การสังเคราะห์ การศึกษานอกกายและในกาย ของเด็กซตริน-ซิโดวูดีนคอนจูเกต

นางสาว สุมาลี วรรณาชัยสิทธิ์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาเทคโนโลยีเภสัชกรรม คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2549 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

492177

Thesis Title	SYNTHESIS, IN VITRO AND IN VIVO STUDIES
	OF DEXTRIN-ZIDOVUDINE CONJUGATE
Ву	Miss Sumalee Wannachaiyasit
Field of study	Pharmaceutical Technology
Thesis Advisor	Associate Professor Ubonthip Nimmannit, Ph.D.
Thesis Co-advisor	Professor Ruth Duncan, Ph.D.

Accepted by the Faculty of Pharmaceutical Sciences, Chulalongkorn University in Partial Fulfillments of the Requirements for the Doctoral Degree

(Associate Professor Pornpen Pramyothin, Ph.D.)

THESIS COMMITTEE

(Associate Professor Papavadee Klongpityapong)

When this Nimmannit .Thesis Advisor

(Associate Professor Ubonthip Nimmannit, Ph.D.)

Parleroom Tuyammany_____Member

(Associate Professor Parkpoom Tengamnuay, Ph.D.)

Waranghe_ Naring Member

(Assistant Professor Warangkana Warisnoicharoen, Ph.D.)

Samilihand Prov ...Member

(Associate Professor Sunibhond Pummangura, Ph.D.)

สุมาลี วรรณาชัยสิทธิ์: การสังเคราะห์ การศึกษานอกกายและในกายของเด็กซตริน-ซิโดวูดีน กอนจูเกต (SYNTHESIS, IN VITRO AND IN VIVO STUDIES OF DEXTRIN-ZIDOVUDINE CONJUGATE) อ. ที่ปรึกษา: รศ. คร. อุบลทิพย์ นิมมานนิตย์, อ. ที่ปรึกษา ร่วม: Professor Ruth Duncan, 146 หน้า.

ซิโควูดีนเป็นยารักษาโรคเอคส์ซึ่งเกิดจากเชื้อเอชไอวี โดยรักษาเดี่ยวหรือร่วมกับยาต้าน ไวรัสชนิดอื่น เนื่องด้วยก่ากรึ่งชีวิตของซิโดวูดีนสั้นดังนั้นจึงต้องให้ยาในขนาดสูงและบ่อยกรั้งใน การรักษาการติดเชื้อเอชไอวีซึ่งมีผลเสี่ยงต่อกวามเป็นพิษของยาสูง เพื่อที่จะแก้ข้อเสียเหล่านี้ จึงได้ สังเคราะห์เด็กซตริน-ซิโดวูดีนคอนงูเกตขึ้นเพื่อให้เวลาในการปลดปล่อยยาซิโดวูดีนนานขึ้น ขั้น แรกในการสังเคราะห์ ซิโดวูดีนทำปฏิกิริยากับซักซินิกแอนไฮไดรด์ ได้ซักซินิเลทเทตซิโดวูดีน จากนั้นคอนจูเกตกับเด็กซตริน ตรวจสอบคุณลักษณะโครงสร้างของเด็กซตริน-ซิโดวูดีนคอนจูเกต โดยวิชีอินฟราเรคและ โปรตอนนิวเคลียร์แมกเนติก เด็กซตริน-ซิโดวูดีนคอนจูเกตบรรจุยาได้ 18.92 เปอร์เซ็นต์ ตรวจสอบการปลคปล่อยของซิโควูดีนอิสระและซักซินิเลทเทตซิโควูดีนจากเด็กซตริน-ซิโควูดีนคอนจูเกตนอกกายในสารละลายบัฟเฟอร์ที่พีเอช 5.5, 7.4 และในพลาสมาของมนุษย์ ซิโควูคืนและซักซินิเลทเทตซิโควูคืนรวมปลคปล่อยจากคอนจูเกต 1.4 % ที่พีเอช 5.5, 41.7 % ที่พี เอช 7.4 และ 78.4 % ในพลาสมาของมนุษย์หลังจาก 24 ชั่วโมง การปลดปล่อยยาสมบูรณ์ใน พลาสมาของมนุษย์ภายใน 48 ชั่วโมง การศึกษาผลของเด็กซตริน-ซิโดวูดีนคอนจูเกตต่อการสลาย เม็ดเลือดแดง พบว่ามีผลต่อการสลายเม็ดเลือดแดงต่ำ การศึกษาความเป็นพิษต่อเซลล์ของเด็กซ ตริน-ซิโควูดีนคอนจูเกตในเซลล์เยื่อบุของปอด พบว่ากอนจูเกตแสดงความเป็นพิษต่ำกว่าซิโควูดีน อิสระ การศึกษาการปลดปล่อยยาในกายได้ทดสอบในหนูโดยการให้เด็กซตริน-ซิโดวูดีนคอนจูเกต และซิโควูคืนอิสระโคยการฉีคเข้าทางหลอคเลือคคำ เด็กซตริน-ซิโควูคืนคอนจูเกตแสดงการ ปลดปล่อยยาซิโดวูดีนเนิ่นนานในกระแสเลือดเมื่อเปรียบเทียบกับซิโดวูดีนอิสระ คุณสมบัติทาง เภสัชจลนศาสตร์ของเด็กซตริน-ซิโควูดีนคอนจูเกตดีขึ้น เช่น ก่ากรึ่งชีวิตของซิโควูดีนจากเด็กซ ตริน-ซิโดวูดีนคอนจูเกตเพิ่มจาก 1.3 ชั่วโมงเป็น 19.3 ชั่วโมง

> ลายมือชื่อนิสิต สุเภคี กรรณาเข้าสิทธิ์ ลายมือชื่ออาจารย์ที่ปรึกษา และเกาะประการเป็น

สาขาวิชา เทค โน โลยีเภสัชกรรม ปีการศึกษา 2549 # 4476972033: MAJOR PHARMACEUTICAL TECHNOLOGY (INTERNATIONAL) PROGRAM KEYWORD : DEXTRIN, ZIDOVUDINE, CONJUGATE, POLYMERIC PRODRUG

SUMALEE WANNACHAIYASIT: SYNTHESIS, *IN VITRO* AND *IN VIVO* STUDIES OF DEXTRIN-ZIDOVUDINE CONJUGATE. THESIS ADVISOR: ASSOC. PROF. UBONTHIP NIMMANNIT, Ph. D. THESIS COADVISOR: PROF. RUTH DUNCAN, Ph. D. 146 pp.

Zidovudine was used for the treatment of acquired immunodeficiency syndrome (AIDS) caused by human immunodeficiency viruses (HIV) as a single or combination therapies. The short plasma half-life of zidovudine demands a frequent and large dose regimen for the treatment of HIV infections resulting in a high risk of toxicities. To overcome these drawbacks dextrin-zidovudine conjugate was synthesized to prolong the Zidovudine firstly reacted with succinic anhydride and the release of zidovudine. succinylated zidovudine was subsequently conjugated with dextrin. The structure of the dextrin-zidovudine conjugate was characterized by FT-IR and ¹H-NMR spectroscopy. The drug loading in the dextrin-zidovudine conjugate was 18.92 percent. The in vitro releases of free zidovudine and succinylated zidovudine from the dextrin-zidovudine conjugate were investigated in buffer solutions at pH 5.5, 7.4 and in human plasma. The total released zidovudine and succinylated zidovudine from the conjugate were 1.4 % at pH 5.5, 41.7 % at pH 7.4 and 78.4 % in human plasma after 24 h. The drug release was complete in human plasma within 48 h. The study of red blood cell lysis showed that the dextrin-zidovudine conjugate exhibited low hemolytic effect. The cytotoxicity of the dextrin-zidovudine conjugate was investigated in lung epithelial cells and the result showed that the dextrinzidovudine conjugate was less toxic than free drug. An in vivo drug release study was conducted in rats. The dextrin-zidovudine conjugate and free zidovudine were administered by intravenous route. The dextrin-zidovudine conjugate showed prolonged release of zidovudine compared with free zidovudine in blood circulation. The pharmacokinetic properties of the dextrin-zidovudine conjugate such as plasma half-life were improved. The zidovudine plasma half-life of the dextrin-zidovudine conjugate was extended from 1.3 h to 19.3 h.

Field of study Pharmaceutical Technology Academic year 2006 Student's signature Sumalee Wannachaiyasit Advisor's signature Wernthip Nimman sut

ACKNOWLEDGEMENTS

I am very grateful to my thesis advisor, Associate Professor Dr. Ubonthip Nimmannit, for support, valuable comments and suggestions, guidance, supervision, kindness and constant encouragement throughout my graduate study. I would like to express my sincere appreciation to Professor Ruth Duncan, my thesis co-advisor, for her kindness, helpful and guidance and to Dr. María Jesús Vicent, my thesis consultant, for her kindness, helpful and valuable advice. I appreciate Dr. Pithi Chanvorachote for his valuable advice and encouragement. I am very much obliged and honoured to the members of committee for their scrutiny and discussion.

I would like to sincerely thank Thailand Research Fund Royal Golden Jubilee for providing the scholarship throughout my graduate study (grant number 5.Q.CU.44/A.1). I would like to thank the Scientific and Technological Research Equipment Center, Chulalongkorn University for their assistance in the instrumental analysis such as IR and NMR. I would like to thank the Government Pharmaceutical Organization (GPO) for providing zidovudine and to Dr. Khanit Suwanborirux for providing sephadex.

I am most grateful to the Pharmaceutical Technology (International) Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University and Centre for Polymer Therapeutics, Welsh School of Pharmacy, Cardiff University (Cardiff, Wales). I would like to thank all members in the Pharmaceutical Technology (International) Program and in the Centre for Polymer Therapeutics for their help and encouragement.

Above all, I would like to express my deepest gratitude and infinite thankfulness to my family for their love, concern, understanding, encouragement and precious spiritual support throughout my life.

Finally, I would like to thank Miss Kaew Kajornchaiyakul, Mr. Mikael Laisola, my friends and other people, whose names have not been mentioned, for their friendship, encouragement and help during the time of my study. I am deeply indebted to many people who have made their kind contributions to my study.

CONTENTS

ABSTRACT (THAI)	iv
ABSTRACT (ENGLISH)	v
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
LIST OF TABLES	ix
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	xvi
CHAPTER	
I INTRODUCTION	1
II LITERATURE REVIEW	
1. AIDS	
2. AntiHIV drugs	11
3. HIV/AIDS therapy	
4. Zidovudine	
5. Polymer therapeutics	
6. Dextrin as polymeric drug carrier	
III MATERIALS AND METHODS	
1. Synthesis and characterization of succ	inylated zidovudine35
2. Synthesis and characterization of dext	rin-zidovudine conjugate37
3. HPLC analysis	
4. HPLC analysis in plasma	
5. In vitro drug release	
6. Hemolysis study	
7. Cytotoxicity study	
8. In vivo study	48

PAGE

IV	RESUTLS AND DISCUSSION	
	1. Synthesis and characterization of succinylated zidovudine	
	2. Synthesis and characterization of dextrin-zidovudine conjugate	
	3. HPLC analysis	
	4. HPLC analysis in plasma	
	5. In vitro drug release	
	6. Hemolysis study	
	7. Cytotoxicity study	
	8. In vivo study	
v		
REFE	RENCES	
	NDICES	
	PENDIX I	
	PENDIX II	
VITA		

I

LIST OF TABLES

TABLE	PAGE
1. Doses of nucleoside reverse transcriptase inhibitors	
2. Doses of non-nucleoside reverse transcriptase inhibitors	14
3. Doses of HIV protease inhibitors	
4. The effects of co-administration of antiHIV drugs	
5. The gradient elution program of HPLC	40
6. UV absorbance of dextrin-zidovudine conjugate	
7. Integrated area of protons of dextrin-zidovudine conjugate	
for calculation of drug loading	
8. Accuracy of zidovudine	
9. Accuracy of succinylated zidovudine	
10. Intraday precision of zidovudine	
11. Intraday precision of succinylated zidovudine	
12. Interday precision of zidovudine	
13. Interday precision of succinylated zidovudine	
14. Linearity of zidovudine	
15. Linearity of succinylated zidovudine	
16. Limit of quantitation of zidovudine	
17. Limit of quantitation of succinylated zidovudine	
18. Accuracy of zidovudine in plasma	
19. Accuracy of succinylated zidovudine in plasma	
20. Intraday Precision of zidovudine in plasma	
21. Intraday Precision of succinylated zidovudine in plasma	
22. Interday Precision of zidovudine in plasma	
23. Interday Precision of succinylated zidovudine in plasma	
24. Linearity of zidovudine in plasma	
25. Linearity of succinylated zidovudine in plasma	
26. Limit of quantitation of zidovudine in plasma	
27. Limit of quantitation of succinylated zidovudine in plasma	

TABLE

DA	CF
rA	GL

28. Pharmacokinetic parameters of zidovudine following intravenous	
administration at the dose of 8.46 mg/kg in rats $(n = 3)$	113
29. Pharmacokinetic parameters of the dextrin-zidovudine conjugate	
following intravenous administration at the dose of 8.46 mg/kg in	
rats $(n = 3)$. The concentration is expressed as zidovudine equivalent	114
30. Summary of pharmacokinetic parameters of zidovudine and of the	
dextrin-zidovudine conjugate following intravenous administration	
at the dose of 8.46 mg/kg in rats	114
31. Release of zidovudine from the dextrin-zidovudine conjugate in	
buffer solutions at pH 5.5	.139
32. Release of succinylated zidovudine from the dextrin-zidovudine conjugate	
in buffer solutions at pH 5.5	139
33. Release of zidovudine from the dextrin-zidovudine conjugate in buffer	
solutions at pH 7.4	140
34. Release of succinylated zidovudine from the dextrin-zidovudine conjugate	,
in buffer solutions at pH 7.4	140
35. Release of zidovudine from the dextrin-zidovudine conjugate in plasma	141
36. Release of succinylated zidovudine from the dextrin-zidovudine conjugate	
in plasma	141
37. Hemolytic effect of dextrin, dextran, the dextrin-zidovudine conjugate, PEI,	
zidovudine, and combination of zidovudine and dextrin	142
38. Cytotoxicity towards lung epithelial BEAS-2B cells after incubation with	
dextrin, dextran, the dextrin-zidovudine conjugate, PEI, zidovudine,	
and the combination of dextrin and zidovudine	143
39. Zidovudine plasma concentrations at various time intervals following	
intravenous administration of free zidovudine in rats	144
40. Zidovudine plasma concentrations at various time intervals following	
intravenous administration of the dextrin-zidovudine conjugate in rats	145

LIST OF FIGURES

FIGURE

1.	Succinylation of zidovudine	3
2.	Conjugation of succinylated zidovudine and dextrin	4
3.	Structure of HIV	7
4.	HIV life cycle	9
5.	The course of HIV infection	10
6.	Chemical structures of nucleoside reverse transcriptase inhibitors	12
7.	Chemical structures of non-nucleoside reverse transcriptase inhibitors	14
8.	Chemical structures of protease inhibitors	15
	Chemical structure of entry inhibitor	
10	. Chemical structure of zidovudine	20
11	. Mechanism of action of zidovudine	21
12	. Schematic representation of polymer therapeutics; polymeric drug (a),	
	polymer-protein conjugate (b), polyplex (c), polymer-drug conjugate (d)	
	and polymeric micelle (e)	27
13	. Model of polymer-drug conjugates	28
14	. Chemical structure of dextrin	30
15	. HPLC Chromatogram indicating high purity of resulting succinylated	
	zidovudine	
16	. Dextrin-zidovudine conjugate containing succinic spacer	54
17	. Standard curve of zidovudine in water (UV spectroscopy, $\lambda = 266 \text{ nm}$)	56
18	. HPLC chromatogram of stavudine internal standard, zidovudine, and	
	succinylated zidovudine	
19	. Standard curve of zidovudine	
20	. Standard curve of succinylated zidovudine	60
21	. Linearity of zidovudine	69
22	Linearity of succinylated zidovudine	71

FIGURE

23. HPLC chromatogram of buffer pH 5.5 (A), buffer pH 7.4 (B),	
dextrin-zidovudine conjugate (C)	73
24. HPLC chromatogram of stavudine internal standard, zidovudine, and	
succinylated zidovudine in plasma	74
25. Standard curve of zidovudine in plasma	
26. Standard curve of succinylated zidovudine in plasma	
27. Linearity graph of zidovudine	
28. Linearity of succinylated zidovudine	
29. HPLC chromatogram of plasma	
30. Ester cleavage on the succinic spacer	
31. Release profile of the dextrin-zidovudine conjugate at pH 5.5	
and 37 + 0.1 °C (mean + S.D., n=3)	
32. Linear regression of starting drug release of the dextrin-zidovudine	
conjugate at pH 5.5 (mean + S.D., n=3)	
33. Release profile of the dextrin-zidovudine conjugate at pH 7.4	
and 37 + 0.1 °C (mean + S.D., n=3)	
34. Linear regression of starting drug release of the dextrin-zidovudine	
conjugate at pH 7.4 (mean + S.D., n=3)	
35. Linear regression of release profile of the dextrin-zidovudine conjugate	
at pH 7.4 (mean + S.D., n=3)	
36. Release profile of the dextrin-zidovudine conjugate in plasma,	
at 37 + 0.1 °C (mean + S.D., n=3)	.96
37. Linear regression of starting drug release of the dextrin-zidovudine	1.44%
conjugate in plasma (mean + S.D., n=3)	98
38. Linear regression of release profile of the dextrin-zidovudine conjugate	
in plasma (mean + S.D., n=3)	99
39. Hemolytic effect of dextrin, dextran, PEI and the dextrin-zidovudine	
conjugate (A) and those of the dextrin-zidovudine conjugate, zidovudine	
and combination of zidovudine and dextrin (B) (mean \pm SD $n=3$)	101

FIGURE

40.	. Cytotoxicity towards BEAS-2B cells after incubation with dextrin, dextran,	
	the dextrin-zidovudine conjugate and PEI (A) and those	
	after incubation with the dextrin-zidovudine conjugate, free zidovudine and	
	the combination of dextrin and zidovudine (B) (mean + S.D., n=3)	103
41	. Zidovudine plasma concentrations versus time after intravenous	
	administration of zidovudine in rat (n1)	104
42.	. Zidovudine plasma concentrations versus time after intravenous	
	administration of zidovudine in rat (n2)	105
43	. Zidovudine plasma concentrations versus time after intravenous	
	administration of zidovudine in rat (n3)	105
44	. Zidovudine plasma concentrations versus time after intravenous	
	administration of the dextrin-zidovudine conjugate in rat (n1)	106
45	. Zidovudine plasma concentrations versus time after intravenous	
	administration of the dextrin-zidovudine conjugate in rat (n2)	106
46	. Zidovudine plasma concentrations versus time after intravenous	
	administration of the dextrin-zidovudine conjugate in rat (n3)	107
47	. Linear regression of ln-transformed plasma concentrations versus time	
	after intravenous administration of zidovudine in rat (n1)	108
48	. Linear regression of In-transformed plasma concentrations versus time	
	after intravenous administration of zidovudine in rat (n2)	109
59	. Linear regression of ln-transformed plasma concentrations versus time	
	after intravenous administration of zidovudine in rat (n3)	109
50	. Linear regression of In-transformed plasma concentrations versus time after	
	intravenous administration of the dextrin-zidovudine conjugate in rat (n1)	110
51.	. Linear regression of ln-transformed plasma concentrations versus time after	
	intravenous administration of the dextrin-zidovudine conjugate in rat (n2)	110
52.	. Linear regression of ln-transformed plasma concentrations versus time after	
	intravenous administration of the dextrin-zidovudine conjugate in rat (n3)	111

FIGURE

53. Average zidovudine plasma concentration versus time after intravenous	
administration of the dextrin-zidovudine conjugate in rats $(n = 3)$	115
54. UV spectrum of zidovudine in water with λ_{max} of 266 nm	128
55. UV spectrum of dextrin-zidovudine conjugate in water with λ_{max} of 267 m	m_128
56. FT-IR spectrum of zidovudine (KBr disc)	129
57. FT-IR spectrum of succinylated zidovudine (KBr disc)	130
58. FR-IR spectrum of dextrin (KBr disc)	131
59. FT-IR spectrum of dextrin-zidovudine conjugate (KBr disc)	132
60. ¹ H-NMR spectrum of zidovudine (CDCl ₃ , 300 MHz)	133
61. ¹ H-NMR spectrum of succinylated zidovudine (CDCl ₃ , 400 MHz)	134
62. ¹ H-NMR spectrum of dextrin (D ₂ O, 400 MHz)	135
63. ¹ H-NMR spectrum of dextrin, expanded (D ₂ O, 400 MHz)	136
64. ¹ H-NMR spectrum of dextrin-zidovudine conjugate (D ₂ O, 400 MHz)	137