การพัฒนาระบบรับรู้และวิธีการวิเคราะห์แบบโวลแทมเมทริกสำหรับประยุกต์กับระบบ

โฟลว์อินเจคชันลิควิคโครมาโทกราฟีและไมโครชิพคะพิลลารีอิเล็กโทรโฟเรซีส

นางสาววีณา เสียงเพราะ

3

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรคุษฎีบัณฑิต สาขาวิชาเคมี ภาควิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2549 ISBN 974-14-2497-3 ลิขสิทธ์ของจุฬาลงกรณ์มหาวิทยาลัย

DEVELOPMENT OF NEW VOLTAMMETRIC SENSING SYSTEMS AND ANALYTICAL METHODS AS APPLIED TO FLOW INJECTION LIQUID CHROMATOGRAPHY AND MICROCHIP CAPILLARY ELECTROPHORESIS

Miss Weena Siangproh

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Program in Chemistry Department of Chemistry Faculty of Science Chulalongkorn University Academic Year 2006 ISBN 974-14-2497-3

Seiznel .

490109

Thesis Title	DEVELOPMENT OF NEW VOLTAMMETRIC SENSING
	SYSTEMS AND ANALYTICAL METHODS AS APPLIED
	TO FLOW INJECTION LIQUID CHROMATOGRAPHY
	AND MICROCHIP CAPILLARY ELECTROPHORESIS
Ву	Miss Weena Siangproh
Field of Study	Chemistry
Thesis Advisor	Associate Professor Orawon Chailapakul, Ph. D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctor's Degree

Dean of the Faculty of Science

(Professor Piamsak Menasveta, Ph.D.)

THESIS COMMITTEE

Siri Varo Mec

•Chairman (Associate Professor Siri Varothai, Ph. D., D.I.C.)

nawon Chailapabel

......Thesis Advisor (Associate Professor Orawon Chailapakul, Ph. D.)

J. Junt Wani Member (Associate Professor Thawatchai Tuntulani, Ph.D.)

(Assistant Professor Narong Praphairaksit, Ph.D.)

D. Nacapriole_____Member

(Assistant Professor Duangjai Nacapricha, Ph. D.)

วีณา เสียงเพราะ: การพัฒนาระบบรับรู้และวิธีการวิเคราะห์แบบ โวลแทมเมทริกสำหรับประยุกต์กับ ระบบ โฟลว์อินเจกชันลิกวิค โครมา โทกราฟีและ ไม โครชิพคะพิลลารีอิเล็ก โทร โฟเรซีส (DEVELOPMENT OF NEW VOLTAMMETRIC SENSING SYSTEMS AND ANALYTICAL METHODS AS APPLIED TO FLOW INJECTION LIQUID CHROMATOGRAPHY AND MICROCHIP CAPILLARY ELECTROPHORESIS) อาจารย์ที่ปรึกษา: รศ.คร. อรวรรณ ชัยถภากูล ; 163 หน้า, ISBN 974-14-2497-3

งานวิจัยนี้มุ่งความสำคัญไปที่การพัฒนาโวลแทมเมริกดีเทคเตอร์ชนิดใหม่สำหรับระบบของไหล โดยแบ่งงานวิจัยออกเป็นสองส่วน ได้แก่ ส่วนที่หนึ่งการพัฒนาโวลแทบเมริกดีเทคเตอร์ชนิดใหม่โดยใช้ ขั้วไฟฟ้าฟิล์มบางโบรอนโคปไคมอนค์สำหรับสารประกอบไทออลกับการประยุกต์ทางโฟลว์อินเจคชันและไฮ เพอร์ฟอร์มานส์ลิกวิคโครมาโทกราฟี ในการศึกษาเบื้องต้นได้ทำการศึกษาการเกิดปฏิกิริยาทางเกมีไฟฟ้าของยา ที่มีหม่ไทออลเป็นองค์ประกอบที่ขั้วไฟฟ้าฟิล์มบางโบรอโคปไดมอนด์ด้วยไซคลิกโวลแทมเมทรี เปรียบเทียบ ผลการทคลองที่ได้กับขั้วไฟฟ้ากลาสสิคาร์บอน พบว่าขั้วไฟฟ้าฟิล์มบางโบรอนโคปไคมอนค์ให้ผลของ สัญญาณไซคลิกโวลแทมโมแกรมสำหรับปฏิกิริยาออกซิเคชันของยาที่มีหมู่ไทออลเป็นองค์ประกอบแบบไม่ ผันกลับที่ชัดเจนและให้ค่ากระแสไฟฟ้าที่สูง เมื่อเปรียบเทียบกับขั้วไฟฟ้ากลาสสิคาร์บอน จากนั้นได้นำระบบ โฟลว์อินเจคชันซึ่งต่อกับขั้วไฟฟ้าฟิล์มบางโบรอนโคปไคมอนด์ไปประยุกต์สำหรับการวิเคราะห์ปริมาณยาที่มี หมู่ไทออลเป็นองค์ประกอบในสารมาตรฐานและสารตัวอย่างยาเตรียม จากการศึกษาเปอร์เซ็นต์การกลับคืน ของสารมาตรฐานที่เติมลงในสารตัวอย่างพบว่าได้ผลการทดลองในช่วง 95 ถึง 110 เปอร์เซ็นต์ นอกจากนี้ยังได้ ทำการศึกษาการเกิดปฏิกิริยาออกซิเดชันของโฮโมซีสเทอีนที่ขั้วไฟฟ้าฟิล์มบางโบรอนโดปไดมอนค์แบบที่ยัง ไม่ผ่านกระบวนการออกซิไคซ์และแบบที่ผ่านกระบวนการออกซิไคซ์ โดยใช้เทกนิกไซกลิกโวลแทบเบทรี จากการทดลองพบว่าในภาวะที่สารละลายมีฤทธิ์เป็นกรดโฮโมซีสเทอ็นสามารถเกิดปฏิกิริยาออกซิเดซันได้ เฉพาะกรณีที่ใช้ขั้วไฟฟ้าฟิล์มบางโบรอนโคปไคมอนค์แบบที่ผ่านกระบวนการออกซิไคซ์เท่านั้น ที่กาวะ สารละลายมีฤทธิ์เป็นเบสโฮโมซีสเทอีนสามารถเกิดปฏิกิริยาออกซิเคซันได้ที่ขั้วไฟฟ้าทั้งสองแบบ ແລະຈາກ การนำระบบ โฟลว์อินเจคชันและไฮเพอร์ฟอร์มานส์ลิควิค โครมาโทกราฟีต่อกับขั้วไฟฟ้าฟิล์มบางโบรอนโคป ใดบอนด์แบบที่ผ่านกระบวนการออกซิไดซ์ พบว่าขั้วไฟฟ้าฟิล์มบางโบรอนโดปไดมอนด์ให้สัญญาณที่มีความ แตกต่างกันน้อยกว่า 2 เปอร์เซ็นต์ ที่ภาวะเป็นกรด และจากการวิเคราะห์โฮโมซีสเทอีนด้วยเทคนิคไฮเพอร์ ฟอร์มานส์ลิกวิคโครมาโทกราฟีให้ค่าขีดจำกัดต่ำสุดในการตรวจวัดที่ 1 พิโคโมล สำหรับงานวิจัยในส่วนที่สอง ้คือ การนำระบบไมโครชิพคะพิลลารีอิเล็กโทรโฟเรซีสต่อกับระบบตรวจวัดทางเคมีไฟฟ้า เพื่อประยุกต์สำหรับ การแยกและตรวจวัดสารมลพิษในสิ่งแวคล้อม ได้แก่ สารประกอบไฮคราซีน สารประกอบฟืนอลและสารวัตถุ นอกจากนี้ได้ออกแบบระบบไมโครชิพละพิลลารีอิเล็กโทรโฟเรซีสสำหรับการตรวจวัดสารทั้ง ระเบิด แบบต่อเนื่องและแบบไม่ต่อเนื่อง พบว่าความแม่นและความเที่ยงของวิธีวิเคราะห์มีประสิทธิภาพดีให้ผลการ วิเคราะห์อยู่ในช่วงที่ขอมรับได้ คือน้อยกว่า 5 เปอร์เซ็นต์

ภาควิชา	เคมี	ลายมือชื่อนิสิตวิภภา	เสียงเพราะ	
		ถายมือชื่ออาจารย์ที่ปรึกษา		
ปีการศึกษา				1

iv

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my dear advisor, Assoc. Prof. Dr. Orawon Chailapakul, for the interesting subject of my Ph.D thesis, for her fruitful discussions and helpful criticism throughout the course of my work, as well as for giving me an opportunity to realize own ideas and to know the value of working. I truly appreciate her support, guidance and standing by me throughout my studies. I would like to thank her for the encouragement and always wishing for my successful future. I wish to thank her also for the very good laboratory equipment and her assistance on numerous organizational and administrative obstacles during this work. Completion of this dissertation would not have been possible without her supports.

I am very grateful to Prof. Joseph Wang (Arizona State University, USA) for providing me the opportunity to collaborate with his research group and for the interesting discussions in the area of microsystems.

Furthermore, I wish to thank Assoc. Prof. Dr. Siri Varothai for giving me an honor of being the thesis chairman. I really appreciate my committee members, Assoc. Prof. Dr. Thawatchai Tuntulani, Assist. Prof. Dr. Narong Praphairaksit, and Assist. Prof. Dr. Duangjai Nacapricha, for their comments and valuable time during my doctoral program.

I would like to acknowledge the Thailand Research Fund through the Royal Golden Jubilee Ph.D Program (Grant Number PHD/0289/2545), and Thailand-U.S. Educational Foundation (Fulbright) for financial support during my Ph.D course.

I would like to thank also all staffs in the Department of Chemistry, Faculty of Science, Srinakharinwirot University and Chulalongkorn University for the very good knowledge.

My very special thank goes to my all friends, especially those members in the electrochemical research group for their very good corporation in work, sharing of colorful emotion and friendly working atmosphere.

Last, but not least, my heartfelt regards and gratitude are due to my beloved parents for their endless love, eternal understanding and immeasurable care throughout my life.

CONTENTS

n		0	17
r	Α	G	Ľ

ABSTRACT (IN THAI)	iv
ABSTRACT (IN ENGLISH)	v
ACKNOWLEDGEMENT	
CONTENTS	vii
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS AND SYMBOLS	xxiii
CHAPTER I INTRODUCTION	1
1.1 Introduction	1
1.2 Research Objective	2
1.3 Scope of Research	2
CHAPTER II THEORY AND LITURATURE SURVEY	4
2.1 Fundamental of Electrochemistry	4
2.1.1 Potentiometry	5
2.1.2 Voltammetry	6
2.1.2.1 Cyclic Voltammetry	7
2.1.3 Amperometry	9
2.1.4 Hydrodynamic Voltammetry	10
2.1.5 Working Electrode: Boron-doped diamond thin film	
electrode	11
2.1.5.1 Preparation and Availability of Conductive Diamond	
Films by CVD processes	12
2.1.5.2 Characterization of Conductive Diamond Films	12
2.1.5.2.1 Microscopy	12
2.1.5.2.2 Raman Spectroscopy	13
2.1.5.2.3 X-ray Photoelectron Spectroscopy	13
2.2 Flow Injection Analysis (FIA)	13
2.3 High Performance Liquid Chromatography	15

2.3.1 Ion-Pair Chromatography	16
2.4 Microchip Capillary Electrophoresis	17
2.4.1 Capillary Electrophoresis	17
2.4.1.1 Background Theory	17
2.4.1.2 Electroosmotic Flow	18
2.4.1.3 Injection Scheme	20
2.4.1.3.1 Hydrodynamic Injection	20
2.4.1.3.2 Electrokinetic Injection	20
2.4.1.4 Separation Modes	21
2.4.1.4.1 Capillary Zone Electrophoresis	22
2.4.1.4.2 Micellar Electrokinetic Chromatography	22
2.4.2 Introduction to Micro Total Analysis Systems	23
2.4.3 Personal Laboratories for the 21 st Century	23
2.4.4 Capillary Electrophoresis on Microchip	24
2.5 Electrochemical Detection under Flow -Through Condition	27
2.6 Thiol-Containing Drugs	28
2.6.1 Tiopronin	30
2.6.2 Captopril	32
2.7 Homocysteine	34
CHAPTER III EXPERIMENTAL	36
3.1 Instruments and Equipments	36
3.2 Apparatus for Microchip Capillary Electrophoresis System	38
3.3 Chemical and Reagents	38
3.4 Preparation of Solution	40
3.4.1 Preparation of 0.1 M Phosphate Buffer	41
3.4.2 Preparation of 10 mM Phosphate Buffer	41
3.4.3 Preparation of 100 mM MES Buffer pH 4	42
3.4.4 Preparation of 100 mM Borate Buffer pH 9	42
3.4.5 Preparation of 30 mM SDS	42
3.4.6 Stock Standard Solution of Thiol-Containing Drugs	43
3.4.7 Thiol-Containing Drugs for Calibration	43

viii

3.4	.8 Stock Standard Solution of Aminothiol Solutions	44
3.4	.9 Stock Standard Solution of Phenolic Compounds	44
3.4	.10 Stock Standard Solution of Explosive Compounds	45
3.4	.12 Mobile Phase for HPLC-ECD	45
3.4	.13 Aminothiol Mixture Standard Solutions for Calibration	45
3.5 Real 8	Sample Analysis	46
3.6 Prepa	ration of CoPc-Modified Carbon Paste	47
3.7 Proce	dures of Electrochemical Detection	48
3.7	7.1 Batch Analysis	48
	3.7.1.1 Cyclic Voltammetry	48
	3.7.1.2 Background Current	49
	3.7.1.3 pH Dependence	49
	3.7.1.4 The Electrochemical Oxidation of Thiol-Containing	
	Drugs	49
	3.7.1.5 Effect of Scan Rate	49
	3.7.1.6 The Analytical Performance	49
3.7	2.2 Flow Injection with Amperometric Detection	50
	3.7.2.1 Hydrodynamic Voltammetry	50
	3.7.2.2 Calibration and Linear Range	51
	3.7.2.3 Limit of Detection	51
	3.7.2.4 Repeatability	51
3.7	7.3 High performance liquid chromatography	52
	3.7.3.1 Optimum Potential for HPLC/ECD	53
	3.7.3.2 Calibration Curve and Linear Range for HPLC	53
	3.7.3.3 Limit of Detection of HPLC	54
	3.7.3.4 Precision	54
	3.7.3.5 Accuracy	54
3.7	7.4 Microchip CE Layout	54
3.7	7.5 End Column Amperometric Detection	55
CHAPTER IV	RESULTS AND DISCUSSION	56
4.1 Boron	-Doped Diamond Thin Film Electrodes for Thiol-Containing	

Drugs Analysis Coupled with Flow Injection Analysis	56
4.1.1 Cyclic Voltammetry	56
4.1.2 Effect of pH on the Electrochemical Behavior of Thiol-	
Containing Drugs	58
4.1.3 Scan Rate and Concentration Dependence	60
4.1.4 Flow injection with Amperometric Detection	64
4.1.4.1 Hydrodynamic Voltammetry	64
4.1.4.2 Flow Injection Analysis	66
4.1.5 Application: Quantitation of Sample	69
4.1.6 Comparison to the Other Methods	74
4.17 Summary	76
4.2 The Electrooxidation of Homocysteine at Anodized Thin Film	
Diamond Electrode with Amperometric HPLC	77
4.2.1 Cyclic Voltammetry	78
4.2.2 Concentration and Sweep Rrate Dependence	79
4.2.3 Hydrodynamic Voltammetry	80
4.2.4 Flow Injection Analysis	82
4.2.5 HPLC Amperometric Results	84
4.2.6 Sensitivity, Linear Dynamic Range, and Detection Limit	88
4.2.7 Summary	90
CHAPTER V MICROCHIP CAPILLARY ELECTROPHORESIS	
COUPLED WITH ELECTROCHEMICAL DETECTION	91
5.1 Introduction	91
5.2 Experimental Section	94
5.2.1 Electrode Preparation	94
5.2.1.1 Capillary Electrode Construction	94
5.2.1.2 Screen Printed Electrode Fabrication	94
5.2.2 Microchip Apparatus	95
5.2.2.1 Apparatus for Normal Chip Layout	95
5.2.2.2 Apparatus for Continuous Monitoring	95
5.2.3 Electrophoresis Procedure	97

х

5.2.4 End-Column Amperometric Detection	98
5.2.5 Safety Considerations	99
5.3 Results and Discussion	99
5.3.1 Microchip Capillary Electrophoresis/Electrochemical	
Detection of Hydrazine	99
5.3.1.1 Comparison of Unmodified and CoPc-Modified	
Carbon Paste Capillary Electrodes	100
5.3.1.2 Capillary Electrophoresis Optimization	102
5.1.3.3 Influence of CoPc Loading	104
5.1.3.4 Hydrodynamic Voltammetry	104
5.3.1.5 Analytical Figures	107
5.3.1.6 Summary	109
5.3.2 Microchip Device for Rapid Screening and Fingerprint	
Identification of Phenol Pollutants	110
5.3.2.1 pH Effect	112
5.3.2.2 The Effect of Separation Voltage	112
5.3.2.3 The Influence of Washing Time and Switching Voltage	114
5.3.2.4 Analytical Figures	116
5.3.2.5 Summary	118
5.3.3 Microchip for Separation and Detection of Plastic	118
Explosives	
5.3.3.1 Electrochemical characteristics of RDX and PETN	119
5.3.3.2 Condition for Separation and Detection of RDX and	
PETN	121
5.3.3.3 Effect of Detection Potential	125
5.3.3.4 Analytical Figures	126
5.3.3.5 Summary	128
5.3.4 Continuous Monitoring with Microfabricated Capillary	
Electrophoresis Chip Devices	128
5.3.4.1 Carry-Over Effect	131
5.3.4.2 Influence of Sampling Time	133

xi

xii

5.3.4.3 Influence of Sample Flow Rate	134
5.3.4.4 Effect of Separation Voltages	135
5.3.4.5 Analytical Performances	135
5.3.4.6 Summary	138
CHAPTER VI CONCLUSIONS AND FUTURE PERSPECTIVES	139
6.1 Boron-Doped Diamond Thin Film Electrode for Thiol-Containing	
Drugs Analysis Coupled with Flow Injection Analysis System	139
6.2 The Electrochemical Oxidation of Homocysteine at Anodized	
Boron-Doped Diamond Thin Film Electrode with Amperometric	140
HPLC	
6.3 Microchip Capillary Electrophoresis Coupled with Electrochemical	
Detection	141
6.4 Suggestions for Future Work	143
REFERENCES	144
VITAE	163

LIST OF TABLES

TAB	LE	PAGE
3.1	List of Chemicals and Reagents and Their Suppliers	39
3.2	Compositions of 0.1 M Phosphate Buffer Solution	41
3.3	The Compositions of 10 mM Phosphate Buffer Solution	42
3.4	Compositions of Tiopronin Standard Solution	43
3.5	Compositions of Seven Amino Thiol Mixture Standard Solution	46
3.6	List of Thiol-Containing Drugs Employed in This Work	47
3.7	Compositions of %CoPc Loading in Carbon Paste	47
3.8	Parameter of the HPLC Condition	53
4.1	Comparison of Electrochemical Data Obtained from the	
	Cyclic Voltammograms of 1 mM Captopril for the Diamond	
	Electrode at Various pH values	59
4.2	Comparison of Electrochemical Data Obtained from the	
	Cyclic Voltammograms of 2 mM Tiopronin for the Diamond	
	Electrode at Various pH Values	60
4.3	Precision and Accuracy in the Determination of Commercially	
	Available Tablets Doses form	70
4.4	Recovery of Captopril Tablet Sample with Amperometric Detection	
	using Diamond Electrode Applied to Flow Injection System	71
4.5	Recovery of Tiopronin Tablet sample with Amperometric Detection	
	using Diamond Electrode Applied to Flow Injection System	74
4.6	Comparison of Data for Tiopronin Determination	75
4.7	Response Characteristics for Thiol and Disulfide by HPLC	
	Amperometric detection	89

LIST OF FIGURES

FIGUR	E	PAGE
2.1	Electrodics is concerned with the exchange of electrons between electrodes and	
	species in solution (these are frequently ions). Ionics is the discipline	
	concerned with the behavior of ions in solution	4
2.2	Schematic diagram of an electrochemical cell for potentiometric measurement	6
2.3	Potential-time waveforms are used in various electroanalytical techniques.	
	Waveforms based on (a) square, (b) linear, and (c) triangular potential-time	
	patterns are used in square wave, linear sweep, and cyclic voltammetry,	
	respectively	7
2.4	The current-potential (i-E) plot is called a cyclic voltammogram	8
2.5	Amperometry (E-t) waveform	10
2.6	Schematic diagram of a generic description of FIA	15
2.7	Schematic of HPLC instrument	16
2.8	Schematic representation of electrophoresis	17
2.9	Representation of osmotic flow and migration of neutral, cationic, and anionic	
	solutes in a capillary due to electroosmotic flow and electrophoretic mobility	19
2.10	Separation mechanisms in (a) CZE and (b) MEKC.	22
2.11	Typical amperometric readout during automated flow injection assays of	
	ethanol at an enzyme carbon-paste electrode. Peak a through h: 2×10^{-5} M to	
	1.6×10^{-4} M ethanol	28
2.12	Thiol-containing drugs structure	30
3.1	The electrochemical cell for cyclic voltammetric study	48
3.2	The thin layer flow cell	50
3.3	The thin layer flow cell for HPLC system	52
3.4	Microchip capillary electrophoresis coupled with electrochemical detection	
	layout	55

4.1	Cyclic voltammograms for a) BDD and b) GC versus Ag/AgCl in 1.0 mM	
	captopril in 0.1 M phosphate buffer pH 9 (solid lines) and 0.1 M phosphate	
	buffer pH 9 (dashed lines) Sweep rate, 50 mV/s; area of electrode, 0.07cm ²	
	Scan rate = 20 mV/s	57
4.2	Cyclic voltammograms for a) BDD and b) GC versus Ag/AgCl in 2.0 mM	
	tiopronin in 0.1 M phosphate buffer pH 8 (solid lines) and 0.1 M phosphate	
	buffer pH 8 (dashed lines) Sweep rate, 50 mV/s; area of electrode, 0.07cm ²	58
4.3	Cyclic voltammogram for captopril in 0.1 M phosphate buffer (pH 9) at boron-	
	doped diamond electrode for a series of captopril concentrations. The potential	
	sweep rate was $50 \text{mV}/\text{s}$; area of electrode, 0.07cm^2 . The calibration curve was	
	shown in the inset	61
4.4	Cyclic voltammogram for 1 mM tiopronin in 0.1 M phosphate buffer (pH 8) at	
	boron-doped diamond electrode for a series of potential sweep rates; area of	
	electrode, 0.07 cm ² . The calibration curve of relationship between current	
	(μ A) and (sweep rate) ^{0.5} was also in the inset of this figure	62
4.5	Cyclic voltammogram for 1 mM captopril in 0.1 M phosphate buffer (pH 9) at	
	boron-doped diamond electrode for a series of potential sweep rates; area of	
	electrode, 0.07 cm ² . The calibration curve of relationship between current	
	(μ A) and (sweep rate) ^{0.5} was also in the inset of this figure	63
4.6	Cyclic voltammogram for tiopronin in 0.1 M phosphate buffer (pH 8) at boron-	
	doped diamond electrode for a series of captopril concentrations. The potential	
	sweep rate was 50mV /s; area of electrode, 0.07cm^2 . The calibration curve was	
	shown in the inset	63
4.7	(a) Hydrodynamic voltammogram of () 0.1 M phosphate buffer (pH 9,	
	background current) and () 100 μM of captopril in 0.1 M phosphate buffer	
	(pH 9) with four injections of analysis, using 0.1 M phosphate buffer (pH 9) as	
	a carrier solution. (b) Hydrodynamic of signal- to- background ratio. The flow	
	rate was 1 mL/ min	65

xv

4.8	(a) Hydrodynamic voltammogram of () 0.1 M phosphate buffer (pH 8,	
	background current) and (-•-) 100 μ M of tiopronin in 0.1 M phosphate buffer	
	(pH 8) with four injections of analysis, using 0.1 M phosphate buffer (pH 8) as	
	a carrier solution. (b) Hydrodynamic of signal- to- background ratio. The flow	
	rate was 1mL/ min	66
4.9	Flow injection analysis with amperometric detection results for a diamond	
	electrode using 20-ml of captopril at various concentrations. The mobile phase	
	was 0.1 M phosphate buffer (pH 9) at a flow rate of 1 mL/ min. The calibration	
	curve was shown in the inset	67
4.10	Flow injection analysis with amperometric detection results for a diamond	
	electrode using 20-µL of tiopronin at various concentrations. The mobile phase	
	was 0.1 M phosphate buffer (pH 8) at a flow rate of 1 mL/min. The calibration	
	curve was shown in the inset	68
4.11	Flow injection with amperometric detection results for 10 nM captopril in 0.1	
	M phosphate buffer (pH 9). The flow rate was 1 mL/min	68
4.12	Flow injection with amperometric detection results for 10 nM tioproninin 0.1 M	
	phosphate buffer (pH 8). The flow rate was 1 mL/min	69
4.13	Flow injection analysis results for determination of captopril in commercially	
	available tablets. Using the standard addition for the added captopril: (a) 0.00	
	mg/ml, (b) 0.43 mg/ml, (c) 0.87 mg/ml, (d) 1.30 mg/ml, (e) 1.74 mg/ml, (f)	
	2.17 mg/ml	70
4.14	Flow injection analysis results for determination of tiopronin in commercially	
	available tablets. Using the standard addition for the added captopril: (a) 0.00	
	mg/ml, (b) 0.65 mg/ml, (c) 0.98 mg/ml, (d) 1.31 mg/ml, (e) 1.63 mg/ml, (f)	
	1.96 mg/ml	72
4.15	Precision results from flow injection - amperometric detection of tiopronin at	
	concentrations of : a, 0 μ g/mL; b, 0.98 μ g/mL; and c, 1.63 μ g/mL	
	(n = 10)	73

- 4.16 (A) Cyclic voltamograms for 1 mM homocysteine in 0.1 M phosphate buffer (pH 9) at (a) an as-deposited boron-doped thin film electrode (dotted line) and (b) an oxidized (anodized) boron-doped thin film electrode (solid line). (B) Cyclic voltamograms for 1 mM homocysteine in 0.05 M phosphate buffer (pH 2.7) at (a) an as-deposited boron-doped thin film electrode (dotted line) and (b) an oxidized boron-doped thin film electrode (solid line). 78
- 4.18 Cyclic voltammogram for 1 mM homocysteine in 0.1 M phosphate buffer (pH 2.7) at anodized boron-doped diamond electrode for a series of potential sweep rates; area of electrode, 0.07 cm². The calibration curve of relationship between current (μA) and (sweep rate)^{0.5} was also in the inset of this figure...... 80
- 4.19 (a) Hydrodynamic voltammograms at the anodized BDD electrode for 20 μL injections of homocysteine, homocystine, cysteine, cystine, methionine, reduced glutathione and oxidized glutathione (each 20 μM) in 2% acetonitrile-

at concentrations of : a, 5 μM; b, 1 μM; c, 0.5 μM;.....

84

4.22	High-performance liquid chromatographic-amperometric chromatograms of	
	aminothiols, in order of elution: 1, cystine; 2, cysteine; 3, homocysteine; 4,	
	reduced glutathione; 5, methionine; 6, homocystine; 7, oxidized glutathione.	
	The mobile phase was 1 mM OSA in 3% acetonitrile-0.05 M phosphate buffer	
	(pH 2.7)	85
4.23	High-performance liquid chromatographic-amperometric chromatograms of	
	aminothiols, in order of elution: 1, cystine; 2, cysteine; 3, homocysteine; 4,	
	reduced glutathione; 5, methionine+homocystine; 6, oxidized glutathione. The	
	mobile phase was 0.1 mM OSA in 3% acetonitrile-0.05 M phosphate buffer	
	(pH 2.7)	86
4.24	High-performance liquid chromatographic-amperometric chromatograms of	
	aminothiols, in order of elution: 1, cystine (1.95 min); 2, cysteine (2.53 min); 3,	
	homocysteine (4.59 min); 4, reduced glutathione (5.16 min); 5, methionine	
	(8.50 min); 6, homocystine (12.0 min); 7, oxidized glutathione (13.80 min). The	
	mobile phase was 0.2 mM OSA in 3% acetonitrile-0.05 M phosphate buffer	
	(pH 2.7). (A) 100 μM, (B) 20 μM and (C) 0.5 μM	87
4.25	The detection limit of homocysteine from HPLC /amperometric detection at	
	anodized boron-doped diamond thin film electrode compared to the mobile	
	phase	88
5.1	Electropherograms for a mixture containing 50 μ M hydrazine (a), 100 μ M 1,1	
	dimethylhydrazine (b), and 100 µM phenylhydrazine (c), obtained at	
	unmodified (A) and 5 % CoPc-modified (B) carbon paste electrodes.	
	Separation and injection voltages, + 1000 V; injection time, 3 s; detection	
	potential, +0.5 V (vs Ag/AgCl). Phosphate buffer (10 mM and pH 6.5) was	
	used as running buffer	102
5.2	Influence of pH value of 10 mM phosphate run buffer on the separation and	102
	detection for mixture at the 5 % CoPc-modified carbon paste capillary	
	electrodes. pH 6.2 (a), pH 6.5 (b), pH 6.8 (c), pH 7.3 (d), and pH 7.6 (e). Other	
	conditions, as in Figure 5.1	103

Effect of CoPc loading in carbon paste on the current response of 50 μM	
hydrazine (a) and 100 μ M phenylhydrazine (b). Other conditions, as in	
Figure 5.1	105
Hydrodynamic voltammograms for 50 μ M hydrazine (a) and 100 μ M	
phenylhydrazine at 5 % CoPc-modified carbon paste electrodes. Other	
conditions, as in Figure 5.1	106
Hydrodynamic voltammograms for 50 μ M hydrazine at unmodified (A) and 5	
% CoPc-modified (B) carbon paste electrodes. Other conditions, as in Figure	
5.1	107
(A) Electropherograms detailing the current response to increasing	
concentrations of hydrazine (a), and phenylhydrazine (b) in steps of 20 μ M and	
40 µM, respectively. (B) The resulting calibration plots. Other conditions were	
same as Figure 5.1	108
Schematic diagram of the 'total' (A) and 'individual '(B) on-chip assays of	
phenolic compounds. (a) Reservoir with 10 mM phosphate buffer (pH 5), (b)	
reservoir with 10 mM phosphate buffer (pH 8), (c) sample solution, (d)	
separation channel, (e) amperometric detector. Initial operation using the acidic	
buffer leads to rapid 'total' measurements (A) followed by switching to the	
basic buffer for separating and detecting 'individual' phenols	111
Influence of the pH of the buffer on the amperometric response for a mixture of	
(1) phenol (50 µM), (2) 2-chlorophenol (100 µM), (3) 2,3-dichlorophenol (200	
μM) and (4) 4-nitrophenol (200 μM). pH buffer: (a) 9.0 , (b) 8.0, (c) 7.0, (d)	
6.0 and (e) 5.0; buffer concentration 10 mM; separation voltage 1500 V;	
injection voltage 1500 V for 3 sec; detection potential +1.1 V vs. Ag/AgCl	
wire	113
Effect of the separation voltage on the flow-injection response for a mixture of	
phenol (50 μ M) and 2-chlorophenol (100 μ M). Separation voltages: (a) 4000,	
phenol (50 μ M) and 2-chlorophenol (100 μ M). Separation voltages: (a) 4000, (b) 3500, (c) 3000, (d) 2500, (e) 2000 and (f) 1500 V. pH buffer, 5.0. Other	
	hydrazine (a) and 100 μM phenylhydrazine (b). Other conditions, as in Figure 5.1

Influence of the switching time and the switching voltage upon the peak 5.10 resolution between (1) phenol (50 μ M) and (2) 2-chlorophenol (100 μ M). (A) Electropherograms recorded using switching voltage of 4000 V and a washing time of (a) 25, (b) 50, (c) 75, (d) 100, (e) 125 and (f) 150 sec. (B) Influence of the switching voltage; electropherograms recorded using a 150 sec washing time and switching voltages of (a) 1000, (b) 1500, (c) 2000, (d) 3000 and (e) 4000 V. Running buffer of pH, 8.0. Other conditions, same as Figure 5.8..... 115 Electropherograms depicting the precision of alternate 'total' (A, B, C) and 5.11 'individual' (D, E, F) assays using a mixture containing (a) 50 µM phenol and (b) 100 µM 2-chlorophenol. Separation voltage, 4000 (A, B, C) and 1500 V (D, E, F). Running buffer of pH 5 (A, B, C) and pH 8.0 (D, E, F). Other conditions, same as Figure 5.7.... 117 5.12 Cyclic voltammograms of 200 ppm RDX (A) and 300 ppm PETN (B) in 20 mM MES pH 4 (solid line) and 20 mM MES pH 4 (dash line), over the 0.0 and -1.0 V range. Scan rate, 50 mV/s..... 120 5.13 Separation and detection of Explosive compounds: (1) 10 ppm RDX, and (2) 200 ppm PETN. Separation buffer, 20 mM MES (pH 4) containing 25 mM SDS; separation and injection voltages, + 1500 V; injection time, 3 s; detection potential, -0.8 V (vs Ag/AgCl wire) at bare carbon screen-printed electrode. 121 5.14 Effect of pH of running buffer upon the separation and response of 10 ppm RDX (1) and 200 ppm PETN (2), (a) pH=8.0, (b) pH=7.0, (c) pH=6.0, and (d) pH=4.0. Separation buffer, 20 mM MES containing 25 mM SDS; separation and injection voltage, + 1500 V; injection time, 3 s; detection potential, - 0.8 V (vs Ag/AgCl wire) at bare carbon screen-printed electrode..... 122 5.15 Effect of electrolyte concentration based on the separation and response of 10 ppm RDX (1) and 200 ppm PETN (2), (a) 10 mM, (b) 20 mM, and (c) 30 mM. Separation buffer, 20 mM MES (pH 4) containing 25 mM SDS. Other conditions as same as Figure 5.14..... 123

5.16	Effect of SDS concentrations upon the separation and detection of 10 ppm	
	RDX (1) and 200 ppm PETN (2), (a) 10 mM, (b) 15 mM, (c) 20 mM, (d) 25	
	mM, and (e) 30 mM. Other conditions, as in Figure 5.14	124
5.17	Hydrodynamic voltammograms of 10 ppm RDX (●) and 200 ppm PETN (▲).	
		125
5.18	Electroprerograms for mixture containing increasing levels of (1) RDX, and (2)	
	PETN in steps of 2 and 25 ppm, respectively (a-e). The calibration was also	
		126
5.19	Repetitive simultaneous measurements of a mixture containing (1) 10 ppm	
	RDX, and (2) 200 ppm PETN as recorded with amperometric mode. Other	
		127
5.20	(A) Structure of the microfluidic chip system with on-line continuous monitoring	
	capability. The separation channel (a) was joined by a sharp sample inlet tip (b),	
	side sharp running-buffer inlet tip (c) and a detector compartment (d). The	
	sample was introduced by pumping from the reservoir with a peristaltic pump (P)	
	through the Tygon tubing (e) onto the separation channel through a sharp inlet tip	
	The sample solution was drained through a plastic tubing (g) that was placed 1	
	mm from the sample inlet tip. The running buffer was introduced by capillary	
	action through the plastic tubing (f). The detector compartment (d) was designed	
	to accommodated the platinum wire ground electrode (h), the screen-printed	
	carbon working electrode (i), platinum wire auxiliary electrode (k), and the Ag/	
	AgCl wire reference electrode (j). Two platinum wires (l_1, l_2) were inserted into	
	the plastic tubing (e, f), respectively, serving as contacts to the high voltage	
	power supply. (B) Steps involved in the new microchip assay: Plug patterns	
	during the (I) introduction of the running buffer into the channel; (II) sample	
	injection; (III) sample separation and detection 1	30

5.21	(A) Typical electropherograms showing the separation for an explosive mixture	
	[Left; TNB 10 (a), DNB 15 (b) and TNT 20 (c) ppm] and phenolic compounds	
	[Right; phenol 100 (a), 2-chlorophenol 100 (b) and 2,3-dichlorophenol 200 (c)].	
	Sampling time, 3s; running buffer (for explosives), 15 mM sodium borate	
	solution (pH 9.2) containing 15 mM SDS, and (for phenolic compounds),	
	borate/phosphate buffer (10 mM each, pH 8.0). Sample flow rate, 0.5 mL/min;	
	detection potential, -0.5 V (Left) and +0.9 V (Right) (vs. Ag/AgCl wire);	
	injection and separation voltages, 2000 V (Left) and 1500 V (Right). (B)	
	Electropherograms for repetitive introduced samples containing 10 ppm (a)	
	and 5 ppm (b) TBN (in connection to 2 sample reservoirs and a T connector).	
	Other conditions, as in Figure 5.21A (Left)	132
5.22	Effect of the sampling time upon the response for 10 ppm TNB. Sampling time	
	1, 2, 3, 5, 10, 15, and 20 s (a-g); running buffer, 15 mM sodium borate (pH 9.2)	
	Other conditions, as in Figure 5.20A (Left)	133
5.23	Influence of sample flow rate on the response for a 10 ppm TNB solution.	
	Flow rate, 0.2 (a), 0.5 (b), 0.9 (c), 1.3 (d), and 1.8 (e) mL/ min. Other conditions,	
	in Figure 5.21A (Left)	134
5.24	(A) Influence of the separation field strength upon the response of a 10 ppm	
	TNB solution. Running buffer, 15 mM sodium borate (pH 9.2). (B) Effect	
	of the sampling voltage on the response for 10 ppm TNB using a separation	
	voltage of 2000V. Other conditions, as in Figure 5.21A (Left)	135
5.25	Response for 40 repetitive injections of a 15 ppm TNB solution. Sampling	
	time, 2 s; running buffer, 15 mM sodium borate (pH 9.2); Top inset shows	
	the response for two such injections. Other conditions, as in Figure 5.20A	136
5.26	Electropherograms detailing the response to sample mixtures containing	
	increasing concentrations of explosives [A; TNB(a) and TNT(b) in 2 ppm	
	steps (I-VI)] and phenolic compounds [B; phenol (a), 2-chlorophenol (b) and	
	2,3-dichlorophenol (c) in steps of 25 μ M (a,b) and 50 μ M (c) steps (I-VI)].	
	Insets show the corresponding calibration plots. Other conditions, as in	
	Figure 5.21	137

xxii