CHAPTER V

PARTITION FUNCTION AND EXCITATION SPECTRUM

5.1 PARTITION FUNCTION

The main work in statistical mechanicial problems is finding a partition function

of a system. From a discussion in the chapter II the partition function was defined as

0= Tr[e"’"] = Tr{a, }Tr{b, .b}e'p" (5.1)

s

with another form of the partition function in path integral formalism as a functional

integral of action,
; e Y -
0 = [[1Da;Da, [T] Db; Db,e”. (5.2)
q k

Adding the constraint of conservation of the number of particles into the above

equation, the partition function for a system of /N interacting bosons becomes,
_ . . 1 . S .
0= Jl:_[DananI];IDb, Db, *E-}-deExp[zy(n -N) +;] (5.3)

=¥ s a Fourier integral form of 8(n— N).

where, ,/_;_,;-[dye
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Substituting § from the last chapter and separate n into two parts, a new form of Q is

derived,

Y . . §
0= E_“:[Danaq”_:I Db, Db,t_[d)uE::cp[iy(Ia]z - N)+~;:| (54)

s ol 2o 5 oo 2 o
7 "‘{Z“J“e“:?aes(w)+ 23 [b;e,0;3,8(£.2) +,,,c.]}
(;/Vz)z ‘[dt{z[aqa-vb b +h C]+22b+a b,a g(E,E)}

[ ﬁ]’/‘f)z J dr{ng:a;b.a,g(a,q)} (5.5)

From the above equation, it was found the functional Q, is also § . Returning to a

consideration of the functional §, it was found that § consists of some integrals of

pure a_ terms and a mixture of a, and b, terms.

In the first step, an attempt was made to arrange a number of terms of a_ and b,

to a matrix form. Two new matrix parameters were established:

el =Y
B,=| & . d (5.6)
_TI —'_‘—CDt +Vv

and,
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=3 blaleEa) s
q
where,
h2k2
o =7—+(g(7.9)+ ¢k, £) plq). (5.8)
1 -
h='2720,,a,,3(k.§), (3.9
q
l .
and p(q)='i; aa,. (5.10)
q
Then

and,
0= 1Tl oo - H{E el s B 2 |
xII:IDb:Db,Exp[%j%t;{[bf b_,][B,{::*J%([b: b)f+ f;[:iDH (5.12)

From here the value of g will be zero while k corresponds to every momentum larger

than zero, Using a Guassian integration method [26] the partition function becomes

0=] Dlaolex;{—z—lh-I [Z pig(00) +$§a; %‘H
xl:[[ne:[s, ]]—lE(;{% Idz( IAS:AN f,)] (5.13)
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The problem is how to calculate both terms inside the product H of the above result.
k

Yarunin {18, 19} has shown the determinant of the matrix M,

k
where, M, = d 2
a4
2 da "t
i
is Def[-M,]" =

lfa]
Sink? %{(Tt + p(O)g(%. )+ 8(00)) - v) —{p(o{wﬂr

(o, - v)]
1440809+ O CA)- £EI)]

[Der(-B,)]" =%

Exp

(SRR

B

Sinh’[% |7 +p(0)2(0.0) - v} '+ 2p(0)s (. )

—

(5.14)

hIkZ
where, 7, = Py
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In the next step, the idea to calculate the last integral in equation (5.13) is evaluated.
Consider the matrix B, which has differentiation operators in diagonal parts. The
research system is, surely, closed to thermal equilibrium. Therefore, all terms which

depend on time or temperature can be neglected. Thus. it is necessary to replace B, by

CI:
- W, -V Ye
ct_[ [ _wtw} (5.15)
Then,
2 1 \ 1g .oa
P} ) G B ) D Y
-1 1 . -1
x]:[[De:[B,]] Exp{;_[dt( el cf,)] (5.16)
where,

Finally, the partition function becomes
b
0

B
0= —-fﬂvfdp(O)IdvExp[%I (p(0)- Rt = [2 (p(O))’g(o,O)}:]H 8, (5.17)

whcrc“’,

) Ey is evaluated in section 5.2 by definition of singularities of partition function.
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r [ n*k? z-\
e-—f-(wr") .‘idt )2 (_ ) (@ -v) @, - 2m -2y
3, = Exp{ | —(p(0)) (k.0 - > > (5.18)
4s;'nh’{-£i E*(')} Lo 4 E; +3y,|

g(k.k)+ g(0,0)

2 , the partitfon function depends

Replacing the magnetude of g(E ,0) by

on the interaction between condensate particies and the interaction between over

condensate particles.

5.2 EXCITATION SPECTRUM

From the partition function of our system we know that its poles shown that

excitation spectrum has two poles at
anh’(-fi[(n + p05(00)~ ) +20(0)g(,E)(T, + p05(00)=v) + 5*O)g*(E. E) - (£ 9))}* ) =0
(5.19)

Defining E, as excitation spectrums, then,

E, =[(5, + p(0)g(0.0) - v)" + 2p(0)g(E.E)(T; + p(0)(0.0) - v) + p* (0)g? (. ) - g*( .0))]’4
(5.20)

and, from the gapless characteristic of the excitation spectrums, it is possible to separate

the spectrum into two branches. By the gapless condition it is possible to set the value of

E, when k=0 is zero, then
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E,o=(Epo) = [( p(0)2(0.0)-v)" +2p(0)g(0,0)(0(0)2(0,0) - v)] (5.21)

(Eeno) = ((0)5(0.0)- v)(3p(0)2(00)-v) (5.22)

The parameter v which satisfies the above condition are v =p(0)g(0,0) and

v = 3p(0)2(0,0). Substituting v into equation (5.20), two branches of the excitation

spectrum of the research system corresponding to v are established:

E,, = [(T. + pl0)g(k ) = (p(0) gk ,0))2F , v =p(0)g(0,0) (5.23)

E, » = |(T, - 20(0)2(0,0))(7; ~20(0)(s(0.0)- (k. )+ p(0)g2(%.E)- *(k .0))F,
v = 3p(0)2(0,0)

Both spectrums are dependent of the interaction between intercondensate particles,

£(0,0), and the interaction between the over condensate particles, g(l? k ) I g(0,0),

and g(k,k) from chapter 3 are replaced, the final form of E,; and E,» becomes

k 2
nkt) | 2 ""c“"("]
E,, = ( ] cv, plof ——224_ 1

+ -_—
2m | (21)° k 4+k

k
arct -
2 )
cv, p(0) (2 1 1

(2r)? 4 kK 4+k’ T4

N4 (5.25)
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and,

E,, =[(T: ~20(0)5(0.0))" +2p(0)g{£.E)T; ~2p(0)5(00))+ p*(0)(g*(%. ) - g2 (£.0)
k

(n*k*]’+p(o)cbo{ m‘“‘{?) 11 n’HJ

2m n? kK 4+k* 2\ 2m

—
—

kK 4+k: 16

k
_[2p(0)cuo]‘ mta‘{i) /4

(2r)* 16

{p(O)CU,,]’ ‘“‘“”(%) I "(IT E

T (5.26)

Figures 5.1-5.6, below, show the behaviour patterns of E,, and E,, with replacing

p{0) in equation (5.25) and equation (5.26) by (27)Y" p,.
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Figure 5.1 The first branch the excitation spectrum of m=4 and P =130
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Figure 5.2 The first branch of excitation spectrum of m=4 and p, = 120,130,140,150
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Figure 5.3 The second branch of excitation spectrum of m=4 and p, = 130
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Figure 5.4 The second branch of excitation spectrum of m=4 and p, = 100,110,120,130
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Figure 5.5 The first branch and the second branch of excitation spectrum of m=4 and

P, =130
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Figure 5.6 The first branch and the second branch of excitation spectrum of m=2 and

P, =250
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It can be seen that E; has a similar shape to the excitation spectrums of liquid
helium investigated by Landau [9, 10] and Feynman [14, 27]. However, by present
research method it is possible to derive the excitation spectrums from the microscopic

point of view.

For another branch, it can be seen that it is aveilable at a high momentum
regime. The density of ground state particles is the only parameter to characterize the
existence of the first and the second branches when we fix the others variables. The first
branch requires a large enough density of the ground state particles in the low
momentum limit but the second branch exist in any of the density of ground state

particles which is lower than the existed density of the first branch.

-

Finally, the existence of the second in the conditions that the density of the |
ground state particles is lower than the existed density of the ground state particles of
the first branch and the particles occupied high momentum is consistent with the

" experimental results of Griffin and Glyde [16] and [28, 29].
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