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APPENDICES
Appendix A Calculation Method for Deprotonation Curve of Polyprotic Acid

In this calculation citric acid is the representative of the polyprotic acid which is

three steps depend upon the number of ionizable protons containing in the molecular

as shown below

H A < H, A+ H K, = &i‘gj]ﬂ (A1)

H,A” < HA* + H* = —[H[“sz_%ﬂ (A.2)

HA" < A" + H' K, = %{1{;—] (A.3)
Rearrange K,

% [H,A] : (A.4)

%4&4*] (A5)

From the equilibrium reaction indicating the several deprotonation steps of

acid, the concentration of each deprotonated species can be expressed as

K,lH,A]

oS A4

[H A7) == (A4)
2- KaIKul[H:!A]

[ ] [H+]2

[47]= KoK K, [H;A4] (A.8)

[(H']
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The total citric acid concentration is the summation of all citric acid species
Cooa =[HyA)+ [HyA" ]+ [HA™ ]+[4™] (A.9)

This, in turn, means that there are four a terms, o througha;, corresponding to

the fractions of HA, ..., A* respectively

L]

1
o R haky KA (A.10)
] [H']

K

o = [HT] a, A1)
K, K,

%= THp (A12)
Ka Kﬂ a.

= fmz]lf “% (A.13)

for the general fraction of polyprotic acid
%™ K"]K”Ki’ """ = P (A.14)
[H']"

Equation A.10 Through A.14 may be used to construct the dissociation and
composition-pH diagram for a polyprotic acid. The dissociation constants for this
acid are not greatly different. With the result that in the intermediate pH region there
is not a single dominant species. In fact, neither H,A™ nor HA? exceed 80% of the
total concentration at any point, and there is a significant pH range over which both

these species co-exit in reasonable concentration.



Appendix B Order of Magnitude Mass Transfer Calculation

B.1. External Mass Transport

As verification of the mass transfer limitation of amalcime dissolution, order
of magnitude calculation may be perform to estimate the mass transfer rate in
;oluﬁon, which can then be compared to the measured dissolution rate. If the mass
transfer of H' to an analcime particle is limiting, then the molar flux,

NH+ =k ([H" 1 pun _[H+].S'ndbce.= k[ g (B.1)

Where k; is the mass transfer coefficient, which may be conservatively

estimated by

o ShD
D

r

(B.2)

The Sherwood number for flow around spherical particles dispersed in a

batch reactor is estimated form
Sh=2+0.6Re" Sc** (B.3)

The smallest Sherwood number (Sh=2), the limiting case, yields the
smallest mass transfer coefficient, k., which constrains the mass transfer rate to the
minimum value for mass transfer limitations to exist. Therefore, the molar flux, of
mass transfer rate, of H' to the external surface of analcime particle can be expressed

as

" 2D
NH' = kt[H ].r‘iu!k =E[H+]Hm"k (84)

!

In aqueous systems, the diffusivity of a small molecule is on the order of 10

*t0 10® cm%/s. The mean particle size, Dy, for the polydisperse system of dissolving
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analcime particles can be measured using particle site distribution analyzer from
Hartman (2005) works. The calculates mass transfer coefficient and corresponding
mass transfer rate are shown in table B. 1 for analcime at 25 °C which exhibited the
highest measured dissolution rate.

The stoichiometric coefficient, 4, can be used to compare the measured the
dissolution rate to the mass transfer rate. The dissolution rate expressed in term of

moles H" reacted per surface of analcime exposed per unit time is estimated by
r‘;* =n(ry,) (B.5)

The dissolution rate is conservative estimated by assuming that only
external analcime surfaces are accessible to H' attack, which results in the highest
calculated values for comparison with the mass transfer rate, One readily observed in
table C.1 that in all case the mass transfer rate was at least 2 orders of magnitude
greater than the observed dissolution rate, demonstrating conclusively that analcime

dissolution is reaction rate limited.
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Table B.1 External mass transfer rate compared to measured dissolution rates

Conc. Dp . ke Nu+ M
(mol/dm® (uM) (cm/min) | (mol/cm*min) | (mol/cm*min)
0.10 20.6 0.058 5.90E-06 8.14E-08
0.25 20.6 0.058 1.46E-05 1.60E-07
0.50 20.6 0.058 2.92E-05 3.15E-07
1.00 20.6 0.058 5.84E-05 5.53E-07
2.00 20.6 0.058 1.17E-04 7.34E-07
4.00 20.6 0.058 2.33E-04 8.83E-07
6.00 20.6 0.058 3.50E-04 9.43E-07
8.00 20.6 0.058 4.66E-04 1.03E-06

External surface for calculation equal to 0.68 m*/g (Hartman et, al 2005)
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B.2 Internal Mass Transport

The Weisz-Prater Criterion uses measured values of the rate reaction, ra’
(obs) to determine if internal diffusion 1s limiting the reaction. From Internal
effectiveness factor for a first-order in a spherical catalyst pellet,

n4 =3(¢,cothg, 1) (B.6)
The left-hand side is the Weisz-Prater parameter.

Cyp = ’??5:2 (B.7)

_ observed (actual) reaction rate , reaction rate evaluated at C ,,

reaction rate evaluated at C a diffusion rate
_ actual reaction rate
a diffusion rate
Substituting for
e o QG RZ 2 94 RZ
n= T4 (ObS) and ¢|2 = rAJSapc . FasPe (‘BS)
_rA.\' 'D € CA;' De CA.V

From previous equation we have

e o 2
Cye = ’*(‘?"S){ ;;%R] (B.9)
‘—rA.\‘ e Ax
—r,(obs)p.R*
Cyp =t =2 OPL (8.10)
e Ax

All the term are either measures or .known. Consequently, we can calculate Cyp.If

Cyp <<1 There are no diffusion limitations and consequently no concentration
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gradient exists within the pellet. If C,, >>1 internal diffusion limits the reaction

severely.

Table B.2 Dissolution rate of analcime at the different size of particle at 25 °C

Conc. | Pellet Radious 1.19 mm " Pellet radious 38*10” mm Cwr
(M) Si . Al Si Al 5 Si Al
(mmoV/g/min) | (mmol/g.min) | (mmol/gmin) | (mmol/g.min)
0.25 0.0126 0.0066 0.5039 0.2733 9.17E-04 | 9.16E-04
1 0.062 0.0275 1.7864 0.9403 9.22E-04 | 9.19E-04
2 0.104 0.0546 2.0572 1.2483 9.30E-04 | 9.27E-04
4 0.166 0.0866 2.6172 1.5004 9.37E-04 | 9.34E-04

**Data form Wattanaparadorn (2002)

Form The Weisz-Prater Criterion

: 2
M=n¢3=3(¢lcoth¢,-l) (B.11)
D gCA.!
Letting the subscripts 1 and 2 refer to run 1 and 2, we apply this to run 1 and 2 and
then take the ratio to obtain

“"ézR; _ $ycothg,, —1
“’AIRIZ ¢, cothg, —1

(B.12)

The terms pc, De and Cas cancel because the runs were carried out under identical

conditions. The Thiele modulus is

,_,;Jp
=R £ B.13
¢! Dr.'c.dx ( )

taking the ratio of the Thiele modulus for aluminum at the concentration of 0.25 M
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R 1.19*107m
=2 P =g, Pn=3131584, (B.14)
2

Substituting for ¢; in the equation B.12 and evaluating —rs and R give us

L]

[0.2733){ 38*10°¢ T - 4,,cothg, 1
0.0066) \1.19%107) ~ 31.31584,coth(31.3158)¢, —1

0.0422 = #ipcothg, -1
31.31584, coth(31.3158)g, -1

(B.15)

We have one equation and one unknown. By solving this equation, we find that

¢, =0.0303 for R, =38*10°m
¢, =0.9489 for R, =1.19*107 m

The corresponding effectiveness factor are

. = @z coth; =1) _ 3(0.0303coth0.0303 -1

=0.9999
: o (0.0303)*

next we find the Weisz-Prater parameter.
Cyp = nd =0.9999*(0.0303)* =9.16*10™
The Weisz-Prater parameter were calculated and shown in table B.2. One observed

form the table is The Weisz-Prater parameter are much less than 1 in all cases so I

can say that my systems are in reaction-limited regimes.



Appendix C Experimental Data

1 Analcime Composition Analyzed.

Table C.1 Analcime Composition Analyzed by AAS

Sample No. mol% Molar Ratio

Al Si [Na| Al | Si | Na
1 28.07 | 63.00 [ 8.94 | 1.00 | 224 | 0.32
2 28.19 | 62.06 | 9.76 | 1.00 | 2.20 | 0.35
3 28.16 | 62.19 [ 9.66 | 1.00 | 221 | 034
4 2726 | 63.58 [ 9.17 | 1.00 | 233 | 0.34
Avg 2792 [62.70 [ 9.38 | 1.00 | 225 | 0.34
Std. 0.44 | 072 [039 [ 0.00 | 0.06 | 0.01

B
.- “m .

0 5 P -

i B, O e P B W PR A B ey

AR A Aa da oo 2
y

Figure C.1 Analcime composition analyzed by EDX
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2. Analcime Dissolution Rate in Citric Acid

Table C.2 Analcime Dissolution Rate in Citric Acid at 5 °C

59

Citric acid -Isi =rAl =TS/ ~TAl
concentration (mmollg.m‘in) (mmol/g.min)
{mol/L)
0.25 0.1247 0.0825 1.5111
0.75 0.1877 0.1268 1.4802
1.50 0.2646 0.1652 1.6015
3.00 0.2820 0.1776 1.5883
Table C.3 Analcime Dissolution Rate in 0.5 M HCI/Citric acid at 25 °C
Citric acid -I's; =r'al =Ysi/ =FAl
Concentration (mmol/g.min) (mmol/g.min)
(mol/L)
0.00 1.0203 0.5353 1.9060
0.10 1.1438 - 0.6023 1.8991
0.25 1.2657 0.7050 1.7952
0.50 1.4601 0.8606 1.6966
0.75 1.5208 0.8631 1.7619
1.50 1.7870 1.0097 1.7698
3.00 1.8388 1.0754 1.7099
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