

REDUCING ENERGY CONSUMPTION IN C PROGRAMS THROUGH REGISTER AND

SHARED VARIABLES

Mr. Krisada Samrittiyanusorn

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science Program in Computer Science and Information

Technology

Department of Mathematics and Computer Science

Faculty of Science

Chulalongkorn University

Academic Year 2013

Copyright of Chulalongkorn University

การลดความส้ินเปลืองพลังงานในโปรแกรมภาษาซีด้วยตัวแปรรีจิสเตอร์และตัวแปรร่วม

นายกฤษฎา สัมฤทธิยานุสรณ์

วิทยานิพนธ์นี้เป็นส่วนหนึง่ของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต

สาขาวิชาวิทยาการคอมพิวเตอร์และเทคโนโลยีสารสนเทศ ภาควิชาคณิตศาสตร์และวิทยาการ

คอมพิวเตอร์

คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2556

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title REDUCING ENERGY CONSUMPTION IN C
PROGRAMS THROUGH REGISTER AND SHARED
VARIABLES

By Mr. Krisada Samrittiyanusorn
Field of Study Computer Science and Information Technology
Thesis Advisor Associate Professor Peraphon Sophatsathit, Ph.D.

 Accepted by the Faculty of Science, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Master's Degree

 Dean of the Faculty of Science

(Professor Supot Hannongbua, Dr.rer.nat.)

THESIS COMMITTEE

 Chairman

(Professor Chidchanok Lursunsap, Ph.D.)

 Thesis Advisor

(Associate Professor Peraphon Sophatsathit, Ph.D.)

 External Examiner

(Associate Professor Dumras Wongsawang, Ph.D.)

 iv

กฤษฎา สัมฤทธิยานุสรณ์ : การลดความส้ินเปลืองพลังงานในโปรแกรมภาษาซีด้วยตัว
แปร รี จิ ส เ ตอร์ แ ละ ตั วแ ปร ร่ ว ม . (REDUCING ENERGY CONSUMPTION IN C
PROGRAMS THROUGH REGISTER AND SHARED VARIABLES) อ . ท่ี ป รึ ก ษ า
วิทยานิพนธ์หลัก: รศ. ดร. พีระพนธ์ โสพัศสถิตย์, 71 หน้า.

การใช้พลังงานท่ัวโลกนั้นเพิ่มขึ้นเรื่อยๆ หนึ่งในสาเหตุท่ีก่อให้เกิดปัญหาก็คืออุปกรณ์
อิ เ ล็กทรอนิกส์ต่างๆ เช่นคอมพิวเตอร์ ส่วนบุคคล อุปกรณ์ฝังตัว อุปกรณ์พกพา และ
โทรศัพท์มือถือ การลดการใช้พลังงานท่ีมีประสิทธิภาพเกี่ยวข้องกับฮาร์ดแวร์และซอฟต์แวร์
งานวิจัยนี้พิจารณาการลดพลังงานซอฟต์แวร์โดยเน้นวิธีการเขียนโปรแกรม เทคนิคท่ีน าเสนอจะ
อิงตามหลักการจัดสรรตัวแปรเฉพาะท่ีในโปรแกรมภาษา C โดยใช้ประโยชน์จากข้อได้เปรียบของ
หน่วยความจ าท่ีใช้ร่วมกันและตัวแปรรีจิตเตอร์

การทดลองเป็นการทดสอบโปรแกรมตัวอย่าง 24 โปรแกรม โดยเปรียบเทียบระหว่าง
การใช้ตัวแปรเฉพาะท่ี การใช้ตัวแปรของหน่วยความจ าร่วมกัน และการใช้ตัวแปรรีจิตเตอร์

การวิเคราะห์จะด าเนินการในระดับค าส่ังเครื่องเพื่อค านวณหาปริมาณการบริโภค
พลังงาน ผลการวิจัยแสดงให้เห็นว่าหน่วยความจ าท่ีใช้ร่วมกันเป็นตัวเลือกท่ีดีท่ีสุดโดยลดการ
จัดสรรท่ีซ้ าซ้อนและการเข้าถึงหน่วยความจ า จึงท าให้เกิดการบริโภคพลังงานน้อยกว่าและ
ประมวณผลค าส่ังได้เร็วกว่า

ภาควิชา คณิตศาสตร์และวิทยาการ
คอมพิวเตอร์

สาขาวิชา วิทยาการคอมพิวเตอร์และ
เทคโนโลยีสารสนเทศ

ปีการศึกษา 2556

ลายมือช่ือนิสิต

ลายมือช่ือ อ.ท่ีปรึกษาวิทยานิพนธ์หลัก

 v

THAI ABSTRACT

 vi

5373601923 : MAJOR COMPUTER SCIENCE AND INFORMATION TECHNOLOGY
KEYWORDS: ENERGY CONSUMPTION

KRISADA SAMRITTIYANUSORN: REDUCING ENERGY CONSUMPTION IN C
PROGRAMS THROUGH REGISTER AND SHARED VARIABLES. ADVISOR: ASSOC.
PROF. PERAPHON SOPHATSATHIT, Ph.D., 71 pp.

Energy consumption around the world increases exponentially. One of the
causes to blame is electronic devices such as personal computers, embedded
devices, and smartphones. To reckon with reducing energy consumption involves
efficient hardware and software. This research focuses on the software part, in
particular, how to write a program that is energy efficient. The proposed technique
is based primarily on local variable reallocation in C programs to exploit the
advantages of global variables and register variables. The experiment was
conducted on 24 test programs by comparing between local variables and modified
program using global variables and register variables.

Analysing the amount of energy consumed is performed at the instruction
level. It was found that global variables were the best choice. The benefits are
fewer redundant allocations and memory accesses, thereby less energy will be
consumed and will help the program execute faster.

Department: Mathematics and
Computer Science

Field of Study: Computer Science and
Information Technology

Academic Year: 2013

Student's Signature

Advisor's Signature

 vii

ENGLISH ABSTRACT

 viii

ACKNOWLEDGEMENTS

I would like to express my uttermost appreciation to my advisor Assoc. Prof.
Dr. Peraphon Sophatsathit and to my parents who have given me the opportunity and
support to pursue advanced study. I would also like to extend my appreciation to my
boss Mr. Ukritv Visitkitjakarn for giving me support to study alongside my work.

CONTENTS
 Page

THAI ABSTRACT ..v

ENGLISH ABSTRACT ... vii

ACKNOWLEDGEMENTS ... viii

CONTENTS .. ix

LIST OF FIGURES ... 1

LIST OF TABLES ... 1

Chapter 1 .. 1

1.1 The rise of Electrical Energy Demands ... 1

1.2. Objective .. 4

1.3. Scope of the work .. 4

1.4. Expected Outcomes .. 4

Chapter 2 .. 5

2.1 Related work ... 5

Chapter 3 .. 9

3.1 Proposed Methodology.. 9

Chapter 4 .. 23

4.1 Experimental procedure .. 23

4.2 First case study (1) - Function call .. 25

4.3 Second case study (2) - Repeated Function calls ... 32

4.4 Third case study (3) - Function calls Function ... 34

4.5 Fourth case study (4) – Nested repeated Function calls ... 37

4.6 Discussion .. 48

Chapter 5 .. 55

 x

 Page

5.1 Conclusion and future work.. 55

REFERENCES ... 56

Appendix A ... 58

Appendix B ... 66

VITA .. 72

LIST OF FIGURES

Page

Figure 1.1 Annual energy demand by region ... 1

Figure 1.2 Energy needed and availability .. 2

Figure 1.3 Global installed base of Desktop PCs + Notebooks PCs vs. Smartphones +

Tablets, 2009 – 2015E ... 3

Figure 3.1 Find total of instruction ... 9

Figure 3.2 A comparative energy consumed by local variable, shared variable and

register variable ... 11

Figure 3.3 Case 1 Pseudocode - function calls ... 12

Figure 3.4 Example of instruction in case (1) ... 13

Figure 3.5 Case (2) Pseudocode - Repeated function calls .. 14

Figure 3.6 Example of instruction in case (2) ... 15

Figure 3.7 Case (3) Pseudocode - function calls to other functions 16

Figure 3.8 Example of instruction in case (3) ... 17

Figure 3.9 Case (4) Pseudocode - Nested repeated function calls to another function

 .. 18

Figure 3.10 Example of instruction in case (4) ... 19

Figure 3.11 Simple C source code using local variable ... 20

Figure 4.1 KP tool functionality ... 24

Figure 4.2. Case 1 - C source code using local variable .. 25

Figure 4.3 KP running case study 1 - local variable .. 26

Figure 4.4 case study 1 - assembly instruction as shown in the KP tool 27

Figure 4.5 Case study 1 - C source code using shared variable .. 28

Figure 4.6 KP running case study 1 – Shared variable ... 29

Figure 4.7 Case study 1 - C source code using register variables 30

Figure 4.8 KP running case study 1 – register variable ... 31

Figure 4.9 KP running case study 2 – local variable ... 32

file:///C:/Users/Krisada/Desktop/Fina_jingjing.docx%23_Toc394323081
file:///C:/Users/Krisada/Desktop/Fina_jingjing.docx%23_Toc394323082
file:///C:/Users/Krisada/Desktop/Fina_jingjing.docx%23_Toc394323083
file:///C:/Users/Krisada/Desktop/Fina_jingjing.docx%23_Toc394323083
file:///C:/Users/Krisada/Desktop/Fina_jingjing.docx%23_Toc394323085
file:///C:/Users/Krisada/Desktop/Fina_jingjing.docx%23_Toc394323085
file:///C:/Users/Krisada/Desktop/Fina_jingjing.docx%23_Toc394323094
file:///C:/Users/Krisada/Desktop/Fina_jingjing.docx%23_Toc394323096
file:///C:/Users/Krisada/Desktop/Fina_jingjing.docx%23_Toc394323099
file:///C:/Users/Krisada/Desktop/Fina_jingjing.docx%23_Toc394323101

 2

Figure 4.10 KP running case study 2 – shared variable ... 33

Figure 4.11 KP running case study 2 – register variable .. 34

Figure 4.12 KP running case study 3 – local variable ... 35

Figure 4.13 KP running case study 3 – shared variable ... 36

Figure 4.14 KP running case study 3 – register variable .. 37

Figure 4.15 KP running case study 4 – local variable ... 38

Figure 4.16 KP running case study 4 – shared variable ... 39

Figure 4.17 KP running case study 4 – register variable .. 40

Figure 4.18 Comparison of number of instruction (Y) for all cases (X) 44

Figure 4.19 Comparison of energy consumption (Y) for all cases (X)............................... 44

Figure 4.20 Comparison of clock cycle (RT) (Y) for all cases (X).. 45

Figure 4.21 Comparison of clock cycle (L) (Y) for all cases (X) .. 45

Figure 4.22 Comparison of clock (RT + L) (Y) for all cases (X) ... 46

Figure 4.23 corresponds to Table 4.6 .. 47

Figure 4.24 Comparison of number of instruction (Y) for all cases (X) 51

Figure 4.25 Comparison of energy consumption (Y) for all cases (X)............................... 51

Figure 4.26 Comparison of clock cycle (RT) for all cases (X) ... 52

Figure 4.27 Comparison of clock cycle (L) (Y) for all cases (X) .. 52

Figure 4.28 Comparison of clock cycle (L+RT) (Y) for all cases (X) 53

file:///C:/Users/Krisada/Desktop/Fina_jingjing.docx%23_Toc394323117
file:///C:/Users/Krisada/Desktop/Fina_jingjing.docx%23_Toc394323119

LIST OF TABLES

Page

Table 3.1 Clock cycles for an instruction.. 10

Table 3.2 Assembly instruction and number of count .. 21

Table 4.1 Number of instructions ... 41

Table 4.2 Energy consumption (nJ) by allocation schemes ... 41

Table 4.3 Number of clock cycle (RT) by allocation schemes .. 41

Table 4.4 Number of clock cycle (L) by allocation schemes... 42

Table 4.5 Number of clock cycle (RT + L) by allocation schemes 42

Table 4.6 Showing all results from 4 cases .. 47

Table 4.7 Number of instructions (set 2) .. 49

Table 4.8 Energy consumption by allocation scheme (set 2) ... 49

Table 4.9 (RT) Number of clock cycle by allocation scheme (set 2) 50

Table 4.10 (L) Number of Clock cycle by allocation scheme (set 2) 50

Table 4.11 (RT + L) Number of clock cycle (set 2) ... 50

Figure 1.1 Annual energy demand by region

Chapter 1
Introduction

1.1 The rise of Electrical Energy Demands

High population growth over the years and the emergence of large economies
such as China and India have led to higher demand of natural resources and have
caused the world’s energy consumption to skyrocket. Private and public sectors
around the world are committed to renewable energy sources to cope with the
increasing demand. In the transportation sector, many traditional technologies are
progressively being shifted toward using cleaner energy with less pollution. This
includes the shift from fossil fuel to electrical and hybrid energy [1].

Source: http://static2.businessinsider.com/image/50bd70cc.jpg

The arrival of smartphones and various portable devices have raised electrical
energy consumption considerably. As the devices have improved in both speed and

 2

computational power and features, demands for energy consumption of these devices
escalate at a rapid rate. Unfortunately, the battery technology still cannot cope with
the energy consumption, especially in a commercial environment. This trend has
become more apparent as external battery supplies are needed. The gap of energy
needed and its availability is exemplified in Figure 1.2

Moreover, a shift from traditional printed media to electronic media is
prominent and widely adopted now in many countries. The larger the screen size and
the faster the CPU mean higher energy consumption and demand. Other Internet-
connected and wearable devices have followed suit. Therefore, methods to minimize
current power drain are called for [2].

Source: http://static2.businessinsider.com/image/1200.jpg

Figure 1.3 shows the significant shift from desktop computers connected to a
power source to smart mobile/portable devices around the world. This means the
issue of energy efficiency is much more important than before as the number of

Figure 1.2 Energy needed and availability

 3

portable device users grows very rapidly and has definitely signified toward the next
emerging technology [3].

Source: http://static2.businessinsider.com/image/c000005.jpg

As a consequence, many researches are underway to find ways to save the energy

needed by electronic devices. Broadly speaking, the research is divided into 2 groups,
namely, hardware and software. Studies have shown that software is the principal
factor of energy consumption in computer systems [4].

A typical computer program in execution stores, retrieves, and processes variables
such as local variables, shared variables, and register variables. Heavy use of these
variables wastes considerable energy. One remedy is code modification to reorganize
of original code to properly allocate variables and parameters, thereby balancing the
distribution of energy consumption.

This research is specifically targeted on how the software can be designed and
architected with energy consumption as part of the design. C Programming Language,
a widely used and very portable programming language, is used in this investigation.

Figure 1.3 Global installed base of Desktop PCs + Notebooks PCs vs. Smartphones +

Tablets, 2009 – 2015E

 4

1.2. Objective

This study focuses on the reduction of energy consumed by computer programs by
applying code modification to shared variables and register variables.

1.3. Scope of the work

This research will confine the scope within the following constraints:
1. Limit to C programming language.
2. Focus on local stack, register variables, and shared variables.
3. Use is Intel® Core 2 Duo system running Windows 7 as the working

environment
4. The unit of measure is instruction clock cycle.

1.4. Expected Outcomes

The proposed technique will offer the following benefits
1. Reduce energy consumption by computer programs,
2. Improve program performance precipitating from (1), and
3. Compact program/code organization.

 5

Chapter 2
Related work

2.1 Related work

Energy consumption is one of the critical factors for modern portable device
designs. Often, one of the key performance indicators widely used in the industries is
energy consumption, i.e. the current drain. Researches and studies from the academic
sectors and the industrial sectors have been focusing on improving measurements of
the energy consumption in hardware or software or a combination of both despite the
complexity of the systems. Some research papers discuss source code analysis and
coding techniques while others focus on better software architecture design. This
research also explores different measurement tools.

Sheayun Lee, Adreads Ermedahl, et al [4] showed a technique for finding an
accurate energy consumption model at the instruction level using combined statistical
analysis technique and empirical method to estimate the energy consumption of an
instruction. However, it was necessary to analyze the characteristics of memory
devices since the energy consumption was also dependent on it.

Optimization of software solutions called POWERAPI, estimates the power
consumption of processes and applications according to different dimensions (CPU,
network, etc.). Adel Noureddine and Aurelien Bourdon [5] used this library to study the
impact of programming languages and algorithmic choices on energy consumption.
However, they needed to propose more energy models for other hardware resources
(such as memory and disk) and used power-aware information to adapt application at
runtime based on energy concerns.

PowerScope is an energy profiling tool which was proposed by Jason Flinn and
M. Satyanarayanan. PowerScope [6] profiles CPU cycles of specific process and
procedures in software. The approach utilizes hardware instrumentation to measure
current levels with kernel software support to perform statistical sampling of system
activity. It is able to pinpoint the key energy consumption source and hence reduce
the energy consumption of an adaptive video playing application. However, it needs

 6

further exploration and better model of the relationship between energy usage and
battery life.

Nadine and Bill [7] proposed Green Tracker, a tool for estimating the energy
consumption of installed software systems. Green Tracker utilizes a benchmarking test
to determine which software systems are the most efficient given the user’s current
computer configuration.

Thanh Do, Suhib Rawshdeh, et al [8] proposed a tool called PTOP which was a
process-level power profiling tool. The tool provides the power consumption (in
Joules) of the running processes. For each process, it gives the power consumption of
the CPU, network interface, computer memory, and hard disk. The tool consists of a
daemon running in kernel space and continuously profiling resource utilization of each
process. For the CPU, it also uses TDP provided by constructors in the energy
consumption calculations. It then calculates the amount of energy consumed by each
application for a period of time.

Various techniques have been attempted to cope with measuring power
consumption at instruction level problem. A simple yet effective technique will help
extend the battery life on mobile devices by controlling data access. Eugene Shih,
Paramvir Bahl, al et [9] introduced a method to extend the battery lifetime by reducing
its idle power, the power a device consumed in a standby state. To reduce this, the
wireless network card was shut down when it was not being used.

From a software standpoint, proper management of memory allocation and
access will help reduce the amount of energy consumption [10]. It involves the
problem of allocating memory to variables in embedded Digital Signal Processing
software to maximize data transfers from different memory banks to resisters.

Mike Tien-Chien, L. and V. Tiwaris [10] showed a software analysis tool that had
a method to compile program into the instruction level and analyzed it at instruction
level.

David Binkley [11] showed trends of source code analysis to extract information
from the source code to help a programmer analyze their program’s performance and
tweak it. There were choices to tweak from changing high level source, recompiling,

 7

re-tweaking, or performing the change on the lower-lever assembly code or
abandoning the tweaking.

Since C programing language was developed in 1972, the language has been
widely used and very portable for the majority of hardware platforms today. It is a
popular language of choice to implement software in embed devices compared to
ASM. C is a very unique high-level language that still provides low level control
especially on memory utilization and can generate a compact-size executable which
is suitable for small memory footprint devices.

As technology today has come to hand held portable devices, application
development uses high-level programing language such as Java or Objective C.
Programmer can still use native code like C because it is better for computationally
intensive algorithms such as game development and visual computing [12, 13].

Tim A. Wagner, Vance Maverick, et al [14] conducted research using C language
as a primary tool for analysing each function in machine language that the GNU C
Complier generated.

John Max Skaller [15] discussed the introduction of nested functions into C/C++.
Nested functions were well understood and their introduction required little effort
from either compiler vendors or programmers. Nested functions offer significant
advantages, including rapid prototyping and functional decomposition, as well as gains
in both processor and programmer performance.

Yanbing Li and Henkel J. [16] showed combinations and sequences of
transformations that yielded the most energy savings under memory size constraints,
evaluated the impact of transformations, and estimated the energy used by code
segment that contained repeated loop and procedure calls.

Tiwari V., Malik S., et al [17] mentioned that power constraints were increasingly
becoming the critical component of computer design specifications. They described a
framework for energy estimation of a program using the instruction level power model.
They showed the average current and the number of cycles for each to determine the
power used.

Some research efforts analyse basic aspects of the way programs manipulate
the runtime stack. Cullen Linn, Saumya Debray, et al [18], and Thomas Reps and Gogul

 8

Balakrishnan [19] showed how the runtime stack was used and the stack behaviour of
a function. For each function call in C, they showed how stack locations stored values
of functions and parameters.

Peter Sestoft [20] investigated when function parameters can be safely
replaced by global variables. It showed the benefits of using global variables to reduce
the time and space cost of stack allocation of function parameters whenever possible.
As function parameters are replaced by global variables, using the stack is more
expensive in terms of run-time and storage consumption than fixed global allocation.

Jack W. Davidson and David B. Whalley [21] also mentioned that when using
registers to store variables, the number of instructions executed was affected by two
factors. Typically, as more variables were allocated to registers, the number of
instructions used for saving and restoring registers increased. On the other hand, as
frequently used variables were allocated to registers, the number of instructions aside
from those used for saving and restoring registers decreased.

At a finer grained level, Grochowki and Annavaram [22] analyzed energy per

instruction (EPI) based on an Intel processor. They described Energy per Instruction

(EPI) as a measure of the amount of energy expended by a microprocessor for each

instruction that the microprocessor executed. They explained the factors that affected

a microprocessor’s EPI and derived a historical comparison of the trends in EPI over

multiple generation of Intel processors.

 9

Chapter 3
Proposed Methodology

3.1 Proposed Methodology

To explore the operating characteristics of parameter and variable allocation at the
instruction level, a C program is first compiled into assembly code by using a compiler
to inspect the clock cycle and the number of instructions. The total number of
instructions used by the entire program can then be converted to energy consumption,
which is measured as energy per instruction (EPI). The unit of EPI is expressed in Joules.

 According to [22], the value of EPI of selected Intel CPU were investigated. The total
energy consumption of the program can be calculated using the formula below.

Total energy consumption = EPI x Total number of instructions

Figure 3.1 shows a calculation example of the total number of instructions in

pseudo code of assembly language. The left column shows instruction set which is
compiled from a C program. Then a simple count is made from first to last
instructions. The total number of instructions is n + m.

Label 1: Count
 Instruction A 1
 Instruction B 2
 … …
 Instruction C n
 Label 2:
 Instruction D 1
 Instruction E 2
 … …
 Instruction F m
Total number of Instructions n + m

 Figure 3.1 Find total of instruction

 10

This study uses the total clock cycle for estimating the speed of the program. Each
machine instruction is examined to determine the number of clock cycles. Each
instruction has different numbers of clock cycles depending on the type of instruction
as shown in the example in Table 3.2. Reciprocal throughput (RT) is the average
number of core clock cycles per instruction for a series of independent instructions of
the same kind in the same thread [23]. Latency (L) of an instruction is the delay that
the instruction generates in a dependency chain. The measurement unit is clock cycles
[23]. The total clock cycles of every instruction can be summed for measuring
instruction speed.

Table 3.1 Clock cycles for an instruction

Instruction
Clock cycle

(RT)

Clock cycle

(L)

 MOV r,m 1 2

 PUSH r 1 3

 POP m 1.5 2

 INC 0.33 1

 ADD r,r 0.33 1

This research will focus on finding energy consumption of allocating variable in local,

shared variable, and register in C programming. The amount of energy consumed by
local variable allocation is analyzed by comparing shared variable and register memory
utilization. For this study, a set of programs that perform the same functionality are
written in three different ways. Each program uses either local, global, or register
variables. Figure 3.1 illustrates such an arrangement.

 11

 The above study demonstrates the impact of memory utilization to the
energy consumption as well as the speed of program execution.

There are two scenarios to be investigated, namely, (1) local variable vs. shared
variable, and (2) local variable vs. register variable. A collection of C programs are set
up to assist in the analysis. The following case studies will be carried out to exercise
both scenarios. Each case study will show the energy consumption and the total clock
cycle used. There are 4 cases of programming function deployed in each scenario:

1. Function calls
2. Repeated function calls
3. Function calls to function
4. Repeated function calls to function

The explanation of these 4 cases is described in details.

Figure 3.2 A comparative energy consumed by local variable, shared

variable and register variable

C Program

Shared var

Assembly
Instruction

Energy
Consumption

Register var

Assembly
Instruction

Energy
Consumption

Local var

Assembly
Instruction

Energy
Consumption

 12

1. Function calls. This is the simplest exercise for parameter allocation, access, and

retrieval. Normally, a programmer will use local variables declared in the main
function. These variables will subsequently be passed to other functions in the
form of parameters. In scenario (1), program modification is done by moving local
variables to shared variables, thereby no parameter passing is needed. In
scenario (2), the register keyword is simply added to proper local variables.

In the ‘Shared variable’ column of Figure 3.3, the variable declaration is moved
out of the main scope to shared variable or global scope. Then the parameters of the
function can be removed.

Local Shared variable Register
Declare function

(type,..)

Main function
Declare local variable
Statement
Call function

(argument A,…)
End main

Function (parameter

A,…){
}

Declare function (type,..)
Declare global variable

Main function

Statement
Call function ()
End main

Function (){
}

Declare function
(type,..)

Main function

Declare register local
variable

Statement
Call function

(argument A,…)
End main

Function (parameter
A,…){

}
Figure 3.3 Case 1 Pseudocode - function calls

The Figure 3.4 shows a simplified version of the instruction set and its corresponding
executing cycle. The number of instructions and the clock cycles consumed in
executing the program is used to illustrate how energy consumption is calculated. In
this case, finding the total number of instructions can be obtained from

 13

Total number of instructions = n + m

The energy consumption in Joules can be calculated as:

Energy consumption = (n + m) x EPI

Total clock cycle of RT and become
Total clock cycle (RT) = x + y
 and (L) = a + b

main: Count Clock (RT) Clock (L)

 Instruction A 1 1 1
 Instruction B 2 2 2

… … … …
 Instruction C n x a

Label:
 Instruction D 1 1 1
 Instruction E 2 2 2

… … … …
 Instruction F m y b

Figure 3.4 Example of instruction in case (1)

2. Repeated function calls. The objective is to find code segments that exhibit high

energy consumption in a program and the behaviour of the associated
variables/parameters. As such, program improvement can be directed to the right
area where energy consumption can be reduced. This case intentionally
contrives repeated calls to function for this particular purpose.

 14

In Figure 3.5 the pseudocode shows a loop containing a function inside within

the main function. This will call a function up to n times.

Local Shared variable Register
Declare function (type,..)

Main
Declare local variable
Statement
For i to n
Call function(argument A,…)
End for
End main

Function (parameter A,…){
}

Declare function (type,..)
Declare global variable

Main
Statement
For i to n
Call function()
End for
End main

Function (){
}

Declare function (type,..)

Main
Declare register local

variable
Statement
For i to n
Call function(argument A,…)
End for
End main

Function (parameter A,…){
}

Figure 3.5 Case (2) Pseudocode - Repeated function calls

A similar case study can be seen in Figure 3.6. However, this case considers the loop

depending on how the instruction jump to the next label as shown below.

In this case, the total number of instructions is:
 Number of total instruction = n + m + 1 (k)*i

where i is the number of repetitions depending on the conditions.

The energy consumption in Joule can be calculated as
Energy consumption = n + m + 1 (k)*i x EPI

Total clock cycles of RT and L become

 15

 Total clock cycle (RT) = x + y + 1 (z)*i
 And (L) = a + b + 1 (c)*i

Main: Count Clock (RT) Clock (L)
 Instruction A 1 1 1
 Instruction B 2 2 2

… … … …
 Instruction C n x a

Label:
 Instruction D 1 1 1
 Instruction E 2 2 2

… … … …
 Instruction F m y b
 Label:
 Instruction CMP 1 1 1
 Instruction JMP Label 2 2 2

… … … …
 Instruction G k z c

Figure 3.6 Example of instruction in case (2)

3. Function calls to function. This case is intended to investigate the cascading
effect of energy consumption consumed by parameter allocation and reference.
The complication of such operations, i.e., stack, shared variable, and register
variable, at the instruction level are systematically measured and compared.

Figure 3.7 shows the pseudocode of function calls to other functions. This
scenario might occur if a program has many subroutines or functions. In this
simple case, function 1 calls function 2.

 16

Local Shared variable Register

Declare function (type,..)

Main function
Declare local variable
Statement
Call function1 (argument A,…)
End main

Function1 (parameter A,…){
 Call function2(argument A)
}

Function2 (parameter B,…){
}

Declare function (type,..)
Declare global variable

Main function
Statement
Call function1()
End main

Function1 (){
 Call function2()
}

Function2 (){
}

Declare function (type,..)

Main function
Declare register local

variable
Statement
Call function1(argument A,…)
End main

Function1 (parameter A,…){
 Call function2(argument A)
}

 Function2 (parameter B,…){

}
Figure 3.7 Case (3) Pseudocode - function calls to other functions

Figure 3.8 shows a similar case study. There are more functions to be called which
include function labels.

In this case, finding total number of instructions is
 Number of total instruction = n + m + k

The energy consumption in Joule can be calculated as

Energy consumption = (n + m +k) x EPI

Total clock cycles of RT and L become
Total clock cycle (RT) = x + y + z

 And (L) = a + b + c

 17

Main: Count Clock (RT) Clock (L)
 Instruction A 1 1 1
 Instruction B 2 2 2

… … … …
 Instruction C n x a

Label: function
 Instruction D 1 1 1
 Instruction E 2 2 2

… … … …
 Instruction F m y b
 Label: function
 Instruction G 1 1 1
 Instruction H 2 2 2

… … … …
 Instruction I k z c

Figure 3.8 Example of instruction in case (3)

4. Nested repeated function calls to function. This case culminates all of the above

complications to demonstrate as close to actual operation as possible.

 Figure 3.9 shows pseudocode that contains the loop calls containing a function
call to another function.

 18

Figure 3.10 shows a similar case study. This case will considers the number of
repetitions (i) depending on how the instruction jump to the next label as below.

Local Shared variable Register
Declare function (type,..)

main function()
Declare local variable
Statement
For i to n
Call function1 (argument

A,…)
End for
End main

Function1 (parameter

A,…){
 Call

function2(argument B,…)
}

Function2 (parameter

B,…){
}

Declare function
(type,..)

Declare global
variable

main function()
Statement
For i to n
Call function1()
End for
End main

Function1 (){
 Call function2()
}

Function2 (){
}

Declare function
(type,..)

main function()
Declare register local

variable
Statement
For i to n
Call function1(argument

A,…)
End for
End main

Function1 (parameter

A,…){
 Call

function2(argument B,…)
}

 Function2 (parameter
B,…){

}

Figure 3.9 Case (4) Pseudocode - Nested repeated function

calls to another function

 19

In this case, the total number of instructions is:
 Number of total instruction = n + k + 1 + (p + m) * i

where i is the number of repetitions depending on the condition.

The energy consumption in Joule can be calculated as:
Energy consumption = n + k + 1 + (p + m) * i x EPI

Total clock cycle of RT and L become
The total clock cycle (RT) = x + z + 1 + (v + y) * I
 And (L) = a + c + 1 + (d + b) * i

Main: Count Clock (RT) Clock (L)
 Instruction A 1 1 1
 Instruction B 2 2 2

… … … …
 Instruction C n x a

Label:
 Instruction D 1 1 1
 Instruction E 2 2 2

… … … …
 Instruction F m y b
 Label:
 Instruction CMP 1 1 1
 Instruction JMP Label 2 2 2

… … … …
 Instruction G k z c
Label:
 Instruction H 1 1 1
 Instruction I 2 2 2

… … … …
 Instruction J p v d

Figure 3.10 Example of instruction in case (4)

 20

Figure 3.11 shows sample C code to demonstrate case study 1. This code will be
analyzed to determine the energy consumption and clock speed. In this program,
variable m is declared as a local variable being passed by a function as a parameter.

The C source code is compiled into assembly instructions and is shown in Table 3.3.
The first column lists the instruction set. There is a main function label “_main:” and
function label “_func:” which contains the instructions used inside the function. To
calculate the total number of instructions, just simply count instructions in “_main:”
and “_func:” from first to last instruction. There are 13 and 5 instructions in “_main”
and “_func” functions, respectively. The total number of instructions is 18. In this
research, the experiment used Intel CPU and the EPI value was set to 11 nJ according
to [22] and The energy consumption becomes 18 x 11 = 191 nJ.

 The last 2 columns “Clock (RT)” and “Clock (L)” represent Reciprocal Throughput
and Latency. The clock value used by each instruction can be taken from reference
data sheets [23]. For example, the mov m,i instruction takes 1 RT clock cycle and L
with 3 clock cycles. In the _main: function, clock (RT) is 11.99 and L is 18. In “_func:”

#include <stdio.h>
int function (int);
int main() {
int m,r;
m = 10;
r = func (m) ;
return 0;
}
int func (int m) {
return m+1;
}

Figure 3.11 Simple C source code using local variable

 21

clock (RT) is 4.33 and L is 6. The total of clock cycles (RT) and L are 16.65 and 24,
respectively.

Table 3.2 Assembly instruction and number of count

 Instruction set Instruction Clock (RT) Clock (L)
_main:
 push ebp 1 1 3
 mov ebp, esp 2 0.33 1
 and esp, -16 3 0.33 1
 sub esp, 32 4 0.33 1
 call ___main 5 2
 mov DWORD PTR [esp+28], 10 6 1 3
 mov eax, DWORD PTR [esp+28] 7 1 2
 mov DWORD PTR [esp], eax 8 1 3
 call _func 9 2

 mov DWORD PTR [esp+24], eax 10 1 3
 mov eax, 0 11 0.33 1
 leave 12 1
 ret 13 1
_func:
 push ebp 1 1 3
 mov ebp, esp 2 0.33 1
 mov eax, DWORD PTR [ebp+8] 3 1 2
 pop ebp 4 1
 ret 5 1

 Total 18 16.65 24
Total Energy Consumption 191 nJ

 22

Other examples on shared variable and register variable for memory access are

carried out at in a similar manner. The next section will describe an experimental and

its results.

 23

Chapter 4
Experimental Results and Discussions

4.1 Experimental procedure

A tool called KP program was built to help analyze the test programs. The tool first
reads an input C program submitted by the user under predefined test scenarios. It
locates local variables and function parameters and prompts the user to reallocate or
alter them to shared variables or register variables as mandated by the test scenarios.
A lookup table is created by the tool to hold all the data selected by the user for
reallocation or alteration, whichever applies. The tool then compiles both the original
and the modified C programs to produce assembly output. In so doing, all instructions
are available for determining clock cycles and the EPI equivalent.

Figure 4.1 depicts the design of KP tool. User interface includes: (1) a menu bar for
various functionalities such as reset, compile (2) a browse button for selecting an input
C program file, and (3) an analyze button for analyzing the input program. The left
panel (4) of the tool shows the C program and the right panel (5) shows the assembly
instructions. Results of the analysis are shown at the bottom of the right panel (6). Use
of this tool will be described in the next section.

 24

Figure 4.1 KP tool functionality

To run test programs, the operating environment set up for the experiment was

hosted by a laptop computer with Intel Core 2 Duo @ 2.00GHz 65 nm, 3 GB RAM
running Windows 7. The tool was coded in C# using Microsoft Visual Studio version
2010. All test programs were compiled into Assembly instructions with MinGW [24]
which is a ported GNU Compiler collections (GCC). All assembly instructions were
based on Intel.

The experiment analyzed 24 sample programs which were divided into 2 sets. In
the first set, there were 12 programs with 3 programs for each of the four cases outlined
in the previous chapter. For the second set, there were also 12 programs containing
more complex code that included more function parameters.

The rationale behind each case study is to determine the amount of energy

consumed by program instructions under different functions and to analyse the
advantages of using each memory access type (local, shared variable, and register).

1

2 3

4 5

6

 25

The experiment began with simple function calls as seen in case study (1). The tool
analyzed and compared clock cycles used, and the energy consumed in each scenario.
Code analyses are shown below.

4.2 First case study (1) - Function call

The C code uses local variables as shown below.

The outputs obtained from KP tool are depicted in Figure 4.3

#include <stdio.h>
int func1(int, int, int);
int main(void){
int xint,yint,zint,res1;
xint = 5;
yint = 10;
zint = 15;
res1 = func1(xint, yint, zint);
return 0;
}
int func1(int x, int y, int z){
int temp1;
temp1 = x + y + z;
return temp1;
}

Figure 4.2. Case 1 - C source code using local variable

 26

Figure 4.3 KP running case study 1 - local variable

The C program in this figure the contained 30 instructions that utilized 27.31 clock
cycles (RT) and 39 clock cycles (L). Energy consumption was approximately 330 nJ. In
Figure 4.4 shows the entire instruction set which is compiled from C program.

 27

_main:
 push ebp
 mov ebp, esp
 and esp, -16
 sub esp, 32
 call ___main
 mov DWORD PTR [esp+28], 5
 mov DWORD PTR [esp+24], 10
 mov DWORD PTR [esp+20], 15
 mov eax, DWORD PTR [esp+20]
 mov DWORD PTR [esp+8], eax
 mov eax, DWORD PTR [esp+24]
 mov DWORD PTR [esp+4], eax
 mov eax, DWORD PTR [esp+28]
 mov DWORD PTR [esp], eax
 call _func1
 mov DWORD PTR [esp+16], eax
 mov eax, 0
 leave
 ret
_func1:
 push ebp
 mov ebp, esp
 sub esp, 16
 mov eax, DWORD PTR [ebp+12]
 mov edx, DWORD PTR [ebp+8]
 add eax, edx
 add eax, DWORD PTR [ebp+16]
 mov DWORD PTR [ebp-4], eax
 mov eax, DWORD PTR [ebp-4]
 leave
 ret

Figure 4.4 case study 1 - assembly instruction as shown in the KP tool

From the experiment whose results were shown in Figure 4.3, the KP tool highlights
the C code in the left panel in green colour when the parameters should be removed.

 28

Figure 4.5 shows the result of this code change where local variables are moved out
of the main function. In other words, these variables now become shared variables.

The KP tool in Figure 4.6 shows the analysis of the modified C program using shared

variable.

#include <stdio.h>
int xint,yint,zint,res1;
void func1(void);
int main(void){
xint = 5;
yint = 10;
zint = 15;
func1();
return 0;
}
void func1(void){
res1 = xint + yint + zint;
}

Figure 4.5 Case study 1 - C source code using shared variable

 29

Figure 4.6 KP running case study 1 – Shared variable

The program in Figure 4.6 contains 21 instructions that utilize 18.98 clock cycles (RT)

and 25 clock cycles (L) and the energy consumption is about 231 nJ of energy.
Next, the experiment followed scenario 2 where local variables were added using

the keyword register. All these variables were stored in the register as shown in Figure
4.7

 30

The KP tool in Figure 4.8 shows similar analysis of the previous experiment for the

modified C program using register variables.

#include <stdio.h>
int func1(int , int , int);
int main(void){
register int xint,yint,zint;
int res1;
xint = 5;
yint = 10;
zint = 15;
res1 = func1(xint, yint, zint);
return 0;
}
int func1(int x, int y, int z){
register int temp1;
temp1 = x + y + z;
return temp1;
}

Figure 4.7 Case study 1 - C source code using register

variables

 31

Figure 4.8 KP running case study 1 – register variable

The C program in Figure 4.8, contained 35 instructions that utilized 28.63 clock

cycles (RT) and 35 clock cycles (L). Energy consumption was approximately 385 nJ.

 32

4.3 Second case study (2) - Repeated Function calls

The second case, case (2) was conducted in the same manner the previous case. The
C program using local variables was first tested. Then variables using shared variable
was performed, followed by register variables.

Figure 4.9 KP running case study 2 – local variable

The C program in Figure 4.9 contained 124 instructions that utilized 112.27 clock

cycles (RT) and 220 clock cycles (L). Energy consumption was approximately 1364 nJ.
The C code was modified using shared variable as shown in Figure 4.10.

 33

Figure 4.10 KP running case study 2 – shared variable

The C program In Figure 4.10 contained 84 instructions that utilized 72.27 clock

cycles (RT) and 70 clock cycles (L). Energy consumption was approximately 924 nJ.
The C code was modified by simply adding the keyword register.

 34

Figure 4.11 KP running case study 2 – register variable

The C program in Figure 4.11 contained 116 instructions that utilized 98.91 clock

cycles (RT) and 117 clock cycles (L). Energy consumption was approximately 1276 nJ.

4.4 Third case study (3) - Function calls Function

The third case (3) was carried out in the same manner as previous cases. The C
program using local variables was first tested. The program was then modified using
shared variable and register variables.

 35

Figure 4.12 KP running case study 3 – local variable

The C program in Figure 4.12 contained 46 instructions that utilized 42.97 clock
cycles (RT) and 80 clock cycles (L). Energy consumption was approximately 506 nJ.

The C code was modified using shared variable as shown in Figure 4.13

 36

Figure 4.13 KP running case study 3 – shared variable

The C program in Figure 4.13 contained 32 instructions that utilized 29.64 clock

cycles (RT) and 48 clock cycles (L). Energy consumption was approximately 352 nJ.
The C code was modified by adding the keyword register in Figure 4.14

 37

Figure 4.14 KP running case study 3 – register variable

The original C program in the Figure 4.14 contained 52 instructions that utilized

44.28 clock cycles (RT) and 72 clock cycles (L). Energy consumption was approximately
572 nJ.

4.5 Fourth case study (4) – Nested repeated Function calls

The fourth case (4) performed repeated function calls. The C program using local
variables was first tested and then modified using shared variable and register
variables.

 38

Figure 4.15 KP running case study 4 – local variable

The C program in Figure 4.15 contained 194 instructions that utilized 185.24 clock
cycles (RT) and 384 clock cycles (L). Energy consumption was approximately 2134 nJ.

The C code in Figure 4.18 was now modified to use shared variable.

 39

Figure 4.16 KP running case study 4 – shared variable

The C program in Figure 4.16 contained 139 instructions that utilized 125.57 clock

cycles (RT) and 220 clock cycles (L). Energy consumption was approximately 1529 nJ.
Finally, the C code was modified using register variables as seen in Figure 4.17.

 40

Figure 4.17 KP running case study 4 – register variable

The C program in Figure 4.17 contained 191 instructions that utilized 175.56 clock

cycles (RT) and 318 clock cycles (L). Energy consumption was approximately 2101 nJ.
The tables below are the results from the first set experiments, categorized in 5

groups: 1) Number of instructions, 2) Energy consumption by allocation scheme, 3)
Number of clock cycle (reciprocal throughput (RT)), 4) Number of clock cycle (latency
(L)), and 5) Number of clock cycle (RT + L). The given scenarios are compared in
pairwise, namely, Shared variable Vs Local, Register Vs Local, and Shared variable Vs
Register).

 41

Table 4.1 Number of instructions

Case Local Shared Register

1 30 21 35
2 124 84 116
3 46 32 52
4 194 139 191

Table 4.2 Energy consumption (nJ) by allocation schemes

Case Local Shared Register
Shared VS

Local
Register
VS Local

Shared VS
Register

1 330 231 385 -30.00 % +16.67 % -40.00 %
2 1364 924 1276 -32.26 % -6.45 % -27.59 %
3 506 352 572 -30.43 % +13.04 % -38.46 %
4 2134 1529 2101 -28.35 % -1.55 % -27.23 %

Table 4.3 Number of clock cycle (RT) by allocation schemes

Case Local Shared Register
Shared VS

Local
Register
VS Local

Shared VS
Register

1 27.31 18.98 28.63 -30.50 % +4.83 % -33.71 %
2 112.27 72.27 98.91 -35.63 % -11.90 % -26.93 %
3 42.97 29.64 43.95 -31.02 % +2.28 % -32.56 %
4 185.24 125.57 175.56 -32.21 % -5.23 % -28.47 %

 42

Table 4.4 Number of clock cycle (L) by allocation schemes

Case Local Shared Register
Shared VS

Local
Register
VS Local

Shared VS
Register

1 39 25 35 -35.90 % -10.26 % -28.57 %
2 220 70 117 -68.18 % -46.82 % -40.17 %
3 80 48 70 -40.00 % -10.00 % -33.33 %
4 384 220 318 -41.02 % -14.75 % -30.82 %

Table 4.5 Number of clock cycle (RT + L) by allocation schemes

Case Local Shared Register
Shared VS

Local
Register
VS Local

Shared VS
Register

1 66.31 43.98 63.63 -33.68 % -4.04 % -30.88 %
2 332.27 142.27 215.91 -57.18 % -35.02 % -34.11 %
3 122.97 77.64 113.95 -36.86 % -7.34 % -31.86 %
4 569.24 345.57 493.56 -39.29 % -13.29 % -29.98 %

Results from the Table 4.1 shows that in case (1) - function calls, shared variable
utilizes only a few number of instructions (21) while register variable uses a larger
number instructions (35). In case (4) – repeated function calls to function, shared
variable utilizes fewer instructions than others (139).

In Table 4.2, shared variable of case (1) exhibits a sizable savings (-30%), while
register variable shows a slightly higher consumption (+16.67%) than that of the local
variable. When comparing shared variable with register variable, it can be seen that
shared variable consumes less energy than register variable (-40%).

The results are different for repeated function calls (case 2), where shared
variable saves energy consumption (-32.26%), and register variable consumes less
energy than the original local variable (-6.45%), and shared variable saves more energy
(-27.59%) compared to register variable. As programs become more complicated,
savings on energy consumption are even more noticeable. The function calls to other

 43

functions (case 3) exhibits such benefits. Shared variable saves over -30.43% when
compared to local variable, while the number on register variable shows slightly higher
consumption (+13.04%) than local variable. Shared variable saves -38.46% energy
compared to register variable. For repeated function calls to other functions (case 4),
the numbers shows that shared variable uses -28.35%, while register variable uses -
1.55% and -27.23% when comparing shared variable with register variable.

Table 4.3 summarizes all the statistics taking only clock cycle (RT) factor into
account. Similar to previous tables, all variables are compared. In case (1), shared
variable is faster than local variable by -30.50%, register is slightly slower than local
variable by about +4.83%, while shared variable is faster than register variable by -
33.71%. When looking at case 4 which contains repetitions, the shared variable is still
faster than local variable (-32.21%), while register variable is faster than local variable
(-5.23%)

Table 4.4 shows clock cycle latency (L). In case (1), local variable has the
highest latency at about 39 cycles. Register is next at 35 cycles, and shared variable is
last at 25 cycles. Shared variable have fewer latency clock cycles (-35.90%) than local
variable, and register variable is even less at 10.26%. The results show that shared
variable is -28.57% when compared with register.

Table 4.5 shows the total clock cycle (L + RT). In case (1), Shared variable uses
-33.68% less than local variable and less than register -30.88%. Register variable also
expends less clock cycles (-4.04%) than local variable.

 44

Figure 4.18 Comparison of number of instruction (Y) for all cases (X)

Figure 4.18 plots the results of Table 4.1 that shared variable surpasses other
schemes in all cases.

Figure 4.19 Comparison of energy consumption (Y) for all cases (X)

Figure 4.19 plots the results of Table 4.2 that shared variable consumes the lowest
all cases, while the original local variable takes the highest in case (1) and (3).

 45

Figure 4.20 Comparison of clock cycle (RT) (Y) for all cases (X)

Figure 4.20 corresponds to Table 4.3. Note that local variable has the highest clock
values in case (1) and (3), while shared variable has the lowest values in every case.

Figure 4.21 Comparison of clock cycle (L) (Y) for all cases (X)

Figure 4.21 corresponds to Table 4.4. Note that local variable has the highest clock
latency values in all cases.

 46

Figure 4.22 Comparison of clock (RT + L) (Y) for all cases (X)

Figure 4.22 corresponds to Table 4.5. Note that local variable has the highest RT+L
values in all cases.

 47

Table 4.6 Showing all results from 4 cases

 1 2 3 4

 local shared register local shared register local shared register local shared register

Total Instruction 30 21 35 124 84 116 46 32 52 194 139 191
Total Energy
Consumption

330 231 385 1364 924 1276 506 352 572 2134 1529 2101

Total Clock (RT) 27.31 18.98 28.63 112.27 72.27 98.91 42.97 29.64 43.95 185.24 125.57 175.56

Total Clock (L) 39 25 35 220 70 117 80 48 70 384 220 318
Total Clock (RT +
L) 66.31 43.98 63.63 332.27 142.27 215.91 122.97 77.64 113.95 569.24 345.57 493.56

0

500

1000

1500

2000

2500

local shared register local shared register local shared register local shared register

1 2 3 4

Total Instruction Total Energy Consumption Total Clock (RT) Total Clock (L) Total Clock (RT + L)

Figure 4.23 corresponds to Table 4.6

 48

4.6 Discussion

The results obtained from the KP tool did not come as a surprise, as they were well-
established programming facts. The findings merely reinstated local, register, and
shared variable scoping principles. From the findings, shared variable reduced energy
consumption by approximately 30% in simple function calls, and around 30% in
nested function calls. Register variables, on the other hand, were effective only when
repetitive accesses were required. However, it was not as efficient as shared variable.
Energy consumption comparison between shared variable and register variables
reveals that the former saved approximately 40% and 27% in simple function calls
and nested function calls, respectively.

Table 4.6 and Figure 4.23 show an interesting finding that is rarely stated in the
literature regarding total energy consumption of different methods of variable scoping.
This experiment found that local variable consumed the most energy. From the
instruction level, it was apparent that stack process took considerable clock cycles
which resulted in high latency and energy consumption.

The shortfall of shared variable is due to memory access protection as it violates
information hiding principles in Software Engineering. The side effect of shared access
is what programmers should heed and practice with care. This is a tradeoff of using
shared variable over local variable during software design. Programmers have to
choose which direction will go, either saving energy consumption or preserve software
engineering principle. As such, they can choose proper variable type to access memory.
An straightforward example is the use of global static variable to make a variable
visible, yet prevents accidental access by code due to naming conflicts.

Another example is register variable that is often applied to repetitive accesses of
memory to reduce the energy consumption on stack pushes and pops in typical
parameter passing mechanisms.

To further reatfirm the above finding, the second set of programs were
experimented. They were more complicated, more parameter and more loops. The
tables below show the results from the second set of experiments. All sample C code
can be found in the Appendix A.

 49

Table 4.7 Number of instructions (set 2)

Case Local Shared Register

1 37 29 41
2 313 243 290
3 56 29 61
4 495 374 481

Table 4.8 Energy consumption by allocation scheme (set 2)

Case Local Shared Register
Shared VS

Local
Register VS

Local
Shared VS

Register
1 407 319 451 -21.62 % 10.81 % -29.27 %
2 3443 2673 3190 -22.36 % -7.35 % -16.21 %
3 616 319 671 -48.21 % 8.93 % -52.46 %
4 5445 4114 5291 -24.44 % -2.83 % -22.25 %

 50

Table 4.9 (RT) Number of clock cycle by allocation scheme (set 2)

Case Local Shared Register
Shared VS

Local
Register
VS Local

Shared VS
Register

1 30.13 23.47 31.12 -22.10 % 3.29 % -24.58 %
2 243.39 180.09 215.08 -26.01 % -11.63 % -16.27 %
3 48.12 33.46 49.77 -30.47 % 3.43 % -32.77 %
4 414.29 287.59 385.88 -30.58 % -6.86 % -25.47 %

Table 4.10 (L) Number of Clock cycle by allocation scheme (set 2)

Case Local Shared Register
Shared VS

Local
Register
VS Local

Shared VS
Register

1 62 44 54 -29.03 % -12.90 % -18.52 %
2 559 389 472 -30.41 % -15.56 % -17.58 %
3 98 60 88 -38.78 % -10.20 % -31.82 %
4 892 603 765 -32.40 % -14.24 % -21.18 %

Table 4.11 (RT + L) Number of clock cycle (set 2)

Case Local Shared Register
Shared VS

Local
Register
VS Local

Shared VS
Register

1 92.13 67.47 85.12 -26.77 % -7.61 % -20.74 %
2 802.39 569.09 687.08 -29.08 % -14.37 % -17.17 %
3 146.12 93.46 137.77 -36.04 % -5.71 % -32.16 %
4 1306.29 890.59 1150.88 -31.82 % -11.9 0 % -22.62 %

 51

Figure 4.24 Comparison of number of instruction (Y) for all cases (X)

Figure 4.23 corresponds to Table 4.6. Note that shared variable has the lowest
values in every case.

Figure 4.23 corresponds to Table 4.7. Note that shared variable has the lowest
values in every case.

Figure 4.25 Comparison of energy consumption (Y) for all cases (X)

 52

Figure 4.26 Comparison of clock cycle (RT) for all cases (X)

Figure 4.23 corresponds to Table 4.8. Note that register variable has lower values

than local variable for cases (2) and (4).

Figure 4.27 Comparison of clock cycle (L) (Y) for all cases (X)

Figure 4.23 corresponds to Table 4.9. Note that local variable has the highest values
in every case.

 53

Figure 4.28 Comparison of clock cycle (L+RT) (Y) for all cases (X)

Figure 4.23 correspond to Table 4.10. Note that local variable has the highest values
in every case. All the results from set 2 are similar to the previous discussion.

 54

Chapter 5
Conclusion and future work

5.1 Conclusion and future work

This thesis investigates energy consumption and clock cycle used by local variable,
register variable, and shared variable in C programs. Experiments were conducted on
24 C sample programs in 2 scenarios and 4 case studies by means of the KP tool. The
results shows that shared variable significantly consumes the least energy over local
and register variables for all 4 cases. Nevertheless, the gains from shared variable could
possibly be offset by violation penalties of “good” software engineering practices, e.g.,
side effects, information hiding, portability, etc. The issue at hand is whether software
engineering or energy consumption is crucial to producing theoretically sound or
environmentally conscious products.
The KP tool greatly helps identify code fragment to reduce the energy consumption

from the programming point of view. However, it is currently limited to basic analysis.

Future study will improve the tool to be able to analyze complicated C programs in

wider research contexts.

REFERENCES

1. [cited 2014 April]; Available from:
http://en.wikipedia.org/wiki/World_energy_consumption.

2. ; Available from: http://www.migsmobile.net/2010/01/12/evolution-of-mobile-
device-uses-and-battery-life.

3. Mobile Future of Connected Devices. 2013.
4. Lee, S., et al., An Accurate Instruction-Level Energy Consumption Model for

Embedded RISC Processors, in Proceedings of the ACM SIGPLAN workshop on
Languages, compilers and tools for embedded systems. 2001, ACM: Snow Bird,
Utah, USA. p. 1-10.

5. Noureddine, A., A. Bourdon, and L. Seinturier, A Preliminary Study of the Impact
of Software Engineering on GreenIT.

6. Flinn, J. and M. Satyanarayanan. PowerScope: a tool for profiling the energy
usage of mobile applications. in Mobile Computing Systems and Applications,
1999. Proceedings. WMCSA '99. Second IEEE Workshop on. 1999.

7. Amsel, N. and B. Tomlinson, Green Tracker: A Tool for Estimating the Energy
Consumption of Software. 2010.

8. Do, T., S. Rawshdeh, and W. Shi, pTop: A Process-level Power Profiling Tool.
9. Shih, E., P. Bahl, and M.J. Sinclair, Wake on wireless: an event driven energy

saving strategy for battery operated devices, in Proceedings of the 8th annual
international conference on Mobile computing and networking. 2002, ACM:
Atlanta, Georgia, USA. p. 160-171.

10. Mike Tien-Chien, L. and V. Tiwari. A memory allocation technique for low-
energy embedded DSP software. in Low Power Electronics, 1995., IEEE
Symposium on. 1995.

11. Binkley, D., Source Code Analysis: A Road Map, in 2007 Future of Software
Engineering. 2007, IEEE Computer Society. p. 104-119.

12. Sutherland, B., Beginning Android C++ Game development. 2013.

http://en.wikipedia.org/wiki/World_energy_consumption
http://www.migsmobile.net/2010/01/12/evolution-of-mobile-device-uses-and-battery-life
http://www.migsmobile.net/2010/01/12/evolution-of-mobile-device-uses-and-battery-life

 56

13. Tsai, Y.-T., et al., Mobile visual computing in C++ on Android, in ACM SIGGRAPH
2013 Mobile. 2013, ACM: Anaheim, California. p. 1-1.

14. Wagner, T.A., et al., Accurate static estimators for program optimization, in
Proceedings of the ACM SIGPLAN 1994 conference on Programming language
design and implementation. 1994, ACM: Orlando, Florida, USA. p. 85-96.

15. Skaller, J.M., A proposal for NESTED FUNCTIONS. 1993.
16. Yanbing, L. and J. Henkel. A framework for estimating and minimizing energy

dissipation of embedded HW/SW systems. in Design Automation Conference,
1998. Proceedings. 1998.

17. Tiwari, V., S. Malik, and A. Wolfe, Power analysis of embedded software: a first
step towards software power minimization. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 1994. 2(4): p. 437-445.

18. Linn, C., et al., Stack analysis of x86 executables.
19. Reps, T. and G. Balakrishnan, Improved memory-access analysis for x86

executables, in Proceedings of the Joint European Conferences on Theory and
Practice of Software 17th international conference on Compiler construction.
2008, Springer-Verlag: Budapest, Hungary. p. 16-35.

20. Sestoft, P., Replacing function parameters by global variables, in Proceedings
of the fourth international conference on Functional programming languages
and computer architecture. 1989, ACM: Imperial College, London, United
Kingdom. p. 39-53.

21. Davidson, J.W. and D.B. Whalley, Methods for saving and restoring register
values across function calls. Softw. Pract. Exper., 1991. 21(2): p. 149-165.

22. Grochowski, E. and M. Annavaram, Energy per Instruction Trends in Intel®
Microprocessors 2006.

23. Fog, A., Instruction Tables Lists of Instruction Latencies, Throughputs and Micro
Operation Breakdowns for Intel, AMD and VIA CPUs, C.U.C.o. Engineering, Editor.

24. MinGW Minimalist GNU for Windows. 2013; Available from:
http://www.mingw.org/.

http://www.mingw.org/

APPENDIX

Appendix A
Set 2 – Sample programs
Program 1

Program 2

#include<stdio.h>
int findInterest(int,int,int);
int main()
{
int amount,rate,time,res;
amount = 500;
rate = 5;
time = 2;
res = findInterest(amount,rate,time);
}
int findInterest(int a, int r, int t){
int si;
si = (a * r * t)/100;
return si;
}

#include<stdio.h>
void findInterest(void);
int amount,rate,time,si;
int main()
{
int res;
amount = 500;
rate = 5;
time = 2;
findInterest();
}
void findInterest(){
si = (amount * rate * time)/100;
}

 59

Program 3

Program 4

#include<stdio.h>
int findInterest(int,int,int);
int main()
{
register int amount,rate,time;
int res;
amount = 500;
rate = 5;
time = 2;
res = findInterest(amount,rate,time);
}
int findInterest(int a, int r, int t){
int si;
si = (a * r * t)/100;
return si;
}

#include<stdio.h>
int findInterest(int,int,int);
int main()
{
int amount,rate,time,res,i;
amount = 500;
rate = 5;
time = 2;
for(i=0;i<10;i++){
 res = findInterest(amount,rate,time);
}
}
int findInterest(int a, int r, int t){
int si;
si = (a * r * t)/100;
return si;

}

 60

Program 5

Program 6

#include<stdio.h>
void findInterest(void);
int amount,rate,time,si;
int main()
{
int i;
amount = 500;
rate = 5;
time = 2;
for(i=0;i<10;i++){
 findInterest();
}
}
void findInterest(){
si = (amount * rate * time)/100;
}

#include<stdio.h>
int findInterest(int,int,int);
int main()
{
register int amount,rate,time;
int res,i;
amount = 500;
rate = 5;
time = 2;
for(i=0;i<10;i++){
 res = findInterest(amount,rate,time);
}
}
int findInterest(int a, int r, int t){
register int si;
si = (a * r * t)/100;
return si;
}

 61

Program 7

Program 8

#include<stdio.h>
int findInterest(int,int,int,int);
int amount(int,int);
int main()
{
int rate,time,val1,val2,res;
rate = 5;
time = 2;
val1 = 300;
val2 = 200;
res = findInterest(rate,time,val1,val2);
}
int findInterest(int r, int t,int v1,int v2){
int si, sum;
sum = amount(v1,v2);
si = (sum * r * t)/100;
return si;
}
int amount (int v1,int v2)
{
int total;
total = v1 + v2 ;
return total;
}

#include<stdio.h>
void findInterest(void);
void amount(void);
int rate,time,val1,val2,total,si;
int main()
{
int res;
rate = 5;
time = 2;
val1 = 300;
val2 = 200;

findInterest();

}

 62

Program 9

val2 = 200;
findInterest();
}
void findInterest(){
amount();
si = (total * rate * time)/100;
}
void amount ()
{
total = val1 + val2 ;
}

#include<stdio.h>
int findInterest(int,int,int,int);
int amount(int,int);
int main()
{
register int rate,time,val1,val2;
int res;
rate = 5;
time = 2;
val1 = 300;
val2 = 200;
res = findInterest(rate,time,val1,val2);
}
int findInterest(int r, int t,int v1,int v2){
int si, sum;
sum = amount(v1,v2);
si = (sum * r * t)/100;
return si;
}
int amount (int v1,int v2)
{
int total;
total = v1 + v2 ;
return total;
}

 63

Program 10

Program 11

#include<stdio.h>
int findInterest(int,int,int,int);
int amount(int,int);
int main()
{
int rate,time,val1,val2,res,i;
rate = 5;
time = 2;
val1 = 300;
val2 = 200;
for(i=0;i<10;i++){
 res = findInterest(rate,time,val1,val2);
}
}
int findInterest(int r, int t,int v1,int v2){
int si, sum;
sum = amount(v1,v2);
si = (sum * r * t)/100;
return si;
}
int amount (int v1,int v2)
{
int total;
total = v1 + v2 ;
return total;
}

#include<stdio.h>
void findInterest(void);
void amount(void);
int rate,time,val1,val2,total,si,i;
int main()
{
int res;
rate = 5;
time = 2;
val1 = 300;
val2 = 200;
for(i=0;i<10;i++){
 findInterest();
}

 64

Program 12

time = 2;
val1 = 300;
val2 = 200;
for(i=0;i<10;i++){
 findInterest();
}
}
void findInterest(){
amount();
si = (total * rate * time)/100;
}
void amount ()
{
total = val1 + val2 ;
}

#include<stdio.h>
int findInterest(int,int,int,int);
int amount(int,int);
int main()
{
register int rate,time,val1,val2;
int res,i;
rate = 5;
time = 2;
val1 = 300;
val2 = 200;
for(i=0;i<10;i++){
 res = findInterest(rate,time,val1,val2);
}
}
int findInterest(int r, int t,int v1,int v2){
register int si, sum;
sum = amount(v1,v2);
si = (sum * r * t)/100;
return si;
}
int amount (int v1,int v2)
{
register int total;
total = v1 + v2 ;
return total;
}

 65

int amount (int v1,int v2)
{
register int total;
total = v1 + v2 ;
return total;
}

Appendix B
Conference Paper - 2014 International Conference on Computer, Network Security
and Communication Engineering (CNSCE 2014) ISBN: 978-1-60595-167-6 p.712-716

 67

 68

 69

 70

 71

 72

VITA

Mr. Krisada Samrittiyanusorn graduated in Bachelors of Multimedia from
Swinburne University in 2006. He has interest in green and computing technology, of
which made his decision to further his study at Chulalongkorn University mastering in
Computer Science and Information Technology. He believes in a world where
technology is vital in improving the lives of people and creates a positive society.

	THAI ABSTRACT
	ENGLISH ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Chapter 1
	1.1 The rise of Electrical Energy Demands
	1.2. Objective
	1.3. Scope of the work
	1.4. Expected Outcomes

	Chapter 2
	2.1 Related work

	Chapter 3
	3.1 Proposed Methodology

	Chapter 4
	4.1 Experimental procedure
	4.2 First case study (1) - Function call
	4.3 Second case study (2) - Repeated Function calls
	4.4 Third case study (3) - Function calls Function
	4.5 Fourth case study (4) – Nested repeated Function calls
	4.6 Discussion

	Chapter 5
	5.1 Conclusion and future work

	REFERENCES
	Appendix A
	Appendix B
	VITA

