CHAPTER III
INTEGRAL GEOMETRY OVER SETS OF POINTS, SETS OF STRAIGHT
LINES, SETS OF PAIRS OF PCINTS, SETS OF PAIRS OF STRAIGHT LINES

AND SBETS OF KINEMATICS.

Section 3.1 Integral Geometry Over Sets of Points,

311 Density and measure for sects of points.

Let (K,@) be a fixed rectangular cartesian coordinate
neighborhood with (x,y) as its coordinate functions. e can

write a density (U in the form

w ={‘(x’7)dx dy where f : é (X) —»R
Yie want to determine all continuous densities &) which will
make m(A) invariant under the group of Fuclidean motion m .
Let g ¢ m be represented by the cquations

LP (x,¥)

*
X = a+xcos5@ +y sin 0

£

l‘)(x,y)=y=b-xsin0+yoosg
i.e we want to find (y such that
*
g(aA) = A
‘ - 5 * * # *
i,e j S f(x,y)dx dy = Tix g ) de dy

E(A) @(ﬂt)



25

To find this, we have

(3.1) ij(x”"y*)dx*dy* i YE 2Py @ Gxr)) %%%l\ iz dy
Fn) )
but J (x* Y*) = 9_25* af*
I X,y Ox dy
| 2y 2y
35X ¥

cos @ sin Q@

-sin @ cos ©

J

(3.2) ice '-§%§74%)‘

From (3.1) and (3.2) we get

I
'y

5
fff(x, y) dx dy = jff{ LP Xy ¥)s f’u(x,y))dx dy Vdomainf{S({\)
¢ (A (4)

and in order that this c¢quality hold for any domain _@(A)

it must be true that
f(x,y) = £( P (x,5), L,J(x,y)) Vs ¢ 77’&

Since the point ¥X,¥ can be transformed by a motion
* *
into any other point x ' ¥ , the last equality signifies that

f(x,y) takes the same value for all points of the plane. Thus
f(x, y) = constant

We normalize the situation by choosing the constant to

. Al
m(A) = ‘FS dx dy

(A

be 1, so we have



r
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Up to a constant factor , this measure is the only one
which is invariant under the group of Euclidean motions in the

Plane. /e denote this density dx dy by dp.

3+7.2 Theorem : (Crofton). Let C be a closed convex plane
curve having a tangent at every point and P be the exterior
point of C. Then

Y sin @ ap F 2.“/2

J t1t2

P is the exterior point of C

Where t1 and t2 represent the length of the tangents

to C from P and (yis the angle of these two tangents at P.

e

From each point P exterior to C, there can be drawn two

tangents to C, say PA, and PA, (see Figure 3). To each of these




a7
tangents corresponds an angle (f? 1(and ¥ 2) formed by the perpendiculas
OH‘I (and OHE) with a fixed direction OX . Conversely, the two
angles Lf1‘ (Pz detlermine the point P. We want to express

the density dP in terms of the coordinates (ip,] and (F 5

Let X110 ¥4 be the coordinates of the point of tangency A‘I

and x, y, the coordinates of Ps Let D be the exterior of Ce

0 X —_
/e see that slope of PA, = tan (90 4+ 591) =-cot
_ = =¥ f1 : p>fo0,27]
The equation of Pft,] is = = = cot $0 1 where X, : Doy R
yq ¢ D R

we multiply both sides by (x—x,,) sin (f’ 10 We get

I=Yq / A RE .

%, (x—-x,') gin ((1 = —551-(-'01 e (x = x_.l) sin ‘101

This implies ;

eln @, (y-yq) = - cos ?1(x-x1)
Adding cos (lﬂ,](x-.-x,l) to both sides we get

sin
(P'T (y-yT) + cos qu(x-x1) = - cos (101(x—x1) + cos 501(}:-}:1)
(x-x,i) cos ({91 + (y—y,l) sin Lf?q =0 as functions on D
By differentiation, we get
d [(x-x1) cos (f , + {y-y.,) sin?/’,l] = 4 (0) =0
as diff.1 « form on D

From Remark 2,30, we get

d L(x-x,l) cos (P,I:l + d [(y-y1) sin.('a,]] = 0
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(x-—x,') d(cos (F") + cosLF1(dx - dx,1) + (y - 31)d(sin?1)
+ sin (r1(dy - dy1) =0
- (x-x1) sin ® 4 d%+ cos lf,ldx - cos ¢ ,dx, + cos ((,(y-y,])df;l
+ sin (F1dy - sin ?1‘15’1 s 0
(3.3) cos (F,Idx + sin P, dy - (cos ¢ ,dx,+ sin ?1dy1) = [(x-x,l)sin (]01
| -(y—y.') cos(r,*]d(r,'
but (x1,y1) is the coordinate of rt. on C, we can write
g = #x) where f : R—>R

By differentiation we get

I
dy1 = f(x.') dx1

= = cot LF1dx1

B, ¥ 9:-05(91 dx1

T “sin "

(3.4) Thus ; cos ¢,dx, + sin Lf*,ldy,l = 0
Let (x—x1) sin -Y;‘I_ (y-y,l) cos P, = 1
JC,}- X P 2 eE ya'
Observe that sin & and cos = —
(f"l t1 1 t1
X, =X, i
therefore (x - x )(—) = (y-y. )(—) = 1
1 t,‘ 1 t,}
(x-x )2 (y=-y )2
s 1 Y g & 1
t,! t,.l
- {(x-x,l)z-n- (y-yq)ai
= 1
L] t —
1
P :
But ‘tl= (x—x1)2+ (y - _?1)2 y we get
IR i
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(3.5) 1.6 (x-x,')sinlf,l - (y—y,l) cos, = -t

Substituting (3.4) and (3.5) in (3.3) we get
(3.6) cos Y ,dx + sin (F,]dy ® = %.d ¢4
Similarly the equation of Pa, is (x-xa) cos;?2+ (y-yz)
sin PE =0
This equation gives

(3.7) cos ‘192 dx + sin ?Edy = -ty a0,

By exterior product we obtain from (3.6) and (3.7)

the relation

(cos ((J,isin (FE - sinﬁﬂ,'cos (Ié'z) dx dy t,t,d p 4 ?’2

sin (L'Oa- (P,]) dx dy = t,?tzdﬁp,' df-‘z

i

Furthermore, (‘02— lf)1 =T - « Consequently we have

t1t2
=i %
sinW >
. ANy M

Integrate both terms of this equality over all possible
different values of the variables, we observe that P can vary

over all points exterior to C, and ‘F1' ?2 can vary from O
to 2n. However, if in each position we permute?’,l and (fa y We

get the same point P; consequently, in order to count each

point P only once, we must divide by 2. We have therefore

.) ' ]
sinW 1 2
—— gP = d d = R
Ee 5 j ¥y 2 ¥
P is exterior to0 C . o0

Q.E.D.
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313 Remark : We sece that this value of the integral does
not depend on the convex curve C. So that this convex curve

can be any size and shape.

Section 3.2 1Integral Geometry Over Sets of Straight Lines.

3+c.1 Density and measure for sets of straight lines.

Choose a rectangular cartesian coordinate system (x, y)
determined by two given orthogonal straight lines.. We denote
by x*  the positive part of the x - axis and y+ the positive
part of the y - axis. The point O is the origin and x , y  are
the negative parts of the x, y - axes respectively.

Let Y be the set of straight lines in the Euclidean
Plane X. We want to give every straight line in Y 2 coordinate.

To do this, we need 3 coordinate neighborhoods %(U1.-§1) 5
(U?.'.’ @2). (U3 »@B)} to form the atlas such that

Y

{st. lines 1] 0 i 1 and 1 not L with x'- axis:} where
/

(xy v) are the coordinate functions of @ 1°

: / \ ’+ .
U, = Jst. lines 1|0 £ 1 and 1 not L with x "= axis where

/
O 1is the translations of O, one unit in the positive

/ 4
direction along x = axis and X - axis and y - axis are the rotation

of the old x and y - axis by 90° in the counter clockwise direction

/ "

U3 = ist. lines 1'0’% 1 2nd 1 not l with x '- axis}
"

where O is the translatiofns of O, one unit in the positive
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i "
direction along y - axis and x and y - axis are the same direction

as the 0ld x and y - axis (see Figure 4)

Hfgu

/\-“
=

v

=

Figure 4

so that we can give every straight lines a coordinate (p, f( )

such that p >0 and 0 < { < 2n. We do not allow O £1
because if O £ 1 then (F is not defined and the range is not
an open set. Similarly we do not allow 1 L x'- axis because
L & g S 1 x+- axis then 90 can not be made continuous and the
range is not open.

We will show that these three coordinate neighborhoods
are c’-— related. Firstly, we will show that (U1, _@ 1) and

@ ) are c;- related. We see that u,NU @

2
Next, show that (@1(,@ ) and (§2°§ ) are ¢ .- maps.



2

F's
There are 4 possible cases that a straight line can be
Sk b s 1 4 :
lie in (U1. @1) and (LE‘ ? 2). Let ( p°, (o ) be a coordinate
of a straight line with respect to (Ua, @2).
case 1
H /
A O
|
' P

P | N

Vs

///19———-%'____J3? 0/

Figu'fe 5

]
v R}

We see that (P‘ = (f)

.

where b is shown in Figure 5.

° < E =
(3.8) and £

. Y
+
o

but cos (=n -?J)

o

(3-9) S0 b =

-Cos lp
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From (3.8) and (3.9) we get

/ _p(1+v)
P =
b
= p(1 + (« cos?)
i
= P - coslf?
-1 ;
ROy @10 %2 : @2“}1”“2)‘——3@1 (U1()Ue) is C - map.
/
and we have p = p + cos;fg
/
T
¢ =AY
2

=1 {
8, $..0, §§1(01”U2)ﬁ§2 (U,00,) is C - map.

Observe that

= oy
Jac (B, B e, = kea¥y- |22! 3!
WA ST e ¥
a9t 2y
ap 2
1 sin
= = 1
0 1
-1 22 2P 1 0
and Jac(@ § ) = M) = Qp' 9?‘ = L
20 1 9(p1 'f‘) > Q_E n
& 1
9})' 9’01
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F[ﬂufc b
y & i
case 2 A A.m
N
o e 5 o
J é'\ P of
1
|
’ 3
We see that (P = (‘0 - == and
/
sin © = 5 2 HIETb where € and b are shown
in Figure 6.
/
(3.10) this implies, p = p(% —
but cos (2= -IF) = E
GKORBE.!
(3.17) s0 b = cos(f

From (3.10) and (3.11) we get

p! = p(ES%Ji__1)

= cos P - D
and also P = cos ? - p!
= ! 3n

- T ¥



-1
So §1o§>2 and ?20

1

z,

Obscirve that Jac (§1O§2) = | =1 - sin(F iyt
e 0 1
and Jac (@20§1) = |- 0 P
(0] 1
case 3 y /
[N A 2
S |
l f
Y < y \fm @
O L {'l" > ) O"
< | ‘:\
Figu’[c %
/
We see that 50 = (F+ % and
/
L \Uhpgt UNIVEIDS o 2 ;
sin © = - = - this implies
I}
(3.12) P = p(d - 1)
b
T
and cos (P o
P
. b = -
(3.13) cos LF
From (3.12) and (3.13) we get
p/ = cos ﬁo— P
/
and also P = cos tp - P

g

n

2

35
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/
So, @1059’-2 and @20 é,' are C - maps.

36

e ' -1 -s5in
Observe that Jac (§1o§2 ) = & =1
0 1
=1 -1 0
and Jac (@2o§1) = = =1
o} 1
case 4 () [
4 &%
l f /
VIl o 4, ) ¢ 0
o oF P
'
7/
S 1 Wi
Figuve 3
W ’ 2
e see that ?0 = (f’ e and
/
E = 71{-1; this implies
(3.14) o' - p(% + 1)
but cos( (f? -t) = g
(3.15) so b = 2

<
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From (3.14) and (3.15) we get

P = = cosi& + P
and also p = p;+ cos ?
: : "
=l
-1 -1
/
So, §0§ and @20 §1 are C - maps
=4 1 sing
Observe that Jac (@10 j,lja) = = 1
0 1
-1
1 0
and Jac (P 0 ) = = 1
0 1

F:-om these cases we see that (U1.§1) and (UE' @2) are
C - related .

In the same way we can show that (U1, §J) and (U3' '§3)

! /
are € = related and (Ua, §2) and (U3, @3) are C = related.

-
We sec that some Jac ( ) L0 so for sets
1%L 2

of strgight lines we neced to distinguish between differential
2 - forms and densities, S50 for sets of straight lines
we integrate densities not differential 2 - forms,

We form a new atlas by taking all coordinate
neighborhoods (u, @ ) such that (v, § ) is C! = related to

(U.T, @1). (UZ' @2) and (UB' §3)' Wher we change from

one coordinate system to another., e allow only the
coordinate systems which its coordinate neighborhood

belong to the new atlas,
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All definitions of differential form and density are
the same as before, Now, we want to find a density W
which will make m(Y) invariant under the group of
transformations m « Let g Em then in terms of
rectangular cartesian coordinate on X, g can be represented

by the eguations

* *
X =8 +Xco5 0 =y sin Q@

(3.16)
* *
Yy =b+xsin @ +y cos ®

The normal coordinate of straight line 1 is
(317) X cos ? +ysing -p =0

By the measure of a set Y of straight lines 1, we

shall understand an integral of the form

(3.18) a(Y) = H £(p, p ) dp dp

with the condition that this integral must be invariant
under the transformations of the group of Tuclidean motions
By a motion (3.16) , the straight line (3.,17)

transforms into

& * * * *
(a+x cos @ - y sin Q) cos ¢ + (b +xsin0 +y cos O )5”1?

- P = 0 that is P
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(3.19) X cos (p=-9) + y*sin( $- Q)= (p - a COSSO ~bsinfp ) =

Comparing this with (3.17), we see that under a

motion (a,b,Q) the coordinates p,Q? of 1 transform according

to
p*=p—acos$0-bsin$0= oé'(p.(f)
(3.20)
b ¢ = p-0 = Al ¢)
If m(Y) is invariant, we must have
SRy Al
jjf(p,q)Jdp dp = Hf(p.-?)dpdﬁ
%
Y Y
On the other hand, according to (3.20) we have
(3021) jj £(p , tfi*) dp*dqr:ﬁ = Jf LA(py @ )sfp (2o f)) dp df
: . TN Ty
because .—Lp_i) = P 9((
3 (p, ?’ ) * B
2f 2%
o P ¢
= 1 as:.nlf—-—bcosw
0 1
— 1

(3:22) dse 24 e )
Q(P’ ‘f’ )
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From (3.21) and (3.22) we obtain

” sl i “ﬁf(‘*(m?), £ (21 ))dp af
Y 1 oY

and in order that this equality hold for any domain Y,

it must be true that
€20 @) =202y 9y porp ) Ye el

Since any straight line 1(p, @ ) can be transformed
into any other l(p*, ?t) by a motion, the last equality
yields the result that f(p, ??) must have the same value
for any straight line of the plane ; that is,

f(p,?) ) = constant, Taking this constant equal to 1, we

m(Y) = dep df

K

Up to a constant factor, this measure is the only

have

one which is invariant under the group of motion in the

plane, e denote this density dp d¥3by aG.

3e242 Theorem : Let C be a fixed curve of length I which composed
of a finite number of arcs with tangent at every point and 1 be

a straight line which intersects C. Then

j‘ndG = 2L where n = number of intersection points

_?ne 4__?5 of the line with the curve
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Proof :

Figure 9

Iet the cquation of C be x = x(8), y=y(8 ) where the
parameter sis the arc length, Let us consider a straight line 1
which intersects C at the point (x, y) and forms with the tangent
at this point an angle O, The length s corresponding to the point
(X., y) and the angle.o determine the straight line I, e want to
express the density dG in terms of the coordinate (8, ©) instead
of (p, ¢ ).

The normal coordinate of the straight line 1 is

xcos(f?+ysin(p = P

and therefore

"

dap cos?dx-xsin‘fdf+ycos (Fdf’«r siniﬂdy

cosfﬂdx + sinpdy + (- x sin @ + y cos ) d?a



Okserve that dx = cos T ds y 4y = sin T ds where

the angle of tangent linc and x'- axis.
To see this, from the equation of C we have

x = x(s)

/
dx x (s)ds

n

d(x(s))

/!
Similarly, dy vy (s)ds

"

d(y(s))

u

Let g(s) be any curve in the plane we can write

g(s) = x(&)153y(=)]

where i and j are unit vectors : Then we have secen that

]
g(s)

Let g(s) f(q(s)) where t = q(s)

we have /

' T
g(s) £(t) o = —EE

i

By definition of arc length we have

.t
/
s = \Y'f(u)‘ du
o
ds /
50 —— - ]f(t)l
dt
/ ff(t)
thercfore g (&) = = T

lf'ctJ)

where T is a unit tangent vector,

k2

T

/ /
x(e)i + y(s)j is a tangent vector,

is
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/
ile can shown g (s) by Figure 10

&

|
15 r
9(53
T N
% (8
FEQU1e|o
I ) /
therefor cos % = E{'T(i" = x (8)
g'(s)
/ /
and g S RO y (s) = y (8)
£/(s)
(3.23) Hence dx = cos T ds
dy = sin T ds
From (3.,23) we get
dp = cos (.pcos’l'l ds + sin(fsin@ ds + (=x sin ¢ + y cos(f? ) d?o

= cos (¢-T) ds + (~x sin + ¥ cos )dﬁ&’

We have (]0= 0+ T - 11
2
T
therefore d ? = do + T}ds
since T is a function only of s.
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Consequently we have

dG¢ = dp d(f) = cos (tf—‘l’)ds de

1

cos (O - g) ds 49

i.e dG

"

|sin o| as a0

where we have written | sin 0, because all densities are
necessarily taken to be positive.
e integrate both sides of the last equality over all

straight lines 1 which intersecct C. We have
AW
J

ndg s |sin 0 as a0

Tnetg 0 0

On the left hand side we multiply by n where n is the number
of intersection points of the linc with the curve, Because each
straight line 1 has been counted as many times as it has intersection

points with Cs To see this
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7

Figuvﬁ I

Cover [0, L] X [O,QI] in the (s, ©)plane by a disjoint
family of half - open rectangles so that in ecach half open rectangle
different coordinates correspond to different lines, lrite these

half - open rectangles as A A 14 2y eoe)

-1

Since each coordinate in Ai corresponds in a 1 = 1 way to a

unique line (which has a unique (p, yl) coordinate) 3 5i. (5

0
(p,‘P ) plane such that jhy dp d{f j f'sin OI ds de

B1 i

Suppose we have an A,, A j such that Biﬂ Bj £ @ , therefore

) SN
j{f Isin 0\ ds 40 + B|sin ol ds a0
i R

j)dp d(f + F dp d(f

B1 3}

1!

A\

|sin 0| as a0

A ufy



= 'dp ay +” a» ag +Hdp ag . dp

b BiﬂB}’

By -8;N0y

=jgnap

BiUEi

Continue in this way we can

oo

Ine #g

8;n8; bi-6;08) 6. ne;
“ jjdpd$ . i5@3a$ + Zlfjdpdq
b; - 8,78 f“”ai £,
where n = £

3;2.3 Corollary :

L6

¥

2 1E&B,D Bj

prove that

L ¢
Sl
% J §|51n o{ ds de
o O G
= I (- cos O)l = 2L
Q

QeEeDe

If C is a convex curve then the measure of the

set of straight lines which interseet a convex curve is equal to its

length i.e § dGg
fﬂ€$
Proof :

points is always 2.

= I

If C is a convex curve then the number of the intersection

From theorem 3.2,2 we get
24G - nEE
fnet @
therefore = far

Sd@

ﬂnef¢

QeEeD
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3.2.4 Remark : Ve see that the measure of the set of straight lines

which intersect a convex curve does not depend on shape of convex

curve, it depends only length of the curve.

Section 3.3 Integral Geometry Over Sets of Pairs of Points.

3+3+1 Density for pairs of points,

A pair of distinct points P, (x1, 31), Pa(xz. ya) may be
determined by the four coordinates Xpe Yq9 %o Yo It may also
be determined by the coordinate (p ({ ) of the straight line 1

!

determined by P1, P2 together with the directed distaneces tas t2

from P1, P2 to the foot of the perpendicular from the origin O

to 1. Ve want to exprése the product dP1dP2 = dx1dy1dx2dy2
by means of the coordinates P, T 5 t1, t2 ¢
Y _ pUmY)
7
/ /

j
;I P a\ Py (%g0Y,)

¢ L

D %

Figum 14

Let 1 be the straight line shown in Figure 12.

U dbd
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The normal coordinate of the straight line 1 is

xcostf-q-ysin?’ = P
since (x,l, y,l) is the pt, on 1 then we have
x,c08 ¢10 + ¥y, sin tf) ¥ P
P-y.s5in
(3.20) e e
cos ?J
and we have
(3.25) X'12 " ?f 3 p2+ tf

representing (3.24%) in the last equality we get

P-y, staf » NN By 2
— + }"1 = B % t1
cos
pz- 2py1 s:i.n(p - yf sinaﬁo + y,lacosa(f? = p2(1-sin2?9 )+ t1 cosz%"
y? - Zpyqain (‘9 + pasinaﬁo = tf cosaﬁa
therefore y, - p sin‘f' = +t, cos (P

First of all, we let

y,l-psin(f’ = t, cos?ﬂ

this implies,

(3.26) ¥y, = psin (P 3 t,‘cos?

From (3.24) and (3.26) we get

X, - pcosi\O-t,l siniﬂ
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By differentiation we get

n

dx, - psing d(f-i— cos {dp - t,cos gpdcf- sintf?dt1

]

cost?dp - (p sian + t,lcos 50 ) d?o - sin (f?dtq

Similarly,
dy1 = sin@dp + (p cos? - t,‘sinﬁo ) d(f? + cos (fadt,.l

By exterior product we get

= 2
dx,ldy1 = (p cos (( - 1:,1 sin('o cos? ) dp d‘o+ cos ?dp dt,' +

(p sineap + tqsinlf cos l'o ) dp d*‘) - (p sin f?cos(f
+ t éosz‘(?) dﬁﬁ’dt + sin2 dp dt, +(p sin cosy- t sin2 )5
1 1 ¥ op oty Peom by sl
d{f dt'l
(3.27) iec dx,dy, = pdp d(,a + dp dt, - t,ld?dt,I

Similarly, we get

(3.28) dx,dy, = p dp d?) +dp at, - t, dtf at,

By exterior product we obtain from (3,27) and (3.,28) the relation

d:c,‘d],r',ttilxzd'y2 = -tzdp dt,ld?dta - t1d(f9dt1dp di:‘2

|t2-t1t dp dp dt,dt,
For the case ¥y =P sin'f? = ---t1 cos 'fJ

with the same method, we also get
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(3.29) dx,dydxdy, = |t2- t,l\ dp dpasat,
SO we can express the product dp‘&dpz = dquy,‘dxzdya by
means of the coordinates Py f 4 by, t2.~ WWe have taken the

absolute value of t2-t1 because all densities are positive,

3e¢3.2 Theorem : Let C be a convex curve of length L and area F,

Let 4 be the length of the chord determined by the straight line 1

which is determined by the pair of peints P‘! . Pa imsfdb oy on - €.Conaider

n A
I = 5 £ 4G and J = j j r?d@ﬁdpz where n is the

n n
Lae g oty C
positive integer and r is the distance between P, and P2. Then
] n(n=1)
In = ~—§——— Jn—3 (n >22)
Proof H
A Py (%Y
‘\;, e
¥ Pa(15.,)
1 N
0 { P %

Fiﬂuvc 13

Let P, (x1'.y1) and Pa(xa,yz) be a pair of points shown in

Fiﬂure 13, Observe that

g lta‘t1\
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o

From (3.29) we get

n n+1
% Hr ap,dpP, = YSS‘tZ-t,I‘ dc dt,dt, -

J. =
Pafat & 4 b
n+1 n+1
- '”[S(t -t) dt + j(t -t,) 2]&(}&:1
a t

where b and a signifiec the values of t corresponding to the end

points of { , s0 that b = a = &

therecfore i‘ 5 b
+2 n+
t. t ($.-t,) J
("1-"2) . 1
0 - oG] 2| e,
o .{[
E . [ n+e 5 n+2 mld e
b
o i j[S{(t SE) = (b - & )’“’2} dt .j
n+2

I

; (t,- > T (b - t,)" ns3 "
e [_n+3_ —

| a
(18

(573 43) S[‘b - @)™ v (o - a)n+3)] di

2 j (b - a)?*? ag
(n+2)(n4+3)

1]

(]

5 T
Ta3)tns3) 45548

> 2 1 ; > 1
(3.30) J = D m3) NS which holds for any n 21 .

(3.30) can dso be written as the equality

T = n(n-1) J which holds for any n 2 2 .

n 2 n=3

QeEeDe
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&
3,3+3 Remark : TFrom I = Bia=1) J
—_— n 2 n~>
. o0
If n=0 by = F&a8 . = Cle
ﬁne#¢ ﬂne#ﬁ
From Corollary 3,2.3 we get
Io = L
If n=1 I, - S(d@ =“'4dpdtfz
@ jne;?{) .ﬂﬂe,ﬁ¢
To find 11, we have 3 possible cases :
caso 1 If the origin of the axes is in the convex curve C,
=Y
B %
Fiﬁme | 4
i pey) P(firy)
T T j [ E«S(p_.tr)dp +§ £(py T+ ¢ )dp:‘ d @
0 o
i (4]
X = j) [_Fq( ? ) + Fa(? )] d(P where F, and F, arc arcas
0]
such that.F1+ F2 = F

= qr

e s T L TN D RS Fha ERA QL La¥ e Vs L o ol s v oot A g, P e L T R
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case 2 If the origin of the axes is on the convex curve ¢

Fisuve 5]

P pLir+¢)

[§<(quf’)dp+j4’(p, ‘ﬂ’+‘)ﬁ)dp] ag
0 0

-
n

a
Oi
j[F1(LP) +F2(59)] d(P = qF
0 .

case 3 If the origin of the axes is outside the convex curve Ce




5k

%-}wlh(q’) gf‘“?- \{’4(({))
I, = 5 jé(p.q)dpd$+j 54(9.?)dpd}0
O e Lrw) o)
EARCINATY ST pg)
+j 4(p.@)dpd?+j jA’(P.‘f)dpd??-
T B W rw, Frle)
—Eﬁ;f w, )T (W ~-W ) rF (W-w ) 1 +(ﬁ-w)F
S PO e M M it e R 2
= i+ Wy =W,) F o+ (W, -w)TF
= qr
So we get

(3.31) 1, zj)& a6 = qF
Inctg

Ih and Jn are important gecometric invariants of the

curve like arcea and length and like arca and length In and

Jn are defined by integrals,

Section 3.4 1Integral Geometry Over Sects of Pairs of Straight Lines.

3e%e1 Density for pair of straight lines.

A pair of lines 11(p1, ? 1) . 12(p2, ¢ 2) can be determined

by the coordinates Py ¢: (i =1, 2), it can also be determined

-

by the coordinates x, y of their intersection point P together with

the angles ch, £ they form with a fixed direction in the plane,

2

say the x - axis o We want now to c¢cxpress the product dG1dG2 by
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means of the coordinates x, y, &

r %z

il -
. / L\ =
Ve have (fi = oCi . (L = 1, 2)
and consequently
Pi = xcostpil-p ys:.n(fJi
q PR
= o] oL, = = i o o= -
x cos ( 2)+js1n(i 2)
= x sin o('i-y cos of
Hence :
= L
d(f’i d 5
= Id S in o€ i ol
dpi X cos id ; * sin idx + ¥ sin oCidt i cos oQi dy

n

i il o o< o oC
s:.nocidx cos idy + (x cos €, 4+ y sin i) d 1

i

and by exterior product

d = oL - ol : =
dpi (Pi sin idxd&Oi cos idydri (i=1, 2)
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From this we get

dpqdcf,]dpad 502 = (sin o(',‘dx d ?01- cos oC,ldY dYH)(sin o(‘adx d;ﬂa

- cosd:edy d (f'e)

=(-s:|.na('1cos ol 2)dx d th,]dy dsa2 - (cosa(’,Ismoc’z)

dy d lf),]dx dtfiz

= (sin L ,C08 982

A =~ a

= 8in (oCg= o) dxdyd'(,l ¥,
Consequently, taking absolute values, since densities
must always be positive, we get

(3.32) dG,itm‘2 = | sin (n{’,‘-— 902)] dp d(f‘l d ?92

3.4,2 Theorem : (Crofton) Let C be a convex curve of length L and

area T, 11 and l:2 be a pair of straight lines which intersect C

and (P be the intersection point of these straight lines . Then

5 "
5 (= sing ) aP = ig--“]TF

Pée

where (y is the angle formed by the tangents to C drawn from P.

- coB:f1Eino(‘2) dx dy d?‘)1d?02

Nogii Nid

i

TR
-t



ﬁﬁﬁf‘

pad
—
| Pt

Fiﬂkﬂe 18

sin (001-,;2)\ dP d £,d £ ,

e have dG1dG2 =

Integrate both sides, tie left hand side gives.

by Corollary 3.2.3

(3:33) ac, g 4G, = - .

X 9,
The rigcht side may be integrated first over the

points P which are inside ¢ ; that gives

NN |
(3.34) SdP JS

Pec e

sin (o 4= oCa) do, do = 2 qr.

2

(4]
Because from advanced calculus , we have

f 2T

sinm(a - 0)\ a0 = r T
P(E+1)

0
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oG
where [7(t) = ijt—1 e X dx
0

Therefore

¥ ]

Bl v 5
BdP j{;g\sin(oﬂl—oﬂa)ldoﬁz} dot‘l,'

PeL - 0 q

= T m doC1
J
0

Since S 1 and

[(n) = (n=1) [7 (n=1)
i t
we ge vy q
de S g 'sin (g{‘,l—aca) d$1d£2=Fj E d»£1
J /) VT
Pel ¢ o 0
= 29 F

For the points P not contained in C, if o, /9 are
the angles which the lines of support of C drawn from P

form with the x'= axis, we have ”
|

A p 5P
S 33 sin (o€‘1-0¢;‘2)\doﬁ1do€2 = Judof"i [f sin (a(',]- o("a) d-*(z
0'3/3 by

L &£ 5
P 4| sin (p('g—of‘,l)d“‘z ]ﬁ
’otl wl
= j)doc,l [cos(o(‘,l-of‘z) - COEB (05’2-0?1)] :l
ot o< £

|
F
= e, [1-003(0C1-o£)-cos (,6-&’1)+1:'
2
o P
= LZ-cos(&1- L) - cos (}5-061}Jd0f’1
‘%
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2 oc1- sin(aC,I- o ) + sin(p - .;-C1)

]

2(B =K) = sin (B =) = sin(p =)

2(B =K) - 2sin(B - &£ )

If we designate by ( = B - & the angle formed by the

tangents to C drawn from P, the integral of the right side of

(3.32) extenéddover all points P #C, gives
sin(g(.,‘-gca)]dof a_ = 2 | (Ww- sinw) apP

B
(3.35) j]dP g 5;‘5 e -

Ple « Fee
The sum of (3.34) and (3.35) must be equal to (3.33) . We obtain

25(w—sinw)dP+ 2 nF = L2
Pge

: L2

(= sin ( )aP - 5 = F
pie
This formula holds for any convex curve @

QeE.D.
Section 3.5 Integral Geometry Over Sets of ¥inematics.

3.5.1% Sets of Congruent Figures

The position of a rigid figure K is determined on the plane
by the position of a point P(x,y) of K and the angle P formed
by a direction PA fixed in K and a fixed direction OX of the plane.

We say that x,y, P are the coordinates of K.
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Ja A
/
A
( L N S
\ Pty
\;/ K
\jq 0 Ty

Fisuﬂ‘. 19

Let Z be the set of positions of a figure K in plane.
We can give each position (x, Yy, ¢ ) coerdinates exoept those
positions which have ? =—0 because we want the range to be
an open set i.e. {(x, Yo f X7 (x4 HH) 81R2, 0 <p< 21:} . BSo
to give every position in 7 = coordinate, we need 2 coordinate

neighborhoods (U1. @ 1) and (UZ' § ) to form the atlas, If

2
we let § 1 be a rectangular cartesian coordinate system with

(x, ¥y) as its coordinate functions and 523 be the new

R
coordinate system with (x, y) as its coordinate functions such
/ .
that x - axis is the rotation of the old x - axis 90 in the
counter clockwise direction. From an atlas on Z by taking

{(U‘I' § 1). (Ua, @2):{)‘ . These coordinate neighborhoods

i
are C - related because U1ﬂ U £ % and



(3.36)

(3.37)
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]
L

n !
x = X coOB 3 + ¥y sin

mita mia

. . m
and ¥ = - X 8sin 5 + y cos

/
these two functions are C - maps.

Now, we form a new atlas by taking all coordinate
i
neighborhoods (U, & ) such that (U, § ) is C - related to

(v, ,§1) and (U, §,) with positive Jacobian .

A1l definitions of differential form and density are the
same 28 set of points. Here, as in the case of the set of points
we can take differential forms and not worry about densities
because Jacobian > O .

Simelarly, we want o find a density which will make
m(Z) invariant under the group of transformations mn .

Let g¢ ﬁ@ thgn g operates on the coordinates of the

set of Kinematics by

* «
X = 2+ X ¢cog O~y sin 6

¥ ¥
b+x sin & + y cos €

Y = ?9*+ e

The condition that m(Z) is invariant means that

Sj £0x, vy (f? )dx dyc[lf?-..- SJS f(x* : y* : ";) dx* dy* dParc
2 £
£ Vee

According to (3.36)

D (x,5,%) 1

(]

9 (xy¥s (f‘) !
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and consequently

(3.38) Sjjf(x,y, ¢ ) dx dy dtf; = jj f(x,y,(}o) dx" d:,r"E d({*
Z 27

From (3.37) and (3.38) we deduce

jg S f(x*., y*, ?* ) dx,t dy* d}”*
Z#

1}

;o1
* ¥ * *
jjﬁ PEESYS ¢ ) dx dy ay Ydomain z
*
Z L
In order that this equality hold for any domain z ,

W om e
it must be true that f(x,y, ¢ ) = POx o ¥y Y’) Vg 57/{
Since by a motion we can transform any position
X % % .
(xy ¥, P ) into any other (x , y , Y ) the function
f(x, v, ? ) must take the same value for all positions
of K ; thus it is a constant. A4gain, to normalize the

situation we take this constant to be 1. We have

(3.39) m(Z) = j j j dx dy d ¢
2

Up to a constant factor, this measure is the
only one that is invariant under the group of motions ?ZL
in the plane, The differential form @x dy d?? under
the integral sign in (3.39),taken always in absolute value ii

called the kinematic density for the plane and we

represent it by dK = dx dy ay and m(Z) is called the

kinematic measure .
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3.5.2 AnotheT form for the kinematic density.

Instead of the coordinates x4 Y, ? for the figure K,

can choose other ones. For instance, the position of K may be

determined by the straight line PA , which we call G(p, 6), and

the distance t = HP from P to the foot H of the perpendicular

drawn from O to G. (see Figure 20)

bK

v
=

The normal coordinate of the straight line G is

x cos & + y sin © =P
si-l - - _ P =-xcos ©
(3.40) This implies y = ]
and we have xz + y2 = p2 + ta
2
p - x cos € = p2+-t2
sin G

x°sin’e + p2- 2px cos © + xfcose = (p2+ ta)(1 - c0826)
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x°- 2px cos 0 + pzcosae = t231n26
s0 x - p cos B = X ¢t sin e
First of all, we will consider x - pcos © = t sin €
X = pcos 6 + t sin €

From (3.40) and the last equality we get

p=(p cos ® + t sin 6) cos &
sin ©

pP=p coaae - t sin € cos €
sin ©

p sin 6 = t cos €

The transformation formulae are

x = pecos &+ t sin €
Yy = psin € - t cos ©
Qo £ 50l e e
2
- cos € - p sin€ + t cos € sin ©
Hence i-(—&hi—) =
2 (p,6,t) sin ® pocos & + t sin € - cos 6
o] 1 0]
= -(-cosze - sinae) = 1
- —>
(3.41) and dK = dx dy a¢ oLxyy, ©) 4G dt = 4G dt
2 (py6,yt)
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.%
We write G in order to indicate that G must be
considered as oriented, because a change of orientation
does not superpose K on itself.

For the case x - pcos € = -t sin €
with the same method, we also get

—
dKk = dxdydlf’ = dG dt .

3.5+«3 Theorem: Let Ko be a fixed convex figure of length Lo
and area FO and let K be an oriented segment of length 1

which intersects KO . Letting G be the straight line

that contains the ser~ent K, and calling <& the length

of the ehord determined by G on KO » Then

de = 2x%F + 21L
. 0 0

K.’\k’o?#y

Proof :

1

LV AT e TaRe
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»>
From (3.4) wve have
p+ £
) s
jd}{ = [ T dt] aG uhere/ﬂ and & d-;gzm(
I ¢ '
T ‘L"-E- i3
URTEE n e
3 - —» |
- ‘ (£ + 1) 4G
J
GRk, P
Taking into account Corollary 3.2.3, (3.31), and ‘i
fact thr-: cach non-oriented line carries two oriented ones;
" /
we obtain
de </ /2 j(<{+1)de
Fov, Enko}d
= 2TLFO + 21 LO
Thus, the kinematic measure of all ori.nted segments oFf
-
‘length 1 having a point in common with a convex figure of arca
Fo and length LO y 1is equal to 21tF0 . 2% LO
Q.E.DC
3054 Corollary : If we take the point P to be coincident
with the originoef K. Then we have j (iR = 21 LO
p exferior Yo Ko s
where (! is the angle formed by the tangents to KO drawn from ..
»

N
8

. —~ - : 3 3 e U -I
B [ ook 0w SRk i i g i =5 Bt Bl it S p Al SR S 0 L o s el PR e il T e ol P L L e -, e .:‘.H......'.A.‘.‘-ail‘j
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:
% .
Proof . We consider 2 cascs @
case 1 For P ¢ K
A y g Ko K
A |
g - I
0
Figuve 22
4
in this case vaaries from O to 2w .
case 2 For P exterior to KU
T i
4
A
1
A -
LA
Fi_réme 23
In this case ({) varies from (F1 to @ > where 592 - ',91 = W
Consequently ;
it f,
¥ ) ) P
dK = S j d? 1 arP + dff’ dP
a0 G v Yy
KM-O$¢ fe \(0 pexferior 1o KO *
* e
= 2nF, + (Q=¢,)ap

P exlerior to K,

C N Y g Ry




From Theorcin 3.5.3 we have

Y
jax = 2nF, + 2Tl
Knkpi

Then we find the integral formula

]
W dap = .=:1L0

7 externior 1o K . Q.E.D.

3 3.5.5 Theorem: Let K be the oriented segment of length 1 which _:.
intersects both sides of a given angle A. Let & be the chord ﬁ

cut by the angle 4 from the streight line G determined by K. i

; T 2 271 'i;

Then aKk = -5 F—(n - 4) cot &J where AB and : %

KEIHB'#¢ q = — AC are sides of angle a. “;‘

K NAC 4?5 : 2

4

- -
Proot: H E : g




v

We have

J dK = ‘\ :1.2 dt
Knhe# ¢ |
knhe# g | pd-<

ek

8
j SF +1 - 4—,P) ég

2 5 (1 - &£ )da

£y

==
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where/p_depends on G

To find j 1dG ' and I £ dG , we will draw a nevw

fipure 25 such that x - axis is AB .

F :
Further $ 14G ks dp df

25Tdtp

= j: 1.48 dL’J

1
2. = ¢ 1 . AE 4 ¢

where j‘is the area of tha

triangle AHM determin&éby a chord HM of length 1 normal to the

direction ? .
On the other hand, we have

jJZ{dG = ‘fddpdaf

Consequently
L

[}

T ¢
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Figm’ £ 25

Kk = 2[251&?-5Td?} = 25Td?

KiABE P
Knaes+p

In order to evaluate this integral we observe that

12

sin A

2 ¥ sin {F sin (A + ? )

To see this , we have

AM sin A = 1 agin (& + ? )
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»

sin (A +(f) ) = aM sin A
1
‘lence
: 12 AM_six
sin sin (A +¢) = — sin @ . Lain A
sin 4 ([0 (f sin 4 ? ik
= l.AM. sin ﬁﬂ
= l-a.!ﬂ\ ‘Mn ::"E
h M
= 1-111-.‘
- 2(1 lid“\E)
2
= 2 F
and consoquently 4
hl 12 ‘-E
dx = PR A j sin H{) sin(A +L(' ) d?,
KnAB +¢ o
Kl #4 = A
= Ei_n‘\ j sin(f') [sin A cos&f‘ + cos A sinﬁ&]dfj()
[}
e bt
= 12 j sin(Pcos(Pd(f; + cot A Sln(f? dlf_l
— .‘O
I" ﬂq?_!:\ (ﬁd i
= 12 'J sin (f)d(sinﬁo )Y + cot A (‘1-c05 2
4 0 T-A
5 2 ; ’
2 (
e sin~ ¥ it A/Z sin 2 ¢
2 2 L
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q-A
‘I-cgs a(f)+cot 11(?9..3531((005(,0)‘ ]
0
‘I-coszaw-a) +cot A (- A - &in (7-,1)«:05(‘0’-&)]'.

1-cos(29 - 21)
~2

+ cot A (F~A) + sin A cos ."L)]

LB BB o e B cosﬂj
2

4 1 .
- 29--522"i + cot A(‘]r-.k)-t—g-?-:—-gx+-2-] :

1+ (4 = A) cot A:i

QoEoD .
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