NANOSTRUCRURED METAL OXIDE SYNTHESIS USING MICROEMULSION FOR PHOTOCATALYTIC DECOMPOSITION AND GAS SENSOR APPICATIONS

Theera Anukunprasert

A Dissertation Submitted in Partial Fulfilment of the Requirements
for the Degree of Doctor of Philosophy

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,
and Case Western Reserve University

2006

ISBN 974-9990-15-3

Thesis Title:

Nanostructured Metal Oxide Synthesis Using Microemulsion

for Photocatalytic Decomposition and Gas Sensor Applications

By:

Theera Anukunpreasert

Program:

Petrochemical Technology

Thesis Advisors:

Assoc. Prof. Chintana Saiwan

Prof. Enrico Traversa

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

> Nantage Samuelt College Director (Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

Nantayor Tununit

(Assoc. Prof. Nantaya Yanumet)

(Prof. Enrico Traversa)

(Assoc. Prof. Chintana Saiwan)

(Assist. Prof. Tawan Sooknoi)

(Dr. Hathaikarn Manuspiya)

Hathailarn Manuspiga

ABSTRACT

4591003063: Petrochemical Technology

Theera Anukunprasert: Nanostructured Metal Oxide Synthesis Using

Microemulsion for Photocatalytic Decomposition and

Gas Sensor Applications

Thesis Advisors: Assoc. Prof. Chintana Saiwan, Prof. Enrico

Traversa, 97 pp. ISBN 974-9990-15-3

Keywords: Metal oxides/ Titanium dioxide/ Tin oxide/ Microemulsion/

Gas Sensor / Cabon monoxide/ Photocatalysis/ Phenol

The single (TiO₂, SnO₂) and/or mixed metal oxides (Nb-TiO₂, Nb-TiO₂-SnO₂) were synthesized by two microemulsion, the anionic surfactant system (nheptane/water/NaCl/ sodium bis (2-ethylhexyl) sulfosuccinate (AOT)) and the nonionic surfactant system (cyclohexane/water/Triton X-100). The nanostructural effect, i.e. the crystal size, crystal structure, and surface area and phases of metal oxides were studied in gas and liquid phase applications. For liquid phase, the photolysis of phenol in aqueous solution by using synthesized TiO₂ (single oxide system) as a photocatalyst was examined. For gas phase, both single oxide and mixed metal oxides were used to study CO gas in a sensor application. For liquid phase study, the results indicated that the rate of phenol decomposition can be improved by the exposed titanium sites on the surface controlled by the nanostructure of synthesized TiO₂. For gas phase study, Nb-doped TiO₂ clearly showed an improve thermal stability by hindering the anatase to rutile phase transformation and inhibiting the grain growth resulting in significant increase in CO sensitivity. For Nb-TiO₂-SnO₂, the mixed solid solution phase between Ti and Sn and high thermal stability has strong effect on the high sensitivity of CO.

บทคัดย่อ

ชีระ อนุกูลประเสริฐ : การสังเคราะห์โลหะออกไซด์โดยใช้ไมโครอิมัลชันเป็นเครื่อง ปฏิกรณ์นาโนเพื่อการประยุกต์ในการสลายตัวด้วยแสงและการตรวจจับก๊าซ (Nanostructured Metal Oxide Synthesis Using Microemulsion for Photocatalytic Decomposition and Gas Sensor Applications) อ. ที่ปรึกษา : รศ. คร. จินตนา สายวรรณ์ และ ศ. เอ็นริโก ทรา-เวอร์ ซา xx หน้า ISBN 974-9990-15-3

การสังเคราะห์โลหะออกไซค์ (ไททาเนียมไดออกไซค์ และ ทินออกไซค์) และโลหะ ออกไซค์แบบผสม (ในโอเบียมโคปไททาเนียมไคออกไซค์ และ ในโอเบียมโคปไททาเนียม ออกไซค์และทินออกไซค์) โคยใช้ไมโครอิมัลชั้นสองระบบ ได้แก่ ระบบที่ใช้สารลดแรงตึงผิว ชนิคมีขั้วลบ (นอมอลเฮปเทน/น้ำ/โซเคียมคลอไรค์/โซเคียมบีสทูเอททิลเฮกซิลซัลโฟซักซิเนต (เอ โอที)) และระบบที่ใช้สารลดแรงตึงผิวที่ไม่มีขั้ว (ไซโคเฮกเซน/น้ำ/ไททรอนเอ็กซ์-100) การศึกษาผลกระทบเนื่องมาจากโครงสร้างในระดับนาโนเมตร เช่น ขนาดของโครงสร้างผลึก รูปร่างโครงร่างผลึก พื้นที่ผิวและเฟสของโลหะออกไซค์ต่อการประยุกต์ใช้งานในก๊าซเฟส และใน เฟสของเหลว สำหรับเฟสของเหลว ใททาเนียมใคออกใชค์ถกใช้เป็นตัวเร่งปฏิกริยาการสลายตัว ด้วยแสงของฟีนอลในน้ำ และสำหรับเฟสก๊าซ ใช้โลหะออกไซค์และโลหะออกไซค์แบบผสม ตรวจจับก๊าซพิษการ์บอนมอนนอกไซค์ ผลการศึกษาในเฟสของเหลวพบว่า อัตราเร็วของปฏิกริยา การสลายตัวค้วยแสงของฟีนอลเพิ่มขึ้นเนื่องจากการเพิ่มแเอคทีฟไซค์บนพื้นที่ผิวของไททาเนียม ไดออกไซด์ซึ่งเป็นผลจากโครงสร้างระดับนาโนเมตรของไททาเนียมไดออกไซด์ ผลการทดลอง ในส่วนของก๊าซเฟสพบว่า ในโอเบียมโคปไททาเนียมไคออกไซค์สามารถเพิ่มความคงทนต่อ อุณหภูมิของโลหะออกไซค์ทำให้การเปลี่ยนเฟสจากอนาเทสเป็นรูไทค์เกิคไค้ช้าลง อีกทั้งยังช่วย ป้องกันการเติบโตของโครงร่างผลึก ยังผลให้สัญญานในการตรวจจับก๊าซคาร์บอนมอนนอกไซด์ เพิ่มขึ้นอย่างรวดเร็ว สำหรับผลจากการทดลองที่ใช้ในโอเบียมโดปไททาเนียมและทินออกไซด์ พบว่าการเพิ่มขึ้นอย่างรวดเร็วของสัญญานการตรวจจับก๊าซการ์บอนมอนนอกไซค์ของโลหะ ออกไซค์ผสมดังกล่าวเป็นผลเนื่องมาจากความทนต่ออุณหภูมิสูงและผลจากเฟสผสมระหว่างไท ทาเนียมและทินออกไซด์

ACKNOWLEDGEMENTS

The work can not be successful without the participation of the following individual and organization.

I would like to express my appreciation to my thesis advisors, Prof. Enrico Traversa and Assoc. Chintana Saiwan, for their guidances and assiatances while I was conducting my research. I would like to thank Dr. Maria Luisa Grilli, Dr. Elisabetta Di Bartolomeo, Dr. Laure Chevallier and all friends and staff at the University of Rome "Tor" Vergata for their help and support.

It is a pleasure to acknowledge the Thailand Research Fund for supporting the research work and a scholarship and the Petroleum and Petrochemical College for opportunity to study in the Ph.D. program. I would like to give my deepest thankfulness for Dr. Angkhana Jaroenworaluck and M-TECH for TEM micrographs. I would like to thank Mr. Robert Wright for his valuable advice to write papers and thesis.

Special thanks are forwarded to Mr. Nathin Tongsiri, my friends, staff at PPC, Consulate in Rome and last but not least my family for sharing great times in my life. Without their love and support, I would not be able to success my Ph.D. degree.

TABLE OF CONTENTS

					PAGE
	Title	Page	2		i
	Abst	ract (in Eng	glish)	iii
	Abtra	act (i	n Thai)	iv
	Ackr	nowle	edgeme	ents	V
	Table	e of (Conten	ts	vi
	List	of Ta	bles		X
	List	of Fig	gures		xi
CHA	APTE	CR.			
	I		TROI	DUCTION	
		1.1	The-	State-of-the-Art	1
		1.2	Obje	ctive	2
		1.3	Scop	e of Works	2
		1.4	Meta	l Oxide and Nanostructure Metal Oxide	3
		1.5	Micro	oemulsion	7
		1.6	Nano	ometal Oxide Synthesis using microemulsion	8
	II	RE	VERS	E MICELLES MICROEMULSION FOR	
		ME	ETAL	OXIDE SYNTHESIS	
		2.1	Abstr	act	11
		2.2	Introd	luction	11
		2.3	Exper	riments	
			2.3.1	Materials	12
			2.3.2	Formation of the Microemulsion	13
			2.3.3	Preparation of Metal Oxide Particles in	13
				the Microemulsion	
			2.3.4	Characterization of Microemulsions	14
			2.3.5	Characterization of Particles	14
		2.4	Result	s and Discussion	15

CHAPTER	PAGE
2.4.1 Microemuslion Preparation	15
2.4.2 Synthesis of Metal Oxide Particles in	. 16
Microemulsions	
2.5 Conclusion	18
2.6 Acknowledgements	18
2.7 Reference	18
III MICROSTRUCTURE EFFECT OF	
NANOCRYSTALLINE TITANIUM DIOXIDI	Ε
PREPARED BY MICROEMULSION TECHN	IQUE
ON PHOTOCATALYTIC DECOMPOSITION	NOF
PHENOL	
3.1 Abstract	28
3.2 Introduction	28
3.3 Experiments	
3.3.1 Reagents	30
3.3.2 Microemulsion Preparation	30
3.3.3 Precipitation	31
3.3.4 Characterization	31
3.3.5 Photocatalytic Experiments	32
3.4 Results and Discussion	
3.4.1 Effects of Salt on Micellar Size and W	ater 32
Content	
3.4.2 Synthesis of Titanium Dioxide Particles	32
In Microemulsions and Their Character	ization
3.4.3 Photocatalytic Degradation of Phenol	33
3.5 Conclusions	35
3.6 Nomenclature	36
3.6 Acknowledgements	36

CHAPTE	PAGE	
	3.7 Reference	36
IV	THE DEVELOPMENT OF GAS SENSOR FOR	
(CARBON MONOXIDE MONITORING USING	
1	NANOSTRUCTURE OF NB-TiO ₂	
	4.1 Abstract	45
	4.2 Introduction	45
	4.3 Experiments	
	4.3.1 Nano Size TiO ₂ : Preparation	46
	and Characterization	
	4.3.2 Microstructural Analysis of Thick Film Sensor	47
	4.4 Results and Discussion	
	4.4.1 Nano Size TiO ₂ Chracterization	47
	4.4.2 Microstructure Analysis on Thick-Film TiO ₂	48
	Sensor	
	4.4.3 Gas-Sensitivity Electrical Response of Thick	49
	Film	2007-20
	4.5 Conclusion	50
	4.6 Acknowledgements	50
	4.7 Reference	50
V	NANOSTRUCTURED MIXED OXIDES AS AGAS	
	SENSOR FOR CARBON MONOXIDE	
	(CO) MONITORING	
	5.1 Abstract	61
	5.2 Introduction	61
	5.3 Experiments	63
	5.3.1 Metal Oxides Preparation	63
	5.3.2 Sensor Fabrication	64

CHAPTER	PAGE
5.3.3 Materials Characterization	65
5.3.4 Gas Sensing Measurment	. 65
5.4 Results and Discussion	
5.4.1 Structure and Mcrostructura	l Analysis of 66
Powder	
5.4.2 Structure and Mcrostructural A	analysis of 68
Thick-Film	
5.4.3 CO Sensing Response	69
5.5 Conclusion	72
5.6 Acknowledgements	72
5.7 Reference	72
VI CONCLUSIONS	94
FUTURE WORK	95
REFERENCES	97
CURRICULUM VITAE	102

LIST OF TABLES

TABLE		PAGE	
	CHAPTER II		
2.1	BET specific surface area and XRD phase of titanium		
	dioxide particles synthesized from different types of		
	microemulsions heated to 460°C for 5 h and commercial		
	titanium dioxide	27	
3.1	CHAPTER III Comparison of properties obtained from different techniques	39	
	CHAPTER V		
2.1	Conditions for preparation of different atomic ratios of		
	precursors	92	
2.2	Mean crystal size of powder determined by XRD using the Scherrer formula	92	
2.3	Overall properties of synthesized mixed oxide	93	

LIST OF FIGURES

FIGURE		PAGE	
	CHAPTER I		
1.1	Change in resistance of semiconducting materials	6	
1.2	Change in conduction through nanostructured metal oxides	7	
1.3	Reverse micelles microemulsion (w/o)	8	
	CHAPTER II		
2.1	Micellar sizes (a) and water contents (b) in anionic		
	surfactant system	22	
2.2	Effect of tempearure on nonionic surfactant system; with		
	addition of n-hexanol (a) and without the adition of		
	n-hexanol (b)	23	
2.3	Transmission electron micrographs of titanium dioxide		
	obtained from (a) 4.0% NaCl, (b) 6.0% NaCl, (c) 8.0% NaCl		
	microemulsions	24	
2.4	The TEM picture of TiO ₂ after calcined at 550°C (a) and		
	950°C (b) and Nb-TiO ₂ after calcined at 550°C (c) and		
	950°C (d)	25	
2.5	HR-TEM of anatase plane 101 of Nb-TiO ₂ calcined at 950°C	26	
	CHAPTER III		
3.1	Effect of NaCl on water content in reverse micelle		
	microemulsion	40	
3.2	Effect of NaCl on micellar size of reverse micelle		
	microemulsion	40	

CHAPTER III

3.3	XRD patterns of TiO ₂ from different preparation techniques:	
	(a) bulk precipitation; (b) microemulsion in the absence of	
	NaCl; (c) microemulsion with 4 wt% NaCl; (d)	
	microemulsion with 6 wt% NaCl; and (e) commercial P25	41
3.4	TEM results of TiO ₂ from different techniques: (a) bulk	
	precipitation; (b) microemulsion in the absence of NaCl; (c)	
	microemulsion with 4 wt% NaCl; (d) microemulsion with 6	
	wt% NaCl; and (e) commercial P25	41
3.5	Photocatalytic degradation rate of phenol on TiO ₂	
	synthesized from microemulsion with various initial	
	concentrations of phenol	42
3.6	Plot of the inverse initial rate of photocatalytic degradation	
	with respect to the inverse of initial concentration of phenol	42
3.7	Photocatalytic degradation rate of phenol: TiO ₂ synthesized	
	from microemulsion with various NaCl concentrations.	
	Phenol concentration was 50 ppm and TiO ₂ was 0.1 g·m. ⁻³	43
3.8	Photocatalytic degradation rate of phenol: TiO ₂ synthesized	
	from microemulsion (6 wt% NaCl) compared with P25 and	
	the bulk precipitation	43
3.9	TOF as a function of mean crystal size of TiO ₂	44
3.10	TOF as a function of BET surface area of TiO2	44
	CHAPTER IV	
4.1	TEM image of TiO ₂ powder calcined at 450°C (a), the HR-	
	TEM of anatase structure (plane 101) of pure TiO2 calcined	
	at 450°C (b) and 3 % Nb-doped TiO ₂ calcined at 850°C (c)	53

CHAPTER IV

4.2	The effect of calcination temperature on average specific	
	surface area and crystal size of powders	54
4.3	XRD pattern of pure TiO ₂ with various calcination	
	temperatures from 550°-850°C	55
4.4	XRD pattern of Nb-doped TiO2 at calcination temperature of	
	850°C	56
4.5	Effect of firing temperatures on a transformation from	
	anatase to rutile structure of thick film sensors	57
4.6	Sensor response to CO (1000 ppm) at an operating	
	temperature of 550°C from the pure TiO2 at firing	
	temperatures from 650-850°C	58
4.7	Sensor response to step of CO (1000 ppm) of 3% mole Nb-	
	TiO ₂ at the operating temperature of 550°C with firing	
	temperatures from 650-950°C	59
4.8	Effect of stability of anatase phase on sensitivity of CO	
	(1000 ppm) at the operating temperature of 550°C	60
	CHAPTER V	
5.1	XRD pattern of TN (a), TSN 101 (b) and TSN 11 (c)	
	powders calcined at 650°C	77
5.2	TEM image of Nb-TiO ₂ powder (a) and the HR-TEM (b) of	
	anatase structure (plane 101) of TiO ₂ calcined at 650°C	78
5.3	TEM image of TSN101 powder (a) and the HR-TEM (b) of	
	solid solution of SnO ₂ mixed TiO ₂ calcined at 650°C	79
5.4	TEM image of TSN11 powder (a) and the HR-TEM (b) of	
	solid solution of SnO ₂ mixed TiO ₂ calcined at 650°C	80
5.5	XRD patterns of films fired at 650°C; TSN 11 film (a), TSN	
	101 film (b), grained SnO ₂ mixed Nb-TiO ₂ with 1:1 ratio (c),	
	Nb-TiO ₂ (d), SnO ₂ (e) and alumina substrate (f)	81

CHAPTER V

5.6	XRD pattern of; TSN 101 film fired at 850°C (a) and TSN	
	11 film fired at 750° (b) and 850°C (c)	82
5.7	SEM picture from: TN sensor film (a); TSN 101 film (b);	
	and TSN 11 film (c), fired at 650 °C before CO gas	
	measurement	83
5.8	SEM picture from TSN 101 film after CO gas measurement	84
5.9	Sensor response of TSN 11 (a), TSN 101 (b) and TN (c)	
	fired at 650 °C to 200-1000 ppm CO at 550°C with an	
	applied voltage of 15 V	85
5.10	Sensor response of TSN 11 fired at 650 °C to 20-100 ppm	
	CO at 550°C with an applied voltage of 15 V	86
5.11	SEM micrographs of TSN 11 sensors fired at 850 °C a)	
	before CO gas measurement and b) after CO measurement at	
	550°C	87
5.12	Sensor response of TSN 11 sensors fixed at 650°, 750° and	
	850°C in the 20-1000 ppm range of CO in air	88
5.13	Comparison of gas response of SnO ₂ fired at 400°C, mixed	
	TSN 11 fired at 850°C, and TSN 11 prepared from	
	microemulsion (TSN 11, ME) fired at 850°C. to 1000 ppm	
	of CO at 550°C	89
5.14	Nyquist plot of TSN 11 film fired at 550°C. The numbers	
	above the spectra correspond to the logarithm of the	
	measurement frequencies	90
5.15	Nyquist plot of TSN 101 film fired at 550°C. The numbers	
	above the spectra correspond to the logarithm of the	
	measurement frequencies	91