CHAPTER II

HISTORICAL

Meliaceae contains a wide range of chemical compounds. Some of these compounds, such as the triterpenoids, are biosynthesized from the mevalonate pathway. Other compounds are biosynthesized from the shikimate pathyway, i.e. flavonoids, coumarins, lignans and flavaglines.

The only information on alkaloid content in genus Chisocheton was reported by Tzouros in which two spermidine alkaloids, Chisitine 1 [1.1] and Chisitine 2 [1.2], were isolated from the leaves of C. weinlandii.

Reviews of the triterpenoid constituents of Chisocheton species, dammaranetype, aromadendrane-type sesquiterpenes and together with a review of flavagline derivatives, are present herein.

Chemical constituents of Chisocheton spp.

Chemical investigations of a number of Chisocheton spp. have shown them to be a good source of triterpenoids. The literature reviews of triterpenoids from C. paniculatus, C. microcarpus and C. macrophyllus are summarized in Table 2.

Table 2 The distribution of triterpenoids in Chisocheton spp.

Compounds	Source	Part	References
Apo-tirucallol triterpenes Compound A [1.3]	Chisocheton paniculatus	Wood	Connolly et al., 1979

Table 2 The distribution of triterpenoids in Chisocheton spp. (continued)

Compounds	Source	Part	References
Compound B [1.4]	C. paniculatus	Wood	Connolly et al., 1979
Compound C [1.5]	C. paniculatus	Wood	Connolly et al., 1979
Compound D [1.6]	C. paniculatus	Wood	Connolly et al., 1979
Paniculatin B [1.7]	C. paniculatus	Root wood	$\begin{aligned} & \text { Yadav } \text { et al., 1999a, } \\ & \text { 1999b } \end{aligned}$
Paniculatin C [1.8]	C. paniculatus	Root wood	$\begin{aligned} & \text { Yadav } \text { et al., 1999a, } \\ & \text { 1999b } \end{aligned}$
Paniculatin D [1.9]	C. paniculatus	Root wood	$\begin{aligned} & \text { Yadav } \text { et al., 1999a, } \\ & \text { 1999b } \end{aligned}$
Tirucallane triterpenes Arunachalin [1.10]	C. paniculatus	Root wood	Yadav et al., 1999a, 1999b, 1999c
Tetranortriterpenoids 6 α-Acetoxyazadirone (Paniculatin) [1.11]	C. paniculatus	Fruits	Saikia et al., 1978; Bhattacharyya et al., 2004
	C. paniculatus	Seeds	Chatterjee et al., 1989
	C. paniculatus	Root wood	Yadav et al., 1999a
6 α-Acetoxyepoxy azadirone [1.12]	C. paniculatus	Seeds	Chatterjee et al., 1989
6 α-Acetoxygedunin [1.13]	C. paniculatus	Seeds	Connolly et al., 1979; Chatterjee et al., 1989
6 α-Acetoxynimbinin [1.14]	C. paniculatus	Seeds	Connolly et al., 1979
6 α-Acetoxy-16oxoazadirone [1.15]	C. paniculatus	Fruits	Saikia et al., 1978

Table 2 The distribution of triterpenoids in Chisocheton spp. (continued)

Compounds	Source	Part	References
$5 \alpha, 7 \alpha, 13 \alpha, 17 \alpha-7-$ Acetyloxy-21,23- γ - lactone-4,4,8-trimethyl- 24-norchola-1,14,20,22- tetraene-5-one [1.16]	C. microcarpus	Leaves	Gunning et al., 1994
Compound E [1.17]	C. paniculatus	Seeds	Connolly et al., 1979
Compound F [1.18]	C. paniculatus	Seeds	Connolly et al., 1979
Compound G [1.19]	C. paniculatus	Seeds	Connolly et al., 1979
$5 \alpha, 7 \alpha, 13 \alpha, 17 \alpha-7-$ Deacetyloxy-21,23- γ - lactone-4,4,8-trimethyl- 24-norchola-1,14,20,22- tetraene-5-one [1.20]	C. microcarpus	Leaves	Gunning et al., 1994
$\text { 1,2-Dihydro-6 } \alpha-$ acetoxyazadirone [1.21]	C. paniculatus	Fruits	Bordoloi et al., 1993
6 $\alpha, 7 \alpha$-Dihydroxymeliaca-1,14,20,22-tetraene-3,14dione [1.22]	C. paniculatus	Fruits	Saikia et al., 1978
Gedunin [1.23]	C. paniculaius	Seeds	Connolly et al., 1979
17 β-Hydroxy- 6α -	1-C. paniculatus	Seeds	Connolly et al., 1979
acetoxyazadiradione [1.24]	C. paniculatus	Seeds	Chatterjee et al., 1989
$17 \beta \text {-Hydroxy- } 6 \alpha-$ acetoxynimbinin [1.25]	C. paniculatus	Seeds	Connolly et al., 1979
Vilasinin 1,3-diacetate [1.26]	C. paniculatus	Wood	Connolly et al., 1979
Oleanane triterpenes Moronic acid [1.27]	C. macrophyllus	Leaves	Inada et al., 1993
Lupane triterpenes Betulonic acid [1.28]	C. macrophyllus	Leaves	Inada et al., 1993

Table 2 The distribution of triterpenoids in Chisocheton spp. (continued)

Compounds	Source	Part	References
Dammarane triterpenes 24-Hydroxydammara- 20,25-dien-3-one [1.29]	C. macrophyllus	Leaves	Inada et al., 1993

Compound $\mathrm{A}[1.3]: \mathrm{R}_{1}=0, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{Ac}$
Compound D [1.6]: $\mathrm{R}_{1}=\mathrm{H}, \alpha-\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{Ac}$
Paniculatin B [1.7]: $\mathrm{R}_{1}=\mathrm{H}, \alpha-\mathrm{OH}, \mathrm{R}_{2}=\mathrm{Ac}, \mathrm{R}_{3}=\mathrm{H}$

Compound $\mathrm{B}[1.4]: \mathrm{R}_{1}=\mathrm{H}, \alpha-\mathrm{OAc}, \mathrm{R}_{2}=\mathrm{H}$
Paniculatin D [1.9] : $\mathrm{R}_{1}=\mathrm{H}, \alpha-\mathrm{OH}, \mathrm{R}_{2}=\mathrm{Ac}$

Compound C [1.5] : $\mathrm{R}_{1}=\mathrm{H}, \alpha-\mathrm{OAc}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{OH}$
Paniculatin C [1.8] : $\mathrm{R}_{1}=\mathrm{H}, \alpha-\mathrm{OH}, \mathrm{R}_{2}=\mathrm{Ac}, \mathrm{R}_{3}=\mathrm{OH}$
Figure 3. Chemical structures of triterpenoids found in Chisocheton spp.

Arunachalin [1.10]

6 α-Acetoxyazadirone (Paniculatin) [1.11]

$$
\begin{aligned}
& : \mathrm{R}_{1}=\mathrm{OAc}, \mathrm{R}_{2}=\mathrm{OAc}, \mathrm{R}_{3}=\mathrm{H}_{2}, \mathrm{R}_{4}=\mathrm{H} \\
& : \mathrm{R}_{1}=\mathrm{OAc}, \mathrm{R}_{2}=\mathrm{OAc}, \mathrm{R}_{3}=\mathrm{O}, \mathrm{R}_{4}=\mathrm{H}
\end{aligned}
$$

6α-Acetoxy-16-oxoazadirone [1.15] $6 \alpha, 7 \alpha$-Dihydroxymeliaca-1,14,20,22-tetraene-3,14-dione [1.22]
$: \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{O}, \mathrm{R}_{4}=\mathrm{H}$
17β-Hydroxy- 6α-acetoxyazadiradione [1.24] : $\mathrm{R}_{1}=\mathrm{OAc}, \mathrm{R}_{2}=\mathrm{OAc}, \mathrm{R}_{3}=\mathrm{O}, \mathrm{R}_{4}=\mathrm{OH}$

6 α-Acetoxyepoxyazadirone [1.12]

6 α-Acetoxygedunin [1.13] : $\mathrm{R}_{1}=\mathrm{OAc}$
Gedunin [1.23]

$$
: \mathrm{R}_{1}=\mathrm{H}
$$

Figure 3. Chemical structures of triterpenoids found in Chisocheton spp. (continued)

6 α-Acetoxynimbinin [1.14] : $\mathrm{R}=\mathrm{H}$
17β-Hydroxy- 6α-acetoxynimbinin [1.25] : $\mathrm{R}=\mathrm{OH}$

$5 \alpha, 7 \alpha, 13 \alpha, 17 \alpha-7$-Acetyloxy-21,23- γ-lactone-4,4,8-trimethyl-24-norchola-1,14,20,22-tetraene-5-one [1.16]

$$
: \mathrm{R}=\mathrm{Ac}
$$

5 $\alpha, 7 \alpha, 13 \alpha, 17 \alpha$-7-Deacetyloxy-21,23- γ-lactone-4,4,8-trimethyl-24-norchola-$1,14,20,22$-tetraene-5-one [1.20] $\quad: \mathrm{R}=\mathrm{H}$

Compound G [1.19] : $\mathrm{R}=$ вон $^{\text {он }}$
Figure 3. Chemical structures of triterpenoids found in Chisocheton spp. (continued)

1,2-Dihydro-6 α-acetoxyazadirone [1.21]

Vilasinin 1,3-diacetate [1.26]

Betulonic acid [1.28]

24-Hydroxydammara-20,25-dien-3-one [1.29]

Figure 3. Chemical structures of triterpenoids found in Chisocheton spp. (continued)

Dammarane - type triterpenoid compounds

Dammarane-type triterpenoid compounds are found in almost every plant family, including Meliaceae. They represent tetracyclic triterpenes as shown below.

The distribution of dammarane-type triterpenes in the Meliaceae is summarized in Table 3 and their chemical structures are shown in Figure 4.

Table 3. Distribution of dammarane-type triterpenoids in the Meliaceae.

Compounds	Source	Part	References
$23(24 \rightarrow 25)$ Abeo- 20R,24-dihydroxy dammaran-3-one [2.1]	Dysoxylum cauliflorum	Fruits	Huang et al., 1999
Aglaiol [2.2]	Aglaia odorata	Leaves	Shiengthong et al., 1965
	Cabralea polytricha	Fruits	Cascon and Brown, 1972
Aglaiondiol [2.3]	Aglaia odorata	Leaves	Shiengthong et al., 1974
Aglaitriol (24R) [2.4]	Aglaia odorata	Leaves	Shiengthong et al., 1974
Aglaitriol (24S) [2.5]	Aglaia odorata	Leaves	Shiengthong et al., 1974

Table 3. Distribution of dammarane-type triterpenoids in the Meliaceae. (continued)

Compounds	Source	Part	References
Aglinin A [2.6]	Aglaia lawii	Leaves	Mohamad et al., 1999
	Amoora yunnanensis	Bark	Luo et al., 2000
Aglinin B [2.7]	Aglaia lawii	Leaves	Mohamad et al., 1999
Aglinin C [2.8]	Aglaia tomentosa	Leaves	Mohamad et al., 1999
Aglinin D [2.9]	Aglaia tomentosa	Leaves	Mohamad et al., 1999
Cabraleadiol [2.10]	Aglaia crassinervia	Bark	Su et al., 2006
	Aglaia lawii	Stem bark	Qiu et al., 2001
	Aglaia tomentosa	Leaves	Mohamad et al., 1999
	Amoora cucullata	Stem bark	Haque et al., 1995
	Amoora yunnanensis	Leaves	Luo et al., 2000
	Cabralea eichleriana	Wood	Rao et al., 1975
	C. polytricha	Fruits	Cascon and Brown, 1972
	Dysoxylum malabaricum	Stem bark	Hisham et al., 1996
Cabraleadiol 3-acetate[2.11]	Aglaia lawii	Stem bark	Qiu et al., 2001
	Aglaia tomentosa	Leaves	Mohamad et al., 1999
	Cabralea eichteriana	Wood	Rao et al., 1975
	C. polytricha	Fruits	Cascon and Brown, 1972
$\begin{aligned} & \text { Cabraleahydroxylactone } \\ & {[2.12]} \end{aligned}$	Aglaia crassinervia	Bark	Su et al., 2006
	Cabralea eichleriana	Wood	Rao et al., 1975
	C. polytricha	Fruits	Cascon and Brown, 1972
	Amoora yunnanensis	Bark	Luo et al., 2000
Cabralealactone [2.13]	Aglaia leucophylla	Stem bark	Benosman et al., 1994
	Aglaia tomentosa	Leaves	Mohamad et al., 1999
	Cabralea eichleriana	Wood	Rao et al., 1975
	C. polytricha	Fruits	Cascon and Brown, 1972

Table 3. Distribution of dammarane-type triterpenoids in the Meliaceae. (continued)

Compounds	Source	Part	References
Cabralealactone [2.13]	Amoora cucullata	Stem bark	Haque et al., 1996
	Dysoxylum cauliflorum	Fruits	Huang et al., 1999
Cabralealactone 3acetate [2.14]	Aglaia tomentosa	Leaves	Mohamad et al., 1999
Cabraleone [2.15]	Aglaia lawii	Leaves	Mohamad et al., 1999
	Aglaia tomentosa	Bark	Mohamad et al., 1999
	Aglaia leucophylla	Stem bark	Benosman et al., 1994
	Aglaia silvestris	Fruits	Hwang et al., 2004
	Aglaia rubiginosa	Leaves	Rivero-Cruz et al., 2004
	Amoora yunnanensis	Bark	Luo et al., 2000
	Amoora cucullata	Stem bark	Haque et al., 1995
	Cabralea eichleriana	Wood	Rao et al., 1975
	C. polytricha	Fruits	Cascon and Brown, 1972
	Dysoxylum richii	Fruits	Aalbersberg and Singh, 1991
	D. muellerii	Wood	Mulholland and Naidoo, 2000
20S,23R,24R-23-Chloro- 20,24-epoxy- dammarane-3 $\alpha, 24,25$ - triol 3-acetate [2.16]	$\begin{array}{\|l\|} \hline \text { Amoora } \\ \text { yunnanensis } \end{array}$	Bark	Luo et al., 2000
$\begin{aligned} & \text { 5 } \alpha \text {-Dammar-20-ene-3 } \beta \text { - } \\ & \text { 24,25-triol [2.17] } \end{aligned}$	Aglaia odorata	Leaves	Boar and Damps, 1977
Dammarenolic acid [2.18]	Cabralea eichleriana	Wood	Rao et al., 1975
	Aglaia rubiginosa	Leaves	Rivero-Cruz et al., 2004

Table 3. Distribution of dammarane-type triterpenoids in the Meliaceae. (continued)

Compounds	Source	Part	References
11 $\alpha, 20 \xi-$ Dihydroxydammar-24- ene-3-one [2.19]	Astrotrichilia asterotricha	Wood and bark	Mulholland et al., 1994
24,25-Dihydroxy-dammar-20-en-3-one [2.20]	Aglaia odorata	Leaves	Boar and Damps, 1977
	Amoora yunnanensis	Bark	Luo et al., 2000
$\begin{aligned} & \hline(20 S, 23 E)-20,25- \\ & \text { Dihydroxy-3,4- } \\ & \text { secodammara-4(28),23- } \\ & \text { dienoic acid }[\mathbf{2 . 2 1]} \end{aligned}$	Aglaia rubiginosa	Leaves	Rivero-Cruz et al., 2004
(20S,23E)-20,25- Dihydroxy-3,4- secodammara-4(28),23- dienoic acid methyl ester [2.22]	Aglaia rubiginosa	Leaves	Rivero-Cruz et al., 2004
Dymalol [2.23]	Dysoxylum malaaricum	Leaves	Govindachari et al., 1994
Eichlerialactone [2.24]	Amoora yunnanensis	Bark	Luo et al., 2000
	Cabralea canjerana	Branches	De Campos Braga et al., 2006
	C. eichleriana	Wood	Rao et al., 1975
	Dysoxylum cauliflorum	Fruits	Huang et al., 1999
	D. richii	Leaves	Singh and Aalbersberg, 1992
Eichlerianic acid [2.25]	Aglaia lawii	Leaves	Mohamad et al., 1999
	Aglaia leucophylla	Stem bark	Benosman et al., 1994
	Aglaiu. elliptica	Stem	Cui et al., 1997
	Dysoxylum richii	Fruits	Aalbersberg and Singh, 1991

Table 3. Distribution of dammarane-type triterpenoids in the Meliaceae. (continued)

Compounds	Source	Part	References
Eichlerianic acid [2.25]	Cabralea canjerana	Stem and branches	De Campos Braga et $\text { al., } 2006$
	C. eichleriana	Wood	Rao et al., 1975
3-Epi-Cabraleahydroxy lactone [2.26]	Aglaia crassinervia	Bark	Su et al., 2006
3-Epi-ocotillol [2.27]	Aglaia lawii	Leaves	Mohamad et al., 1999
	Aglaia foveolata	Bark	Roux et al., 1998
	Aglaia crassinervia	Bark	Su et al., 2006
$24 \xi, 25-\text { Ероху-5 } \alpha-$ dammar-20-en-3-one $[2.28]$	Aglaia odorata	Leaves	Boar and Damps, 1977
20S,24-Epoxy-24,25- dihydroxydammar-3-one [2.29]	Amoora yunnanensis	Bark	Luo et al., 2000
$\begin{aligned} & \text { 20S,24S-Epoxy-7 } \beta, 25 \text { - } \\ & \text { dihydroxy-3,4- } \\ & \text { secodammar-4(28)-en-3- } \\ & \text { oic acid }[2.30] \end{aligned}$	Cabralea canjerana	Stem	$\begin{aligned} & \text { De Campos Braga et } \\ & \text { al., } 2006 \end{aligned}$
20S,24S-Epoxy-4-hydroxy-3,4-seco-dammar-25(26)-en-3-oic acid [2.31]	Dysoxylum richii	Leaves	Singh and Aalbersberg, 1992
20S,24S-Epoxy-25- hydroxydammaran-3-one [2.32]	Aglaia elaeagnoidea	Bark	Fuzzati et al., 1996
20S,24S-Epoxy-25-hydroxymethyldammaran- 3-one [2.33]	Aglaia elaeagnoidea	Bark	Fuzzati et al., 1996

Table 3. Distribution of dammarane-type triterpenoids in the Meliaceae. (continued)

Compounds	Source	Part	References
20S,24S-Epoxy- $7 \beta, 15 \alpha, 25$-trihydroxy- 3,4-secodammar-4(28)- en-3-oic acid [2.34]	Cabralea canjerana	Stem	De Campos Braga et al., 2006
20S,24S-Epoxy- $7 \beta, 22 \xi, 25$-trihydroxy- 3,4-secodammar-4(28)- en-3-oic acid [2.35]	C. canjerana	Stem	De Campos Braga et $\text { al., } 2006$
20S,24-Ероху-25,26,27-trisnor-24-oxo-3,4-seco-4(28)-dammaren-3-oic acid [2.36]	Amoora yunnanensis	Bark	Luo et al., 2000
	Dysoxylum richii	Leaves	Singh and Aalbersberg, 1992
Ethyl eichlerianoate $[2.37]$	D. cauliflorum	Stem bark	Benosman et al., 2000
Foveolin A [2.38]	Aglaia lawii	Leaves	Mohamad et al., 1999
	Aglaia foveolata	, Bark	Roux et al., 1998
Foveolin B [2.39]	Aglaia foveolata	Bark	Roux et al., 1998
Methyl richenoate [2.40]	Dysoxylum richii	Fruits	Aalbersberg et al., 1991
Ocotillol [2.41]	Aglaia leucophylla	Stem bark	Benosman et al., 1994
	Aglaia elliptica	Stem	Cui et al., 1997
	Cabralea polytricha	Fruits	Cascon and Brown, 1972
	Dysoxylum cauliflorum	Fruits	Huang et al., 1999
Ocotillone [2.42]	Aglaia leucophylla	Stem bark	Benosman et al., 1994
	Aglaia silvestris	Fruits	Hwang et al., 2004
	Aglaia rubiginosa	Leaves	Rivero-Cruz et al., 2004

Table 3. Distribution of dammarane-type triterpenoids in the Meliaceae. (continued)

Compounds	Source	Part	References
Ocotillone [2.42]	Amoora yunnanensis	Bark	Luo et al., 2000
	Cabralea canjerana	Stem and branches	Braga et al., 2006
	C. eichleriana	Wood	Rao et al., 1975
	Dysoxylum malaaricum	Leaves	Govindachari et al., 1994
	D. richii	Fruits	Aalbersberg and Singh, 1991
	D. cauliflorum	Fruits	Huang et al., 1999
Richenoic acid [2.43]	Dysoxylum richii	Fruits	Aalbersberg and Singh, 1991
Richenol [2.44]	Dysoxylum richii	Fruits	Aalbersberg and Singh, 1991
Richenone [2.45]	D. richii	Fruits	Aalbersberg and Singh, 1991
	D. muellerii	Wood	Mulholland and Naidoo, 2000
Shoreic acid [2.46]	Aglaia lawii	Leaves	Mohamad et al., 1999
	Aglaia elliptica	h Stem	Cui et al., 1997
	Aglaia rubiginosa	Leaves	$\begin{aligned} & \text { Rivero-Cruz et al., } \\ & 2004 \end{aligned}$
	Amoora yunnanensis	Bark	Luo et al., 2000
	Cabralea canjerana	Stem and branches	De Campos Braga et al., 2006
	C. eichleriana	Wood	Rao et al., 1975
	Dysoxylum malabaricum	Leaves	Govindachari et al., 1994
	D. richii	Fruits	Aalbersberg and Singh, 1991

Table 3. Distribution of dammarane-type triterpenoids in the Meliaceae. (continued)

Compounds	Source	Part	References
Shoreic acid [2.46]	D. cauliflorum	Fruits	Huang et al., 1999
$3 \alpha, 11 \alpha, 20 \xi$-Trihydroxy dammar-24-ene [2.47]	Aglaia asterotricha	Wood and	Mulholland et al., 1994

$$
\begin{array}{llll}
\mathrm{R}_{1} & \mathrm{R}_{2} & \mathrm{R}_{3} & \mathrm{R}_{4}
\end{array}
$$

Aglinin C [2.8]	$\beta-\mathrm{H}$	$\alpha-\mathrm{OH}$	OH	H
Aglinin D [2.9]		$=0$	OH	H
Cabraleadiol [2.10]			H	$\beta-\mathrm{H}$
Cabraleadiol 3-acetate [2.11]	$\beta-\mathrm{H}$	$\alpha-\mathrm{OAc}$	$\beta-\mathrm{H}$	H
Cabraleone [2.15]		$=0$	$\beta-\mathrm{H}$	H
20S,23R,24R-23-Chloro-	$\beta-\mathrm{H}$	$\alpha-\mathrm{OAc}$	$\alpha-\mathrm{OH}$	$\beta-\mathrm{Cl}$

20,24-epoxy-dammarane-

$3 \alpha, 24,25$-triol 3-acetate [2.16]
3-Epi-ocotillol [2.27] $\quad \beta$-H $\quad \alpha-\mathrm{OH} \quad \beta$-H $\quad \mathrm{H}$
20S,24-Epoxy-24,25- $\quad=\mathrm{O} \quad \mathrm{OH} \quad \mathrm{H}$
dihydroxydammar-3-one [2.29]
20S,24S-Epoxy-25-hydroxy- $\quad=0 \quad \alpha$-H H
dammaran-3-one [2.32]
20S,24S-Epoxy-25-hydroxy- $\quad=\mathrm{O} \quad \alpha-\mathrm{H} \quad \mathrm{H}$
methyldammaran-3-one [2.33]
$\begin{array}{lcccc}\text { Ocotillol [2.41] } & \alpha-\mathrm{H} & \beta-\mathrm{OH} & \beta-\mathrm{H} & \mathrm{H} \\ \text { Ocotillone [2.42] } & =\mathrm{O} & \beta-\mathrm{H} & \mathrm{H}\end{array}$
$20 S, 23 R, 24 S$-23-Chloro-20,24 β-H $\quad \alpha$-OAc $\quad \beta$-OH $\quad \beta$-Cl
-epoxy-dammarane-3 $\alpha, 24,25-$
triol 3-acetate [2.36]

Figure 4. Chemical structures of dammarane - type triterpenoids in the Meliaceae

$\begin{array}{ll}\text { Cabraleahydroxylactone [2.12] } & : \mathrm{R}_{1}, \mathrm{R}_{2}=\mathrm{H}, \alpha-\mathrm{OH} \\ \text { Cabralealactone [2.13] } & : \mathrm{R}_{1}, \mathrm{R}_{2}==\mathrm{O} \\ \text { Cabralealactone 3-acetate [2.14] } & : \mathrm{R}_{1}, \mathrm{R}_{2}=\mathrm{H}, \alpha-\mathrm{OAc} \\ \text { 3-Epi-cabraleahydroxylactone [2.26] } & : \mathrm{R}_{1}, \mathrm{R}_{2}=\mathrm{H}, \beta-\mathrm{OH}\end{array}$

Eichlerialactone [2.24]

Figure 4. Chemical structures of dammarane - type triterpenoids in the Meliaceae (continued)

$\begin{array}{lllll}\mathrm{R}_{1} & \mathrm{R}_{2} & \mathrm{R}_{3} & \mathrm{R}_{4} & \mathrm{R}_{5}\end{array}$

Aglinin A [2.6]	H			H	H
Eichlerianic acid, $24 S$ [2.25]		H	H	H	H
$20 S, 24 S$-Epoxy-7 $\beta, 25$-dihydroxy		α -		β-OH	H
3,4-secodammar-4(28)-en-					
acid [2.30]					
$20 S, 24 S$-Epoxy-7 $\beta, 15 \alpha, 25-$			α-O	$\beta-\mathrm{OH}$	H
trihydroxy-3,4-secodammar-					
4(28)-en-3-oic acid [2.34]					
20S,24S-Epoxy-7 $\beta, 22 \xi, 25-$			H	$\beta-\mathrm{OH}$	OH
trihydroxy-3,4-secodammar-					
4(28)-en-3-oic acid [2.35]					
Ethyl eichlerianoate, 24S [2.37]	CH_{2}		H	H	H
Shoreic acid, 24R [2.46]	H	H	H	H	H

Figure 4. Chemical structures of dammarane - type triterpenoids in the Meliaceae (continued)

Aglinin B [2.7]
$: \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH}$
Dymalol, $24 S$ [2.23]
Foveolin A, 24S [2.38] $: \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{H}$
Foveolin B, $24 R[2.39]$
$: \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{H}$

Richenol [2.44]
Richenone [2.45]
$: \mathrm{R}_{1}, \mathrm{R}_{2}=\mathrm{H}, \beta-\mathrm{OH}$
$: \mathrm{R}_{1}, \mathrm{R}_{2}==0$

Figure 4. Chemical structures of dammarane - type triterpenoids in the Meliaceae (continued)

Aglaiol [2.2]

5α-Dammar-20-ene-3 β-24,25-triol [2.17]
24,25-Dihydroxy-dammar-20-en-3-one [2.20]
$: \mathrm{R}_{1}, \mathrm{R}_{2}=\mathrm{H}, \beta-\mathrm{OH}$
$: \mathrm{R}_{1}, \mathrm{R}_{2}==0$

Figure 4. Chemical structures of dammarane - type triterpenoids in the Meliaceae (continued)

$24 \xi, 25$-Epoxy- 5α-dammar-20-en-3-one [2.28]

20S,24S-Epoxy-4-hydroxy-3,4-seco-dammar-25(26)-en-3-oic acid [2.31]

Figure 4. Chemical structures of dammarane - type triterpenoids in the Meliaceae (continued)

$23(24 \rightarrow 25)$ Abeo-20R,24-dihydroxydammaran-3-one [2.1]

$11 \alpha, 20 \xi$-Dihydroxydammar-24-ene-3-one [2.19] $: \mathrm{R}==0$
$3 \alpha, 11 \alpha, 20 \xi$-Trihydroxydammar-24-ene [2.47] $: \mathrm{R}=\alpha-\mathrm{OH}, \beta-\mathrm{H}$

(20S,23E)-20,25-Dihydroxy-3,4-secodammara-4(28),23-dienoic acid [2.21]

$$
: \mathrm{R}=\mathrm{H}
$$

(20S,23E)-20,25-Dihydroxy-3,4-secodammara-4(28),23-dienoic acid methyl ester [2.22]

$$
: \mathrm{R}=\mathrm{CH}_{3}
$$

Figure 4. Chemical structures of dammarane - type triterpenoids in the Meliaceae (continued)

Aromadendrane - type sesquiterpenes

Aromadendranes are a class of sesquiterpene natural products found in a number of plant species (Gijsen et al., 1992), especially in species belonging to Compositae, Leguminosae, and Myrtaceae. They are also found in marine organisms including soft corals, sponges, and liverwort (Staerk et al., 2004). Aromadendranes are tricyclic sesquiterpenes structurally characterized by a dimethyl cyclopropane unit fused to a hydroazulene ring system (Stephen et al., 1996).

Distribution of aromadendrane - type sesquiterpenes in plants is summarized in Table 4 and their chemical structures are shown in Figure 5.
Table 4. Distribution of aromadendrane - type sesquiterpenes in plants.

Compound	Sources	Family	Part	References
2'-Acetyl arvoside B [3.1]	Calendula arvensis	Compositae	Aerial parts	$\begin{aligned} & \text { Pizza et al., } \\ & 1988 \end{aligned}$
Alloaromadendran-14 β - al [3.2]	Duguetia glabriuscula	Annonaceae	Leaves	De Siqueira et al., 2003
Alloaromadendran-14 β oic acid [3.3]	Duguetia glabriuscula	Annonaceae	Leaves	De siqueira et al., 2003
(+)-Aromadendra-1(10),4-dien-15-al-3-one $[3.4]$	Mandevilla pentlandiana	Apocynaceae	Root	Cabrera et al.,1993
$1(5), 3-$ Aromadendradiene [3.5]	Balsamum tolutanum	Leguminosae	n.i.	Friedel et al., 1987
$1(10), 4-$ Aromadendradiene [3.6]	Balsamum tolutanum	Leguminosae	n.i.	Friedel et al., 1987
(+)-Alloaromadendrane$4 \beta, 10 \alpha$-diol [3.7]	Ambrosia peruviana	Compositae	Stem, leaves	Goldsby and Burke, 1987
	Phebalium filifolium	Rutaceae	Aerial parts	$\begin{aligned} & \text { Rashid et al., } \\ & 1995 \end{aligned}$
(+)-Alloaromadendran$10,14 \beta$-diol [3.8] (14-hydroxyviridiflorol)	Duguetia glabriuscula	Annonaceae	Leaves	$\begin{aligned} & \text { Matos et al., } \\ & 2006 \end{aligned}$
	Pulicaria paludosa	Compositae	Aerial parts	Feliciano et al., 1989

Table 4. Distribution of aromadendrane - type sesquiterpenes in plants. (continued)

Compound	Sources	Family	Part	References
Alloaromadendrene [3.9]	Duguetia glabriuscula	Annonaceae	Leaves	De Siqueira et al., 2003
Alloaromadendrane- $4 \beta, 10 \alpha \text {-diol [3.10] }$	Xylopia brasiliensis	Annonaceae	Leaves	Moreira et al., 2003
Aromadendrane-4 $\alpha, 10 \alpha$ diol [3.11]	X. brasiliensis	Annonaceae	Leaves	Moreira et $\text { al., } 2003$
Aromadendrane-4 $\alpha, 10 \beta$ - diol [3.12]	X. brasiliensis	Annonaceae	Leaves	$\begin{aligned} & \text { Moreira } \text { et } \\ & \text { al., } 2003 \end{aligned}$
Aromadendrane-4 $\beta, 10 \alpha$ - 14-triol [3.13]	X. brasiliensis	Annonaceae	Leaves	$\begin{aligned} & \text { Moreira et } \\ & \text { al., } 2003 \end{aligned}$
Aromadendrane- $4 \beta, 10 \alpha$ diol [3.14]	Brasilia sickii	Compositae	Root	Bohlmann et al., 1983
	Aglaia grandis	Meliaceae	Leaves	$\begin{aligned} & \text { Inada } \text { et al., } \\ & 2000 \end{aligned}$
Aromadendrane- $4 \beta, 10 \beta$ diol [3.15]	Ambrosia peruviana	Compositae	Stem, leaves	Goldsby and Burke, 1987
	Aristolochia heterophylla	Aristolc:hiaceae	Root, Stem	Wu, Chan and Leu, 2000
(+)-Aromadendrene [3.16]	Eucalyptus globulus	Myrtaceae	Leaves	$\begin{aligned} & \text { Graham et } \\ & \text { al., } 1960 \end{aligned}$
Arvoside B [3.17]	Calendula arvensis	Compositae	Aerial parts	$\begin{aligned} & \text { Pizza et al., } \\ & 1988 \end{aligned}$
Cyclocolorenone [3.18]	Drimys brasiliensis	Winteraceae	Stem bark, Leaves, Fruits	$\begin{aligned} & \text { Limberger } e t \\ & \text { al., } 2007 \end{aligned}$
Dendroside A [3.19]	Dendrobium nobile	Orchidaceae	Stem	$\begin{aligned} & \text { Zhao et al ., } \\ & 2001 \end{aligned}$
Dendroside D [3.20]	D. nobile	Orchidaceae	Stem	$\begin{aligned} & \text { Ye } \text { et al ., } \\ & 2002 \end{aligned}$

Table 4. Distribution of aromadendrane - type sesquiterpenes in plants. (continued)

Compound	Sources	Family	Part	References
12,13-Diacetoxy-2-oxo-aromadendr-1(10)-ene [3.21]	Gnephosis arachnoidea	Compositae	Aerial parts	Jakupovic et al., 1988
$\begin{aligned} & \hline(2 S, 4 R, 5 S, 6 R, 7 R, 9 S)- \\ & \text { 2,9-Dihydroxy-1(10)- } \\ & \text { aromadendren-14-oic } \\ & \text { acid 2,14-lactone [3.22] } \end{aligned}$	Landolphia dulcis	Apocynaceae	Root	$\begin{aligned} & \text { Staerk } \text { et al., } \\ & 2004 \end{aligned}$
(2S,4R,5S,6R,7R,11S)-2,12-Dihydroxy-1(10)-aromadendren-14-oic acid 2,14-lactone [3.23]	L. dulcis	Apocynaceae	Root	$\begin{aligned} & \text { Staerk } \text { et al., } \\ & 2004 \end{aligned}$
$\begin{aligned} & \hline 8 \alpha, 13 \text {-Dihydroxy } \\ & \text { spathulenol [3.24] } \end{aligned}$	Cineraria fruticulorum	Compositae	Aerial parts	Bohlmann et al., 1982
Epiglobulol [3.25]	Eucalyptus globulus	Myrtaceae	Leaves	$\begin{aligned} & \text { Graham et } \\ & \text { al., } 1960 \end{aligned}$
Flourensadiol [3.26]	Flourensia cernиa	Compositae	Whole plant	$\begin{aligned} & \hline \text { Kingston } \text { et } \\ & \text { al., } 1975 \end{aligned}$
(+)-Globulol [3.27]	Angelica sylvestris	Apiaceae	Root	Vinokurova et al., 1999
(-)-Globulol [3.28]	Eucalyptus globulus	Myrtaceae	Leaves	Graham et $\text { al., } 1960$
(-)- α-Gurjunene [3.29]	Lansium anamalayanum	Meliaceae	Wood	Krishnappa and Dev, 1973
(1R,6R,7R,10R,11S)-12- Hydroxy-4(5)-aroma- dendren-3-one $[3.30]$	Landolphia dulcis	Apocynaceae	Root	$\begin{aligned} & \text { Staerk } \text { et al., } \\ & 2004 \end{aligned}$

Table 4. Distribution of aromadendrane - type sesquiterpenes in plants. (continued)

Compound	Sources	Family	Part	References
(4R,5S,6R,7R,11S)-12-Hydroxy-1(10)-aromadendren-14-al [3.31]	L. dulcis	Apocynaceae	Root	Staerk et al., 2004
(4R,5S,6R,7R,11S)-12-Hydroxy-1(10)-aromadendren-2-one [3.32]	L. dulcis	Apocynaceae	Root	$\begin{aligned} & \text { Staerk } \text { et al., } \\ & 2004 \end{aligned}$
(4R,5S,6R,7R,11S)- 12-Hydroxy-1(10)- aromadendren-9-one [3.33]	L. dulcis	Apocynaceae	Root	$\begin{aligned} & \text { Staerk } \text { et al., } \\ & 2004 \end{aligned}$
$(2 S, 4 R, 5 S, 6 R, 7 R)-2-$ Hydroxy-1(10)-aromadendren-14oic acid 2,14-lactone [3.34]	L. dulcis	Apocynaceae	Root	$\begin{aligned} & \text { Staerk } \text { et al., } \\ & 2004 \end{aligned}$
8α-Hydroxy-13-oxospathulenol [3.35]	Cineraria fruticulorum	Compositae	Aerial parts	$\begin{aligned} & \text { Bohlmann et } \\ & \text { al., } 1982 \end{aligned}$
$\begin{array}{\|l\|} \hline 8 \alpha \text {-Hydroxy } \\ \text { spathulenol [3.36] } \end{array}$	C. fruticulorum	Compositae	Aerial parts	$\begin{aligned} & \text { Bohlmann et } \\ & \text { al., } 1982 \end{aligned}$
$\begin{aligned} & (+)-13 \text {-Hydroxy } \\ & \text { spathulenol [3.37] } \end{aligned}$	Eriostemon brucei	Rutaceae	Aerial parts	$\begin{aligned} & \hline \text { Rashid } e t \\ & \text { al., } 1995 \end{aligned}$
(+)-Ledol [3.38]	Entandrophragm a cylindricum	Meliaceae	Bark	Daniewski et al., 1996
(-)-Ledol [3.39]	Duguetia glabriuscula	Annonaceae	Leaves	De Siqueira et al., 2003

Table 4. Distribution of aromadendrane - type sesquiterpenes in plants. (continued)

Compound	Sources	Family	Part	References
(-)-Ledol [3.39]	Phebalium tuberculosum	Rutaceae	Aerial parts	Rashid et $\text { al., } 1995$
	Piper clusii	Piperaceae	Fruits	Koul et al., 1993
$2^{\prime}\left(2^{\prime \prime}-\text { Methyl }-\right.$ butanoyl) arvoside B [3.40]	Calendula arvensis	Compositae	Aerial parts	$\begin{aligned} & \text { Pizza et al., } \\ & 1988 \end{aligned}$
$2^{\prime}\left(2^{\prime \prime}-\right.\text { Methyl-2"- }$ butenoyl) arvoside B [3.41]	C. arvensis	Compositae	Aerial parts	De Tom masi et al., 1990
$\begin{array}{\|l\|} \hline \text { Methyl } \\ (4 R, 5 S, 6 R, 7 R, 11 S)- \\ 2,9 \text {-dioxo-1(10)- } \\ \text { aromadendren-12- } \\ \text { oate [3.42] } \end{array}$	Landolphia dulcis	Apocynaceae	Root	$\begin{aligned} & \hline \text { Staerk } \text { et al., } \\ & 2004 \end{aligned}$
$2^{\prime}\left(3^{\prime \prime}-\text { Methyl-2" }-\right.$ pentenoyl) arvoside B [3.43]	Calendula arvensis	Compositae	Aerial parts	$\begin{aligned} & \text { Pizza et al., } \\ & 1988 \end{aligned}$
$\begin{aligned} & 2^{\prime}\left(2^{\prime \prime}\right. \text {-Methyl-2"'- } \\ & \text { propanoyl }) \text { arvoside } \\ & \text { B [3.44] } \end{aligned}$	C. arvensis	Compositae	Aerial parts	De Tom masi et al., 1990
(4R,5S,6R,7R,11S)- 2-Oxo-1(10)- aromadendren-12- oic acid [3.45]	Landolphia dulcis	Apocynaceae	Root	Staerk et al., 2004
(+)-Spathulenol [3.46]	Duguetia glabriuscula	Annonaceae	Leaves	De Siqueira et al., 2003
	Guarea guidonia	Meliaceae	Leaves	Brochini and Roque, 2000

Table 4. Distribution of aromadendrane - type sesquiterpenes in plants. (continued)

Compound	Sources	Family	Part	References
(+)-Spathulenol[3.46]	Drummondita basselli	Rutaceae	Aerial parts	Rashid et $\text { al., } 1995$
	D. calida	Rutaceae	Aerial parts	Rashid et $\text { al., } 1995$
	Phebalium tuberculosum	Rutaceae	Aerial parts	Rashid et $\text { al., } 1995$
	P. filifolium	Rutaceae	Aerial parts	$\begin{aligned} & \text { Rashid et } \\ & \text { al., } 1995 \end{aligned}$
	Xylopia brasiliensis	Annonaceae	Leaves	Moreira et $\text { al., } 2003$
β-Spathulene [3.47]	Schinus molle	Anacardiaceae	Fruits	Terhune, Hogg and Lawrence, 1974
Squamulosone[3.48]	Hyptis verticillata	Labiatae	n.i.	Collins et al., 2001
	Phebalium squamulosum	Rutaceae เหาวิทยาลัย	n.i.	Batey, Hellyer and Pinhey, 1971
(-)-10 $\beta, 13,14-$ Trihydroxy-alloaromadendrane [3.49]	Wyethia arizonica	Compositae	n.i.	Bohlmann et al., 1984
Viridiflorol [3.50]	Duguetia glabriuscula	Annonaceae	Leaves	De Siqueira et al., 2003

n.i. $=$ not indicated

(+)-Aromadendra-1(10),4-dien-15-al-3-one [3.4]: $\mathrm{R}_{1}=\mathrm{CHO}, \mathrm{R}_{2}, \mathrm{R}_{3}=\mathrm{O}$

1(10),4-Aromadendradiene [3.6]

1(5),3-Aromadendradiene [3.5]
$: \mathrm{R}_{1}=\mathrm{CHO}, \mathrm{R}_{2}, \mathrm{R}_{3}=\mathrm{O}$

β-Spathulene [3.47]

$\begin{array}{llll}\mathrm{R}_{1} & \mathrm{R}_{2} & \mathrm{R}_{3} & \mathrm{R}_{4}\end{array}$

Alloaromadendran-14 β-al [3.2]
Alloaromadendran-14 β-oic acid [3.3]
(+)-Alloaromadendran-10,14 β-diol
(14-hydroxyviridiflorol) [3.8]
Flourensadiol [3.26]
H $\quad \beta-\mathrm{OH} \quad \alpha-\mathrm{CH}_{3} \quad \mathrm{OH}$
(-)-Ledol [3.39]
Viridiflorol [3.50]
H $\quad \beta$ - $\mathrm{CHO} \quad \alpha-\mathrm{CH}_{3} \quad \mathrm{H}$

H $\beta-\mathrm{COOH} \quad \alpha-\mathrm{H} \quad \mathrm{H}$
$\mathrm{H} \alpha-\mathrm{CH}_{2} \mathrm{OH} \quad \beta-\mathrm{OH} \quad \mathrm{H}$

Figure 5. Chemical structures of aromadendrane - type sesquiterpenes in plants

$\begin{array}{lllll}\mathrm{R}_{1} & \mathrm{R}_{2} & \mathrm{R}_{3} & \mathrm{R}_{4} & \mathrm{R}_{5}\end{array}$

Alloaromadendrane-4 $\beta, 10 \alpha$-diol
$\mathrm{OH} \quad \alpha-\mathrm{OH} \quad \beta-\mathrm{CH}_{3} \quad \mathrm{CH}_{3} \quad \mathrm{H}$
[3.10]
Dendroside A[3.19]
Dendroside $\mathrm{D}[3.20]$
(-)-10 , 13, 14-Trihydroxy-allo-
H $\alpha-\mathrm{CH}_{2} \mathrm{Oglu} \quad \beta-\mathrm{OH} \quad \mathrm{CH}_{2} \mathrm{OH} \quad \mathrm{H}$
H $\alpha-\mathrm{CH}_{2} \mathrm{Oglu} \beta-\mathrm{OH}$ COOglu H
H $\beta-\mathrm{OH} \quad \alpha-\mathrm{CH}_{2} \mathrm{OH} \quad \mathrm{CH}_{3} \quad \mathrm{OH}$ aromadendrane [3.49]

$\begin{array}{lcccc} & \mathrm{R}_{1} & \mathrm{R}_{2} & \mathrm{R}_{3} & \mathrm{R}_{4} \\ \text { (+)-Alloaromadendrane- } 4 \beta, 10 \alpha \text {-diol [3.7] } & \mathrm{OH} & \alpha-\mathrm{OH} & \beta-\mathrm{CH}_{3} & \mathrm{H} \\ \text { (+)-Globulol [3.27] } & \mathrm{H} & \alpha-\mathrm{OH} & \beta-\mathrm{CH}_{3} & \mathrm{H} \\ \text { (+)-Ledol [3.38] } & \mathrm{H} & \beta-\mathrm{OH} & \alpha-\mathrm{CH}_{3} & \mathrm{H}\end{array}$

Figure 5. Chemical structures of aromadendrane - type sesquiterpenes in plants (continued)

$$
\mathrm{R}_{1} \quad \mathrm{R}_{2}
$$

Aromadendrane-4 $\alpha, 10 \alpha$-diol [3.11]	$\alpha-\mathrm{OH}$	$\beta-\mathrm{CH}_{3}$
Aromadendrane-4 $\alpha, 10 \beta$-diol [3.12]	β-OH	$\beta-\mathrm{CH}_{3}$

Aromadendrane-4 $\beta, 10 \alpha$-14-triol [3.13] $\mathrm{OH} \quad \beta-\mathrm{CH}_{2} \mathrm{OH} \alpha-\mathrm{OH} \mathrm{CH}_{3} \quad \mathrm{H}$ Aromadendrane- $4 \beta, 10 \alpha$-diol [3.14] GKOR OH $\alpha-\mathrm{OH} \quad \beta-\mathrm{CH}_{3} \quad \mathrm{CH}_{3} \quad \mathrm{H}$
Aromadendrane- $4 \beta, 10 \beta$-diol [3.15] $\quad \mathrm{OH} \quad \beta$ - $\mathrm{OH} \quad \alpha-\mathrm{CH}_{3} \quad \mathrm{CH}_{3} \quad \mathrm{H}$
Epiglobulol [3.25] $\quad \mathrm{H} \quad \beta-\mathrm{OH} \quad \alpha-\mathrm{CH}_{3} \quad \mathrm{CH}_{3} \quad \mathrm{H}$
(-)-Globulol [3.28]
H $\quad \beta-\mathrm{OH} \quad \alpha-\mathrm{CH}_{3} \quad \mathrm{CH}_{3} \quad \mathrm{H}$

Figure 5. Chemical structures of aromadendrane - type sesquiterpenes in plants (continued)

$\begin{array}{lll}\mathrm{R}_{1} & \mathrm{R}_{2} & \mathrm{R}_{3}\end{array}$

Cyclocolorenone [3.18]
$(-)-\alpha$-Gurjunene [3.29]
$\mathrm{H} \quad \mathrm{H}$
($1 R, 6 R, 7 R, 10 R, 11 S$)-12-Hydroxy-
$=0 \quad \mathrm{OH}$
4(5)-aromadendren-3-one [3.30]

$\mathrm{R}_{1} \mathrm{R}_{2}$ 等
($4 R, 5 S, 6 R, 7 R, 11 S$)-12-Hydroxy-
$=0$
1(10)-aromadendren-2-one [3.32]
($4 R, 5 S, 6 R, 7 R, 11 S$)-12-Hydroxy-
H H
1(10)-aromadendren-9-one [3.33]
Squamulosone [3.48]
(4R,5S,6R,7R,11S)-2-Oxo-1(10)-

H
$=0$
$=0$
$\mathrm{CH}_{2} \mathrm{OH}$
H H
$\mathrm{CH}_{2} \mathrm{OH}$ CH_{3}

COOH aromadendren-12-oic acid [3.45]

Figure 5. Chemical structures of aromadendrane - type sesquiterpenes in plants (continued)

$\begin{array}{lllllll}\mathrm{R}_{1} & \mathrm{R}_{2} & \mathrm{R}_{3} & \mathrm{R}_{4} & \mathrm{R}_{5} & \mathrm{R}_{6} & \mathrm{R}_{7}\end{array}$

12,13-Diacetoxy-2-oxo- $\quad=\mathrm{O} \quad \mathrm{H} \quad \mathrm{H} \mathrm{CH} \mathbf{C H A C C H}_{2} \mathrm{OAc}_{\mathrm{OH}}^{3}$ aromadendr-1(10)-ene [3.21]
$(4 R, 5 S, 6 R, 7 R, 11 S)$-12-Hydroxy- $\mathrm{H} \quad \mathrm{H} \quad \mathrm{H} \quad \mathrm{H} \quad \mathrm{CH}_{3} \quad \mathrm{CH}_{2} \mathrm{OH} \mathrm{CHO}$ 1(10)-aromadendren-14-al [3.31]

Methyl (4R,5S,6R,7R,11S)-2,9- $=0 \quad=0 \quad C H_{3} \quad \mathrm{COOCH}_{3} \mathrm{CH}_{3}$ dioxo-1(10)-aromadendren-12oate [3.42]

($2 S, 4 R, 5 S, 6 R, 7 R$)-2-Hydroxy-1(10)-aromadendren-14-oic acid 2,14-lactone [3.34]

$$
: \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CH}_{3}
$$

($2 S, 4 R, 5 S, 6 R, 7 R, 9 S$)-2,9-Dihydroxy-1(10)-aromadendren-14-oic acid 2,14-lactone [3.22]: $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{CH}_{3}$
($2 S, 4 R, 5 S, 6 R, 7 R, 11 S$)-2,12-Dihydroxy-1(10)-aromadendren-14-oic acid 2,14-lactone [3.23]: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CH}_{2}$

Figure 5. Chemical structures of aromadendrane - type sesquiterpenes in plants (continued)

Alloaromadendrene [3.9]

(+)-Spathulenol [3.46]

$$
: \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{CH}_{3}
$$

(+)-Aromadendrene [3.16]

$$
: \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{CH}_{3}
$$

(+)-13-Hydroxyspathulenol [3.37]
$: \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{CH}_{2} \mathrm{OH}$
8α-Hydroxyspathulenol [3.36]
$: \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{CH}_{3}$
$8 \alpha, 13$-Dihydroxyspathulenol [3.24]
8α-Hydroxy-13-oxo-spathulenol [3.35]

$$
: \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{CH}_{2} \mathrm{OH}
$$

$$
: \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{CHO}
$$

Figure 5. Chemical structures of aromadendrane - type sesquiterpenes in plants (continued)

2'-Acetyl arvoside B [3.1]
Arvoside B [3.17]
$2^{\prime}\left(2^{\prime \prime}\right.$-Methyl-butanoyl) arvoside B [3.40]

2'(2"-Methyl-2'-butenoyl) arvoside B [3.41]
$2^{\prime}\left(3^{\prime \prime}-\right.$ Methyl-2" -pentenoyl) arvoside B [3.43]
$2^{\prime}\left(2^{\prime \prime}\right.$-Methyl-2"'-propanoyl) aryoside B [3.44]

$$
\begin{aligned}
& : R=A c \\
& : R=H
\end{aligned}
$$

Figure 5. Chemical structures of aromadendrane - type sesquiterpenes in plants (continued)

Aromadendrane-type sesquiterpenes displayed various biological activities. For example dendroside A from the stems of Dendrobium nobile (family Orchidaceae), a plant used as tonic in traditional Chinese medicine, significantly stimulated the proliferation of murine T and B lymphocytes in vitro at concentrations of 1×10^{-7} and $1 \times 10^{-5} \mathrm{M}$, respectively (Zhao et al., 2001). Another compound, (+)-alloaromadendran-10,14 β-diol (14-hydroxyviridiflorol) from Duguetia glabriuscula (family Annonaceae), showed cytotoxic activity by inhibiting the growth of Hep_{2} (human larynx carcinoma) cell line ($\mathrm{IC}_{50}<25 \mu \mathrm{~g} / \mathrm{ml}$) (Matos et al., 2006).

Cladosporium herbarium and C. cladosporioides are important causes of mould allergies in human. It was found that (+)-alloaromadendrane- $4 \beta, 10 \alpha$-diol, an aromadendrane sesquiterpene from the stems and leaves of Ambrosia peruviana (family Compositae), together with aromadendrane-4 $\alpha, 10 \beta$-diol and aromadendrane$4 \alpha, 10 \alpha$-diol from the leaves of Xylopia brasiliensis (family Annonaceae), exhibited antifungal activity against these allergic molds. (Goldsby and Buke, 1987; Moreira et al., 2003). Arvoside B, an aromadendrane glycoside from the aerial parts of Calendula arvensis (family Compositae), showed in vitro antiviral activity against vesicular stomatitis virus at MIC of $14 \mu \mathrm{~g} / \mathrm{ml}$ (De Tommasi et al., 1990). Squamulosone, isolated in large quantity from Hyptis verticillata (family Labiatae), a medicinal plant which has been traditionally used in the treatment of eczema, psoriasis, scabies, athlete's foot, rheumatoid arthritis and cold-related problems, displayed insecticidal activity against the sweet potato weevil, Cylas formicarius elegantulus (Collins et al., 2001).

Flavagline derivatives

Flavagline derivatives are unusual benzofuran derivatives featuring a cyclopenta $[b]$ benzofuran skeleton.

They were initially named rocaglamide derivatives after the parent compound rocaglamide, originally isolated in 1982 (King et al., 1982). These compounds appear to be derived from a flavonoid nucleus linked with a cinnamic acid moiety (Nugroho et al., 1999). The incorporation of nitrogen into rocaglamide represents a late biosynthetic step, therefore, the general use of the term rocaglamides for all derivatives of that basic structure can not be applied to every compound within this group. Regarding the restricted occurrence of this type of compounds to the genus Aglaia of the family Meliaceae and the incorporation of a flavonoid moiety as a central biosynthetic step, the name flavaglines was therefore suggested for this class of compounds (Brader et al., 1998).

Flavaglines can be classified into three groups (Proksch et al., 2001) :

1) Cyclopenta[b]benzofuran derivatives (rocaglamide derivatives)

2) Cyclopenta[bc] benzopyran derivatives (aglain and aglaforbesin derivatives)

aglain derivatives

aglaforbesin derivatives
3) Benzo $[b]$ oxe-pine derivatives (forbagline derivatives)

Many members of the cyclpenta[b]benzofuran groups exhibited biological activities such as insecticidal activity (Ishibashi et al., 1993; Janprasert et al., 1993; Nugroho et al., 1997a, 1997b; Brader et al., 1998; Bacher et al, 1999; Chaidir et al., 1999; Hiort et al., 1999; Nugroho et al., 1999; Schneider et al., 2000; Dreyer et al., 2001; Greger et al., 2001; Bringmann et al., 2003) comparable in potency to azadirachtin the well-known natural insecticide from the neem tree, Azadirachta indica L. These flavaglines also displayed significant inhibitory activity against cancer cell lines at nanomolar concentrations (King et al., 1982; Dumontet et al., 1996; Cui et al., 1997; Lee et al., 1998; Mohamad et al., 1999; Proksch et al., 2001; Baumann et al., 2002; Hausott et al., 2004; Hwang, et al., 2004; Rivero-Cruz, et al., 2004; Chumkaew et al., 2006; Kim et al., 2006; Su et al., 2006; Salim, et al., 2007). However, the cyclopenta[bc]benzopyrans and benzo[b]oxepines evaluated so far were not active (Kim et al., 2006).

The distribution of flavagline derivatives in the family Meliaceae is summarized in Table 5 and their chemical structures are shown in Figure 6.

Table 5. Distribution of flavagline compounds in the family Meliaceae.

Compounds	Source	part	References
Cyclopenta[b]benzofurans 1-O-Acetyl-N-butanoyldidesmethylrocaglamide [4.1]	Aglaia elliptica	Fruits	Nugroho et al., 1997b
1-O-Acetyldemethylrocaglamide [4.2]	A. duperreana	Flowers	Chaidir et al., 1999
		Root	Hiort et al., 1999
1-O-Acetyl-4'-demethoxy-3',4'-methylenedioxy-methyl rocaglate [4.3]	A. spectabilis	Bark	$\begin{aligned} & \text { Schneider } \text { et al., } \\ & 2000 \end{aligned}$
1-O-Acetyl-didemethylrocaglamide [4.4]	A. duperreana	Flowers	Chaidir et al., 1999
1-O-Acetyl-3'hydroxydemethylrocaglamide [4.5]	A. duperreana	Flowers	Chaidir et al., 1999
		Root	Hiort et al., 1999
1-O-Acetyl-3'-hydroxy methylrocaglate [4.6]	A. duperreana	Flowers	Chaidir et al., 1999
		Root	Hiort et al., 1999
1-O-Acetyl-3'-hydroxyrocaglamide [4.7]	A. duperreana	Flowers	Chaidir et al., 1999
		Twigs	$\begin{aligned} & \text { Nugroho } \text { et al., } \\ & \text { 1997a } \end{aligned}$
	งกรณ์มหาวิ	Root	Hiort et al., 1999
	A. odorata	Twigs	Nugroho et al., 1999
		Leaves	Ishibashi et al., 1993
1-O-Acetyl-rocaglamide [4.8]	A. duperreana	Root	Hiort et al., 1999
1-O-Acetylmethyl rocaglate[4.9]	A. duperreana	Root	Hiort et al., 1999
		Flowers	Chaidir et al., 1999
	A. rubiginosa	Twigs	Rivero-Cruz et al., 2004
1-O-Acetylrocaglaol [4.10]	A .rubiginosa	Twigs	Rivero-Cruz et al., 2004
$\begin{aligned} & \text { Aglaiastatin [4.11] } \\ & \text { (aglaroxin D) } \end{aligned}$	A. duperreana	Twigs	$\begin{aligned} & \text { Nugroho et al., } \\ & \text { 1997a } \end{aligned}$

Table 5. Distribution of flavagline compounds in the family Meliaceae. (continued)

Compounds	Source	part	References
Aglaiastatin [4.11] (aglaroxin D)	A. odorata	Leaves	Ohse et al., 1996
N-Butanoyldidesmethylrocaglamide [4.12]	A. elliptica	Fruits	Nugroho et al., 1997b
```Cyclorocaglamide (6- demethoxy-8b,2'-epoxy-3'- methoxy-6,7- methylenedioxy rocaglamide) [4.13]```	A. oligophylla	Twigs	Bringmann et al., 2003
Dehydroaglaiastatin [4.14]	A. duperreana	Twigs	Nugroho et al., 1997a
		Flowers	Chaidir et al., 1999
		Root	Hiort et al., 1999
	A. odorata	Root	Kokpol et al., 1994
		Leaves	Ohse et al., 1996
		Root	Kokpol et al., 1994
	A. testicularis	Leaves	Wang et al., 2004
6-Demethoxy-2'-hydroxy-   3'-methoxy-6,7-   methylenedioxy   rocaglamide [4.15]	A. oligophylla	Twigs   ทยาลัย	Bringmann et al., 2003
4'-Demethoxy-3', 4'-methylenedioxy-methyl rocaglate [4.16]	A. dasyclada	Leaves	Chaidir et al., 2001
	A. elliptica	Stem, Fruits	Cui et al., 1997
		Stems	Lee et al., 1998
	A. spectabilis	Bark	Schneider et al., 2000
6-Demethoxy-6,7-methylenedioxymethylrocaglate [4.17] (Pannellin)	A.elaeagnoidea	Leaves,   Stems,   Root , Bark	Brader et al., 1998

Table 5. Distribution of flavagline compounds in the family Meliaceae. (continued)

Compounds	Source	part	References
$\begin{aligned} & \hline \text { 6-Demethoxy-6,7- } \\ & \text { methylenedioxymethyl- } \\ & \text { rocaglate [4.17] (Pannellin) } \end{aligned}$	A. oligophylla	Twigs	Dreyer et al., 2001
$\begin{aligned} & \text { 6-Demethoxy-6,7- } \\ & \text { methylenedioxy rocaglamide } \\ & (\text { aglaroxin A) [4.18] } \end{aligned}$	A.elaeagnoidea	Stem bark	$\begin{aligned} & \text { Molleyres et al., } \\ & 1999 \end{aligned}$
	A. oligophylla	Twigs	Dreyer et al., 2001
4'-Demethoxy-3',4'methylenedioxyrocaglaol[4.19]	A. elliptica	Fruits	Cui et al., 1997
	A. spectabilis	Bark	Schneider et al., 2000
1-Oxo-4'-demethoxy-3',4'methylenedioxy rocaglaol [4.20]	A. elliptica	Stem	Cui et al., 1997
Desmethylrocaglamide [4.21]	A, duperreana	Flowers	Chaidir et al., 1999
	A. odorata	Leaves	Ishibashi et al., 1993
Didesmethylrocaglamide [4.22]	A. argentea	Seeds	$\begin{aligned} & \text { Dumontet et al., } \\ & 1996 \end{aligned}$
	A. duperreana	Root	Hiort et al., 1999
	A. elliptica	Fruits	$\begin{aligned} & \text { Nugroho et al., } \\ & \text { 1997b } \end{aligned}$
Episilvestrol [4.23]	A. pyramidata	Twigs	Hwang et al., 2004
8b-O-Ethyl-   demethylrocaglamide [4.24]	A. duperreana	Flowers	Chaidir et al., 1999
8b-O-Ethyl-3'-   hydroxyrocaglamide [4.25]	A. duperreana	Flowers	Chaidir et al., 1999
Ethylrocaglaol [4.26]	A. forbesii	Bark	Dumontet et al., 1996
1-O-Formylmethyl rocaglate [4.27]	A. dasyclada	Leaves	Chaidir et al., 2001
	A. spectabilis	Bark	Schneider et al., $2000$

Table 5. Distribution of flavagline compounds in the family Meliaceae. (continued)

Compounds	Source	part	References
$\begin{aligned} & \text { 1-O-Formyloxy-4'- } \\ & \text { demethoxy-3',4'- } \\ & \text { methylenedioxy-methyl } \\ & \text { rocaglate }[4.28] \end{aligned}$	A. elliptica	Stem	$\begin{aligned} & \hline \text { Cui } \text { et al., } 1997 \\ & \text { Lee } \text { et al., } 1998 \end{aligned}$
	A. spectabilis	Bark	Schneider et al., $2000$
1-O-Formylrocagloic acid [4.29]	Amoora cucullata	Fruits	Chumkaew et al., $2006$
3'-Hydroxy-   dehydroaglaiastatin [4.30]	A. duperreana	Flowers	Chaidir et al., 1999
	A. testicularis	Leaves	Wang et al., 2004
3'-Hydroxydemethylrocaglamide [4.31]	A. odorata	Leaves	Nugroho et al., 1999
	A. duperreana	Root	Ohse et al., 1996
3'-Hydroxy-1-O-formyloxymethyl rocaglate [4.32]	A. spectabilis	Bark	$\begin{aligned} & \text { Schneider } \text { et al., } \\ & 2000 \end{aligned}$
3'-Hydroxydidemethylrocaglamide [4.33]	A. odorata	Leaves	Nugroho et al., 1999
3'-Hydroxymarikarin [4.34]	A. gracilis	Root and Stem bark	Greger et al., 2001
3'-Hydroxymethyl rocaglate [4.35]	A. duperreana	Root	Ohse et al., 1996
	A. odorata	Leaves	Nugroho et al., 1999
	A. spectabilis	Bark	$\begin{aligned} & \text { Schneider } \text { et al., } \\ & 2000 \end{aligned}$
	Amoora cucullata	Fruits	Chumkaew et al., $2006$
3'-Hydroxyrocaglamide[4.36]	A. duperreana	Flowers	Chaidir et al., 1999
		Twigs	$\begin{aligned} & \text { Nugroho et al., } \\ & \text { 1997a } \end{aligned}$
		Root	Hiort et al., 1999
	A. odorata	Twigs and Leaves	Nugroho et al., 1999
3'-Hydroxyrocagloic acid [4.37]	Amoora cucullata	Fruits	Chumkaew et al., $2006$

Table 5. Distribution of flavagline compounds in the family Meliaceae. (continued)

Compounds	Source	part	References
Marikarin [4.38]	A. gracilis	Root, Stem bark	Greger et al., 2001
3'-Methoxy-6-demethoxy-   6,7-methylenedioxy   rocaglamide [4.39]	A.elaeagnoidea	Stem bark	Molleyres et al., 1999
	A. oligophylla	Twigs	Dreyer et al., 2001
3'- Methoxy-methyl rocaglate [4.40]	A. spectabilis	Bark	Schneider et al., 2000
3'-Methoxypannellin [4.41]	A. elaeagnoidea	Leaves,   Stems,   Root, Bark	Brader et al., 1998
3'- Methoxylrocaglaol [4.42]	A. odorata	Twigs	Nugroho et al., 1999
		Leaves	Nugroho et al., 1999
3'- Methoxyrocaglamide[4.43]	A. duperreana	Twigs	$\begin{aligned} & \text { Nugroho et al., } \\ & \text { 1997a } \end{aligned}$
	A. odorata	Twigs	Nugroho et al., 1999
8b-O-methyl-methyl rocaglate [4.44]	A. duperreana	Root	Hiort et al., 1999
Methyl rocaglate [4.45] (Aglafoline)	A. dasyclada	Leaves	Chaidir et al., 2001
	A. duperreana	Flowers	Chaidir et al., 1999
	งกรณัมหาวิท	Root	Hiort et al., 1999
	A.elaeagnoidea	Bark	Fuzzati et al., 1996
	A. elliptica	Stem and Fruits	Cui et al., 1997
	A. odorata	Leaves	Ishibashi et al., 1993
	A. rubiginosa	Twigs	Rivero-Cruz et al., 2004
	A. spectabilis	Bark	Schneider et al., 2000
	Amoora cucullata	Fruits	Chumkaew et al., $2006$

Table 5. Distribution of flavagline compounds in the family Meliaceae. (continued)

Compounds	Source	part	References
Methyl rocaglate [4.45] (Aglafoline)	A. elliptifolia	n.i.	Ko et al., 1992
	A. ponapensis	Leaves and twigs	Salim et al., 2007
8b-O-methylrocaglaol [4.46]	A. duperreana	Root	Hiort et al., 1999
1-Oxime-3'-methoxymethylrocaglate [4.47]	A. odorata	Leaves	Nugroho et al., 1999
1-Oxo-2-piriferine-6-demethoxy-6,7methylenedioxy rocaglamide [4.48]	A. oligophylla	Twigs	Dreyer et al., 2001
	A. spectabilis	Bark	$\begin{aligned} & \text { Schneider } \text { et al., } \\ & 2000 \end{aligned}$
Pannellin 1-O-acetate [4.49]	A. elaeagnoidea	Leaves, Stems and Root, Bark	Brader et al., 1998
Rocaglamide [4.50]	A. duperreana	Twigs	$\begin{aligned} & \text { Nugroho et al., } \\ & \text { 1997a } \end{aligned}$
		Root	Hiort et al., 1999
	A. elliptica	Fruits	Nugroho et al., $1997 \mathrm{~b}$
	A. elliptifolia	Root and Stem	King et al., 1982
	A. odorata UTII	Twigs	Janprasert et al., 1993
		Leaves	Ishibashi et al., 1993
Rocaglaol-3'-rhamnose [4.51]	A. harmsiana	Leaves	$\begin{aligned} & \text { Nugroho et al., } \\ & \text { 1997b } \end{aligned}$
Rocaglaol [4.52]	A. duperreana	Root	Hiort et al., 1999
	A. elliptifolia	Stem	Cui et al., 1997
	A. odorata	Leaves	Ishibashi et al., 1993
			Ohse et al., 1996

Table 5. Distribution of flavagline compounds in the family Meliaceae. (continued)

Compounds	Source	part	References
Rocaglaol [4.52]	A. crassinervia	Bark	Su et al., 2006
	A. dasyclada	Leaves	Chaidir et al., 2001
	A. ferruginaea	n.i.	Mulholland and Naidoo, 1998
	A. forbesii	Bark	Dumontet et al., 1996
	A. spectabilis	Bark	Schneider et al., 2000
	A. tomentosa	Bark	Mohamad et al., 1999
	Amoora cucullata	Fruits	Chumkaew et al., $2006$
Rocagloic acid [4.53]	A. dasyclada	Leaves	Chaidir et al., 2001
	A. rubiginosa	Twigs	$\begin{aligned} & \text { Rivero-Cruz et al., } \\ & 2004 \end{aligned}$
	Amoora cucullata	Fruits	Chumkaew et al., $2006$
Silvestrol [4.54]	A. pyramidata	Fruits	Hwang et al., 2004
N -Tetrahydrofuranrocaglamide [4.55]	A. elliptica	Fruits	Nugroho et al., 1997b
$\begin{aligned} & \text { Cyclopenta[bc]benzopyrans } \\ & \text { (aglains) } \\ & \text { Aglain A [4.56] } \end{aligned}$	A. argentea	Leaves	Dumontet et al., 1996
	A. forbesii	Barks	Dumontet et al., 1996
Aglain B [4.57]	A. argentea	Leaves	Dumontet et al., 1996
Aglain C [4.58]	A. argentea	Leaves	Dumontet et al., 1996

Table 5. Distribution of flavagline compounds in the family Meliaceae. (continued)


Table 5. Distribution of flavagline compounds in the family Meliaceae. (continued)

Compounds	Source	part	References
Thapsakon B [4.79]	A. edulis	Roots	Bacher et al., 1999
Cyclopenta[bc]benzopyrans   (aglaforbesins)   Aglaforbesin A [4.80]	A. forbesii	Bark	Dumontet et al., 1996
Aglaforbesin B [4.81]	A. forbesii	Bark	$\begin{aligned} & \text { Dumontet et al., } \\ & 1996 \end{aligned}$
Aglaxiflorin C [4.82]	A. laxiflora	Leaves	Xu et al., 2000
Aglaforbesin -O-glycoside [4.83]	A. dasyclada	Leaves	Chaidir et al., 2001
8-Demethoxy-7,8methylenedioxyaglaforbesin [4.84]	A. oligophylla	Twigs	Dreyer et al., 2001
Benzo[b]oxepines   (forbaglines)   Forbaglin A [4.85]	A. forbesii	Bark	Dumontet et al., $1996$
Forbaglin B [4.86]	A. forbesii	Bark	Dumontet et al., 1996
Forbaglin- $O$-glycoside [4.87]	A. dasyclada ทย	Leaves	Chaidir et al., 2001
Homothapoxepine A [4.88]	A.edulis UNIVE	Roots	Bacher et al., 1999
4'-Hydroxy-10-acidic-21deglycosyloxy forbaglin [4.89]	A. dasyclada	Leaves	Chaidir et al., 2001
(13R)-Thapoxepine A [4.90]	A. edulis	Roots	Bacher et al., 1999
(13S)-Thapoxepine A [4.91]	A. edulis	Roots	Bacher et al., 1999
(13R)-Thapoxepine B [4.92]	A. edulis	Roots	Bacher et al., 1999
(13S)-Thapoxepine B [4.93]	A.edulis	Roots	Bacher et al., 1999


$\begin{array}{lll}R_{1} & R_{2} & R_{3}\end{array}$

1-O-Acetyldemethyl-
$\mathrm{OCOCH}_{3} \mathrm{CONHCH}_{3} \mathrm{H}$ rocaglamide [4.2]
1-O-Acetyl-didemethylrocaglamide $\quad \mathrm{OCOCH}_{3} \mathrm{CONH}_{2} \quad \mathrm{H}$ [4.4]
1-O-Acetyl-3'-hydroxydemethylrocaglamide [4.5]

1-O-Acetyl-3'-hydroxymethyl rocaglate [4.6]

1-O-Acetyl-3'-hydroxy-rocaglamide $\quad \mathrm{OCOCH}_{3} \mathrm{CON}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{OH}$ [4.7]
1-O-Acetyl-rocaglamide [4.8] $\quad \mathrm{OCOCH}_{3} \quad \mathrm{CON}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{H}$
1-O-Acetylmethyl rocaglate [4.9] $\quad \mathrm{OCOCH}_{3} \quad \mathrm{COOH} \quad \mathrm{H}$
1-O-Acetylrocaglaol [4.10] $\quad \mathrm{OCOCH}_{3} \quad \mathrm{H} \quad \mathrm{H}$
Desmethylrocaglamide [4.21] $\quad \mathrm{OH} \quad \mathrm{CONHCH}_{3} \quad \mathrm{H}$
1-O-Formylmethyl rocaglate [4.27] $\quad 0 \mathrm{OCHO} \quad \mathrm{COOCH}_{3} \quad \mathrm{H}$
1-O-Formylrocagloic acid [4.29]
3'-Hydroxy-1-O-formyloxy-
OCHO COOH H
methyl rocaglate [4.32]
3'-Hydroxymethyl rocaglate [4.35]
3'-Hydroxyrocaglamide [4.36]
3'-Hydroxyrocagloic acid [4.37]
3'- Methoxy-methyl rocaglate [4.40]
3'- Methoxylrocaglaol [4.42]
3'- Methoxyrocaglamide [4.43]
$\mathrm{OH} \quad \mathrm{COOCH}_{3} \quad \mathrm{OH}$
$\mathrm{OH} \quad \mathrm{CON}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{OH}$
$\mathrm{OH} \quad \mathrm{COOH} \quad \mathrm{OH}$
$\mathrm{OH} \quad \mathrm{COOCH}_{3} \quad \mathrm{OCH}_{3}$
$\mathrm{OH} \quad \mathrm{H} \quad \mathrm{OCH}_{3}$
$\mathrm{OH} \quad \mathrm{CON}\left(\mathrm{CH}_{3}\right)_{2} \quad \mathrm{OCH}_{3}$

Figurc 6. Chemical structures of flavagline compounds in the family Meliaceae

R

Methyl rocaglate (Aglafoline) [4.45]
Rocaglamide [4.50]
Rocaglaol [4.52]
Rocagloic acid [4.53]
$\mathrm{COOCH}_{3}$
$\mathrm{CON}\left(\mathrm{CH}_{3}\right)_{2}$
H
COOH

$\mathrm{R}_{2}$
$\mathrm{R}_{3}$
1-O-Acetyi-N-butanoyl-didesmethyl- $\quad \mathrm{OCOCH}_{3} \mathrm{CONH}_{\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OH} \quad \mathrm{H}}$ rocaglamide [4.1]
N -butanoyl-didesmethylrocaglamide [4.12]
$\mathrm{OH} \mathrm{CONH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OH} \quad \mathrm{H}$
Didesmethylrocaglamide [4.22]
3'-Hydroxydemethyl- rocaglamide $\mathrm{OH} \quad \mathrm{CONHCH}_{3} \quad \mathrm{OH}$ [4.31]
3'-Hydroxydidemethyl-rocaglamide
$\mathrm{OH} \quad \mathrm{CONH}_{2}$ OH [4.33]

Figure 6. Chemical structures of flavagline compounds in the family Meliaceae (continued)


1-Oxime-3'-methoxy- methylrocaglate [4.47]


N -Tetrahydrofuran-rocaglamide [4.55]


1-O-Acetyl-4'-demethoxy-3',4'-methylenedioxy-
$\begin{array}{cc}\mathrm{R}_{1} & \mathrm{R}_{2} \\ \mathrm{OCOCH}_{3} & \mathrm{COOCH}_{3}\end{array}$ methyl rocaglate [4.3]
4'-Demethoxy-3', 4'-methylenedioxy-methyl rocaglate [4.16]
OH
OH
$\mathrm{COOCH}_{3}$
4'-Demethoxy-3',4'-methylenedioxyrocaglaol [4.19]
1-O-Formyloxy-4'-demethoxy-3',4'-methylenedioxyOCHO H methyl rocaglate [4.28]

Figure 6. Chemical structures of flavagline compounds in the family Meliaceae (continued)


1-Oxo-4'-demethoxy-3',4'-methylenedioxy rocaglaol [4.20]


Aglaiastatin (aglaroxin D) [4.11]



Figure 6. Chemical structures of flavagline compounds in the family Meliaceae (continued)


R
6-Demethoxy-6,7-methylenedioxy rocaglamide $\quad \mathrm{H}$
(aglaroxin A) [4.18]
3'-Methoxyl-6-demethoxy-6,7-methylenedioxy $\mathrm{OCH}_{3}$ rocaglamide [4.39]


6-Demethoxyl-6,7-methylenedioxymethylrocaglate $\quad \mathrm{OH} \quad \mathrm{H}$
(Pannellin) [4.17]
3'-Methoxypannellin [4.41] $\mathrm{OH} \quad \mathrm{OCH}_{3}$
Pannellin 1-O-acetate [4.49]
$\mathrm{OCOCH}_{3} \quad \mathrm{H}$


1-Oxo-2-piriferine-6-demethoxy-6,7-methylenedioxy rocaglamide [4.48]
Figure 6. Chemical structures of flavagline compounds in the family Meliaceae (continued)


	$\mathrm{R}_{1}$	$\mathrm{R}_{2}$
8b-O-Ethyl-demethylrocaglamide [4.24]	$\mathrm{CONHCH}_{3}$	$\mathrm{OC}_{2} \mathrm{H}_{5}$
8b-O-Ethyl-3'-hydroxyrocaglamide [4.25]	$\mathrm{CON}\left(\mathrm{CH}_{3}\right)_{2}$	$\mathrm{OC}_{2} \mathrm{H}_{5}$
Ethylrocaglaol [4.26]	H	H



6-Demethoxy-2'-hydroxy-3'-methoxy-6,7-methylenedioxy rocaglamide [4.15]


Cyclorocaglamide
(6-demethoxy-8b,2'-epoxy-3'-methoxy-6,7-methylenedioxyrocaglamide) [4.13]

Figure 6. Chemical structures of flavagline compounds in the family Meliaceae (continued)


Rocaglaol-3'-rhamnose [4.51]

$\begin{array}{cl}8 \mathrm{~b}-\mathrm{O} \text {-methyl-methyl rocaglate [4.44] } & : \mathrm{R}=\mathrm{COOCH}_{3} \\ \text { 8b-O-methylrocaglaol [4.46] } & : \mathrm{R}=\mathrm{H}\end{array}$


$$
\begin{gathered}
\text { Episilvestrol }[4.23]\left(5^{\prime \prime \prime} S\right) \\
\text { Silvestrol }[4.54]\left(5^{\prime \prime} R\right)
\end{gathered}
$$

Figure 6. Chemical structures of flavagline compounds in the family Meliaceae (continued)


Figure 6. Chemical structures of flavagline compounds in the family Meliaceae (continued)



Elliptifoline [4.68]

Figure 6. Chemical structures of flavagline compounds in the family Meliaceae (continued)


3'-Hydroxyaglain C [4.73]


Chulalongikorin Universit $\mathrm{R}_{1}$	$\mathrm{R}_{2}$	
Isothapsakin B [4.74] (H-3 $\beta, \mathrm{H}-4 \alpha)$	OH	H
Thapsakin A 10-O-acetate $[4.75](\mathrm{H}-3 \alpha, \mathrm{H}-4 \beta)$	H	OAc
(13S)-Thapsakin B [4.77] (H-3 $\beta, \mathrm{H}-4 \alpha)$	H	OH

Figure 6. Chemical structures of flavagline compounds in the family Meliaceae (continued)

(13R)-Thapsakin B [4.76]


$$
\begin{array}{ll}
\text { CHULALONGIKRNN UNIV } & \mathrm{R}_{1} \\
\text { Thapsakon A [4.78] }(\mathrm{H}-3 \alpha, \mathrm{H}-4 \beta) & =\mathrm{O} \\
\text { Thapsakon B [4.79] (H-3 } \beta, \mathrm{H}-4 \alpha) & =\mathrm{O}
\end{array}
$$

Figure 6. Chemical structures of flavagline compounds in the family Meliaceae (continued)


Grandiamide A [4.69]


Aglain - $O$-glycoside [4.59]

Figure 6. Chemical structures of flavagline compounds in the family Meliaceae (continued)



8-Demethoxy-7,8-methylenedioxyaglaforbesin [4.84]

Figure 6. Chemical structures of flavagline compounds in the family Meliaceae (continued)


Aglaforbesin - $O$-glycoside [4.83]


Forbaglin A [4.85] (13R) (19S)
Forbaglin B [4.86] (13S)
(13R)-Thapoxepine B [4.92] (13R)
(13S)-Thapoxepine B [4.93]

$\mathrm{R}_{1}$	$\mathrm{R}_{2}$	$\mathrm{R}_{3}$
$\mathrm{OCH}_{3}$	H	$\mathrm{C}_{2} \mathrm{H}_{5}$
$\mathrm{OCH}_{3}$	H	$\mathrm{C}_{2} \mathrm{H}_{5}$
$-\mathrm{OCH}_{2} \mathrm{O}-$	$\mathrm{CH}_{3}$	
$-\mathrm{OCH}_{2} \mathrm{O}-$	$\mathrm{CH}_{3}$	

Figure 6. Chemical structures of flavagline compounds in the family Meliaceae (continued)


Homothapoxepine A [4.88] (13S)
(13R)-Thapoxepine A [4.90] (13R)
(13S)-Thapoxepine A [4.91] (13S)
$\mathrm{R}_{1} \quad \mathrm{R}_{2}$
$\mathrm{R}_{3}$ $\begin{array}{lr}-\mathrm{OCH}_{2} \mathrm{O}- & \mathrm{C}_{2} \mathrm{H}_{5} \\ -\mathrm{OCH}_{2} \mathrm{O}- & \mathrm{CH}_{3} \\ -\mathrm{OCH}_{2} \mathrm{O}- & \mathrm{CH}_{3}\end{array}$

$\begin{array}{lll}\mathrm{R}_{1} & \mathrm{R}_{2} & \mathrm{R}_{3}\end{array}$

Forbaglin- $O$-glycoside [4.87]
Glucose
$\mathrm{CH}_{3}$
$\mathrm{CH}_{3}$
4'-Hydroxy-10-acidic-21-deglycosyloxy H
H
H

## forbaglin [4.89]

Figure 6. Chemical structures of flavagline compounds in the family Meliaceae (continued)

