the slightly positive effect of gas velocity found in the experiments 

could not be proved by the model. The best prediction from the model (kGa = kLa) 

gave nearly no influence of gas velocity, or an increase of outlet phenol concentration 

due to higher water vaporization flux. 

 

4.3.3.2.1.2 Axial concentration profiles 

Figures 2-4-24 and 2-4-25 show how axial dispersion and water vaporisation 

could affect axial concentration profiles. Some other simulations are reported in the 

Appendices 2-11A to 2-13A. 

At low liquid flow rate and low axial dispersion (Figures 2-4-24a and b), 

instantaneous vaporisation condition would lead to an increase of phenol 

concentration up to 20 cm after the reactor inlet, when liquid temperature reached 

wall temperature.  

For higher axial dispersion (Figure 2-4-25 and Appendix 2-11A for the case of 

Dad = 16.7×Dad(Stüber)), this maximum would tend to vanish and a large 

concentration jump before and after the bed would be observed, while afterwards the 

concentration profile would be flatter. 

On the one hand no concentration maximum was observed experimentally on 

the concentration profiles which were best fitted when assuming a large axial 

dispersion coefficient, but on the other hand when a few samplings were performed 

from both side of the distributor and they did not show significant concentration shift. 

Therefore some complementary experiments would be required to quantify axial 

dispersion (by tracer technique) and to understand vaporisation conditions by 

comparing concentration profiles when operating isothermally with a gas flow which 

already saturated with water or a dry gas. 
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Figure 2-4-24: Axial phenol concentration profiles: experimental (◊) and 

corresponding simulations for fully wetted catalyst: kGa = kLa (solid line), kGa =                        
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5 × kLa (long dotted line), and instantaneous liquid-vapour equilibrium (short dotted 

line). Dad = Dad
(Stüber); PO2 = 0.5 bar, Tw = 140°C, FG = 100 Nl/h 

(a) FL = 0.5 l/h; (b) FL = 1 l/h; (c) FL = 2 l/h. 
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Figure 2-4-25: Axial phenol concentration profiles: experimental (◊) and 

corresponding simulations for fully wetted catalyst: kGa = kLa (solid line), kGa = 5 × 

kLa (long dotted line), and instantaneous liquid-vapour equilibrium (short dotted line). 

Dad = 4.2 × Dad
(Stüber); PO2 = 0.5 bar, Tw = 140°C, FG = 100 Nl/h 

(a) FL = 0.5 l/h; (b) FL = 1 l/h; (c) FL = 2 l/h. 

 

 

4.3.3.2.2 Downflow mode 

Simulation of the trickle bed reactor was even more complex involving partial 

catalyst wetting, which was found to have a strong impact on reactor performance as 

shown in Table 2-4-10.  

As soon as full wetting was not assumed (f < 1), fast mass transfer of oxygen 

from the gas phase to the dry zone vanished any oxygen mass transfer limitation. This 

dramatic overestimation of the model was due to the assumption of uniform 

concentration at the catalyst surface whatever wet or dry. Indeed, there is no simple 

way to account for multidirectional pore diffusion resulting from non-uniform oxygen 

transfer to the catalyst surface. The use of different overall effectiveness factor for 

each zone could have been a solution, but would have been very difficult to 

implement as limitations due to both the liquid and dissolved gaseous reactant. As a 

consequence there was no sensitivity to the value of the external wetting efficiency, 

the only important hypothesis was either fully or partially wetted conditions. 
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Table 2-4-10: Influence of particle wetting efficiency on the simulated outlet phenol 

concentration in downflow mode: PO2 = 1.2 bar, Tw = 140 °C, FG = 100 Nl/h, FL =               

0.5 l/h, Case: kGa infinite. 

f 1 0.9999 0.9 0.68* 

CPh,out [g/l] 3.22 2.18 2.02 2.02 

* calculated from El-Hisnawi correlation [143] 

 

The volumetric mass-transfer coefficient remained the one key model 

parameter. The correlation of Morsi [103] giving a lower value than that for upflow 

mode in similar operating conditions [78,98] was selected.  

 

4.3.3.2.2.1 Outlet phenol conversions 

In Figures 2-4-26 and 2-4-27, experimental downflow data were thus compared 

to the two models of either full or partial catalyst wetting. In general, the experimental 

data lied mostly in between the two simulations, oxygen mass transfer being too fast 

with any partial wetting and too slow at full wetting.  

These simulations results indicated that the opposite roles of oxygen mass 

transfer and water vaporisation were not simply balanced and might have different 

importance depending on the reaction and hydrodynamic conditions. This question is 

not often addressed in modelling of FBR involving oxidation in the liquid phase, 

though it corresponds to typical industrial condition for CWAO and thus should 

deserve further research work. 
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Figure 2-4-26: Outlet phenol concentrations: experimental (◊) and corresponding 

simulations for fully wetted catalyst: kGa = kLa (solid line), kGa = 5 × kLa (long dotted 

line), and instantaneous liquid-vapour equilibrium (short dotted line). 

(a) PO2 = 1.2 bar, Tw = 140 °C, FG = 100 Nl/h; (b) PO2 = 2 bar, Tw = 140 °C, FG =               

100 Nl/h. Grey symbols show experimental results without correction by catalyst 

deactivation. 
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Figure 2-4-27: Outlet phenol concentrations: experimental (◊) and corresponding 

simulations for partially wetted catalyst: kGa = kLa (solid line), kGa = 5 × kLa (long 

dotted line), and instantaneous liquid-vapour equilibrium (short dotted line). 

(a) PO2 = 1.2 bar, Tw = 140 °C, FG = 100 Nl/h; (b) PO2 = 2 bar, Tw = 140 °C, FG =           

100 Nl/h. Grey symbols show experimental results without correction by catalyst 

deactivation. 
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4.3.3.2.2.2 Axial concentration profiles 

Figures 2-4-28 and 2-4-29 compare the simulated axial concentration profiles 

respectively for fully and partially wetted catalyst to the experimental ones. 

For the same operating conditions, simulated profiles did not show any 

maximum concentration as seen previously in the upflow mode, due to a lower wall to 

bed heat transfer coefficient, leading to a slower vaporization along the bed. 

As seen previously, the experimental data lied mostly in between the two 

simulated cases. 
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Figure 2-4-28: Axial phenol concentration profiles: experimental (◊) and 

corresponding simulations for fully wetted catalyst: kGa = kLa (solid line), kGa =5×kLa 

(long dotted line), and instantaneous liquid-vapour equilibrium (short dotted line).  

(a) PO2 = 1.2 bar, Tw = 140 °C, FG = 100 Nl/h; FL = 0.5 l/h;  

(b) PO2 = 1.2 bar, Tw = 140 °C, FG = 100 Nl/h; FL = 1 l/h; 

(c) PO2 = 1.2 bar, Tw = 140 °C, FG = 100 Nl/h; FL = 2 l/h; 

(d) PO2 = 2 bar, Tw = 140 °C, FG = 100 Nl/h; FL = 0.5 l/h. 
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igure 2-4-29: Axial phenol concentration profiles: experimental (◊) and 

imulations for partially wetted catalyst: kGa = kLa (solid line),                  

kGa = 5

  

(a) PO2 

parameters were not easily available or estimated through widely 

spread 

tically involve some 

maxim

 

F

corresponding s

 × kLa (long dotted line), and instantaneous liquid-vapour equilibrium (short 

dotted line).

= 1.2 bar, Tw = 140 °C, FG = 100 Nl/h; FL = 0.5 l/h;  

(b) PO2 = 1.2 bar, Tw = 140 °C, FG = 100 Nl/h; FL = 1 l/h; 

(c) PO2 = 1.2 bar, Tw = 140 °C, FG = 100 Nl/h; FL = 2 l/h; 

(d) PO2 = 2 bar, Tw = 140 °C, FG = 100 Nl/h; FL = 0.5 l/h. 

 

This comparison showed that the large uncertainties of using a refined model 

involving many 

correlations. It is clear that the partial wetting effect is not well accounted for 

with too much increase of oxygen transfer as far as wetting is not fully achieved.  

As a general trend, upflow mode was better simulated despite an 

overestimated effect of vaporization, which would theore

um phenol concentration that never found experimentally. On the other hand 

experimental downflow profiles generally lay in between simulations with fully and 

partly wetted catalyst, which did not exhibit a clear maximum phenol concentration.  
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4.4 Co

ound active 

carbon

nalysis of phenol degradation based on phenol 

concen

ost important part, continuous wet catalytic air oxidation of 

phenol

   

global COD measurements, proving 

comple

nclusion 

This work on aqueous phenol treatment on active carbon may be divided into 

three parts: 

First, a breakthrough curve for phenol adsorption on active carbon at room 

temperature has been obtained with the pilot FBR showing the high adsorption 

potential of active carbon. A model accounting for flow characteristics, adsorption 

isotherm, diffusion inside the active carbon pores, and mass transfer ar

 particles, gave satisfactory predictions for the concentration take off but not 

for the end of the process, the arrival to the final plateau being much stiffer than 

experimentally.  

Second, a kinetic a

tration profiles in batch autoclave phenol oxidation over the same active 

carbon pellets showed a rapid decrease of AC activity that stabilised after 3 to 4 runs 

despite a consecutive strong reduction of adsorption capacity.  

The concentration profiles were used in a kinetic parameter optimisation 

including both diffusion of phenol and dissolved oxygen in AC pores. A rather usual 

first order was found for phenol while oxygen order 0.5 would suggest a dissociation 

process if it was confirmed on a much wider oxygen pressure range. 

 Third, and m

 solutions was performed in the three phase fixed bed reactor of active carbon 

being operated successively in upflow and downflow modes. 

A stable regime was achieved after a few hours and complete HPLC analysis 

was then performed at each operation condition. Many intermediate products of 

phenol partial oxidation were identified, both aromatics and carboxylic acids and a 

rather complex reaction scheme was proposed including carbon coupling to produce 

2- and 4-hydroxybenzoic acids. In order to manage this complex chemical process,  

a simplified vision was proposed through 

te oxidation to carbon dioxide and water to be the main reaction.   

AC stability was verified by repeating test reaction conditions at regular 

intervals during the complete work. No sensible deactivation was observed after 300 

oxidation hours at any condition at 120 and 140 °C while a 20% reduction of catalytic 

activity occurred at 160 °C.   
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Four main operating parameters have been varied independently: temperature 

of the thermal oil in the jacket, oxygen partial pressure through the total pressure and 

the inlet gas composition, and liquid and gas flow rates. The three first variables were 

proved to highly influence the reactor performance as they are directly connected to 

the reaction kinetics. Conversely gas flow rate, which was always stoichiometric 

excess, had only secondary effect especially in the downflow mode. This behaviour 

suggests that particle kinetics controlled the process with no severe gas-liquid mass 

transfer limitation.  

In order to better understand the results a complete reactor model was carried 

out based on Eftaxias [4,132]. This model accounts for axial dispersion, heat transfer 

at the reactor wall, liquid-gas and liquid-particle mass transfers, pore diffusion of both 

dissolved oxygen and phenol, AC partial wetting, and stagnant liquid zones. In our 

work due to large temperature variations connected with cold liquid and gas feeds, an 

important water vaporisation flux had to be included in the model. This was achieved 

by two ways, comparing instantaneous vaporisation (governed by heat transfer at the 

wall) and mass transfer limited vaporisation.  

Another problem related to the model is the extreme influence given to partial 

wetting which cannot correspond to physical trends: as soon as wetting is not fully 

achieved, direct gas-solid oxygen transfer is so intense that external mass transfer 

limitation vanished. In fact, experimental data appear to range in between partly and 

fully wetted models. Here the question is how to proceed to avoid complete resolution 

of two-dimensional diffusion in partly externally wetted porous particles while 

keeping sound physics?  

 



CHAPTER V 

 

CONCLUSION 

 

Catalytic oxidation of phenol solution was performed in a three phase fixed 

bed reactor of active carbon being operated both in upflow and downflow modes.  

Prior to this investigation a breakthrough curve for phenol adsorption on active 

carbon was compared to a model accounting for flow characteristics, adsorption 

isotherm, diffusion inside the active carbon pores, mass transfer around active carbon 

particles, and predicting a much stiffer arrival to the final plateau than measured. 

Though some explanations have been proposed, this asymmetrical experimental 

breakthrough curve should deserve more attention in future adsorption works.  

In oxidation operation, a large set of steady state data was collected by varying 

separately temperature, oxygen partial pressure, liquid space time, and gas velocity.   

In the selected range of these operation parameters, the reactor performance appeared 

mainly controlled by the reaction parameters (i.e. temperature, oxygen pressure, and 

liquid space time) and marginally by oxygen mass transfer to the liquid phase, mainly 

connected to gas and liquid flow rates. Probably for this reason no clear effect of 

upflow or downflow modes was observed as for a CWAO of phenol in a smaller 

TBR. Nevertheless a complete model was set up accounting for all usual mass and 

heat transfers phenomena in trickle or flooded beds. In addition, water vaporisation in 

the non-isothermal process had important effects and was also included in the model 

either with equilibrium assumption or using a mass transfer limited flux.  

Such a complex model needs a lot of parameters to be established by specific 

literature correlations. This work clearly faced the lack of reliable data and 

correlations for many parameters as important as the gas-liquid volumetric mass 

transfer kLa, which could differ by two orders of magnitude depending on several 

correlations. The situation is even worse for mass transfer limited vaporisation, for 

which the gas side coefficient is not available at all. Additional work is required on 

this interesting phenomenon, which typically corresponds to industrial application of 

CWAO and is not enough addressed in open literature. 

Besides this specific work on vaporisation in trickle bed and flooded bed, 

tracer analysis for RID study would be a relatively easy and fruitful task as 
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simulations showed it could partly explain the difference of concentration profiles in 

upflow and downflow modes. 

The kinetic study performed in autoclave reactor pointed out fast stabilisation 

of AC catalytic activity after a few runs where significant deactivation was observed. 

Simultaneously, active carbon underwent a severe drop of its adsorption capacity.  

These two concomitant steep variations of activity and adsorption would 

deserve additional work. Samples of fresh and aged ACs had been taken and analysed 

by BET showing a dramatic decrease of the surface area. In addition, TGA proved 

significant amounts of oxidisable compounds to be fixed on the aged AC. TPO and 

TPD had also been performed but results are still not available. If the quality of AC 

was proved to change depending on oxidation conditions, it would open a new field of 

investigations to find the best operation for a longer use of AC. Up to now, no such 

conclusion should be derived as very long range experiments have not yet been 

performed and only temperature seems to affect catalyst stability. These very long 

experiments correspond to a research and development programme starting soon and 

connected with the validation and development of the AD-OX process.  

From a technical and industrial point of view the CWAO process for phenol 

aqueous solutions to be treated on active carbon at mild temperature and pressure 

appears rather promising as no deactivation was found for a significant oxidation time 

(300 h) in various conditions except high temperature (more than 140 °C). Aromatics 

were mainly degraded to aliphatic compounds that are easily oxidised later in usual 

biological wastewater treatment processes. 

As many industrial phenolic wastewaters are less concentrated than that used 

in this work (5 g/l) a new AD-OX process is being developed at LGC Toulouse using 

both qualities of strong semi-continuous adsorption at room temperature and batch 

regenerative oxidation of adsorbed pollutants at mild temperature and pressure with 

only a small fraction of water to be heated. The complete modelling of three phase 

continuous reactor has been validated in this work. It will constitute a strong basis for 

AD-OX simulation but will need improvements on partial wetting and some 

modification to account for the batch process.  Here again the feasibility of such 

process depends on long range stability of AC performances both for adsorption and 

oxidation. 
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Appendix 1-1A: XRD spectrum of zeolite ZSM-5 

This spectrum was recorded on a JEOL X-ray powder diffractometer (model JDX-8030). 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 



 
 

 
 
 

Appendix 1-2A: XRD spectrum of fresh Pd/ZSM-5 catalyst 

This spectrum was recorded on a JEOL X-ray powder diffractometer (model JDX-3530). 



 

 

 
 

 

Appendix 1-3A: XRD spectrum of regenerated Pd/ZSM-5 catalyst 

This spectrum was recorded on a JEOL X-ray powder diffractometer (model JDX-3530). 

 



 

 
Appendix 1-4A: Typical GC chromatogram of products from n-hexane aromatization  

 



 

 
 

Appendix 1-5A: Typical GC chromatogram of products from natural gasoline aromatization  

 



 

 
 

Appendix 1-6A: GC chromatogram of standard compounds 

 



 

 
 
 

Appendix 1-7A: GC chromatogram of commercial mixture of benzene, toluene, and xylenes 
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Appendix 2-1A: Correlation for the two-phase pressure drop calculation in cocurrent 
downflow and upflow fixed bed reactors (After Julcour [70]) 

 
a) Cocurrent downflow fixed bed reactor 
Reference System, 

Catalyst, 
Column diameter,  
Bed porosity 

Correlation, 
Application domain 
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k1 and k2 depend on the form and the size of 
catalyst:      
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         202 < k2 < 1620 (m-1) 
    0.0023 ≤ uL ≤ 0.022 m/s     
      0.082 ≤ uG ≤ 1.09 m/s 
 
High interaction regime 

LGG
e

2
GG

f
f

d
u2

H
P

×
ρ

=⎟
⎠
⎞

⎜
⎝
⎛

∆
∆  

ln fLGG = 7.82 – 1.30 (ln (Z/ψ1.1))  
              – 0.0573 (ln (Z/ψ1.1))2 

3/12

L

W

W

L

L

W

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ
ρ

µ
µ

σ
σ

=ψ  

0.0016 ≤ uL ≤ 0.025 m/s     
  0.011 ≤ uG ≤ 2.46 m/s 
     810 ≤ ρL≤ 1070 kg/m3     
      0.7 ≤ ρG≤ 1.2 kg/m3 
  0.001 ≤ µL≤ 0.005 Pa.s 
  0.027 ≤ σL≤ 0.072 N/m 
 

 



 

180

Ellman et al. [73] Air – ethyleneglycol,  
air – gas oil,  
air – water,  
air – cyclohexane 
 
Spherical and cylindrical 
particles: 
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Wammes et al. 
[74] 

Nitrogen, helium – water, 
ethanol, ethyleneglycol  
 
Glass beads:  
dp = 3 mm 
Alumina extrudates: 
dp = 3.2 mm 
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200 < ReG < 5000, βLext > 0.25 
 
uL,max = 16 mm/s 
uG,max = 0.36 m/s 
P < 7.5 MPa 

Larachi et al. [75] Nitrogen – water,  
helium – water,  
nitrogen–ethyleneglycol, 
nitrogen – water + 1% 
ethanol  
 
Glass beads: 
1.4 ≤ dp ≤ 2 mm 
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0.2 ≤ P ≤ 8.1 MPa 
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b) Cocurrent upflow fixed bed reactor 
Reference System, 

Catalyst, 
Column diameter,  
Bed porosity 

Correlation, 
Application domain 

Turpin and 
Huntington [69] 

Air – water 
 
Cylindrical alumina 
particles:  
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Nonfoaming liquid 
FGL = 1756 σL

0.72× (ReL΄0.25 / FrG΄1.11) × (uG 
/ εGext)2 / dp
 
Foaming liquid 
FGL = 2945 σL

0.72× (1 / FrG΄1.11) × (uG / 
εGext)2 / dp

ReL΄ = ReL / εLext       FrG΄ =  FrG / (εGext)2 
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Nonfoaming liquid 
C1 = 0.082 (σL / µL)0.61     
C2 = 0.099 (σL / µL)0.61 
 
Foaming liquid 
C1 = 1.31          C2 = 1.14 

( )
( )

5.0

G

L

H/P
H/P

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆∆
∆∆

=χ          

 
0 ≤ uL ≤ 0.04 m/s           
0 ≤ uG ≤ 0.14 m/s 
Atmospheric pressure 
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Larachi [71] Various systems 
 
0.85 ≤ dp ≤ 3.4 mm 
 
Dc = 23 mm 
0.32 ≤ ε ≤ 0.39 

⎟
⎠
⎞

⎜
⎝
⎛ += 5.05.1LGG

BA1f
κκ

 

 
 κ = XG (ReL WeL)0.25 
A = 53.4 ± 5.0     
B = 18.2 ± 1.0 
 
0.003 ≤ G ≤ 3 kg/m2/s 
    1.8 ≤ L ≤ 24.5 kg/m2/s 
    0.2 ≤ P ≤ 5.1 MPa 
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Appendix 2-2A: Correlation for the calculation of liquid retention or liquid saturation 
in cocurrent downflow and upflow fixed bed reactors (After Julcour [70]) 

 
a) Cocurrent downflow fixed bed reactor 
Reference System, 

Catalyst, 
Column diameter,  
Bed porosity 

Correlation, 
Application domain 

Turpin and 
Huntington [69] 

Air – water 
 
Alumina cylindrical 
particles:  
7.6 < dp < 8.3 mm 
 
6.2 < Dc/dp < 20.0 
 
volumetric method 

017.0
G
L132.0

24.0

LD −⎟
⎠
⎞

⎜
⎝
⎛=β                 

6
G
L1

24.0

<⎟
⎠
⎞

⎜
⎝
⎛<  

0.02 < G < 6.5 kg/m2/s 
  6.5 < L < 54.2 kg/m2/s 
    P < 3.4 atm 
 

Specchia and 
Baldi [72] 

Air – water, air – aqueous 
solution of glycerol (9, 29 
%), air – water + surfactant 
(8, 16 ppm) 
 
Glass beads:  
dp = 6 mm  
Glass cylindrical particles:  
2.7 ≤ dp ≤ 5.4 mm 
 
Dc = 0.08 m 
0.37 ≤ ε ≤ 0.40 
 
volumetric method 
uL,max = 0.03 m/s 
uG,max = 1.09 m/s 

Poor interaction regime 

( ) ( )
65.0

pc42.0

L
545.0

LLD

da
GaRe86.3 ⎟⎟
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⎞
⎜⎜
⎝

⎛
=

−∗

ε
β  

( )( )
2
L

fLL
3
p*

L

H/Pgd
Ga

µ
ρρ ∆∆+

=  

3 < ReL < 3000 
 
High interaction regime for nonfoaming 
liquid 

( )
65.0

pc312.01,1
LD

da
/Z125.0 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

−

ε
ψβ  

1 < Z / ψ1.1 < 500 

Fukushima and 
Kusaka [83] 

Air – water 
 
Raschig rings: 
dp = 9.525 mm  
Ceramic spherical particles: 
12.7 ≤ dp ≤ 25.4 mm 
 
0.114 ≤ Dc ≤ 0.2 m 
 
tracer method 

3.0

c

p15.0
Lext D

d
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1
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G

5.0 ReRe −= φχ , 
µ

ρ
= Sdu

Re , 2
p

p

d

S
=φ  

0.23 ≤ G ≤ 2.5 kg/m2/s 
  2.3 ≤ L ≤ 100 kg/m2/s 

 



 

184

Ellman et al. [81] Various systems 
 
Spherical and cylindrical 
particles: 
1.16 < dp < 3.06 mm 
 
23 < Dc < 100 mm 
0.273 ≤ ε ≤ 0.489 
 
 
 

Conditions: 
0.0001 ≤ G ≤ 10 kg/m2/s 
0.5 ≤ L ≤ 105 kg/m2/s 
0.1 ≤ P ≤ 10 MPa 
 
βLD = 10κ 
κ = 0.001 – R / αS 
 
High interaction regime: XG < 0.8 

25.0
hc0.2

L
0.25

L
0.5
L 1

daWeReX ⎟
⎠
⎞

⎜
⎝
⎛

−
= −

ε
α  

R = 0.16      S = 0.65 
 
Poor interaction regime: XG > 1.2 

3.0
hc0.3

L
0.5
L 1

daReX ⎟
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⎜
⎝
⎛

−
= −

ε
α  

R = 0.42     S = 0.48 
 

Wammes et al. 
[84] 

Nitrogen, helium – water, 
ethanol, ethyleneglycol  
 
Glass beads: dp = 3 mm 
Alumina extrudates: 
dp = 3.2 mm 
 
Dc = 51 mm 
0.39 ≤ ε ≤ 0.43 
 
volumetric method 

65.0
pc

42.0

L
2
L

2
L

3
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ερµ
ρ
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2 ≤ ReL ≤ 55 
3.2 ×103 ≤ GaL ≤ 0.32 ×106 
0 ≤ (∆P / (∆H ρL g)) ≤ 16 
 
uL,max = 16 mm/s 
uG,max = 0.36 m/s  
P < 7.5 MPa 
 

Larachi et al. [85] Nitrogen – water,  
helium – water,  
nitrogen – ethyleneglycol, 
nitrogen – water + 1% 
ethanol 
 
Glass beads: 
1.4 ≤ dp ≤ 2 mm 
 
Dc = 23 mm 
0.35 ≤ ε ≤ 0.38 
tracer method 
 
 

βLext = 1– 10 -Γ 

E
L

D
G

C
L

ReX
We22.1=Γ  

C = 0.15 ± 0.016 
D = 0.15 ± 0.008 
E = 0.20 ± 0.013 
 
0.003 ≤ G ≤ 3 kg/m2/s 
1.8 ≤ L ≤ 24.5 kg/m2/s 
0.2 ≤ P ≤ 8.1 MPa 
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b) Cocurrent upflow fixed bed reactor 
Reference System, 

Catalyst, 
Column diameter,  
Bed porosity 

Correlation, 
Application domain 

Turpin and 
Huntington [69] 

Air – water 
 
Alumina cylindrical 
particles:  
7.6 < dp < 8.3 mm 
 
6.2 < Dc/dp < 20.0 
 
volumetric method 

035.0
G
L182.0

24.0

LD −⎟
⎠
⎞

⎜
⎝
⎛=β                 

 6
G
L1

24.0

<⎟
⎠
⎞

⎜
⎝
⎛<  

 
0.02 < G < 6.5 kg/m2/s 
  6.5 < L < 54.2 kg/m2/s 
    P < 3.4 atm 
 

Stiegel and Shah 
[82] 

Air – water 
 
Polyethylene extrudates:  
2.8 × 5.6 mm and 
3.12 × 3.12 mm 
 
Dc = 0.05 m 
ε = 0.41 
 
tracer method 
 

εLext = 1.47 ε ReL
0.11 ReG

-0.14 (aSdS΄)-0.41 

/2dLdd' 2
pppS +=  

Re calculated with dS΄ 
 
0 < G < 0.7 kg/m2/s 
3 < L < 25 kg/m2/s 

Yang et al. [86] Air, nitrogen – water, 
various hydrocarbons 
(foaming and nonfoaming) 
 
2 < dp < 2.8 mm 
 
0.05 < Dc < 0.15 m 
0.30 ≤ ε ≤ 0.34 
 
various methods 

LG

G
0Lext uu

u
C

+
−ε=ε               

93.0
uu

u

LG

G ≤
+

 

C0 = 0.16 for nonfoaming liquids 
C0 = 0.28 for foaming liquids 
 
0 ≤ uL ≤ 0.04 m/s           
0 ≤ uG ≤ 0.14 m/s 
Atmospheric pressure 
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Appendix 2-3A: Correlation for the calculation of mass transfer volumetric 
coefficient and the gas-liquid interfacial area in cocurrent downflow and upflow               

fixed bed reactors (After Julcour [70]) 
 
a) Cocurrent downflow fixed bed reactor 
Reference System, 

Catalyst, 
Column diameter,  
Bed porosity 

Correlation, 
Application domain 

Reiss [96] Air – water 
Raschig rings: 
12.7 ≤ dp ≤ 76.2 mm 
 
75 ≤  Dc ≤ 410 mm 
0.726 ≤ ε ≤ 0.883 
 
Desorption 
 

kLa = 0.0173 EL
0.5 

L
f

L u
H
PE ⎟

⎠
⎞

⎜
⎝
⎛

∆
∆

=  

 
50 < EL < 104 W/m3 

Atmospheric pressure 

Hirose et al. [97] O2 – water 
 
Glass beads: 
2.59 ≤ dp ≤ 12.2 mm 
 
Dc = 65.8 mm 
0.370 ≤ ε ≤ 0.438 
 
Desorption 

kLa = dp
- 0.5 uL

0.8 uG
0.8 

0.05 ≤ uG ≤ 1 m/s 
0.01 ≤ uL ≤  0.2 m/s 
 
Bubble flow regime 

0.31
L
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GL E'

u
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Pulsed flow regime 
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Atmospheric pressure  
 

Goto et al. [98] O2 – water 
 
Glass beads: 
dp = 4.13 mm 
ε = 0.371 
Catalyst particles: 
0.541 ≤ dp ≤ 2.91 mm 
0.441 ≤ ε ≤ 0.453 
6.25 < Dc / dp < 58.5 

Catalyst particle of 2.91 mm diameter: 
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Catalyst particle of 0.541 mm diameter: 
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Glass beads: 
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5.0
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0 ≤ uG ≤ 8×10-3 m/s                       
5×10-4 ≤ uL ≤ 5×10-3 m/s 
 

Charpentier [99] Various systems 
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5 < EL < 100 W/m3                         
P ≤ 4 bar 
 

Fukushima and 
Kusaka [100] 

Air – Na2SO3 solution 
 
Raschig rings: 
dp = 9.525 mm  
Ceramic sphericle 
particles: 
12.7 ≤ dp ≤ 25.4 mm 
 
0.114 ≤ Dc ≤ 0.2 m 
 
 

Pulsed flow regime 
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Bubble flow regime 
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Trickle-flow regime 
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Turek and Lange 
[101] 

Hydrogen – cumene,  
α-methylstyrene 
 
Crushed particles: 
0.54 ≤ dp ≤ 3 mm 
 
Dc = 0.034 m 
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L
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ak −×=  

0 ≤ FG ≤ 100 l/h                               
0 ≤ FL ≤ 1.5 l/h 
 
 

Midoux et al. [102] CO2 – CHA in toluene + 
10% IPA,  
CO2 – MEA in ethanol, 
CO2 – DEA in ethylene 
glycol 
 
Beads: dp = 2.4 mm 1.23
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Cylindricle particles:  
0.9 × 5 mm 
 
Dc = 0.05 m 
0.385 ≤ ε ≤ 0.396 
 
Absorption with 
chemical reaction  
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2×10-5 ≤ τLS ≤ 1.5×10-3 
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L (max) = 14 kg/m2/s 
G (max) = 0.25 kg/m2/s 
 

Hirose et al. [97] CO2 – NaOH 
 
Glass beads: 
2.59 ≤ dp ≤ 12.2 mm 
 
Dc = 65.8 mm 
0.370 ≤ ε ≤ 0.438 
 
Chemical absorption  
 

a = 175 dp
– 0.8 uL

0.5 uG
0.6 

 
0.01 < uG < 0.6 m/s 
0.01 < uL < 0.1 m/s 
 
Atmospheric pressure 

Morsi [103] CO2 – DEA in ethanol, 
CO2 – DEA in ethylene 
glycol 
 
Catalyst particles: dp = 
2.4 mm 
 
Dc = 0.05 m 
ε = 0.385 
 
Absorption with 
chemical reaction 
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2000 < λLG < 50000 Pa.m-1 
 
0.05 < G < 0.15 kg/m2/s 
  6 < L < 8 kg/m2/s 
 
Atmospheric pressure 

Larachi et al. [104] CO2 – aqueous solution 
of DEA – ETG 
 
0.85 ≤ dp ≤ 3.37 mm 
 
Dc = 23 mm 
0.32 ≤ ε ≤ 0.39 
 
Chemical absorption 
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βL°, a°, and fw° were estimated at 1 atm 
K = 2.65 × 104 
 
1.4 ≤ L ≤ 8 kg/m2/s 
0.3 ≤ P ≤ 3.2 MPa 
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b) Cocurrent upflow fixed bed reactor 
Reference System, 

Catalyst, 
Column diameter,  
Bed porosity 

Correlation, 
Application domain 

Specchia et al. [78] CO2 – NaOH solutions 
 
dp = 6 mm 
 
Chemical absorption 
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0.0025 ≤ uL ≤ 0.043 m/s 
0.14 ≤ uG ≤ 2.21 m/s 
 

Saada [105] CO2 – NaOH solution 
 
Spherical particles:  
0.5 ≤ dp ≤ 2.1mm 
 
Dc = 45 mm 
 
Absorption with 
chemical reaction 
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4 ≤ ReL ≤ 105 
20 ≤ ReG ≤ 450 m/s 
 

Lara Marquez  
[106] 

Air – Na2SO3 solution; 
CO2 – DEA 
 
1.2 ≤ dp ≤ 3mm 
 
Dc = 50 mm 
ε = 0.37 
 
Chemical absorption 
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5.4 ≤ L ≤ 32.4 kg/m2/s 
0.01 ≤ G ≤ 0.15 kg/m2/s 
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Appendix 2-4A: Properties of Marlotherm S (BRENNTAG SPECIALITES) 

 
 

Marlotherm S is a mixture of dibenzyltoluene isomers. This hydrocarbon is 
water immiscible and does not react with water.  

 
 
Chemical, physical, and thermal characteristics of Marlotherm S 
 
Properties Value Unit Test Method 
Molecular weight 272  g/mole - 
Appearance at 20 oC Clear liquid - visual 
Chloride contents < 10 ppm DIN 51408 
Acid number < 0.02 mg KOH/g DIN EN ISO 3682 
Density at 20 oC 1.04-1.05 g/mL DIN 51757 
Viscosity at 20 oC 42-52 mm2/s DIN 51562 
Boiling point  
(at normal pressure) 

Approx. 385-395 oC ASTM D1078 

Heat of vaporization  
(at normal boiling point) 

264 kJ/kg - 

Pour point  < -34 oC DIN ISO 3016 
Freezing point Approx. -35 oC DIN 51583 
Flash point Approx. 200 oC EN 22719 
Ignition temperature Approx. 450 oC DIN 51794 
Permissible heater outlet 
temperature 

350 oC - 

Permissible heater film 
temperature 

380 oC - 

Wall admissible temperature Max. 370 oC - 
Inflammation group  G1 - VDE 0165 
Temperature class  T1 - VDE 0171 
Specific electrical conductivity 
at 20 oC  

6.7 × 10-9 µs/cm DIN 53779 
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Evolution of physical characteristics of Marlotherm S at various temperatures 
 
Temperature 

(K) 
Vapor 

pressure 
(mbar) 

Liquid 
density 
(kg/m3) 

Liquid 
viscosity 

(10-3 Pa.s) 

Thermal 
conductivity 

(W/m/K) 

Specific 
heat 

capacity 
(kJ/kg/K) 

253  1056 1100 0.136 1.44 
273  1043 188 0.134 1.51 
293  1029 41 0.132 1.58 
313  1015 15 0.130 1.65 
333  1001 7.6 0.128 1.71 
353  988 4.3 0.126 1.78 
373  974 2.9 0.123 1.85 
393  959 2.3 0.120 1.92 
413  945 1.6 0.119 1.99 
433  931 1.3 0.117 2.06 
453 1 918 1.0 0.115 2.13 
473 4 904 0.86 0.113 2.20 
493 8 890 0.73 0.110 2.27 
513 17 876 0.62 0.108 2.34 
533 33 862 0.54 0.106 2.41 
553 64 848 0.47 0.104 2.48 
573 114 834 0.42 0.102 2.55 
593 190 820 0.38 0.100 2.62 
613 326 806 0.34 0.098 2.69 
633 513 792 0.32 0.096 2.76 
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Appendix 2-5A: Thermogravimetric analysis of fresh and aged activated carbon 

(TA Instrument, SDT Q 600) 
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Appendix 2-6A: Typical HPLC chromatogram of fast analysis for phenol  
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Appendix 2-7A: Typical HPLC chromatogram of fast analysis for                                

phenol oxidation products 

 
 
 
 
 

 

Phenol 

Intermediates 
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Appendix 2-8A: HPLC chromatogram of full analysis for standard solution 

(commercial compounds) including some of main phenol oxidation intermediates  

 
 
 
 
 

 
 
 
 
1: oxalic acid, 2: formic acid, 4: acetic acid, 5: maleic acid, 6: fumaric acid, 7: hydroquinone, 

8: benzoquinone, 9: pyrocatechol (1,2-dihydroxybenzene), 10: 4-hydroxybenzoic acid, 11: 

phenol. 
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Appendix 2-9A: Typical HPLC chromatogram of full analysis of                                
phenol oxidation products 

 
 
 
 
 

 
 

 
 
1: oxalic acid, 2: formic acid, 3: malonic acid, 4: acetic acid, 5: maleic acid, 6: fumaric acid, 

7: hydroquinone, 8: benzoquinone, 9: pyrocatechol (1,2-dihydroxybenzene), 10:                    

4-hydroxybenzoic acid, 11: phenol, 12: 2-hydroxybenzoic acid. 
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Appendix 2-10A: Proposed reaction mechanism for phenol CWAO based on the 

identified intermediates in the reaction products. 
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Appendix 2-11A: Axial phenol concentration profiles (1): experimental (◊) and 
corresponding simulations for fully wetted catalyst: kGa = kLa (solid line), kGa =5×kLa 
(long dotted line), and instantaneous liquid-vapour equilibrium (short dotted line). 
Dad=16.7×Dad

(Stüber); PO2 = 0.5 bar, Tw = 140°C, FG = 100 Nl/h 
(a) FL = 0.5 l/h; (b) FL = 1 l/h; (c) FL = 2 l/h. 
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Appendix 2-12A: Axial phenol concentration profiles (2): experimental (◊) and 
corresponding simulations for fully wetted catalyst: kGa = kLa (solid line), kGa =5×kLa 
(long dotted line), and instantaneous liquid-vapour equilibrium (short dotted line). PO2 
= 2.0 bar, Tw = 140°C, FG = 100 Nl/h, FL = 1.3 l/h 
(a) Dad = Dad

(Stüber); (b) Dad = 4.2×Dad
(Stüber); (c) Dad = 16.7×Dad

(Stüber). 
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Appendix 2-13A: Axial phenol concentration profiles (3): experimental (◊) and 
corresponding simulations for fully wetted catalyst: kGa = kLa (solid line), kGa =5×kLa 
(long dotted line), and instantaneous liquid-vapour equilibrium (short dotted line). PO2 
= 2.0 bar, Tw = 140°C, FG = 100 Nl/h, FL = 0.5 l/h 
(a) Dad = Dad

(Stüber); (b) Dad = 4.2×Dad
(Stüber); (c) Dad = 16.7×Dad

(Stüber). 
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