CHAPTER II

PRELIMINARIES

In this thesis, we assume a basic knowledge of the Euclidean Plane . In this chapter we will define the fundamental concepts which are the foundations of integral geometry.

- 2.1 <u>Definition</u>: A coordinate system on the Euclidean plane

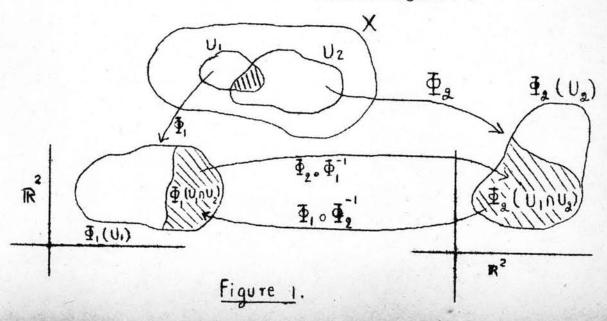
 X is a homeomorphism of an open subset on X onto an open set of R²
- 2.2 Example: Choose two orthogonal straight lines and choose two directions on each straight line. This allows us to define a homeomorphism $\Phi: X \mapsto \mathbb{R}^2$ by using directed distances. We call this coordinate system a Rectangular Cartesian Coordinate System.
- 2.3 Example: Pick a closed infinite ray 1. Set U = X 1 and define a homeomorphism $\Psi: U \longrightarrow \mathbb{R}^2$ by using angle and distance. We remove 1 because we want Ψ to be continuous and call this coordinate system a Polar Coordinate System.
- 2.4 <u>Definition</u>: Let U C X be an open set and Φ be a homeomorphism of U onto an open set of \mathbb{R}^2 . We call the pair (U, Φ) a coordinate neighborhood.

- 2.5 <u>Definition</u>: Let $U \subset \mathbb{R}^n$ be an open set and $f = (f_1, \dots, f_m)$ be a map from U to \mathbb{R}^m . We call f a $\frac{c map}{c}$ if
 - 1. f is continuous

 2. $\frac{\partial^{f}i}{\partial x_{j}}$ exists, \forall points \mathcal{E} U and is continuous where $\begin{cases}
 i = 1, ..., m \\
 j = 1, ..., n
 \end{cases}$
- 2.6 <u>Definition</u>: Two coordinate neighborhoods (U_1, Φ_1) and (U_2, Φ_2) are $\frac{c^1 \text{related}}{c^1 + \text{related}}$ if

 1. $U_1 \cap U_2 \neq \emptyset$ 2. $\Phi_2 \cdot \Phi_1 \cdot \Phi_1 \cdot \Phi_1 \cdot (U_1 \cap U_2) \longrightarrow \Phi_2 \cdot (U_1 \cap U_2)$ and $\Phi_1 \cdot \Phi_2 \cdot \Phi_2 \cdot (U_1 \cap U_2) \longrightarrow \Phi_1 \cdot (U_1 \cap U_2)$ are $c^1 \text{maps}$

These two functions are shown in Figure 1 .



- 2.8 Notation: If $F: \mathbb{R}^n \to \mathbb{R}^n$ then Jac (F) will denote the Jacobian determinant of the function F.
- 2.9 Remark: If we choose a fixed rectangular cartesian coordinate neighborhood (X, Φ_0) then we see that $\{(X, \Phi_0)\}$ is an atlas. We can form a new atlas $\{(U_{\mathcal{L}}, \Psi_{\mathcal{L}})\}_{\mathcal{L}_{\mathcal{L}}}$ in the following way:

The coordinate neighborhood (U_1, Ψ_1) belongs to the new atlas $\{(U_{\alpha}, \Psi_{\alpha})\}_{\alpha \in I}$ if 1. (X, Φ_0) and (U_1, Ψ_1) are c^1 -related

2. Jac $(\Phi_0 \circ \Psi_1^{-1}) > 0$ (note that if Jac $(\Phi_0 \circ \Psi_1^{-1}) > 0$

then Jac $(\psi_1, \Phi_0^{-1}) > 0$

Let (U_2, Ψ_2) be another coordinate neighborhood such that $U_1 \cap U_2 \neq \emptyset$ and is c'-related to (X, Φ_0) . Claim that (U_1, Ψ_1) and (U_2, Ψ_2) are c¹-related to each other. To see this, note that

Jac $(\psi_2, \psi_1) = \operatorname{Jac}(\psi_2, \Phi_1) \operatorname{Jac}(\Phi_2, \psi_1) > 0$

Example: Let (X, Φ_0) be a rectangular cartesian coordinate neighborhood and (U, Ψ) be the polar coordinate neighborhood which has the same origin and the positive part of x - dx is as its removed closed infinite ray. We see that (X, Φ_0) and (U, Ψ) are c' - related. Because $X \cap U \neq \emptyset$ and $\Phi_0 = (x, y) = (x^2 + y^2, tan^{-1} \frac{y}{2})$ are c' - maps consider $f(X, \Psi) = (x^2 + y^2, tan^{-1} \frac{y}{2})$ are c' - maps $f(X, Y) = (x^2 + y^2, tan^{-1} \frac{y}{2})$ are c' - $f(X, Y) = (x^2 + y^2, tan^{-1} \frac{y}{2})$ are $f(X, Y) = (x^2 + y^2, tan^{-1} \frac{y}{2})$ are $f(X, Y) = (x^2 + y^2, tan^{-1} \frac{y}{2})$

Thus (U, Ψ) belong to the new atlas.

- 2.11 Note: From now on, when we study the Euclidean Plane we shall only use coordinate neighborhoods obtained from the above constructed atlas.
- 2.12 <u>Definition</u>: Given a function $f: X \longrightarrow \mathbb{R}$ and a coordinate neighborhood (U, Φ) on X. The function $f_o \Phi^{-1} \circ \Phi(U) \longrightarrow \mathbb{R}$ is called the <u>local representation</u> of the function f in terms of the coordinate neighborhood (U, Φ) . This function is shown in Figure 2.

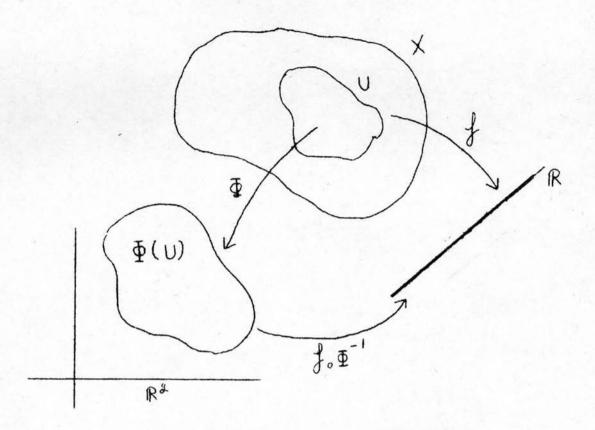


Figure 2.

2.13 Example: Fix $P_0 \in X$ and define $f: X \rightarrow \mathbb{R}$ by $f(P) = d(P, P_0)$ the distance from P to P_0 .

In terms of a rectangular cartesian coordinate neighborhood (X, Φ_0) with P₀ as origin, the local representation is $(f_0 \Phi_0^{-1})(x, y) = \sqrt{x^2 + y^2}$

In terms of a polar coordinate neighborhood $(U, \psi) \text{ with } P_0 \text{ as origin, the local representation} \\ is <math>(f_0 \psi)(r, 6) = r$

2.14 <u>Definition</u>: On \mathbb{R}^2 we have two projections $\pi_1: \mathbb{R}^2 \to \mathbb{R}$ and $\pi_2: \mathbb{R}^2 \to \mathbb{R}$ given by $\pi_1(\infty, \beta) = \infty$ and $\pi_2(\infty, \beta) = \beta$.

- If (X, Φ) is a coordinate neighborhood then $\pi_1 \circ \Phi \colon X \longrightarrow \mathbb{R}$ and $\pi_2 \circ \Phi \colon X \longrightarrow \mathbb{R}$ are called the coordinate functions of the coordinate neighborhood (X, Φ) .
- 2.15 Example: If (X, Φ_0) is a rectangular cartesian coordinate neighborhood we usually write $x = \pi_1 \circ \Phi_0$ and $y = \pi_2 \circ \Phi_0$. The functions x and y are called the coordinate functions of (X, Φ_0) . We usually denote Φ_0 by (x, y).

If (U, Ψ) is a polar coordinate neighborhood we usually write $r = \pi_{10} \Psi$ and $\theta = \pi_{20} \Psi$. The functions r and θ are called the coordinate functions of (U, Ψ) . We usually denote Ψ by (r, θ) .

2.16 Definition: Let $f: X \to \mathbb{R}$, f is called <u>differentiable</u>

at $P \in X$ if \exists a coordinate neighborhood $(U, \overline{\Phi})$ such that the function $f_{\bullet}\overline{\Phi}^{-1}: \overline{\Phi}(U) \to \mathbb{R}$ is a differentiable function.

Claim that if f is differentiable at P with respect to one coordinate neighborhood then f is differentiable at P with respect to all coordinate neighborhoods. To prove this, let (V, Ψ) be another coordinate neighborhood which belongs to the same atlas. Then $f_o \Psi^1 = f_o \bar{\Phi}_0^1 \Phi_o \Psi^1$ is a differentiable function since $f_o \bar{\Phi}_0^1$ and $\bar{\Phi}_o \Psi^1$ are differentiable functions. We see that it is true for all coordinate neighborhoods, so this definition is well - defined.

2.17 Definition: Λ differential $1 - \text{form} \omega$ on X is a correspondence which assigns to each coordinate neighborhood (U, Φ) an ordered pair of continuous functions (f_1, g_1) where $f_1: \Phi(U) \rightarrow \mathbb{R}$ and $g_1: \Phi(U) \rightarrow \mathbb{R}$ such that if (f_1, g_1) corresponds to (U, Φ) and (f_2, g_2) corresponds to (V, Ψ) and $(V, V \neq \emptyset)$ then

 $(f_1, g_1) = (f_2 \circ (\psi_0 \vec{\Phi}), g_2 \circ (\psi_0 \vec{\Phi})) \text{ Mat } (\psi_0 \vec{\Phi}) \text{ on } \vec{\Phi}(U \cap V)$ where Mat $(\psi_0 \vec{\Phi})$ is the 2x2 matrix whose determinant is the Jacobian.

To prove this is well - defined. We have

$$\omega : (\mathfrak{v}, \Phi) \longrightarrow (\mathfrak{f}_1, \mathfrak{g}_1)$$
 and

$$\omega: (v, \psi) \longrightarrow (f_2, g_2)$$
 such that

$$(f_1, g_1) = (f_2 \circ (\psi_0 \bar{\Phi}^1), g_2 \circ (\psi_0 \bar{\Phi})) \text{ Mat } (\psi_0 \bar{\Phi}^1) \dots (1)$$

Let (W, θ) be another coordinate neighborhood such that

$$\omega : (W, \theta) \mapsto (f_3, g_3) \text{ and}$$

$$(f_2, g_2) = (f_3 \circ (\theta_0 \psi), g_3 \circ (\theta_0 \psi)) \text{ Mat } (\theta_0 \psi) \cdot \dots \cdot (2)$$

We want to show that

$$(f_1, g_1) = (f_3 \circ (\theta_0 \overline{\Phi}), g_3 \circ (\theta_0 \overline{\Phi})) \text{Mat } (\theta_0 \overline{\Phi})$$

To prove this, represent (2) in (1) we get

$$(f_1, g_1) = (f_3 \circ (\theta_0 \psi), g_3 \circ (\theta_0 \psi))_{\circ} (\psi_0 \overline{\Phi}) \text{ Mat } (\theta_0 \overline{\psi})$$

$$\text{Mat } (\psi_0 \overline{\Phi})$$

$$= (f_{30}(\theta, \overline{\Phi}^{1}), g_{30}(\theta, \overline{\Phi}^{1})) \text{ Mat } (\theta, \overline{\Psi}^{1}) \psi_{0} \overline{\Phi}^{1})$$

$$= (f_{30}(\theta, \overline{\Phi}^{1}), g_{30}(\theta, \overline{\Phi}^{1})) \text{ Mat } (\theta, \overline{\Phi}^{1})$$

where the last equality follows from the chain rule of advanced $[\iota]$ calculus .

Therefore , this is well - defined .

2.18 <u>Definition</u>: The differential 1 - form $\boldsymbol{\omega}$ is called <u>differentiable</u> at P $\boldsymbol{\xi}$ X if $\boldsymbol{\xi}$ a coordinate neighborhood (U, $\boldsymbol{\varphi}$) and U $\boldsymbol{\vartheta}$ P such that the functions (f, g) corresponding to (U, $\boldsymbol{\varphi}$) are differentiable at $\boldsymbol{\varphi}$ (P).

Claim that if ω is differentiable at P ℓ X with respect to one coordinate neighborhood then ω is differentiable at P ℓ X with respect to all coordinate neighborhoods. Proof is the same as the function case.

- 2.19 <u>Definition</u>: The differential 1 form is <u>differentiable</u> in a neighborhood U C X if this differential 1 form is differentiable at P, ∀ P & U.
- 2.20 <u>Definition</u>: A differential 2 form on X is a correspondence which assigns to each coordinate neighborhood (U, ₱) a continuous function f₁ where f₁: ₱(U)→R such that if f₁ corresponds to (U, ₱) and f₂ corresponds to (V, ♥) and U ∩ V ≠ Ø then

$$f_1 = f_{20} (\psi_0 \Phi^{-1})$$
 Jac $(\psi_0 \overline{\Phi}^1)$ on $\Phi(U \cap V)$

We prove that this is well - defined in the same way that we proved differential 1 - forms were well - defined .

- 2.21 <u>Definition</u>: The differential 2 form is <u>differentiable</u>

 at P \in X if \exists a coordinate neighborhood (U, Φ) and U \ni P such that the function f cooresponding to (U, Φ) is differentiable at Φ (P).
- 2.22 Definition: The differential 2 form is differentiable in a neighborhood UCX if this differential 2 form is differentiable at P, YPEU.
- 2.23 <u>Definition</u>: A <u>density</u> on X is a correspondence which assigns to each coordinate neighborhood (U, Φ) a positive continuous function f_1 where f_1 : Φ (U) $\to \mathbb{R}$ such that if f_1 corresponds to (U, Φ) and f_2 corresponds to (V, Ψ) and UnV $\neq \emptyset$ then

$$f_1 = f_2 \circ (\psi_o \bar{\Phi}^1) \mid Jac(\psi_o \bar{\Phi}^1) \mid on \bar{\Phi}(U \cap V)$$

2.24 Remark: Since Jac $(\psi_o \overline{\Phi}) > 0$ on X, there is no need to distinguish differential 2 - forms from densities. However, for sets of straight lines we can not always guarantee that -1 Jac $(\psi_o \overline{\Phi}) > 0$ so we must integrate densities and not differential 2 - forms in this case. We shall say more about this in Chapter III.

2.25 Definition: If $f: X \rightarrow \mathbb{R}$ is a function and ω is a differential 1 - form on X such that

$$\omega : (U, \Phi) \longrightarrow (f_1, g_1)$$

we can define $f\boldsymbol{\omega}$ as a differential 1 - form such that

$$fw : (v, \Phi) \longmapsto ((f_o \Phi) f_1, (f_o \Phi) g_1)$$

Claim that this is well - defined. To see this let (V , ψ) be another coordinate neighborhood such that

$$\omega : (V, \Psi) \longmapsto (f_2, g_2)$$
 and
$$f \omega : (V, \Psi) \longmapsto ((f_0 \Psi) f_2, (f_0 \Psi) g_2)$$

We must prove that

$$((f_{\circ}\overline{\Phi}^{1}) f_{1}, (f_{\circ}\overline{\Phi}^{1}) g_{1}) = [((f_{\circ}\psi^{1}) f_{2})_{\circ} (\psi_{\circ}\overline{\Phi}^{1}), ((f_{\circ}\overline{\psi}^{1}) g_{2})_{\circ} (\psi_{\circ}\overline{\Phi}^{1})] \text{ Mat } (\psi_{\circ}\overline{\Phi}^{1})$$

$$= [(f_{\circ}\overline{\Phi}^{1}) (f_{2} \circ (\psi_{\circ}\overline{\Phi}^{1}), (f_{\bullet}\overline{\Phi}^{1}) (g_{2} \circ (\psi_{\circ}\overline{\Phi}^{1})]$$

$$\text{Mat } (\psi_{\circ}\overline{\Phi}^{1})$$

=
$$(f_0 \vec{\Phi}) \left[f_2 \cdot (\psi_0 \vec{\Phi}), g_2 \cdot (\psi_0 \vec{\Phi}) \right] \text{ Mat } (\psi_0 \vec{\Phi})$$

To see this, since (w is a differential 1 - form, we have

$$(f_1, g_1) = (f_2 \circ (\psi_0 \overline{\Phi}), g_2(\psi_0 \overline{\Phi})) \text{ Mat } (\psi_0 \overline{\Phi})$$

Hence ,

$$\begin{pmatrix} (f_{0} \overline{\Phi}^{1}) f_{1}, (f_{0} \overline{\Phi}^{1}) g_{1} \end{pmatrix} = (f_{0} \overline{\Phi}^{1}) (f_{1}, g_{1})$$

$$= (f_{0} \overline{\Phi}^{1}) (f_{2} \circ (\psi_{0} \overline{\Phi}^{1}), g_{2} \circ (\psi_{0} \overline{\Phi}^{1}))$$

$$= (g_{0} \overline{\Phi}^{1}) (f_{2} \circ (\psi_{0} \overline{\Phi}^{1}), g_{2} \circ (\psi_{0} \overline{\Phi}^{1}))$$

$$= (g_{0} \overline{\Phi}^{1}) (f_{2} \circ (\psi_{0} \overline{\Phi}^{1}), g_{2} \circ (\psi_{0} \overline{\Phi}^{1}))$$

$$= (g_{0} \overline{\Phi}^{1}) (f_{2} \circ (\psi_{0} \overline{\Phi}^{1}), g_{2} \circ (\psi_{0} \overline{\Phi}^{1}))$$

Therefore, this is well - defined .

and w

2.26 Definition: If $f: X \rightarrow \mathbb{R}$ is a function, is a differential 2 - form on X such that

$$\omega: (U, \Phi) \longmapsto f_1$$

we can define f_{w} as a differential 2 - form such that

$$fw: (U, \Phi) \longmapsto ((f_o \Phi^{-1}) f_1)$$

We prove that this is well - defined in the same way that we proved $f_{\mathcal{W}}$ was a differential 1 - form.

2.27 <u>Definition</u>: If ω_1 and ω_2 are two differential 1 - forms on X such that

$$\omega_1 : (U, \Phi) \longmapsto (f_1, g_1) \text{ and}$$

$$\omega_2 : (U, \Phi) \longmapsto (h_1, k_1)$$

we can define $w_1+\omega_2$ as a differential 1 - form χ on such that

$$\omega_1 + \omega_2 : (\mathbf{U}, \Phi) \longmapsto (\mathbf{f}_1 + \mathbf{h}_1, \mathbf{g}_1 + \mathbf{k}_1)$$

Claim that this is well - defined . Let (v,ψ) be another coordinate neighborhood such that

$$\omega_{1} : (V, \Psi) \longmapsto_{(f_{2}, g_{2})}$$

$$\omega_{2} : (V, \Psi) \longmapsto_{(h_{2}, k_{2})} \text{ and }$$

$$\omega_{1} + \omega_{2} : (V, \Psi) \longmapsto_{(f_{2} + h_{2}, g_{2} + k_{2})}$$

We must prove that

$$(f_1 + h_1, g_1 + k_1) = [(f_2 + h_2)_o (\psi_o \Phi), (g_2 + k_2)_o (\psi_o \Phi)]$$

$$(f_1 + h_1, g_1 + k_1) = [(f_2 + h_2)_o (\psi_o \Phi), (g_2 + k_2)_o (\psi_o \Phi)]$$

$$(f_1 + h_1, g_1 + k_1) = [(f_2 + h_2)_o (\psi_o \Phi), (g_2 + k_2)_o (\psi_o \Phi)]$$

$$(f_1 + h_1, g_1 + k_1) = [(f_2 + h_2)_o (\psi_o \Phi), (g_2 + k_2)_o (\psi_o \Phi)]$$

$$(f_1 + h_1, g_1 + k_1) = [(f_2 + h_2)_o (\psi_o \Phi), (g_2 + k_2)_o (\psi_o \Phi)]$$

$$(f_1 + h_1, g_1 + k_1) = [(f_2 + h_2)_o (\psi_o \Phi), (g_2 + k_2)_o (\psi_o \Phi)]$$

$$(f_1 + h_2, g_1 + k_2)_o (\psi_o \Phi).$$

To see this, since ω_1, ω_2 are differential 1 - forms we have

$$(f_1, g_1) = (f_2, (\psi_0 \bar{\Phi}^1), g_2, (\psi_0 \bar{\Phi}^1)) \text{Mat } (\psi_0 \bar{\Phi}^1) \text{ and } (h_1, k_1) = (h_2, (\psi_0 \bar{\Phi}^1), k_2, (\psi_0 \bar{\Phi}^1)) \text{ Mat } (\psi_0 \bar{\Phi}^1)$$

Hence.

Therefore, this is well - defined.

2.28 <u>Definition</u>: If ω_1 and ω_2 are two differential 2 - forms on X such that

$$\omega_1: (U, \Phi) \longmapsto f_1 \text{ and}$$

$$\omega_2: (U, \Phi) \longmapsto g_1$$

We can define $w_1 + w_2$ as a differential 2 - forms on X such that

We prove that this is well - defined is the same way that we proved $\omega_1 + \omega_2$ was a differential 1 - form .

2.29 Definition: If f: X → R is a differentiable function then we can define a differential 1 - form df as follows:
If (U, Φ) is a coordinate neighborhood then
df: (U, Φ) → (∂₁(f₀Φ⁻¹), ∂₂(f₀Φ)) where ∂₁ (f₀Φ),
∂₂ (f₀Φ) are the first partial derivatives of each
variable
O05923

Claim that this is well - defined. To see this, let (V, Ψ) be another coordinate neighborhood such that $df: (V, \Psi) \longmapsto (\partial_1 (f_0 \psi^{-1}), \partial_2 (f_0 \psi^{-1}))$

We must prove that

$$\left(\mathbf{\hat{e}}_{1}(\mathbf{f}_{0}\mathbf{\bar{\Phi}}^{1}), \, \partial_{2}(\mathbf{f}_{0}\mathbf{\bar{\Phi}}^{1}) \right) = \left[\left(\partial_{1}(\mathbf{f}_{0}\mathbf{\psi})_{0}(\mathbf{\psi}_{0}\mathbf{\bar{\Phi}}^{1}) \right],$$

$$\partial_{2}(\mathbf{f}_{0}\mathbf{\psi}^{1})_{0}(\mathbf{\psi}_{0}\mathbf{\bar{\Phi}}^{1}) \right] \operatorname{Mat} (\mathbf{\psi}_{0}\mathbf{\bar{\Phi}}^{1})$$

But this is true from the chain rule of Advanced [1] Calculus.

Therefore df is a differential 1 - form.

2.30 Remark: If $f: X \longrightarrow R$ and $g: X \longrightarrow R$ are continuous functions then we can define

1.
$$d(f + g) = df + dg$$

2.
$$d(fg) = fdg + gdf$$

3.
$$d(f_{\circ}g) = (f_{\circ}g)dg$$

Let ω be a differential 1 - form on X and (x, Φ_1) be a coordinate neighborhood so ω assigns to (x, Φ_1) an ordered pair of functions (f_1, g_1) such that

$$f_1:\Phi_1(X)\longrightarrow \mathbb{R} \text{ and } g_1:\Phi_1(X)\longrightarrow \mathbb{R} \text{ i.e. } \omega:(X,\Phi_1)\longmapsto (f_1g_1)$$

Let (x_1, y_1) be the coordinate functions of (x, Φ_1)

We get two differential 1 - forms dx_1 and dy_1 with respect to (X, Φ_1) . The differential 1 - form dx_1 has 2 functions

$$(\partial_{1}(x_{10}\bar{\Phi}_{1}^{1}),\partial_{2}(x_{10}\bar{\Phi}_{1}^{1})) = (\partial_{1}(\pi_{10}\bar{\Phi}_{10}\bar{\Phi}_{1}^{1}),\partial_{2}(\pi_{10}\bar{\Phi}_{10}\bar{\Phi}_{1}^{1})$$

$$= (\partial_{1}\pi_{1},\partial_{2}\pi_{1})$$

Similarly with respect to $(X, \overline{\Phi}_1)$, the differential 1 - form dy, has 2 functions (0, 1)

Let
$$f = f_1 \circ \oint_1$$
 and $g = g_1 \circ \oint_1$
then $f : X \longrightarrow \mathbb{R}$ and $g : X \longrightarrow \mathbb{R}$

From definition 2.25 and 2.27 we can define $fdx_1 + gdy_1$ as the differential 1 - form such that $fdx_1 + gdy_1$ assigns to (X, Φ_1) the ordered pair of functions

$$\begin{bmatrix} (\mathbf{f}_{o}\overline{\Phi}_{1}^{-1})\mathbf{I} & (\mathbf{f}_{o}\overline{\Phi}_{1}^{-1})\mathbf{O} \end{bmatrix} + \begin{bmatrix} (\mathbf{g}_{o}\overline{\Phi}_{1}^{-1})\mathbf{O} & (\mathbf{g}_{o}\overline{\Phi}_{1}^{-1})\mathbf{I} \end{bmatrix}$$

$$= (\mathbf{f}_{o}\overline{\Phi}_{1} & \mathbf{g}_{o}\overline{\Phi}_{1}^{-1})$$

= (f₁, g₁)

i.e
$$fdx_1 + gdy_1 : (X, \overline{\Phi}_1) \longrightarrow (f_1, g_1)$$

thus $fdx_{1} + gdy_{1}$ and w assigns to $(x, \overline{\Phi}_{1})$ the same ordered pair of functions (f_{1}, g_{1})

i.e $W = fdx_1 + gdy_1$ \forall coordinate neighborhoods therefore $W = f_1(x_1, y_1)dx_1 + g_1(x_1, y_1)dy_1$

Similarly for the differential 2 - form ω , in terms of the coordinate neighborhood (x, Φ_1) we can write

$$\omega = f_1(x_1, y_1) dx_1 dy_1$$

2.31 <u>Definition</u>: If ω_1 and ω_2 are two differential 1 - forms on X such that

$$\omega_1: (U, \Phi) \longmapsto (f_1, g_1)$$
 and $\omega_2: (U, \Phi) \longmapsto (h_1, k_1)$

we can define ω_1 ω_2 as a differential 2 - form such that $\omega_1\omega_2$: $(\mathtt{U}, \cdot \c$

Claim that this is well - defined, let (v, ψ) be another coordinate neighborhood. Let (x_1y_1) and (x_2, y_2) be the coordinate functions of (v, Φ) and (v, ψ) respectively such that $x_2 = \varphi_1(x_1, y_1)$ and $y_2 = \varphi_2(x_1, y_1)$

Then in the coor. neighborhood (U, $\overline{\Phi}$) we have

$$\omega_1 = f_1(x_1, y_1) dx_1 + g_1(x_1, y_1) dy_1$$

$$\omega_2 = h_1(x_1, y_1) dx_1 + k_1(x_1, y_1) dy_1$$

$$\omega_1 \omega_2 = \left[f_1(x_1, y_1) k_1(x_1, y_1) - g_1(x_1, y_1) h_1(x_1, y_1) \right] dx_1 dy_1$$

and in the coor. neighborhood (V, ψ) we have

$$\omega_{1} = f_{2}(x_{2}, y_{2})dx_{2} + g_{2}(x_{2}, y_{2})dy_{2}$$

$$\omega_{2} = h_{2}(x_{2}, y_{2})dx_{2} + k_{2}(x_{2}, y_{2})dy_{2}$$

$$\omega_{1}\omega_{2} = \left[f_{2}(x_{2}, y_{2})k_{2}(x_{2}, y_{2}) - g_{2}(x_{2}, y_{2})h_{2}(x_{2}, y_{2})\right]dx_{2}dy_{2}$$

We want to show that

$$f_{1}(x_{1},y_{1})k_{1}(x_{1},y_{1}) - g_{1}(x_{1},y_{1})h_{1}(x_{1},y_{1})$$

$$= \left[(f_{2}(x_{2},y_{2})k_{2}(x_{2},y_{2}) - g_{2}(x_{2},y_{2})h_{2}(x_{2},y_{2}) \right] \frac{\partial (y_{1},y_{2})}{\partial (x_{1},y_{1})}$$

$$(f_1(x_1, y_1), g_1(x_1y_1)) = (f_2(x_2, y_2), g_2(x_2, y_2)) \begin{pmatrix} \frac{\partial \varphi_1}{\partial x_1} & \frac{\partial \varphi_1}{\partial y_1} \\ \frac{\partial \varphi_2}{\partial x_1} & \frac{\partial \varphi_2}{\partial y_1} \end{pmatrix}$$

i.e
$$f_1(x_1,y_1)$$
 = $f_2(\varphi_1(x_1,y_1), \varphi_2(x_1,y_1)) \frac{\partial \varphi_i}{\partial x_i}$
+ $g_2(\varphi_1(x_1,y_1), \varphi_2(x_1,y_1)) \frac{\partial \varphi_i}{\partial x_i}$

and
$$g_1(x_1,y_1) = f_2(\varphi_1(x_1,y_1), \varphi_2(x_1,y_1)) \frac{\partial \varphi_1}{\partial y_1} + g_2(\varphi_1(x_1,y_1), \varphi_2(x_1,y_1)) \frac{\partial \varphi_2}{\partial y_1}$$

and since ω_2 is a diff. 1 - form, so we have

$$(\mathbf{h}_{1}(\mathbf{x}_{1},\mathbf{y}_{1}),\ \mathbf{k}_{1}(\mathbf{x}_{1},\mathbf{y}_{1})) = (\mathbf{h}_{2}(\mathbf{x}_{2},\mathbf{y}_{2}),\ \mathbf{k}_{2}(\mathbf{x}_{2},\mathbf{y}_{2})) \begin{pmatrix} \frac{\partial \varphi_{1}}{\partial \mathbf{x}_{1}} & \frac{\partial \varphi_{1}}{\partial \mathbf{y}_{1}} \\ \frac{\partial \varphi_{2}}{\partial \mathbf{x}_{1}} & \frac{\partial \varphi_{2}}{\partial \mathbf{y}_{1}} \end{pmatrix}$$

i.e
$$h_1(x_1,y_1) = h_2(\varphi_1(x_1,y_1), \varphi_2(x_1,y_1)) \frac{\partial \varphi_1}{\partial x_1} + k_2(\varphi_1(x_1,y_1), \varphi_2(x_1,y_1)) \frac{\partial \varphi_2}{\partial x_1}$$

and
$$k_1(x_1,y_1) = k_2(\varphi_1(x_1,y_1), \varphi_2(x_1,y_1)) \frac{\partial \varphi_1}{\partial y_1} + k_2(\varphi_1(x_1,y_1), \varphi_2(x_1,y_1)) \frac{\partial \varphi_2}{\partial y_1}$$

so $f_1(x_1,y_1)k_1(x_1,y_1) - g_1(x_1,y_1)h_1(x_1,y_1)$ $= \left[f_2(\varphi_1(x_1,y_1), \varphi_2(x_1,y_1)) \frac{\partial \varphi_1}{\partial x_1} + g_2(\varphi_1(x_1,y_1), \varphi_2(x_1,y_1)) \frac{\partial \varphi_2}{\partial x_1} \right]$ $-\left[f_{2}(\varphi_{1}(x_{1},y_{1}),\varphi_{2}(x_{1},y_{1}))\frac{\partial\varphi_{1}}{\partial y_{1}}+g_{2}(\varphi_{1}(x_{1},y_{1}),\varphi_{2}(x_{1},y_{1}))\frac{\partial\varphi_{2}}{\partial y_{1}}\right]$ $\left[h_{2}(\varphi_{1}(x_{1},y_{1}),\varphi_{2}(x_{1},y_{1}) \frac{\partial \varphi_{1}}{\partial x_{1}} + k_{2}(\varphi_{1}(x_{1},y_{1}),\varphi_{2}(x_{1},y_{1})) \frac{\partial \varphi_{2}}{\partial x_{1}} \right]$ $= \left[(f_2^k_2)(\varphi_1(x_1,y_1), \varphi_2(x_1,y_1)) - (g_2^k_2)(\varphi_1(x_1,y_1), \varphi_2(x_1,y_1)) \right]$ $\varphi_2(x_1,y_1))$ $\left(\frac{\partial \varphi_1}{\partial x_1} \cdot \frac{\partial \varphi_2}{\partial y_1}\right)$ + $(f_2h_2)(\varphi_1(x_1,y_1), \varphi_2(x_1,y_1)) - (f_2h_2)(\varphi_1(x_1,y_1),$ $\varphi_2(\mathbf{x}_1,\mathbf{y}_1)) \left(\frac{\partial \varphi_1}{\partial \mathbf{x}_1} \quad \frac{\partial \varphi_1}{\partial \mathbf{y}_1} \right)$ $+(g_2h_2)(\varphi_1(x_1,y_1),\varphi_2(x_1,y_1)) - (f_2k_2)(\varphi_1(x_1,y_1),\varphi_2(x_1,y_1))$ $\left(\frac{\partial y_1}{\partial y_1}, \frac{\partial x_1}{\partial x_1}\right)$ + $\left[(g_2^k_2)(\varphi_1(x_1,y_1), \varphi_2(x_1,y_1)) - (g_2^k_2)(\varphi_1(x_1,y_1), \varphi_2(x_1,y_1)) \right]$ $\left(\frac{\partial \varphi_2}{\partial x_1} \frac{\partial \varphi_2}{\partial y_1}\right)$

$$= \left[(f_{2}k_{2})(\varphi_{1}(x_{1},y_{1}), \varphi_{2}(x_{1},y_{1})) - (g_{2}h_{2})(\varphi_{1}(x_{1},y_{1}), \varphi_{2}(x_{1},y_{1})) \right]$$

$$\left(\frac{\partial \varphi_{1}}{\partial x_{1}} \frac{\partial \varphi_{2}}{\partial y_{1}} \right)$$

$$+ \left[(g_{2}h_{2})(\varphi_{1}(x_{1},y_{1}), \varphi_{2}(x_{1},y_{1}) - (f_{2}k_{2})(\varphi_{1}(x_{1},y_{1}), \varphi_{2}(x_{1},y_{1})) \right]$$

$$= \left[(f_{2}k_{2})(\varphi_{1}(x_{1},y_{1}), \varphi_{2}(x_{1},y_{1})) - (g_{2}h_{2})(\varphi_{1}(x_{1},y_{1}), \varphi_{2}(x_{1},y_{1})) \right]$$

$$\left(\frac{\partial \varphi_{1}}{\partial x_{1}} \frac{\partial \varphi_{2}}{\partial y_{1}} - \frac{\partial \varphi_{1}}{\partial y_{1}} \frac{\partial \varphi_{2}}{\partial x_{1}} \right)$$

$$= \left[f_{2}(x_{2},y_{2})k_{2}(x_{2},y_{2}) - g_{2}(x_{2},y_{2})h_{2}(x_{2},y_{2}) \right] \frac{\partial (\varphi_{1},\varphi_{2})}{\partial (x_{1},y_{1})}$$
so, this is well - defined.

2.32 Definition: On n - dimensional space with coordinates

x₁, ..., x_n, a differential P - form is an expression of the

form Σ f₁,i_p (x₁, ...,x_n) dx₁ dx₁dx₁

i₁, i₂, ..., i_p p

Where the sum is taken over all possible combinations of the p indices, and the coefficients $f_1 \cdots f_p (x_1, \cdots, x_n)$ are assumed to be infinitely differentiable functions of the coordinates.

2.23 Example :

For $\underline{n=2}$ with coordinates x,y where P = 0,1,2, we have

- a diff. 0 form is just a differentiable function f(x, y)
- a diff, 1 form is an expression f dx + g dy
- a diff 2 form is an expression f dx dy

For n=3 with coordinates x, y, z where P=0, 1, 2, 3 we have a diff 0 - form is just a differentiable function f(x, y, z)

a diff 1 - form is an expression f dx + g dy + h dz

a diff 2 - form is an expression f dx dy + g dy dz + h dz dx a diff 3 - form is an expression f dx dy dz.

The coefficients f, g, h are assumed to be infinitely differentiable functions of the coordinates.

2.34 Remark : -

If ω is the k - form and λ is the m - form, symbolically represented by the sum

$$\omega = \sum_{i_1,...i_k} a_{i_1,...i_k} dx_{i_1,...i_k}$$

and
$$\lambda = \sum_{j_1,...,j_m} (x) dx_{j_1,...,j_m} dx_{j_m}$$

on $G \subseteq \mathbb{R}^n$ where $x = (x_1, \dots, x_n)$ and the indices i_1, \dots, i_k range independently from 1 to n and also the indices j_1, \dots, j_m rang independently from 1 to n, then their exterior product, denoted by the symbol $\omega \lambda$, is defined to be the (k+m) - form

$$\omega \lambda = \sum_{\mathbf{a_{i_1...i_k}}} (\mathbf{x}) b_{\mathbf{j_{1...j_m}}} (\mathbf{x}) d\mathbf{x_{i_1}} d\mathbf{x_{i_k}} d\mathbf{x_{j_1}...} d\mathbf{x_{j_m}}$$

In this sum, the indices $i_1, \dots, i_k, j_1, \dots, j_m$ range independently from 1 to n .

2.35 Definition: A C Euclidean Plane X is a domain if \exists a coordinate neighborhood $\{v, \overline{\psi}\}$ such that $v \supset A$ and $\overline{\Phi}(A)$ is a domain in \mathbb{R}^2 .

Let ω be a continuous density on X and $A \subset X$ be a domain. We define $m(A) = \int_{A} \omega$ in the following way:

Choose a coordinate neighborhood (U, Φ) such that

U $\supset A$. ω assigns to (U, Φ) a function $f: \Phi(U) \longrightarrow \mathbb{R}$

A \(\bar{\pi}(A)\)

If \(\begin{align*}
\int \delta \\ \

Claim that this is well - defined, let (V, ψ) be another coordinate neighborhood such that $V \supset A$ and

$$\int_{A} w = \int_{A} \int_{A} f_{1}$$

where $W: (V, \Psi) \mapsto f_1$ We must prove that $\iint f = \iint f_1$

 $\Phi(A)$ $\Psi(A)$

Since ω is a density and change variable in double integral, we get

$$\iint_{\mathbf{q}} \mathbf{f} = \iint_{\mathbf{q}} \mathbf{f}_{o} (\Phi_{o} \Psi) |_{\mathbf{Jac}} (\Phi_{o} \Psi) |_{\mathbf{q}}$$

$$\Psi(A) = \Psi(A) \int_{\mathbf{q}} \mathbf{f}_{o} (\Phi_{o} \Psi) \Phi_{o} \Psi \Phi_{o} \Phi_{$$