
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EMPIRICAL STUDY OF SOURCE LEVEL DIFFICULTY 

Mr. Xiao Liu 

A Thesis Submitted in Partial Fulfillment of the Requirements 
for the Degree of Master of Science Program in Computer Science and Information 

Technology 
Department of Mathematics and Computer Science 

Faculty of Science 
Chulalongkorn University 

Academic Year 2013 
Copyright of Chulalongkorn University 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

การศึกษาเชิงประสบการณ์ของความยากระดับต้นฉบับ 

นายเซียว หลิว 

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต 
สาขาวิชาวิทยาการคอมพิวเตอร์และเทคโนโลยีสารสนเทศ ภาควิชาคณิตศาสตร์และวิทยาการ

คอมพิวเตอร์ 
คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย 

ปีการศึกษา 2556 
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย 

 



 

 

Thesis Title EMPIRICAL STUDY OF SOURCE LEVEL DIFFICULTY 
By Mr. Xiao Liu 
Field of Study Computer Science and Information Technology 
Thesis Advisor Associate Professor Peraphon Sophatsathit, Ph.D. 
  

 Accepted by the Faculty of Science, Chulalongkorn University in Partial 
Fulfillment of the Requirements for the Master's Degree 

 

 Dean of the Faculty of Science 

(Professor Supot Hannongbua, Dr.rer.nat.) 

THESIS COMMITTEE 

 Chairman 

(Professor Chidchanok Lursinsap, Ph.D.) 

 Thesis Advisor 

(Associate Professor Peraphon Sophatsathit, Ph.D.) 

 Examiner 

(Assistant Professor Saranya Maneeroj, Ph.D.) 

 External Examiner 

(Associate Professor Damras Wongsawang, Ph.D.) 

 



 iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THAI ABSTRACT  

เซียว หลิว : การศึกษาเชิงประสบการณ์ของความยากระดับต้นฉบับ. (EMPIRICAL 
STUDY OF SOURCE LEVEL DIFFICULTY) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: รศ. ดร.พีระ
พนธ์ โสพัศสถิตย์, 55 หน้า. 

วัตถุประสงค์ของวิทยานิพนธ์นี้คือวิจัยการวัดความยากระดับต้นฉบับอย่างตรงไปตรงมา
โดยใช้กลุ่มตัววัดมาตรฐานที่ใช้กัน ได้แก่ ตัวด าเนินการ ปัจจัยการด าเนินการ พารามิเตอร์ อินพุต
และเอาท์พุต การด าเนินการแฟ้มข้อมูล ฟังก์ชันภายนอกหรือไลบารี การประกาศตัวแปร และ
กราฟการใหล  งานวิจัยนี้ใช้ภาษาหกชนิดในการวัดความยากคือ ซี ซีชาร์บ จาวา ไพตอน พีเอชพี 
และเพิล โดยศึกษาปัญหาสี่ประเภทคือ การเทียบความเหมือน อินพุต/เอาท์พุต การค านวณ และ
การเปรียบเทียบ  งานวิจัยนี้ใช้โปรแกรมตัวอย่าง 156 โปรแกรมจากอินเทอร์เน็ตเป็นข้อมูล  วิธี
วิจัยคือแปลงต้นฉบับเป็นกราฟการใหลแล้ววัดด้วยมาตรวัดซอฟต์แวร์มาตรฐาน คือ LOC, CCM, 
และ HCM ผลการทดลองพบว่า ต้นฉบับที่เขียนด้วยภาษาแปลมีความซับยากมากกว่าภาษา
ตีความ นอกจากนี้ ไม่มีภาษาหนึ่งภาษาใดที่เหมาะสมกับปัญหาทุกประเภท ผลลัพธ์เป็นการช่วย
ให้ผู้พัฒนาโปรแกรมสามารถเลือกภาษาที่เหมาะสมกับงานที่จะท าให้เกิดผล 

ภาควิชา คณิตศาสตร์และวิทยาการ
คอมพิวเตอร์ 

สาขาวิชา วิทยาการคอมพิวเตอร์และ
เทคโนโลยีสารสนเทศ 

ปีการศึกษา 2556 

 

ลายมือชื่อนิสิต   
 

ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก   
 

 

 



 v 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ENGLI SH ABSTRACT  

# # 5572602523 : MAJOR COMPUTER SCIENCE AND INFORMATION TECHNOLOGY 
KEYWORDS: SOFTWARE METRICS / SOURCE CODE COMPLEXITY / COMPILED 
LANGUAGE / INTERPRETED LANGUAGE 

XIAO LIU: EMPIRICAL STUDY OF SOURCE LEVEL DIFFICULTY. ADVISOR: 
ASSOC. PROF. PERAPHON SOPHATSATHIT, Ph.D., 55 pp. 

This thesis aims to provide a straightforward measurement for source 
level difficulty of programs using a set of well-established measurements, namely, 
operators, operands, parameters, inputs and outputs, file operations, external 
functions or libraries, variable declarations, and flow graphs. Six popularly used 
programming languages, namely, C, C#, Java, Python, PHP, and Perl are selected 
to measure and assess source code difficulty. Four classes of problems are 
studied, i.e., matching, I/O, computation, and comparison, One hundred and fifty 
six programs written in the aforementioned programming languages are collected 
from the Internet to be measured. The approach transforms source code into 
program flow graph and utilizes traditional software metrics, namely, LOC, CCM, 
and HCM to measure code complexity. Experiments show that source code 
written in compiled languages have greater difficulty than those written in 
interpreted languages. In addition, there is no one language which is suitable for 
all types of problems. As a consequence, developers can decide on language that 
is appropriate for the task to be implemented. 

Department: Mathematics and 
Computer Science 

Field of Study: Computer Science and 
Information Technology 

Academic Year: 2013 

 

Student's Signature   
 

Advisor's Signature   
 

 

 



 vi 

ACKNOWLEDGEMENTS 
 

After more than one year of hard work, I am to complete my thesis. As I 
enjoy my achievement, as I appreciate those teachers, professors and classmates 
who helped me with it. 

During the three years of study in Chulalongkorn University of Thailand, I 
learnt a lot and recognized my own shortcomings. The teaches here are more 
friendly and approachable than those in China. At the beginning when I came here as 
a stranger, I worried that I couldn’t communicate with teachers and classmates and 
that I couldn’t learn because my English was not very good. It was Professor 
Peraphon who made me not worry about that and made myself at home. On the 
first day of school, he kindly introduced me to everyone and asked them to take 
care of me. As for my study, all my teachers and classmates were very enthusiastic 
to help me. They often asked where I don't know and explained to me. 

In the twinkling of an eye, my study career in Chulalongkorn University 
comes to an end. In my supervisor, Peraphon's careful guidance and help, I finally 
finished the expected graduation thesis. Firstly, I appreciate my supervisor Peraphon 
who has rigorous scholarship and profound professional knowledge. When I set 
about writing my paper, I didn’t know how to choose my title due to lack of research 
experience. It was Peraphon who guided me to decide the Innovative research topic 
and offered me some valuable reference books. In the process of writing, not only 
did he carefully read my each manuscript and pointed out the problems, but he told 
me how to revise and supervised me to finish it on time. His enthusiasm and 
patience strengthened my confidence to complete my thesis. Therefore, I thank him 
for all that he did for me. 

Secondly, I am grateful to professor Childchanok and all the teachers, like 
Suphakant, Nagul, Saranya, Pattarasinee, and Rajalida who taught me a lot of 
computer basic professional knowledge and theoretical knowledge which are useful 
for my paper. I am still grateful to my classmates who helped me learn when I came 
across the difficulties in my study. 

Finally, I would like to thank my parents. They offered me a guarantee for 
my living. When I encountered difficulties, they comforted and encouraged me to 
pull through. 

 



CONTENTS 
  Page 

THAI ABSTRACT ............................................................................................................................. iv 

ENGLISH ABSTRACT .......................................................................................................................v 

ACKNOWLEDGEMENTS ................................................................................................................. vi 

CONTENTS ..................................................................................................................................... vii 

LIST OF TABLES ............................................................................................................................. 1 

LIST OF Figures .............................................................................................................................. 3 

INTRODUCTION .............................................................................................................................. 1 

1.1 Problem Identification ...................................................................................................... 1 

1.2 Objective and Contributions ............................................................................................ 2 

1.3 Scope of Work and Constraints ...................................................................................... 2 

1.4 Outline of the Thesis ........................................................................................................ 2 

LITERATURE REVIEW ..................................................................................................................... 3 

BACKGROUND KNOWLEDGE ........................................................................................................ 6 

3.1 Metrics and Software Metrics .......................................................................................... 6 

3.2 Software Complexity Metrics........................................................................................... 6 

3.2.1 Lines of Code .................................................................................................................. 7 

3.2.2 McCabe’s Cyclomatic Complexity Metrics ................................................................ 7 

3.2.3 Halstead’s Complexity Metrics .................................................................................... 7 

3.2 4 Henry’s and Kafura’s Metrics ....................................................................................... 8 

METHODOLOGY ............................................................................................................................. 9 

4.1 Initial Metrics Statistics ...................................................................................................... 9 

4.1.1 Operators .......................................................................................................................... 9 

4.1.2 Operands ........................................................................................................................ 10 

4.1.3 Parameters ..................................................................................................................... 11 

4.1.4 Inputs and Outputs ...................................................................................................... 11 

4.1.5 File Operations .............................................................................................................. 12 

4.1.6 External References...................................................................................................... 12 



 viii 

  Page 

4.1.7 Variable Declarations ................................................................................................... 12 

4.2 Flow Graph Transformation ........................................................................................... 13 

4.3 Data Analysis Process ...................................................................................................... 15 

4.3.1Range of the Numerical Spread .................................................................................. 15 

4.3.2 Normalized Data to Standardize the Results .......................................................... 16 

4.3.3 Standard Deviation of the Dispersion from the Average ...................................... 16 

4.3.4 Group Average and Standard Deviation ................................................................... 17 

4.4 Comparative Evaluation ................................................................................................. 17 

EXPERIMENTAL RESULTS ........................................................................................................... 19 

5.1 Experimental Preparation ............................................................................................... 19 

5.2 Experimental Results ...................................................................................................... 21 

5.3 Discussion .......................................................................................................................... 49 

CONCLUSION ............................................................................................................................... 51 

REFERENCES ................................................................................................................................. 52 

VITA ................................................................................................................................................ 55 

 



 

 

 

LIST OF TABLES 

Table Page 

Table 4.1 Operators of different programming languages ............................................  10 

Table 5.1 The abbreviations and their meanings............................................................  19 

Table 5.2 Numbers of sample programs ..........................................................................  21 

Table 5.3 Metrics of string matching program in each language .................................  42 

Table 5.4 Metrics of array copying program in each language .....................................  42 

Table 5.5 Metrics of open and close program in each language ................................  42 

Table 5.6 Metrics of read and write program in each language ..................................  43 

Table 5.7 Metrics of append and update program in each language ........................  43 

Table 5.8 Metrics of numerical computation program in each language ..................  44 

Table 5.9 Metrics of condition program in each language............................................  44 

Table 5.10 Metrics of branch program in each language ..............................................  44 

Table 5.11 Metrics of loop program in each language ..................................................  45 

Table 5.12 Range of each group.........................................................................................  45 

Table 5.13 Normalized average of each group ...............................................................  45 

Table 5.14 Normalized average of each language..........................................................  46 

Table 5.15 Normalized standard deviation of each group ...........................................  46 

Table 5.16 Normalized standard deviation of each language ......................................  46 

 



 
 

 

2 

Table 5.17 Result summary of language difficulty under specific functional 
applications .............................................................................................................................  

 

49 

Table 5.18  Summary of language difficulty under the specific functional 
application ..............................................................................................................................  

 

50 

 

  



 
 

 

3 

LIST OF Figures 
Figures Page 

Figure 4.1 Flow graph of computing N factorial ..............................................................  14 

Figure 4.2 Part of flow graphs converted from Java source code ...............................  15 

Figure 5.1  C sample code ...................................................................................................  23 

Figure 5.2  C# sample code.................................................................................................  27 

Figure 5.3  Java sample code ..............................................................................................  30 

Figure 5.4  Python sample code.........................................................................................  33 

Figure 5.5  PHP sample code ..............................................................................................  37 

Figure 5.6  Perl sample code ..............................................................................................  41 

Figure 5.7 Standard deviation of compiled and interpreted groups ..........................  47 

Figure 5.8 Standard deviation of compiled language: C, C# and Java .......................  47 

Figure 5.9 Standard deviation of interpreted language, Python, PHP and Perl ........  48 

 

 

 



 

 

CHAPTER I 

 

INTRODUCTION 

1.1 Problem Identification 

As one of the greatest inventions in the 20th century, computers have had a profound 

impact on human life. With the development of computer science, the application fields of 

computers have been getting ever wider, from scientific computing to current scientific 

research and education, aerospace, finance, health care and many other areas. However, along 

with growing software size, software complexity has also been increasing rapidly. As a result, 

the thought-provoking software crisis broke out in the 1960s. Some notable reasons for the 

software crisis is the lack of effective metrics in the development of software engineering and 

the lack of emphasis on software engineering and software quality. This in turn calls for 

research expansion to software metrics. 

Software metrics attempts to reduce the time and cost spent on testing phase of the software 

development life cycle (SDLC), which can only be enforced when program coding is done. 

Effective management of development process requires quantification, measurement, and 

modeling. Software metrics provides a quantitative basis for the development and validation 

of software development process model, thus improving productivity and quality. Software 

quality improvement is a quantitative measure of the quality of source code, which can be 

achieved through definition of metrics. The values of software metrics can be calculated by 

analyzing source code, aka program coded. 

A number of software metrics widely used in the software industry are still not well 

understood, although some software complexity measures were proposed over thirty years 

ago. Nonetheless, software growth is usually considered in terms of the complexity of source 

code. Various software metrics are used, but failed to compare approaches and results. In 

addition, it is not possible or easy to evaluate a given source code. As complexity primarily 

deals with program comprehensibility and software maintainability, the degree to which 

characteristics that hamper software maintenance are present and determined by software 

complexity. 

Early in the 1970’s, software complexity attracted public attentions. The modularization 

program styles and the object-oriented paradigms were both introduced to lower such 

complexity. Meanwhile, a number of useful metrics were employed to measure various level 

of software complexity, yet were inadequate to settle this problem. 

As software becomes more and more complex, the cost inevitably increases. Software 

organizations are trying to find ways to reduce it. Research efforts are spent on finding the 

relation of software features and the extent of the problem that would lessen the cost burden. 

One aim of the investigation in software complexity and its measurement is to control the 

expenditures of software development, operation, and maintenance over its life time. 

Unfortunately, software complexity is an inherent property that cannot be straightforwardly 



 
 

 

2 

identified, described, and measured. Worse yet, it is often disregarded in the development 

planning process and incorporated as an after-thought artifact. This is particularly apparent 

during the maintenance phase where considerable amount of efforts are expended to modify 

the source code. The overwhelming magnitude of complexity poses a challenge for 

researchers to reckon with. 

1.2 Objective and Contributions 

This research aims to provide a straightforward measurement of source level complexity of 

programs using a set of well-established measurements, namely, operators, operands, 

parameters, inputs and outputs, file operations, external functions or libraries, variable 

declarations, and flow graphs. Six popularly used programming languages, namely, C, C#, 

Java, Python, PHP, and Perl are selected and divided into two groups: the complied group and 

the interpreted group, to effectively measure and assess source code complexity. 

1.3 Scope of Work and Constraints 

All the source codes were collected from the Internet and of different sizes written in C, C#, 

Java, Python, PHP, and Perl. The LOC of some programs are between 50 and 100 lines for 

short programs, and from 200 to 600 lines for longer ones. The Visustin v7 Flow chart 

generator is adopted to generate the flow graph for each program. 

1.4 Outline of the Thesis 

The remaining contents are organized into six chapters. Chapter II reviews the literature 

within the last five years that focuses on software complexity on source level. Chapter III 

gives an introduction to software metrics and reviews several traditional software complexity 

metrics, such as LOC, CCM, HCM, and HKM. And LOC, CCM, and HCM are used in part 

of the research in Chapter IV. A new method for measuring the complexity of source code 

written in different programming languages is proposed in Chapter IV. Chapter V presents the 

experimental results of 156 programs of different sizes written in C, C#, Java, Python, PHP, 

and Perl, and makes a comparison of these results. Finally, Chapter VI draws a conclusion of 

this research.



 
 

 

3 

CHAPTER II 

 

LITERATURE REVIEW 

 

Many researches on software complexity have been carried out in recent years. Several 

metrics have been defined and tested in specific environments. Although remarkable 

successes have been reported in the initial application and validation of these metrics, 

subsequent attempts to test or apply the metrics in different situations have yielded different 

results. One problem could stem from failure to identify a commonly accepted set of software 

properties. Moreover, there were virtually no theoretical models and metrics to support the 

measurement. Principally, there are three types of well-practiced software complexity metrics, 

namely, process metrics, project metrics, and product metrics [1]. Some classical and efficient 

software complexity metrics introduced in [2] were popularly applied to measure the 

complexity of software. These metrics were compared in [3] to identify which metric was the 

most suitable for the state-of-the-practice development. They are McCabe's Cyclomatic 

complexity (CCM) [4], Halstead's software science [5] complexity metrics (HCM), Kafura’s 

& Henry’s fan-in, fan-out (HKM) and Shao and Wangs’ cognitive functional size [6]. 

While the extent of research in this field is still relatively limited, particularly when 

compared with research on static measurements, the field is growing given the inherent 

advantages of dynamic metrics. Tahir, et al. [7] systematically investigated the researches on 

dynamic software metrics to identify issues associated with their selection, design, and 

implementation. Current measures can be used to compute complexity, but these methods are 

not sufficient to express complexity variations among programming languages. New methods 

are being searched for predicting complexity since high degree of complexity in a module is 

considered inefficient as opposed to low degree of complexity [8]. In addition, the 

measurement helps estimate other quality attributes such as testability and maintainability [9]. 

A. Shukla, et al. [10] proposed a metric called control structure based complexity (CSBC). 

The metric is a slight modification of the McCabe metrics. It computes software complexity 

by counting the control structures directly from source code, while McCabe metric counts 

predicate node from the control flow graph. It also solves the problem that predicating node 

applies only to individual module rather than n modules. 

As obfuscation makes the structure of a program harder to analyze and understand, it is 

believed that obfuscation is the opposite of refactoring. A. Capiluppi, et al. [11] proposed a 

method for evaluating the complexity of source code by different obfuscation algorithms and 

different software engineering metrics. It illustrates how the obfuscation algorithms perform 

with object-oriented attributes that should be low in refactoring by using structural metrics. 

S. Sarala and P. Abdul [12] believed that present metrics of source code was unable to 

predict the actual information flow complexity in the modules. So they proposed the IF-C 

metrics to evaluate the complexity of source code, focusing on the improved information flow 



 
 

 

4 

complexity estimation. The IF-C, which is the abbreviation of intra-modular information flow 

complexity, measures the information flow complexity using metrics such as sum of fan-in 

and fan-out(F-(I+O)), code length(C-L) and procedure call(P-C). 

J.J. Vinju, et al. [13] introduced the ideas of Control Flow Patterns (CFPs) and Compressed 

Control Flow Patterns (CCFPs) based on McCabe’s Cyclomatic complexity metrics. The 

method aimed at eliminating the repetitive structure of control flow graphs. They examined 

the proposed ideas with eight open source Java systems and disproved the belief that there 

was a clear-cut relationship between McCabe metrics and understandability. In fact, McCabe 

metrics should be reconsidered a metric for code understandability. 

As most present software metrics measure software complexity based on a per file or a per 

function, Oliver Hummel and Stefan Burger [14] proposed the hm-Index metrics to decrease 

such dependencies based on the h-Index in bibliometrics, which already had a great impact on 

its own field. 

One of the most important features of object-oriented system is the inheritance. Based on 

this feature, S. Misra, et al. [15] proposed a cognitive metric to evaluate the complexity of 

object-oriented code. It considered internal structure of methods to calculate the complexity 

of source code at method level. They validated the metrics both theoretically and empirically, 

and finally proved the robustness of the measure. 

L. Prasad, et al. [16] made an experimental analysis of different software metrics. They 

defined a new set of operational measures for the conceptual coupling of classes to investigate 

the relationships between existing object-oriented metrics (such as coupling and cohesion) 

and procedure-oriented metrics (such as Lines of Code, McCabe’s Cyclomatic complexity, 

and Knot metrics). They proved that these metrics captured new dimensions in coupling 

measurement compared to existing structural metrics. 

As it is known that over 75% of project costs come from maintenance phase where most 

activities involve source code modifications. Such the high cost of maintenance instigates the 

necessity to produce high quality software. R.G. Kula, et al. [17] proposed a set of metrics 

based on programs to investigate a quantitative approach on evaluation of the maintenance 

effort. They compared the metrics with the basic metrics based on source code and found that 

program slicing metrics had the strongest correlation with maintenance effort, while the basic 

metrics had a weak correlation. P. Singh, et al. [18] proposed a software quality assurance 

tool to measure different metrics for C#, as most published papers in object-oriented 

languages concentrated on C++ and Java. The tool generates abstract syntax trees of source 

code at class and method levels. A. Abusasd and I.M. Alsmadi [19] evaluated the relation and 

correlation between two software quality tools: Source Code Analysis (SCA) and Software 

Metrics. They used tools to fix warnings detected by SCA tools. The tools measured before 

and after recommended modifications of SCA. It showed that some specific metrics relating 

to structure, complexity, and maintainability could be significantly impacted by SCA 

modifications. 

Y. Sasaki, et al. [20] believed that metrics did not always represent characteristics of 

software systems. For example, if a structure was a mere repetition of simple operations, 



 
 

 

5 

McCabe’s Cyclomatic complexity became large but the source code would be easy to 

understand. Based on this opinion, they proposed preprocessing for metrics measurement to 

simplify repeated structures in source code. It was proved that the approach was more 

efficient to find low-understandability modules by metrics measurement with preprocessing 

than without it. 

  



 
 

 

6 

CHAPTER III 

 

BACKGROUND KNOWLEDGE 

3.1 Metrics and Software Metrics 

Metrics is the process of describing the numbers or symbols which are distributed to the 

attributes of entities according to the clearly defined rules, or the process of mapping the 

empirical relationship system to the digital relationship system according to the mapping rules 

[21].In this case, human can understand the features of the entities and the relationship 

between them easily. 

Software metrics is a measure of software process and its product, or its applications. The 

measurement, usually using numerical ratings, quantifies some characteristics or attributes of 

the software [22]. Typical measurements include quality of source code, the development 

process, and the accomplished applications [23]. 

As software development progresses, software metrics has been widely studied and has 

become a very important index of software measurement. Many software developers measure 

software quality in many aspects such as design quality, requirements availability and 

consistency, and testable source code. Many project managers measure attributes of processes 

and products to decide if the software is ready for delivery and the budget is exceeded. The 

informed customers measure aspects of the final products to determine if it meets the 

requirements having sufficient quality. 

Fenton and Pfleeger [21] believed that metrics should be established on the basis of 

measurement theory, and be tested whether a given measurement criterion suited the 

particular environment. They proposed four activities needed in the process of software 

measurement: 

1) confirm software attributes concerned 

2) establish empirical relationship system for software attributes 

3) define formalized metrics and map empirical relationship system to digital relationship system 

4) evaluate the measurement criteria 

3.2 Software Complexity Metrics 

Complexity is generally defined as the degree to which a system or component is 

understood. Complexity metrics are used to predict critical information about reliability and 

maintainability of software systems [24]. Software complexity metrics is an essential part of 

software metrics, which focuses on the quality of source code. 

Software complexity is a term that includes properties of software which have a great 

impact on internal interactions. The complexity indicates the interactions among the entities 

of software. The number of interactions would increase exponentially with the number of 

entities, and the value would increase to a point where it is impossible to understand the 

program. 



 
 

 

7 

Software complexity metrics also takes an important part in predicting the failure rate of 

software. As complexity is the leading cause of software errors, the nature of software 

reliability is actually a complexity issue. When the complexity exceeds a certain limit, 

software defects and errors will rise sharply. Thus, software complexity metrics and control is 

an important issue to solve in software reliability engineering. 

Traditional software complexity metrics have been designed and applied for measuring the 

software complexity of structured systems since 1976. Of these metrics, it is found that LOC, 

CCM, HCM and HKM are the most commonly used ones. 

3.2.1 Lines of Code 

Lines of code (LOC) are widely used software metrics for measuring the size of a program 

by counting the number of lines in the program source code. It is used to estimate the effort 

that will be spent on the development, productivity, and maintainability of a program. 

LOC is based on the size of methods and gives measure of physical lines, statements, and 

comments. High value of this metric shows more complexity [2,10]. 

3.2.2 McCabe’s Cyclomatic Complexity Metrics 

McCabe’s Cyclomatic Complexity Metrics (CCM) was proposed by McCabe in 1976. It 

uses the control flow graph (CFG) to compute the complexity of a program. The nodes in 

CFG represent command statements of the program and the edges connecting nodes represent 

the data flow of command statement in the form of order. 

It is defined as 

V(G) = e - n + 2p    (3.1) 

where e is the number of edges, n is the number of nodes, and p is the number of connected 

node or region. This metric gives the measure of independent algorithmic test paths. More 

independent paths mean more testing effort. 

3.2.3 Halstead’s Complexity Metrics 

Halstead’s Complexity Metrics (HCM) attempts to estimate the programming effort [2,5,11] 

which is evaluated statically from the source code. HCM is used to evaluate the measurable 

properties of software and the relations between them. It measures the complexity by 

summarizing the number of operators and operands contained in a program. The measurable 

and countable properties are: 

n1 = number of unique or distinct operators appearing in that implementation, 

n2 = number of unique or distinct operands appearing in that implementation, 

N1 = total usage of all of the operators appearing in that implementation, and 

N2 = total usage of all of the operands appearing in that implementation. 

The difficulty, D, of the program is defined as 

D = (n1* N2 )/(2* n2 )    (3.2) 



 
 

 

8 

3.2 4 Henry’s and Kafura’s Metrics 

Henry and Kafura Metrics (HKM) also proposed the complexity metrics based on the 

number of local information flows entering (fan-in) and exiting (fan-out) in each procedure. 

This metrics is given by 

Complexity = (Proc. Length) * (fan-in * fan-out)
2
   (3.3) 

where length is any measure of length such as LOC or alternatively CCM is sometimes 

substituted. 

All these four metrics can be applied for measuring the component complexity at method 

level based on the availability of source code which would be available in the case of white 

box components. 

  



 
 

 

9 

CHAPTER IV 

 

METHODOLOGY 

 

This study aims to measure the complexity of source code written in different programming 

languages. A method using metrics that focuses on operators, function parameters, file 

operations, and flowcharts is proposed, which is divided into four stages, namely, initial 

metrics statistics, flow graph transformation, data analysis process, and comparative 

evaluation. 

The source programs employed are collected in modern popular software application 

languages and grouped based on their operational characteristics. There are two kinds of 

programming languages: compiled programming languages, such as C, C#, Java, and 

interpreted programming languages, such as Python, PHP, and Perl. A compiled 

programming language is a language whose implementation utilizes compilers instead of 

interpreters. The compilers translate source code into machine code, while interpreters 

execute instructions directly without pre-runtime translation. 

4.1 Initial Metrics Statistics 

For source level complexity evaluation of software, seven kinds of essential programming 

tokens are selected to be evaluated, namely, operators, operands, parameters, inputs and 

outputs, file operations, external function references, and variable declarations. 

This step is to count the number of the following tokens: 

1) operators such as +, -, *, /, %, ->, (), +=, -=, ++, --; 

2) operands in executable statements; 

3) parameters in and out of each module or function; 

4) inputs and outputs of the program; 

5) file operations including open, close, read, and write; 

6) external references including library functions, external source files, and external user-

defined functions; and 

7) variable declarations in the program. 

4.1.1 Operators 

An operator is a program element that takes one or more expressions and produces another 

value. There are different sets of operators in programming languages, such as simple 

arithmetic operations +, -, *, /, logical operations AND or &&, OR or||,NOT or ~, file access 

to an object or a record, and scope resolution operation ::. 

The operators of different programming languages are not exactly the same. For example, () 

in C++ is a non-alphanumeric operator, but is not an operator in Perl. Programs of different 

sizes involve different numbers of operators. Generally speaking, the number of operators 

reflects the scale of the source code to a certain degree. 



 
 

 

10 

In this research, the complexity of source code in six programming languages are studied, 

namely, C, C#, Java, PHP, Perl, and Python. Their operators have certain differences. Table 

4.1 shows the operators of these programming languages. 

Table 4.1 Operators of different programming languages 

 

It can be seen that the simple arithmetic operators such as +, -, *, /exist in all the six 

programming languages, while the operators such as (), [] exist only in C, C#, and Java, but does 

not exist in PHP, Python, and Perl. Note that almost every language has several special operators 

that other languages do not have. For example, the checked and unchecked operators exist only in 

C#, the operators in, not in, is, and is not exist only in Python, and the operator === exists only in 

PHP. 

 

4.1.2 Operands 

As operators have great impact on the complexity of source code, the operands are also an 

important factor of source code complexity. An operand is the object of a mathematical 

operation in mathematics and the part of a computer instruction in computer science. 

In all programming languages, expressions are composed of two components, namely, 

operators and operands. For example, in the expression x+y, x and y are operands and +is an 

operator. In other words, the number of operands is directly related to the number of operators. 

Operators fall into three types: unary operators, binary operators, and ternary operators. A 

unary operator takes only one operand or a single input. The operators, such as ++, --, !,&, 

and ~ are all unary operators. If there is a unary operator in a program, there is one operand. 

Similarly, if there is a binary operator, such as +, -, *, /, or %, there are two operands. There 

is only one ternary operator ?:, which takes three values and adds 3 to the number of operands 

each time it appears in the source code of a program. 

 

 



 
 

 

11 

4.1.3 Parameters 

A parameter is a variable used in a subprogram to refer to one of the arguments and 

provided as an input to the subprogram. Every time the subprogram is called, its arguments 

will point at the corresponding parameters. With that said, the time that a parameter is called 

can reflect the time that the subprogram is called in a program. A parameter refers to the 

variable which is found in the definition of a function, but an argument is usually used to refer 

to the actual value passed. 

In general, a parameter is used to customize a program. Each module or function can have 

its own parameters. The number of parameters differs in different functions. The amount of 

parameters will reflect the number of functions or modules in a program. 

Most modern programming languages allow multiple parameters in different functions. 

Although the syntax of the declaration of a function may be different among the programming 

languages, a typical function with two parameters may be presented by 

 

If this function is called, there will be two variables passed into the function as input 

parameters. Typically, a single function can be called multiple times in a program. If the 

above function appears in a program, the number of parameters increases by 2. 

4.1.4 Inputs and Outputs 

Inputs and outputs are the communication between source code and the outside world. 

Inputs mean the data needed by the program to complete its execution, while outputs are the 

data that a program conveys to the user. 

There are many forms that may be taken by the program to implement input and output 

operations. For example, some programs use graphical components to receiver and return the 

information typed by user, some programs are controlled by clicking the mouse or keyboard, 

and some programs get the information from the internet or devices like scanners. These 

programs all contain input operations. There are many devices used for output operations 

such as monitors and printers. 

In any programming language, input means to put the data into a program, which can be 

achieved by reading data from files or command line, while output means to display the result 

on a screen, printer, or in a file. The file operations will be discussed in the next step. 

Every programming language provides a set of built-in functions to read data as inputs, or 

to output required data. But different programming languages have different input and output 

functions. For example, in Java programming language, input uses a ScannerObject 

connected to System.in and output uses a PrintStream object connected to System.out. In C 



 
 

 

12 

programming language, function scanf() is used to obtain data from the console and printf() 

to output data to output devices. 

4.1.5 File Operations 

File operations are simply the action that one can do to a file. There are six basic types of 

file operations: create, delete, open, close, read, and write. In most cases, the programs that 

are executed on computers handle these operations. It also means that a program with a 

certain scale will involve file operations inevitably, and the number of file operations in a 

program can also represent the scale of the program to a certain degree. 

File operations are similar to the input and output operations, besides the fact that the object 

is replaced by a file. It should be noticed that the functions or the classes about file operations 

differ in different programming languages. Java programming language uses a package 

java.io.File to store information about a file on a computer drive. C programming language 

uses a standard library stdio.h for file operations which provides many functions, such as 

fopen(), fread() and fwrite() to open, read, and write a file. Similar to C programming 

language, PHP programming language also uses the function fopen() to open a file, fread() to 

read a file, and fwrite() to write data to a file. 

In a word, all the operations on files should be counted as the number of file operations. 

4.1.6 External References 

The external references mean the reference of an external function defined outside the 

program, including library functions, external source files, and external user-defined functions. 

For a large program, the elements such as inputs and outputs, file operations, and external 

function references will be used inevitably. As a result, the times they are used in a program 

can also indicate the complexity of source code. 

Library functions are the collection of the implementations of behavior, which are invoked 

by multiple independent programs. When a program invokes a library function, it will obtain 

the result evaluated by the functions without the need to implement that operation by itself. 

So the library functions can simplify the internal structure of a program and improve 

reusability and portability. 

If a program needs a function or a class that is defined in the external source file or the 

external user-defined functions, the programmer will reference this file or function in the 

program. For example, Java programming language usually uses the keyword import to 

reference the needed package at the head of the source code, while PHP programming 

language uses the include() function to reference the external source file. 

4.1.7 Variable Declarations 

In programming languages, a declaration of a variable specifies the identifier, type, and 

other aspects of language elements. In many strongly typed languages, such as C, the 

declaration is of great importance to announce the existence of the element to the compiler, 

while it is not very important to the weakly–typed languages, such as PHP. The scope of a 

variable should also be noticed because there may be several variables in a program with the 

same name. 



 
 

 

13 

By this step, the number of seven essential tokens of various programs in different 

programming languages is obtained, which is to be used in the following steps to evaluate the 

complexity of source code. 

 

4.2 Flow Graph Transformation 

This step transforms each program into a flow graph and counts the number of nodes and 

edges of the flow graph. A flow graph is a diagram that represents an algorithm or a process, 

turning source code into boxes of various kinds and arrows. 

In this study, flow graph transformation is carried out using Visustin v7 Flow Chart 

Generator. It is an automated program flowcharting utility used to create flowcharts from 

source code. Visustin supports 43 languages, including C, C#, Java, PHP, Python, and Perl. 

Figure 4.1 shows the flow graph of the program for computing the factorial of N. A flow 

graph may have the symbols as follows: 

1) Start and end symbols: represented as circles, ovals, or rounded fillet rectangles with the 

words “Start” and “End”. 

2) Arrows: denoting the data passing from one symbol to another symbol that the arrow points 

to. 

3) Generic processing steps: represented as rectangles, such as “M=1” or “F=F*M” in Figure 

4.1. 

4) Subroutines: represented as rectangles with double vertical edges which are used to indicate 

complex processes that may be shown in a separate flow graph. 

5) Input/Output: represented as a parallelogram, such as “Print F” in Figure 4.1. 

6) Conditional or decision: represented as a diamond to show where a decision is necessary, 

usually a Yes/No question or True/False test. The “Is M=N?” in the following figure is a 

conditional. 

  



 
 

 

14 

 
Figure 4.1Flow graph of computing N factorial 

 

Almost all flow graphs contain the above symbols, but some flow graphs may include other 

symbols, such as junction symbols, labeled connectors, and concurrency symbols. 

Figure 4.2 shows parts of the flow graph converted from Java source code. It can be seen 

from the graph that the number of nodes and edges are 31 and 33, respectively. Under 

common conditions, the number of nodes and edges of a large program is generally large. In 

this case, the source code written in different programming languages is transformed into the 

corresponding flow graphs with the number of nodes and edges of the flow graphs as a 

relevant factor to measure the complexity of source code in the corresponding programming 

language. 



 
 

 

15 

 

Figure 4.2 Part of flow graphs converted from Java source code 

4.3 Data Analysis Process 

Once the data from the above two steps are obtained, a quantitative data analysis is needed 

to make sense of what the data means. A quantitative data analysis is the use of statistical 

technologies to describe and analyze the variation of quantitative data. 

Summary statistics describe particular features of a distribution and facilitate comparison 

among distributions. Based on the results of the first two steps, the following statistics are 

computed: range of the numerical spread, normalized data to standardize the results, standard 

deviation of the dispersion from the average, and group average and standard deviation. 

4.3.1Range of the Numerical Spread 

The first step of data analysis process is to discover the range of the numerical spread. The 

range is the simplest method for measuring the variation. It is the total spread in the 

population, which can be obtained from the difference between the maximum and minimum 

values. 

Firstly, the smallest and largest numbers in the data set are identified and represented by 

variables Min and Max respectively. Then, the range of the numerical spread can be evaluated 

by 

Range = Max – Min + 1    (4.1) 

It is necessary to measure the range of the numerical spread by using the first two steps in 

order to identify the whole range of the values. 



 
 

 

16 

4.3.2 Normalized Data to Standardize the Results 

The range is greatly affected by exceptionally small or large values in a population. In 

order to exclude the effect of the exceptional values, one should normalize the data and 

standardize the results. 

Data normalization is the process of mapping the original data range into another scale. It is 

often used in the process of comparing and evaluating some metrics, removing the limit of 

data units, converting them to dimensionless values, and making it possible to compare and 

weight the metrics with different units or magnitudes. In order to get the normalized data, one 

needs a data set minimum and maximum, a normalized scale minimum and maximum, a 

number in the data set, and a normalized value. 

Firstly, identify the largest number in the data set obtained in the above step, and represent 

it with the variable Max. Secondly, identify the smallest and largest numbers in the 

normalized scale and represent them by the variables lowercase a and lowercase b 

respectively, with a=0 and b=1inthis experiment. Thirdly, calculate the normalized value of 

any number X in the data set using 

 

All numbers except CCM and HCM should be normalized by the above equation. Several 

examples of the calculation of normalized value in different programming languages are 

illustrated below. 

1) LOC of C 

LOC of C  = 46/59 = 0.78 

Here 46 represents the value of LOC in C programming language, and 59 represents the 

largest value of LOC in the six programming languages. In this case, 59 is obtained from the 

LOC of Java programming language. 

2) OR of Java (number of operators) 

OR of Java = 16/16 = 1.00 

The maximum value of OR in the programming languages is 16, so the normalized result of 

OR in Java equals 1.00. 

3) EL of C# (number of external functions, libraries, and files) 

EL of C# = 1/5 = 0.20 

Similar to the evaluation of LOC of C programming language, the maximum of EL exists in 

Perl programming language, which is 5, and the value of EL in C# programming language is 1. 

After calculation, the normalized value equals 0.20. 

4.3.3 Standard Deviation of the Dispersion from the Average 

The standard deviation is a measure of the dispersion of data set from its average. The more 

apart the data spread, the greater the standard deviation is. A small standard deviation 



 
 

 

17 

indicates that the points of data are more inclined to be close to the average, while a large 

deviation indicates that the points of data spread over a large range of values. 

For a finite set of data, the standard deviation is evaluated by taking the square root of the 

average of the squared differences of the values from their average value. Firstly, calculate 

the average of the data set, which is represented by the variable xi. Secondly, calculate the 

difference of each data point from the average and square the result of each. Then, calculate 

the average of these values and take the square root. And the above steps can be concluded by 

                     
(4.4) 

Where x̄  represents the average, n is the number of the cases, is the sum of all the cases, and 

xiis the value of the variable x with a subscript i 

The mathematical properties of standard deviation make it the preferred measure of 

variability in many cases, especially when a variable is normally distributed. So the standard 

deviation helps find how great the variation is and when the range will fall in any cases. 

4.3.4 Group Average and Standard Deviation 

After the above steps, the normalized average and normalized standard deviation for each 

program are obtained. In this section, the data of each group or each language should be 

grouped together to be analyzed in Chapter V. 

The goal of this research on the complexity of source code in different programming 

languages is to find the effect of different programming languages on the complexity of 

source code. The six programming languages are divided first into two groups: the compiled 

language group and the interpreted language group. Then the average and standard deviation 

of each group are calculated, which are used to analyze the different effects of the complied 

languages and the interpreted languages on the complexity of source code. The normalized 

standard deviation of each group and each programming language should also be calculated, 

in order to analyze the concrete impacts of programming languages in each group. 

For example, the average of OR is 0.42 in C, 0.35 in C #, and 0.33 in Java. Then the 

average of OR in the complied group equals 0.37, which is evaluated by 

OR of Complied language = (0.42+0.35+0.33)/3 = 0.37 

4.4 Comparative Evaluation 

Until now, all the data needed have been obtained to evaluate the complexity of source 

code written in different programming languages. In this step, the data are analyzed in graphic 

form to compare the effect of different programming languages on the complexity of source 

code. 

There are many graphing options to present data, such as statistical maps, column graphs, 

pie charts, frequency polygons, and histograms. Column graphs are chosen for comparative 

evaluation. The column graph is an effective demonstration of the differences in percentages 



 
 

 

18 

or frequencies of ordinal variables visually. Compared with other methods, the column graph 

is very useful in comparing the differences among variables in different groups. 

In this step, two kinds of column graphs are employed: one is about the standard deviation 

of compiled groups and interpreted groups; the other is about the standard deviation of 

programming languages, such as C, C# and Java in compiled group, and Python, PHP, and 

Perl in interpreted group. 

The graphs will give a visual comparison of the measurement results. Any discernible 

proportion of the programming languages or the groups will reflect the level of variations in 

the complexity of source code. 

  



 
 

 

19 

CHAPTER V 

 

EXPERIMENTAL RESULTS 

5.1 Experimental Preparation 

The experiment on the evaluation of source code complexity by the proposed method is 

elaborated. The following table shows all the abbreviations used to denote all metrics being 

collected, namely, LOC, OR, OD, PR, IO, FE, EL, VE, FG, CCM, and HCM. 

 

Table 5.1 The abbreviations and their meanings 

Abbreviations Meanings 

LOC lines of code 

OR the number of operators 

OD the number of operands 

PR the number of formal arguments 

IO the number of inputs and outputs invoked by each function 

FE the number of file operations 

EL the number of external functions, libraries, and files linked 

VE the number of variable declarations 

FG the sum of nodes and edges derived from program flowchart 

CCM McCabe’s Cyclomatic Complexity Metrics 

HCM Halstead Complexity Metrics 

 

The value of CCM and HCM can be obtained from their definitions in Chapter III. 

McCabe’s CCM is based on the program flow graph and is defined as V(G)=e-n+2, where e 

and n represents the number of edges and number of nodes respectively. The complexity of a 

program measured by HCM is defined as D=(n1*N2)/(2*n2), where n1is the number of 

unique or distinct operators appearing in the code, n2 is the number of unique or distinct 

operands appearing in the same code, and N2 is the total usage of all the operands appearing 

in that code. 



 
 

 

20 

This thesis collects sample programs of different sizes written in C, C#, Java, Python, PHP, 

and Perl from the Internet. The programs are source code of the above programming 

languages having various lengths, ranging from 50 to 100 for short ones, and from 200 to 500 

for long ones. The dataset includes 156 programs were selected based on predetermined 

functionalities in order to compare the effectiveness of each language under the same 

conditions. There are four basic types of functions to be exercised, namely, matching, I/O, 

computations, and comparison. Each type contains different sub-problems. For example, 

matching includes string matching and array copying; I/O includes file open and close, read 

and write, and append and create; computations include numerical computations; and 

comparison includes condition, branch, and loop operations.  The numbers of sample 

programs for each sub-problem collected is summarized in Table 5.2. 

  



 
 

 

21 

 

Table 5.2 Numbers of sample programs 

  C C# Java Python PHP Perl 

Matching String 

matching 

3 3 3 3 3 3 

array copying 3 3 3 3 3 3 

swapping 3 3 3 3 3 3 

Input or 

Output 

open,close 2 2 2 2 2 2 

read,write 2 2 2 2 2 2 

appeal,creat，

rewind,update 

2 2 2 2 2 2 

Compute numerical 

computation 

2 2 2 2 2 2 

Comparison condition 

comparision 

3 3 3 3 3 3 

branches 

comparision 

3 3 3 3 3 3 

loop 3 3 3 3 3 3 

 

Visustin v7 Flow Chart Generator is used to generate flow graph of each program. The first 

three languages C, C#, and Java are grouped as compiled programming languages, whereas 

the remaining three Python, PHP, and Perl as interpreted programming languages. 

5.2 Experimental Results 

The programs are collected specifically according to the designated functionalities to be 

studied, namely, matching, I/O, computations, and comparison. Each program owns at least 

one specific function, such as array copying, numerical computations, or file operations.  

The following sample source codes are written in C, C#, Java, Python, PHP, and Perl. Each 

program is collected according to string matching sub-problem. 

Figure 5.1 shows a C program for string matching whose OR is 27, OD is 48, PR is 8, I/O 

and EL are 1, FE is 0, and VE is 12. 

 



 
 

 

22 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

 

Int get_nextval(char *pattern, int next[]) 

{ 

 //get the next value of the pattern  

 Int i = 0, j = -1; 

    next[0] = -1; 

int patlen = strlen(pattern); 

    while ( i<patlen - 1){ 

        if ( j == -1 || pattern[i] == pattern[j]){ 

   ++i; 

            ++j; 

            if (pattern[i] != pattern[j]) 

                next[i] = j; 

            else 

                next[i] = next[j]; 

        } 

        else 

            j = next[j]; 

        } 

    return(0); 

} 

Int kmpindex(char *target, char *pattern, int pos) 

{ 

Int tari = pos, pati = 0;  

Int tarlen = strlen(target), patlen = strlen(pattern); 

int *next = (int *)malloc(patlen * sizeof(int)); 

get_nextval(pattern, next); 



 
 

 

23 

    while ( tari<tarlen&&pati<patlen ){ 

        if (pati == -1 ||target[tari] == pattern[pati]){ 

            ++tari; 

            ++pati; 

            }else{ 

pati = next[pati]; 

            } 

    }     

 if(next != NULL) free(next); 

 next = NULL; 

 if (pati == patlen) 

  return tari - pati; 

 else 

  return -1; 

} 

int main() 

{ 

    char target[50], pattern[50]; 

printf("imput the target:\n" ); 

scanf("%s",target); 

printf("imput the pattern:\n" ); 

scanf("%s",pattern); 

int ans = kmpindex(target,pattern,0); 

    if (ans == -1) 

printf("error\n"); 

    else 

printf("index:%d\n",ans); 

    return 0; 

} 

Figure 5.1 C sample code 



 
 

 

24 

Figure 5.2 shows the same functionality program written in C# whose OR is 82, OD is 137, 

PR is 3, I/O is 17, FE is 0, EL is 22, and VE is 14. 

 

static void Main(string[] args) 

{ 

     string str = "abababababab"; 

     string str1 = "abc3241abc8979"; 

     string str2 = "abababababac"; 

 

Console.WriteLine("The whole string is as following:"); 

Console.WriteLine(str); 

Console.WriteLine("After running, the result of the max substring is:"); 

Int len = str.Length; 

int[] sd = new int[8]; 

ConWrite(str1); 

getNext(str1); 

ConWrite(str);          

getNext(str); 

 

ConWrite(str2); 

getNext(str2); 

Console.ReadLine(); 

} 

 

/// <summary> 

/// Get the next value of pattern string 

/// </summary> 

private static void getNext(string s) 

{ 

Int len = s.Length; 



 
 

 

25 

int[] next = new int[len]; 

      string temp = "", temp2 = ""; 

      //when i=0，next=-1； 

      next[0] = -1; 

int index = 0; 

      for (int j = 1; j <len; j++) 

      { 

         for (int k = 1; k > 0 && k < j; k++) 

         {                    / 

             temp = s.Substring(0, k);              

             temp2 = s.Substring(j - k, k); 

             if (temp2 != "" && temp != "") 

             {  

                 if (temp2 == temp) 

                 { 

                      next[j] = k; 

                 } 

             } 

        } 

        if (next[j] <= 0) 

        { 

             next[j] = 0; 

         } 

    } 

Int tempLength = 0,tempIndex=0; 

Console.Write("the next value is ："); 

     for (int i = 0; i<len; i++) 

     { 

Console.Write(" "+next[i] + " ,"); 

         if (next[i] > 0) 



 
 

 

26 

         { 

              if (next[i]>tempLength) 

              {                      

tempIndex = i; 

tempLength = next[i]; 

               } 

         } 

   } 

Console.WriteLine(); 

 

   if (s.Substring(0, len - 1).Contains(s.Substring(len - tempLength))) 

   {  

tempLength += 1; 

       index = tempIndex>tempLength ? tempIndex - tempLength + 1 : tempLength - tempIndex 

+ 1; 

    }else{ 

        index = tempIndex>tempLength ? tempIndex - tempLength : tempLength - tempIndex; 

     } 

Console.WriteLine();      

Console.WriteLine("index of the longest string："+index); 

Console.WriteLine("length of the longest string：" + tempLength); 

} 

 

private static void ConWrite(string str) 

{ 

     Console.WriteLine("/*******************************************/"); 

foreach (char ch in str) 

     { 

Console.Write(" "+ch + " ,"); 

     } 



 
 

 

27 

} 

Figure 5.2 C# sample code 

 

Figure 5.3 shows the same functionality program written in Java whose OR is 79, OD is 97, 

PR is 3, I/O is 3, FE is 0, EL is 9, and VE is 16. 

  



 
 

 

28 

package com.lmning.string; 

 

/** 

 * KMP Algorithm 

 * @author lmning 

 *Mar 22, 2009 12:01:42 PM 

 */ 

public class KMP { 

 public static int index_KMP(String s,Stringt,int pos){ 

  int lens = s.length(); 

  int lent = t.length(); 

  char[] chs = s.toCharArray(); 

  char[] cht = t.toCharArray(); 

  int i=pos,j=0,index=-1; 

  int[] next=getNext(t); 

  while(i<lens){ 

   if(j==0||chs[i]==cht[j]){       

    i++; 

    j++; 

   } 

   else j=next[j];              

    

   if(j==lent){                  

    index = i-j; 

    System.out.println("index:"+index); 

    j=0; 

   } 

  } 

  return index; 

 } 



 
 

 

29 

 /** 

  * get the next value of s and save it into array  

  * @param s 

  * @return 

  */ 

 public static int[] getNext(String s){ 

  int len = s.length(); 

  int[] next = new int[len]; 

  char[] ch = s.toCharArray(); 

  int i=1; 

  int k=0; 

  while(i<len){ 

   if(i==0||i==1){             

    next[i]=0;i++;continue; 

   } 

   k=next[i-1]; 

    while(true){ 

      if(ch[i-1]==ch[k]){    

         k++; 

      next[i]=k; 

      break; 

     } else if(k==0){ 

      next[i]=0;break; 

     } 

   k=next[k];                 

   } 

   i++; 

  } 

  return next; 

 } 



 
 

 

30 

  

 public static void main(String[] args) { 

  String s = "abcacabcabcaccccccabcacvzvcz"; 

  String t = "abcac"; 

  int[] next = KMP.getNext(t); 

  System.out.print("next[]="); 

  for(int i:next)  

  System.out.print(i+"  "); 

  KMP.index_KMP(s, t, 0);     

 } 

} 

Figure 5.3 Java sample code 

 

Figure 5.4 shows the same functionality program written in Python whose OR is 30, OD is 

55, PR is 3, I/O is 22, FE is 0, EL is 25, and VE is 12. 

 

def print_board(): 

    print  

    print 

    print '*'*50 

    for i in range(0,3): 

        for j in range(0,3): 

            if map[i][j] != " ": 

                print map[i][j], 

            else: 

                print "%d" %(i*3+j+1), 

            if j != 2: 

                print "|", 

        print "" 



 
 

 

31 

    print '*'*50 

 

def check_done(): 

    for i in range(0,3): 

        if map[i][0] == map[i][1] == map[i][2] != " " \ 

        or map[0][i] == map[1][i] == map[2][i] != " ": 

            print turn, "won!!!" 

            return True 

 

    if map[0][0] == map[1][1] == map[2][2] != " " \ 

    or map[0][2] == map[1][1] == map[2][0] != " ": 

        print turn, "won!!!" 

        return True 

 

    if " " not in map[0] and " " not in map[1] and " " not in map[2]: 

        print "Draw" 

        return True 

    return False 

 

def help(): 

    print "*" *76 

    print "*" *76 

    print "**  Welcome to the tic-tac world,it's modified by me(hunter xue).         **"  

    print "**  the origin source is here:                                            **" 

    print "**  \"http://jiabin.tk/2013/07/22/tic-tac-toe-in-python/\"                  **" 

    print "**  Hope you enjoy this simple game                                       **" 

    print "*" *76 

    print "*" *76 

 

turn = "X" 



 
 

 

32 

map = [[" "," "," "], 

       [" "," "," "], 

       [" "," "," "]] 

done = False 

 

help() 

while done != True: 

print_board() 

    print 

print turn, "'s turn=>", 

 

    moved = False 

    while moved != True: 

        try: 

pos = input("Select: ") 

            if pos<=9 and pos>=1: 

                Y = pos/3 

                X = pos%3 

                if X != 0: 

                    X -=1 

                else: 

                     X = 2 

                     Y -=1 

 

                if map[Y][X] == " ": 

                    map[Y][X] = turn 

                    moved = True 

                    done = check_done() 

 

                    if done == False: 



 
 

 

33 

                        if turn == "X": 

                            turn = "O" 

                        else: 

                            turn = "X" 

                else: 

                    print "The position is occupied by ",turn 

 

            else: 

                print "You need to add a numeric value between 1-9" 

 

        except: 

            print "You need to add a numeric value between 1-9" 

Figure 5.4 Python sample code 

 

Figure 5.5 shows the same functionality program written in PHP whose OR is 56, OD is 

107, PR is 12, I/O and FE are both 0, EL is 23, and VE is 21. 

  



 
 

 

34 

<?php 

class ZUser 

{ 

 const SECRET_KEY = '@4!@#$%@'; 

 

 static public function GenPassword($p) { 

  return md5($p . self::SECRET_KEY); 

 } 

 

 static public function Create($user_row, $uc=true) { 

  if (function_exists('zuitu_uc_register') && $uc) { 

   $pp = $user_row['password']; 

   $em = $user_row['email']; 

   $un = $user_row['username']; 

   $ret = zuitu_uc_register($em, $un, $pp); 

   if (!$ret) return false; 

  } 

 

  $user_row['password'] = self::GenPassword($user_row['password']); 

  $user_row['create_time'] = $user_row['login_time'] = time(); 

  $user_row['ip'] = Utility::GetRemoteIp(); 

  $user_row['secret'] = md5(rand(1000000,9999999).time().$user_row['email']); 

  $user_row['id'] = DB::Insert('user', $user_row); 

  $_rid = abs(intval(cookieget('_rid'))); 

  if ($_rid) { 

   $r_user = Table::Fetch('user', $_rid); 

   if ( $r_user ) ZInvite::Create($r_user, $user_row); 

  } 

  if ( $user_row['id'] == 1 ) { 

   Table::UpdateCache('user', $user_row['id'], array( 



 
 

 

35 

      'manager'=>'Y', 

      'secret' => '', 

      )); 

  } 

  return $user_row['id']; 

 } 

 

 static public function GetUser($user_id) { 

  if (!$user_id) return array(); 

  return DB::GetTableRow('user', array('id' => $user_id)); 

 } 

 

 static public function GetLoginCookie($cname='ru') { 

  $cv = cookieget($cname); 

  if ($cv) { 

   $zone = base64_decode($cv); 

   $p = explode('@', $zone, 2); 

   return DB::GetTableRow('user', array( 

    'id' => $p[0], 

    'password' => $p[1], 

   )); 

  } 

  return Array(); 

 } 

 

 static public function Modify($user_id, $newuser=array()) { 

  if (!$user_id) return; 

  /* uc */ 

  $curuser = Table::Fetch('user', $user_id); 

  if ($newuser['password'] &&function_exists('zuitu_uc_updatepw') ) { 



 
 

 

36 

   $em = $curuser['email']; 

   $un = $newuser['username']; 

   $pp = $newuser['password']; 

   if ( ! zuitu_uc_updatepw($em, $un, $pp)) { 

    return false; 

   } 

  } 

 

  /* tuandb */ 

  $table = new Table('user', $newuser); 

  $table->SetPk('id', $user_id); 

  if ($table->password) { 

   $plainpass = $table->password; 

   $table->password = self::GenPassword($table->password); 

  } 

  return $table->Update( array_keys($newuser) ); 

 } 

 

 static public function GetLogin($email, $unpass, $en=true) { 

  if($en) $password = self::GenPassword($unpass); 

  $field = strpos($email, '@') ? 'email' : 'username'; 

  $zuituuser = DB::GetTableRow('user', array( 

     $field => $email, 

     'password' => $password, 

  )); 

  if ($zuituuser)  return $zuituuser; 

  if (function_exists('zuitu_uc_login')) { 

   return zuitu_uc_login($email, $unpass); 

  } 

  return array(); 



 
 

 

37 

 } 

 

 static public function SynLogin($email, $unpass) { 

  if (function_exists('zuitu_uc_synlogin')) { 

   return zuitu_uc_synlogin($email, $unpass); 

  } 

  return true; 

 } 

 

 static public function SynLogout() { 

  if (function_exists('zuitu_uc_synlogout')) { 

   return zuitu_uc_synlogout(); 

  } 

  return true; 

 } 

} 

?> 

Figure 5.5 PHP sample code 

 

Figure 5.6 shows the same functionality program written in Perl whose OR is 17, OD is 39, 

PR is 3, I/O is 17, FEis5, EL is 21, and VE is 13. 

 

  



 
 

 

38 

$|=1;  

local (*F1,*F2); my %farray = (); my $statF1; 

 

# ------------------------------ 

# traverse directories 

sub scan ($) { 

    my ($dir) = $_[0]; 

opendir (DIR, $dir) or die "($dir) $!:$@"; 

    map { 

          (-d) ? scan ($_) : push @{$farray{-s $_}},$_ 

             unless (-l or -S  or -p or -c or -b); 

    } map "$dir/$_", grep !/^\.\.?$/, readdir (DIR); closedir (DIR); 

} 

 

# ------------------------------ 

# get chunk of bytes from a file 

sub getchunk ($$) { 

  my ($fsize,$pfname) = @_; 

  my $chunksize = 32; 

  my ($nread,$buff); 

 

  return undef unless open(F1,$$pfname); 

 

  $statF1 = [(stat  F1)[3,1]]; 

binmode F1; 

  $nread = read (F1,$buff,$chunksize); 

  ($nread == $chunksize || $nread == $fsize) ? "$buff" : undef; 

}   

 

# ------------------------------ 



 
 

 

39 

# compare two files 

sub mycmp ($) { 

  my ($fptr) = $_[0]; 

  my ($buffa, $buffb); 

  my ($nread1,$nread2); 

  my $statF2; 

  my ($buffsize) = 16*1024; 

 

  return -1 unless (open(F2,"<$$fptr")); 

 

  $statF2 = [(stat  F2)[3,1]]; 

 

  return 0  

 if ($statF2->[0] > 1 && $statF1->[1] == $statF2->[1]); 

 

binmode F2; 

  seek (F1,0,0); 

 

  do {  $nread1 = read (F1,$buffa,$buffsize); 

 $nread2 = read (F2,$buffb,$buffsize); 

 

 if (($nread1 != $nread2) || ($buffacmp $buffb)) { 

   return -1; 

        } 

  } while ($nread1); 

 

  return 0; 

} 

# ------------------------------ 

print "collecting files and sizes ...\n"; 



 
 

 

40 

 

if (-t STDIN) { 

 $ARGV[0] = '.' unless $ARGV[0]; # use wd if no arguments given 

 map scan $_, @ARGV; 

} else {  

 while (<STDIN>)  { 

  s°[\r\n]$°°g; 

  push @{$farray{-s $_}},$_ 

   unless (-l or -S  or -p or -c or -b); 

 } 

} 

 

print "now comparing ...\n"; 

for my $fsize (reverse sort {$a <=> $b} 

. 

 

 keys %farray) { 

 

  my ($i,$fptr,$fref,$pnum,%dupes,%index,$chunk); 

 

  # skip files with unique file size 

  next if $#{$farray{$fsize}} == 0;  

 

  $pnum  = 0; 

  %dupes = %index = (); 

 

nx: 

  for (my $nx=0;$nx<=$#{$farray{$fsize}};$nx++) # $nx now 1..count of files  

  {                                             # with the same size 

 $fptr = \$farray{$fsize}[$nx];          # ref to the first file 



 
 

 

41 

    $chunk = getchunk $fsize,$fptr; 

    if ($pnum) { 

   for $i (@{$index{$chunk}}) { 

         $fref = ${$dupes{$i}}[0]; 

      unless (mycmp $fref) { 

            # found duplicate, collecting 

         push @{$dupes{$i}},$fptr; 

   next nx; 

      } 

   } 

    } 

 

    # nothing found, collecting  

    push @{$dupes{$pnum}},$fptr; 

    push @{$index{$chunk}}, $pnum++; 

  } 

  # show found dupes for actual size 

  for $i (keys %dupes) { 

    $#{$dupes{$i}} || next; 

    print "\n size: $fsize\n\n"; 

    for (@{$dupes{$i}}) { 

        print $$_,"\n";  

    } 

  } 

} 

close F1; 

close F2;  

Figure 5.6 Perl sample code 

Table 5.3 to 5.11 show the results of seven metrics measured on all programming 

languages within the designated functionalities, namely, OR, OD, PR, IO, FE, EL, and VE. 



 
 

 

42 

Table 5.3 Metrics of string matching program in each language 

PL OR OD  PR IO FE EL VE 

C 39 52 11 1 0 1 11 

C# 70 114 4 6 0 13 8 

Java 121 151 4 2 0 8 16 

Python 14 24 4 15 1 34 23 

PHP 101 186 9 1 0 21 19 

Perl 49 108 5 9 2 13 17 

 

Table 5.4 Metrics of array copying program in each language 

PL OR OD  PR IO FE EL VE 

C 59 36 28 4 0 4 17 

C# 25 43 3 5 0 10 5 

Java 131 151 7 3 0 13 18 

Python 84 87 20 6 2 15 18 

PHP 97 189 7 0 0 15 25 

Perl 30 40 3 6 2 10 14 

 

Table 5.5 Metrics of open and close program in each language 

PL OR OD  PR IO FE EL VE 

C 23 10 14 6 4 9 6 

C# 23 33 5 1 11 11 9 

Java 69 89 5 4 3 8 8 

Python 15 26 9 4 7 29 32 

PHP 62 115 17 1 7 17 16 

Perl 46 68 2 9 6 18 25 



 
 

 

43 

 

Table 5.6 Metrics of read and write program in each language 

PL OR OD  PR IO FE EL VE 

C 26 13 17 8 5 10 3 

C# 28 48 2 2 7 12 5 

Java 151 208 6 3 15 21 14 

Python 4 8 5 3 3 27 18 

PHP 133 259 16 0 5 27 23 

Perl 34 55 1 5 6 13 10 

 

Table 5.7 Metrics of append and update program in each language 

PL OR OD  PR IO FE EL VE 

C 41 19 27 9 0 9 9 

C# 59 96 4 3 4 13 8 

Java 180 214 8 12 7 31 18 

Python 6 9 6 6 1 27 14 

PHP 83 165 8 1 0 20 21 

Perl 59 76 3 10 5 18 10 



 
 

 

44 

Table 5.8 Metrics of numerical computation program in each language 

PL OR OD  PR IO FE EL VE 

C 34 35 6 5 5 10 7 

C# 32 48 5 4 0 11 13 

Java 151 191 7 3 0 20 20 

Python 36 57 8 3 0 45 21 

PHP 115 226 12 0 1 16 29 

Perl 59 73 4 10 4 15 21 

 

Table 5.9 Metrics of condition program in each language 

PL OR OD  PR IO FE EL VE 

C 77 48 25 8 0 10 15 

C# 16 28 0 8 0 10 1 

Java 106 136 4 7 0 15 11 

Python 13 22 8 3 0 22 23 

PHP 197 250 1 5 0 17 19 

Perl 63 95 1 5 3 16 20 

 

Table 5.10 Metrics of branch program in each language 

PL OR OD  PR IO FE EL VE 

C 24 25 8 1 0 3 7 

C# 10 19 0 5 0 6 2 

Java 91 110 8 3 0 15 15 

Python 11 22 11 6 2 33 20 

PHP 167 332 7 1 3 26 28 

Perl 60 130 4 9 4 16 19 



 
 

 

45 

 

 

Table 5.11 Metrics of loop program in each language 

PL OR OD  PR IO FE EL VE 

C 40 38 15 8 0 20 17 

C# 5 9 0 1 0 1 1 

Java 90 119 4 6 0 10 11 

Python 19 35 10 2 1 49 24 

PHP 113 230 21 0 0 21 30 

Perl 75 123 9 10 9 33 17 

 

Further analyses based on the proposed method yield the results listed in the tables that 

follow. 

Table 5.12 Range of each group 

Group LOC OR OD PR IO FE EL VE FG 

Compiled 290 262 312 39 18 21 47 48 412 

Interpreted 492 410 663 45 22 27 68 44 649 

 

Table 5.13 Normalized average of each group  

Group LOC OR OD PR IO FE EL VE FG CCM HCM 

Compiled 0.29  0.24  0.24  0.22  0.25  0.07  0.22  0.23  0.20  3 31 

Interpreted 0.30  0.16  0.17  0.18  0.22  0.09  0.32  0.46  0.22  8 23 

 

  



 
 

 

46 

 

Table 5.14 Normalized average of each language 

PL LOC OR OD PR IO FE EL VE FG CCM HCM 

C 0.17  0.17  0.11  0.46  0.27  0.05  0.17  0.24  0.12  4 19 

C# 0.21  0.11  0.15  0.06  0.23  0.08  0.20  0.13  0.13  1 21 

Java 0.48  0.46  0.48  0.15  0.24  0.09  0.31  0.31  0.34  4 53 

Python 0.27  0.07  0.06  0.23  0.25  0.06  0.43  0.47  0.23  8 18 

PHP 0.39  0.29  0.33  0.22  0.04  0.05  0.28  0.54 0.24  10 31 

Perl 0.24  0.12  0.12  0.08  0.35  0.15  0.24  0.38  0.19  9 19 

 

Table 5.15 Normalized standard deviation of each group 

Group LOC OR OD PR IO FE EL VE FG CCM HCM 

Compiled 0.22  0.24  0.24  0.27  0.23  0.17  0.18  0.18  0.18  4 27 

Interpreted 0.19  0.17  0.17  0.20  0.25  0.15  0.20  0.23  0.14  8 41 

 

Table 5.16 Normalized standard deviation of each language 

PL LOC OR OD PR IO FE EL VE FG CCM HCM 

C 0.16  0.10  0.06  0.32  0.24  0.11  0.20  0.15  0.10  3 13 

C# 0.15  0.09  0.12  0.07  0.24  0.17  0.12  0.13  0.10  3 21 

Java 0.21  0.28  0.27  0.13  0.19  0.22  0.19  0.19  0.21  6 30 

Python 0.10  0.11  0.05  0.22  0.27  0.11  0.23  0.24  0.10  10 61 

PHP 0.23  0.20  0.18  0.22  0.14  0.10  0.16  0.21  0.12  10 32 

Perl 0.16  0.09  0.09  0.11  0.22  0.21  0.14  0.21  0.18  7 17 

 

Table 5.12 shows the range of the complied language group and the interpreted language 

group. Tables 5.13 and 5.14 list the normalized average of each group and each language. The 

corresponding normalized standard deviation of each group and language are shown in Tables 

5.15 and 5.16. 



 
 

 

47 

 

 

Figure 5.7 Standard deviation of Compiled and Interpreted groups 

 

Figure 5.7 shows the proportional distribution of standard deviation of the compiled and 

interpreted groups. It can be seen that source level of the compiled language group has more 

difficulty than the interpreted one in terms of Lines of Code, Operators, Operands, Parameters, 

Files, and Flow graph. Nevertheless, I/O, Externals, and Variables are slightly less than those 

of the interpreted group. 

 

Figure 5.8 Standard deviation of Compiled Language: C, C# and Java 

 



 
 

 

48 

Figure 5.8 shows the proportional dispersion of different compiled languages, which are C, 

C#, and Java. Of the nine indicators, C language has the highest difficulty in terms of 

Parameters and Externals; C# has the highest difficulty in I/O; while Java has the highest 

difficulty in Lines of Code, Operators, Operands, Files, Variables, and Flow graph. This 

experiment shows that Java program exhibits the highest discernible difficulty variations of 

the three compiled programming languages. The average of these nine metrics shows that C is 

more complicated than C# and C# exhibits the least discernible difficulty variations in the 

compiled programming languages. 

From the lesser measure standpoint, the results also show that C has the least Operands, 

Files, and Flow graph; C# has the least Lines of Code, Operators, Parameters, Externals, and 

Variables; while Java has the least difficulty in I/O. 

 

Figure 5.9 Standard deviation of Interpreted Language, Python, PHP and Perl 

 

Figure 5.9 shows standard deviation of Python, PHP, and Perl. Of the nine metrics, Python 

has higher difficulty than others in terms of Parameters, I/O, Externals and Variables; PHP 

has the highest difficulty in Line of code, Operators, and Operands; while Perl has more 

difficulty than others in Files, and Flowgraph. 

The results also show that Python has the least Lines of Code, Operands, and Flow graph; 

PHP has the least I/O, Files, and Variables; while Perl has the least Operators, Parameters, 

and Externals. Thus, code difficulty of these three interpreted programming languages is not 

easily discernable from the standard values alone. With the help of average complexity value 

in Table 5.13, it can be seen that Python is the simplest language of the interpreted group, 

while PHP exhibits higher difficulty than Perl in the combined average and standard 

consideration. 



 
 

 

49 

5.3 Discussion 

Consider the two comprehensive measures, namely, CCM and HCM, the compiled group 

has lower CCM than its interpreted counterpart, while the HCM value jumps higher due 

solely to Java. However, measurements of he compiled group as their control flow and 

relationships among the constituent metrics are closely related. Table 5.8-5.16  confirm this 

finding. The compiled group, with the exception of Java, is highly compact, having fewer 

metrics statistics than their interpreted counterpart except Python. For example, the CCM 

measure that is based primarily on CFG exhibits close relationship with program difficulty for 

the compiled group. On the other hand, the HCM complexity measure is somewhat out of 

proportion owing to Java richness of operators and operands. In other words, the value of OR 

and OD of Java are approximately 5-6 and 6-10 times higher than its peers C and C#, 

respectively. PHP exhibits similar traits among its peers Python and Perl. Interestingly, this 

relationship comparison demonstrates just the opposite to actual implementation of 

programming language selection, that is, Java and PHP are the two most popularly used 

languages within their peer group. 

Table 5.17 shows the normalized average difficulty among the programming languages 

under specific functional applications. For example, C and Python exhibit the least difficulty 

based on their respective group in the string matching problem, while C# and Python are the 

best in loop comparison. Table 18 shows the overall degree of difficulty help decide 

suitability of language selection for the program written for specific functional applications. 

 

Table 5.17 Result summary of language difficulty under specific functional applications 

Language functional applicability C C# Java Python PHP Perl 

Matching String Matching 0.36 0.43 0.51 0.54 0.67 0.59 

Array Copying 0.40 0.28 0.56 0.84 0.53 0.47 

I/O File open/close 0.33 0.33 0.48 0.53 0.59 0.61 

File read/write 0.41 0.23 0.68 0.39 0.71 0.39 

I/O append/update 0.40 0.21 0.73 0.32 0.50 0.53 

Computation Numerical Computation 0.50 0.30 0.57 0.49 0.63 0.54 

Comparison Condition 0.47 0.26 0.49 0.35 0.70 0.52 

Branch 0.24 0.15 0.50 0.47 0.76 0.64 

Loop 0.46 0.06 0.44 0.36 0.64 0.58 

 



 
 

 

50 

Table 5.18 Summary of language difficulty under the specific functional application 

Language functional applicability C C# Java Python PHP Perl 

Matching String Matching       

Array Copying       

I/O File open/close       

File read/write       

I/O append/update       

Computation Numerical Computation       

Comparison Condition       

Branch       

Loop       

 
Another noteworthy result is that all languages in the same group exhibit alternate high 

difficulty across the measuring metrics of the underlying application domain. The statistical 

summary of language applicability in Table 5.18 shows that given the functions under study, 

one language may be the most viable candidate of implementation choice than others based 

on the findings. 

  



 
 

 

51 

CHAPTER VI 

 

CONCLUSION 
 

With the rapid advancement in software industries, software metrics become the basis for 

software management and are crucial to the accomplishment of software development. A 

straightforward method is proposed to measure the difficulty of source code written in C, C#, 

Java, Python, PHP, and Perl by means of measuring metrics, namely, operators, operands, 

parameters, inputs and outputs, file operations, external functions or libraries, variable 

declarations, and flow graph. This study focuses on four types of problems to compare the 

complexity of different language implementation. The findings in this thesis reveal that 

source code written in compiled languages is inherently more complex than interpreted 

languages. The reasons may depend primarily on the nature of application to be performed by 

the target software, as interpreted software is likely to be smaller and less involved than its 

compiled counterpart. Each language exhibits its source level difficulty through the 

aforementioned metrics, CCM, and HCM. The results of metric measurements show that no 

one language is suitable for all types of problems. Anyhow, C# and Python dominate their 

respective language group in implementation complexity, particularly when the issue of 

source code difficulty is concerned. This primarily depends on individual programmer’s 

experience in programming language. As such, the findings may assist developers in language 

selection that is most appropriate yet least difficult for the task. 

Despite the significant role played by software metrics, studies and researches in this field are 

still immature. New paradigms and programming languages are being invented, in particular, 

design patterns, automated code generation, 5GL, and user computing. Unfortunately, these 

techniques bring about accidental and inherent complexities [12] that grow exponentially out 

of control. The effect renders software project management to inevitably fall behind 

technology in terms of productivity measurement, cost estimation, project planning, and the 

like. In addition, there are no adequate international standards to warrant the software 

products being distributed. More researches need to be done to fill in the blank of a firm 

theoretical foundation and assurance of methods and metrics. Such endeavors will foster the 

development of software applications that could serve the insatiable needs of the evolving 

modern digital world.



 

 

REFERENCES 
 

1. T. Honglei, S.W., and Z Yanan, The Research on Software Metrics and Software 
Complexity Metrics. Proc. IEEE International Forum on Computer Science-Technology 
and Application  Jan. 2009: p. 131-136. 

2. Zhou, S.Y.a.S., A Survey on Metric of Software Complexity. Proc. IEEE International 
Conference on Information Management and Engineering, 2010: p. 352-356. 

3. D. I. De Silva, N.K., and H. Perera, Applicability of Three Complexity Metrics. Proc. IEEE 
International Conference on Advances in ICT for Emerging Regions 2012: p. 82-88. 

4. McCabe, T.J., A Complexity Measure. IEEE Transactions on Software Engineering, 1976: 
p. 308-320. 

5. Halstead, M.H., Elements of Software Science. Elsevier Science, 1977. 
6. Shao., Y.W.a.J., Measurement of the Cognitive Functional Complexity of Software. 

Proc. IEEE International Conference on Cognitive Informatics, 2003: p. 67-74. 
7. A. Tahir, S.G.M., A Systematic Mapping Study on Dynamic Metrics and Software 

Quality. Proc. IEEE International Conference on Software Maintenance 2012: p. 326-
335. 

8. M. K. Debbarma, S.D., N. Debbarma, K. Chakma, and A. Jamatia, A Review and 
Analysis of Software Complexity Metrics in Structural Testing. International Journal of 
Computer and Communication Engineering: p. 129-133. 

9. S. Sabharwal, R.S., and P. Kaur, Software Complexity: A Fuzzy Logic Approach. Proc. 
IEEE International Conference on Communication, Information & Computing 
Technology, 2012: p. pp. 1-6. 

10. A. Shukla, P.R., A Generalized Approach for Control Structure based 
Complexity Measure. Conf. on Recent Advances in Information Technology, 2012. 

11. A. Capiluppi, P.F., and C. Boldyreff, Code Refactoring: Evaluating the 
Effectiveness of Java Obfuscations. 19th Working Conference on Reverse Engineering, 
2012: p. 71-80. 

12. S. Sarala, P.A.J., Information Flow Metrics and Complexity Measurement. 
Computer Science and Information Technology(ICCSIT) of IEEE International 
Conference, 2010: p. 575-578. 

13. J.J. Vinju, M.W.G., What does Control Flow Really Look Like? Eyeballing the 
Cyclomatic Complexity Metric. Source Code Analysis and Manipulation(SCAM) of IEEE 
12th International Working Conference, 2012: p. 154-463. 



 
 

 

53 

14. O. Hummel, S.B., A Pragmatic Means for Measuring the Complexity of Source 
Code Ensembles. 4th International Workshop on Emerging Trends in Software 
Metrics(WETSoM), 2013: p. 76-79. 

15. S. Misra, I.A., and M. Koyuncu, An inheritance complexity metric for object-
oriented code: A cognitive approach. Sadhana, 2011: p. 317-337. 

16. L. Prasad, A.N., Experimental analysis of different metrics(object-oriented and 
structural) of software. CICSYN’09. First International Conference on Computational 
Intelligence, Communication Systems and Networks, 2009: p. 235-240. 

17. R.G. Kula, K.F., N. Yoshida, and H. Lida, Experimental study of quantitative 
analysis of maintenance effort using program slicing-based metrics. APSEC '12 Proc. 
19th Asia-Pacific Software Engineering Conference, 2012: p. 50-57. 

18. P. Singh, S.S., and J. Kaur, Tool for generating code metrics for C# source code 
using abstract syntax tree technique. ACM SIGSOFT Software Engineering Notes, 2013. 
38: p. 1-6. 

19. A. Abusasd, I.M.A., The correlation between source code analysis change 
recommendations and software metrics. ICICS '12 Proc. 3rd International Conference 
on Information and Communication Systems, 2012. 

20. Y. Sasaki, T.I., K. Hotta, and H. Hata, Preprocessing of metrics measurement 
based on simplifying program structures. 19th Asia-Pacific Software Engineering 
Conference, 2012. 

21. Norman E. Fenton, S.L.P., Software Metrics: A rigorous approach. 2003: p. 18-
33. 

22. Arockiam, A.A.a.L., A Survey on Metric of Software Cognitive Complexity for 
OO Design. World Academy of Science, Engineering and Technology,, 2011. 58. 

23. RoberE.Park, W.G., WillianA.Florac, Goal Driven Software Measurement A 
Guide Book. Software Engineering Institute, CarnegieMellonUniversity, 1996. 

24. M.K. Debbarma, N.K., and A. Saha, Static and Dynamic Software Metrics 
Complexity Analysis in Regression Testing. International Conference on Computer 
Communication and Informatics, 2012. 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX 

 



 
 

 

55 

VITA 
 

Liu Xiao received a Bachelor degree in Computer Science and Technololgy 
from the Department of Computer Science, Faculty of Science, Northwestern 
Polytechnical University in 2010. 

 

Publication 

 

Liu Xiao and PeraphonSophatsathit, “An Empirical Study of Source Level 
Complexity”,Proceedings of the 5th International Conference on Multimedia 
Information Networking and Security (MINES 2013), Beijing, China, November 1-3, 
2013, pp. 472-475. 

 


	THAI ABSTRACT
	ENGLISH ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	INTRODUCTION
	1.1 Problem Identification
	1.2 Objective and Contributions
	1.3 Scope of Work and Constraints
	1.4 Outline of the Thesis

	LITERATURE REVIEW
	BACKGROUND KNOWLEDGE
	3.1 Metrics and Software Metrics
	3.2 Software Complexity Metrics
	3.2.1 Lines of Code
	3.2.2 McCabe’s Cyclomatic Complexity Metrics
	3.2.3 Halstead’s Complexity Metrics
	3.2 4 Henry’s and Kafura’s Metrics

	METHODOLOGY
	4.1 Initial Metrics Statistics
	4.1.1 Operators
	4.1.2 Operands
	4.1.3 Parameters
	4.1.4 Inputs and Outputs
	4.1.5 File Operations
	4.1.6 External References
	4.1.7 Variable Declarations
	4.2 Flow Graph Transformation
	4.3 Data Analysis Process
	4.3.1Range of the Numerical Spread
	4.3.2 Normalized Data to Standardize the Results
	4.3.3 Standard Deviation of the Dispersion from the Average
	4.3.4 Group Average and Standard Deviation
	4.4 Comparative Evaluation

	EXPERIMENTAL RESULTS
	5.1 Experimental Preparation
	5.2 Experimental Results
	5.3 Discussion

	CONCLUSION
	REFERENCES
	VITA

