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In order to investigate the property enhancement, binary and ternary
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a fascinating approach to develop the properties of film packaging used for
extending shelf life of fresh produces. This ternary blend film was practically
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Chapter |

INTRODUCTION

1.1 General Introduction

Recently, there has been growing interest in environmentally friendly
bioplastics which are an alternative to petroleum-based plastics. Poly(lactic acid)
(PLA) has gained much attention in enormous industrial applications, especially green
packaging for fresh produces. PLA has high mechanical properties and excellent
transparency; however, it has inherent brittleness which limits its usefulness [1].
Therefore, blending PLA with some elastic material has been received more
attention. Natural rubber (NR) is commonly used as a second phase polymer to
enhance the toughness of brittle polymers [1, 2]. Many studies have focused on the
improvement of mechanical properties of material blended with NR [1-3]. However,
little literature is available on the effect of NR content on the properties of PLA
blown film for fresh produce packaging.

Proper management of fresh produces prior to packaging and the process
during distribution are very important factor to keep the produces fresh. The fresh -
cut produces are still living and still require oxygen for their metabolism, the
atmosphere inner package should control matching to the gas requirement of the
produces. Moreover, the cumulative moisture from the respiration of the produces
can easily damage them because it can be used for microbial growth and available
for chemical reactions [4]. Accordingly, much attention has focused on blending PLA

with the alternative materials to increase gas permeability and water vapor
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absorption. Blending PLA with starch, which is an inexpensive renewable
biodegradable material, has been extensively studied in recent years [5]. Starch has
been frequently processed as thermoplastics for achieving the processability. From
the literatures, it was found that blending starch achieved high gas permeability and
water absorption of resultant film because starch is very sensitive to moisture
content [6-8]. Consequently, blending PLA/NR with TPS is an interesting approach.
This study is designed to evaluate the effect of binary blends on the properties
of PLA-based blown films. Blending PLA with different NR and TPS contents was
considered. Moreover, the ternary blend films were produced by blending PLA/NR10
with various TPS loading. Thermal properties, morphology and moisture absorption
of blend films were evaluated. Gas permeability was investigated in term of oxygen
and water vapor transmission rate. Mechanical properties of blown films were

elucidated as well.

1.2 Objectives

To study the effect of the presence of NR and TPS in binary and ternary

blends on the different properties of PLA-based blown films
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1.3 Scopes of the research

1.3.1 Investigate the effect of binary blends between PLA and various NR

contents in blown films

1.3.2 Evaluate the effect of binary blends between PLA and different TPS

loading in blown films

1.3.3 Examine the effect of ternary blends between PLA/NR and varied TPS

contents in blown films
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Chapter Il

THEORY AND LITERATURE REVIEWS

This chapter describes the general information of Poly(lactic acid), natural
rubber, thermoplastic starch and the gas permeation mechanism. In the first part, the
effect of PLA/NR/TPS blended will be explained. In the second part, the gas

permeation mechanism of film and the related factor will be discussed.

2.1 Biodegradable plastic

A growing rate of production of materials, products, and manufacturing is
increasing steadily. Bioplastic has played an important role in global production as

shown in Figure 2.1[9].
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Figure 2.1 Global production capacities of bioplastics [9]
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2.1.1 Poly(lactic acid) (PLA) and Natural rubber (NR)

Poly(lactic acid) (PLA) is polyester derived from the polymerization of a
renewable resources such as corn and cassava. PLA is a popular biodegradable
plastic to use as packaging films. Natural rubber (NR) as an elastic material is
commonly used as a second phase polymer for the toughness enhancement of PLA.
Many studies have focused on the mechanical properties of PLA/NR blend. It was
found that the addition of NR in PLA matrix provided ductile material as shown in

Figure 2.2. From the stress-stain curve of PLA/NR blend, the necking and cold drawing

could be observed during stretching of specimens [2].
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Figure 2.2 Stress-strain curve of PLA/NR blends [2]

Adding 10 wt% NR enhanced the elongation at break from 5 % of neat
PLA to 200 %. However, tensile strength decreased from 63.1 MPa for neat PLA to
50.4, 40.1 and 24.9 MPa for PLA blended with NR at 5, 10 and 20 wt%, respectively
[2]. The addition of NR latex in PLA matrix exhibited an increase in the elongation at

break from 10 to 21.5 %. Also, the tensile toughness was enhanced from 330 MPa for
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neat PLA to 735 MPa for PLA/10 wt% NR [10]. The incorporation of NR improved the
elongation at break and the tensile toughness but decreased impact and tear
properties of PLA/NR when compared with neat PLA [11].

NR domains act as a stress concentrator which lead to crazes, cracks and
propagates during the fracture process. The formation of stress whitening can be
observed in film because of the effect of light scattering as shown in Figure 2.3.
Crazing induced energy dissipation in the PLA matrix which retarded crack initiation

and propagation and led to an improved toughness for the brittle PLA [12, 13].

Stress whitening

-
-
-
=
i

Figure 2.3 Crazing of PLA/NR film a) neat PLA film b) PLA/NR film
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The morphology of PLA/NR film is illustrated in Figure 2.4. PLA matrix was
the continuous phase and NR was the dispersed phase. Because PLA and NR are
immiscible blend, it was observed that the cavities were left by NR domains in cross
sectional image. Moreover, the coalescence of rubber domain was occurred as

increasing of NR content [11].

STREC 18KV R2,000 Z24mm

Figure 2.4 SEM micrograph of PLA/10 wt% NR blown film in MD direction [11]
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2.1.2 Poly(lactic acid) and Thermoplastic starch (TPS)

Starch is a compostable and renewable polymer which is extracted from
plants such as wheat, corn, potato, rice and cassava. Commonly, the starch has a
hydrophilic character. The starch is mainly composed of amylose and amylopectin.
Amylose is a linear chain of glucose monomer which is bonded by O (1-4) bond, and
amylopectin is a branch chain of glucose which is formed by O (1-4) bond in linear
and 1-6 linkage in branching. Figure 2.5 illustrates the structure of amylose and

amylopectin in starch granule [14].
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Figure 2.5 Amylose and amylopectin structure [12]

Starch is usually composed of hydrogen, carbon and oxygen; however, it
has some impurity such as protein, lipid and minerals. Starch with high content of

impurities especially protein is called “flour” such as corn flour, wheat flour, rice
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flour. These impurities in starch are obstructed the plasticization process. On the
other hand, high purity starch can be obtained from potato and cassava [15].

The granule of starch has very strong hydrogen bond. Therefore, the glass
transition temperature (T,) and the melting temperature (T,,) are higher than the
degradation temperature (Ty). To reduce T, and T,, for extrusion process, adding
plasticizer into starch can be performed. Glycerol is an alternative plasticizer because
it is a small molecule and can easily move into starch granule. While starch absorbs
glycerol under the heating and shearing, hydrogen bonds between hydroxyl groups
of starch is broken. Then, the starch granule is destroyed, plasticized and melted
(Figure 2.6). After the processing, it is become a melted and partially depolymerized
starch which is referred to as thermoplastic starch “TPS” [14].

The plasticization process is called “gelatinization” process. The starch
granule is highest swollen by plasticizer at the gelatinization temperature. Figure 2.7

shows the gelatinization process.
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Cassava starch is an important economic crop of Thailand. It has less
impurity and is easy to handle for plasticization. The impurity composition of cassava

starch compared with that of rice flour is shown in Table 2.1[15].

Table 2.1 Composition of impurities in starch and flour [13]

Impurity Cassava Rice
starch flour
Moisture 3 N/A

(65% RH, 20 °c)

% Lipid 0.1 0.8
% Protein 0.1 0.45
% Phosphorus 0.01 0.1

Many research studied about blending starch with other thermoplastics
to reduce cost and petroleum-based plastic waste problem. Most of synthesized
polymer is a hydrophobic material. Blending of starch and other biopolymers
provided an immiscible blend. Figure 2.8 reveals a two-phase morphology of corn
starch/low density polyethylene (LDPE) blown film. LDPE was the continuous phase
and starch was the dispersed phase. LDPE/starch film exhibited micro voids with an
increase of starch contents [6].

Mechanical properties of starch blends were dropped. Tensile strength

and elongation at break of films decreased with increasing of starch content. The
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tensile strength in MD of LDPE (19.8 MPa) decreased to 8.9 MPa with the addition of

50 wt% starch into blown film. This is due to incompatibility of starch and LDPE [6].

Figure 2.8 SEM micrographs of LDPE/starch blown film a) LDPE/starch (70/30)
and b) LDPE/starch (50/50) [7]

In addition, the impact strength of LDPE/starch blown film decreased
from 17.1 ¢ for pure LDPE to 0.6 ¢ for 50 wt% starch film [6]. The tear strength, which
is an important property of films, of LDPE/starch films decreased with increasing of
starch content. Decreasing of tear strength may be due to the immiscibility of starch
in continuous LDPE matrix [6, 8]

Moreover, some research was investigated about 3 phases of polymer
blends. Incorporation of epoxidised natural rubber (ENR50) in PLA/rice starch (RS)
blend improved the tensile strength and elongation at break. It is mainly because the
addition of ENR50 enhanced the interfacial interaction between PLA matrix and RS
particles. Figure 2.9 illustrates the fracture surface of PLA/RS and PLA/RS/ENR50
composites. For PLA/RS/ENR50, the gap between PLA and RS particles was smaller
and closer than that of PLA/RS. This indicated that the wettability of the RS by PLA
matrix had been improved [3]. In addition, blending of high density polyethylene

(HDPE), NR and TPS was studied into 2 series i.e. unvulcanized and N, N’-m-
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phenylenebismaleimide (HVA-2) vulcanized. Tensile strength, Young’s modulus and
elongation at break of both series decreased because of the poor interfacial
adhesion of TPS and HDPE/NR matrix. However, the mechanical properties of
vulcanized HDPE/NR/TPS were found to increase comparing with those of
unvulcanized HDPE/NR/TPS. This is due to the fact that HVA-2 (crosslink agent) could
promote the intra- and intermolecular linkages in NR phase, resulting in the

improvement of blend’s properties [16].

Figure 2.9 SEM micrographs taken from the cryogenic-fractured surface of

(a) PLA/RS20 and (b) PLA/RS20/E5 [3]

2.2 Permeation mechanism

The potential packaging films should have high gas permeability that can absorb
gas occurred in the package by the respiration of fresh produces and then diffuse
them to surrounding environment. The film with high gas permeability is strongly
required to prolong the shelf life of fresh produces having high rate of respiration. For
the permeation mechanism in which pressure is a driving force, there are 3
mechanisms including absorption, diffusion and desorption. The permeability of film

is a function of film’s properties, the nature of gas species and interaction between
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film and gas. The properties of film and the nature of gas species refers to the
sorptivity or solubility of gas in films, while the interaction between film and gas

refers to the gas diffusion in film [17].

2.2.1 Properties of film

Gas permeation in film is affected by properties of film such as degree of
crystallinity, free volume and composition of filler. The presence of crystalline
structure in films can result in lower oxygen permeation. The crystal may obstruct O,
passing through the film. Moreover, the larger sized crystals provide the brittleness of
the structure leading to voids in the film. From literature, the O, permeation (OP) of
polypropylene (PP) compounded at 190 °C and molded by different cooling rate was
investigated [18]. It was found that the OP increased from 2,660 cc.mil/(mz.day.atm)
for fast cooling to 2,929 cc.mil/(mz.day.atm) for slow cooling because of defects at
boundaries of larger sized crystals.

The free volume is a space in polymer that is not occupied by polymer
molecules as shown in Figure 2.10 [19]. Amorphous polymers may have high free
volume compared with semi-crystalline polymer. Polymer chains of amorphous
materials can easily move and create high free volume fraction. The permeability (P)
of LDPE (5.10 x 10" Cc—mil/(mz.day.atm)) is lower than that of NR (2,60 x 10" cc-

mil/(mz.day.atm)) [20].
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Figure 2.10 Free volume in polymer [17]

For noncontinuous polymeric materials, gas permeation can pass through
not only the matrix and domain parts but also the interfacial part. The OP and water
vapor permeation (WVP) of PLA/NR and PLA/maleated natural rubber (MNR) films
increased with increasing of NR and MNR contents, respectively. Moreover, adding 2.5
wt% fume silica into PLA/MNR blends enhanced the OP from 792 cc.mil/mz.day.atm
for pure PLA film to 11,276 cc.mil/mz.day.atm for PLA/MNR/fume silica film [11]. The
WVP of PLA/MNR also increased from 189 gm miL/mz.day.atm for pure PLA film to

289 gm mil/mz.day.atm for PLA/MNR/fume silica one.

2.2.2 The properties of gas species

Size and polarity of gas species remarkably affect the solubility. The
smaller sized gas can easily pass through the film. Kinetic parameter of gas species is
shown in Table 2.2. The permeation of H, in 1,2-bis(triethoxysilyl)ethane (BETSE)
membrane is higher than that of CO, and N, respectively. This permeation depends
on kinetic diameter of gas molecule [21]. Moreover, the polarity of gas is also

involved with the interaction between gas and film. The polarity of gas is displayed
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by the dipole moment as shown in Table 2.2. The polar gas has strong interaction

between gas and polar film.

Table 2.2 kinetic diameter and dipole moment of gas species

Gas molecules Kinetic diameter (A°) Dipole moment

CH,q 3.80 0
N, 3.64 0
0, 3.46 0
Co, 3.30 0
H, 2.89 0
H,0 2.65 1.84
He, 2.60 0

2.2.3 The interaction between gas and film

As mentioned previously, the polarity of film was intensely important to
obtain interaction between gas and film. The polar of film can evaluate by measuring
the contact angle of water drop on film. Contact angle is the angle between liquid
and surface of film which indicates the degree of wetting. The high contact angle (>
90°) is referred to low wettability, while small contact angle (<90°) is referred to high
wettability [22]. Pure PLA and modified PLA (mPLA) films have smaller water contact

angle than LDPE films, resulting in higher water vapor wettability [23].



Table 2.3 Water contact angle of films [21]

33

Films Water contact WVP (g/mz-day)
angle (°)

PLA 77.1 166.02 + 0.16

mPLA 79.3 13737 + 1.13

LDPE 92.5 7.26 + 0.57

In addition, PLA/RS composite has higher moisture absorption and

diffusion constant than neat PLA about 5 and 1.24 times, respectively. This is due to

the presence of the hydroxyl groups in starch granule which could interact with

water molecules. Moreover, moisture absorption and diffusion constant slightly

increased with the addition of ENR50. This might be due to the water molecule

passing through the interfacial zone (PLA/RS and PLA-ENR) [3].
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CHAPTER IlI

EXPERIMENTS

3.1 Materials

PLA grade 2003D was obtained from NatureWorks®, USA. Air-dried sheet
natural rubber (NR) was brought from Hi Karn Yang, Rayong, Thailand. Cassava starch
with 13% of moisture (New grade) was purchased from Thai wah food products,
Thailand. Analytical grade glycerol used as plasticizer was purchased from Qrec, New

Zealand. Potassium Nitrate (KNO3) was supplied by Rankem, India.

3.2 Preparation of PLA/NR blown films

Blending of PLA and NR was carried out by using a co-rotating twin screw
extruder with L/D = 40, D = 20 mm (Lab Tech, Thailand). The composition of PLA/NR
was tabulated in Table 3.1. The processing temperature was 185-190°C. The screw
speed was 80 rpm. The extrudate was cut into 2.5 mm of length. Finally, the PLA/NR
pellets were dried in an oven at 60°C overnight and stored in PE zipped-lock plastic
bag before they were extruded into films.

The PLA/NR blown films were produced in a single screw extruder with L/D =
25, D = 20 mm attached to blown film line (Collin, Blown film line BL 180/400E,
Germany). The processing temperature is 190-196°C. The screw speed was 85 rpm.

The speed of the nip roll was adjusted to produce a film with a thickness of 40 pm.
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3.3 Preparation of PLA/NR/TPS blown films

Cassava starch was ground and dried in an oven at 75°C overnight. After that,
Cassava starch was premixed with 30 wt% of glycerol by hand mixing and then the
mixture is stored overnight. Next, the mixture was extruded using a co-rotating twin
screw extruder with L/D = 40, D = 20 mm (Lab Tech, Thailand). The processing
temperature was 80-135 °C and the screw speed was 45 rpm. After that the obtained
extrudate TPS was cut into 2.5 mm of length. Finally, the pelletized TPS was dried in
an oven at 50°C overnight and stored in PE zipped-lock plastic bag.

The composition of PLA/NR/TPS was shown in Table 3.1. The preparation
method was similar to the preparation of PLA/NR blends as mentioned above. For
blending process, the temperature of extruder was 175-190° C and the screw speed
was 80 rpm. For blown film process, the temperature of extruder was 180-185°C and

the screw speed was 85 rpm.

Table 3.1 Composition of blends

Blend composition (wt%)
Sample

PLA NR TPS
PLA 100 - -
PLA/NR 5 95 5 -
PLA/NR 10 90 10 -
PLA/NR 15 85 15 -
PLA/NR 10/TPS 5 85 10 5
PLA/NR 10/TPS 10 80 10 10
PLA/NR 10/TPS 15 75 10 15
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3.4 Characterization
3.4.1 Thermal properties

The thermal properties of blown films were examined by using a
differential scanning calorimeter (DSC; TA Instruments 2910, USA). Samples of 5-10
mge in an aluminum pan were heated from 30 to 200 °C at a heating rate of 10
°C/min. The glass transition temperature (T,), cold crystallization temperature (T.)
and melting temperatures (T,,) were obtained from DSC curve. The degree of

crystallinity (X.) of samples was calculated by the following equation.

AH_-AH_
X L)

= x100
AHyx Dp

where AH,, and AH. are the enthalpies of the melting and cold crystallization of
samples, respectively. @, , is the weight fraction of PLA in the blends and AH, (93.6

J/g) is the melting enthalpy of 100 % crystalline of PLA [24].

3.4.2 Morphology

The cross section of blown films in machine direction (MD) and transverse
direction (TD) were observed by using scanning electron microscope (SEM, JEOL JSM
5800LV, Japan) at an acceleration voltage of 15 kV. The blown films were cut under
liquid nitrogen and fixed on stubs and then coated with gold prior to SEM
observation. The PLA/NR films were strained with osmium tetroxide vapor before
coating with gold because the phase contrast between PLA matrix and NR domain

was shown.
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3.4.3 Permeability properties

The oxygen transmission rate (OTR) of blown films was examined
according to ASTM D 3985 by using oxygen permeability analyzer (Mocon OX-TRAN
model 2/21) with oxygen flow rate of 40 cm’/min at 23 °C and 90% of relative
humidity.

The water vapor transmission rate (WVTR) of blown films was measured
according to ASTM E 398 using water vapor permeability analyzer (Mocon
PERMATRAN-W model 398) with nitrogen flow rate of 250 cm’/min at 37.8 °C and

90% of relative humidity.

3.4.4 Moisture absorption

Moisture absorption rate was carried out in a box with controlled at 90 %
of relative humidity. The relative humidity was controlled by the saturated KNO;
solution. All films were dried until constant weight and weighted before and after
absorption times. The moisture absorption value was calculated by the following

equation.

Mt_MO

M, %= x100

Mo

where M, is the mass of film at a time t and M, is the initial mass of film [25].
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3.4.5 Water contact angle
The wettability of films was evaluated by measuring the contact angle of
water drop on film by using Tantec CAM v3.08 software. Water was dropped on film

surface and captured by camera. The program calculated the contact angle values.

3.4.6 Mechanical properties

The impact resistance of blown films was investigated according to ASTM
D 3420 by using film impact testing machine (Digital impact tester, Toyoseiki, Japan).
The specimens were prepared in dimension of 10 x 10 cm.

The tear strength of blown films was evaluated according to ISO 6383 by
using tear testing machine (Digital Elmendorf type tearing tester model SA, SA-W,
Toyoseiki, Japan). The specimens were prepared in dimension of 6.3 x 7.3 cm.

The tensile strength, young’s modulus, and elongation at break of blown
films were studied according to ASTM D 882 by using universal testing machine
(Instron: model 5567, USA). The crosshead speed used in this work was 12.5 mm/min
at 1 kN of load cell. Measurements were conducted in both machine and transverse

directions. Ten specimens were tested for each formulation and each direction.
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Figure 3.1 The experiment procedure
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CHAPTER IV

RESULTS AND DISCUSSIONS

This study aims to achieve the properties of PLA blown films by melt
blending with natural rubber (NR) and thermoplastic starch (TPS). The experiments
were designed to study the effect of the binary and ternary blends on their
properties. The thermal properties, surface properties and permeability of films were
investigated. The mechanical properties of films were also elucidated because these
can quantify how much stress the films can stand before suffering permanent
deformation. Tensile properties, impact and tear resistance of films were also

evaluated as well.

4.1 Binary blend films of PLA and NR

Air dry sheet NR was cut into small pieces and then blended with PLA at 5, 10,
15 wt% in a twin screw extruder. The binary blend films were blown with a thickness
of 40 um. The properties of resultant films were characterized and discussed as

follows
4.1.1 Thermal properties

DSC thermograms of neat PLA and PLA/NR blend films in the first heating
are presented in Figure 4.1. It is clearly observed that the values of glass transition
temperature (T,) of binary blend films were close to that of neat PLA film
approximately ~59 °C. This is suggested that blending NR did not affect the T, of

binary blend films, resulting in the characteristic of immiscible blend [2, 26, 27].
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It is obviously seen that the exothermic peak of cold crystallization
temperature (T.) of neat PLA was very broad, whereas the narrow peaks were
observed for blend films. The T, peaks shifted to lower temperature with increase in
NR content. The T, decreased from ~122 °C for neat PLA film to ~102 °C for PLA
film blended with 15 wt% NR. These behaviors imply that blending NR induced a
faster crystallization because NR acted as a nucleating agent [2]. The specific cold
crystallization enthalpy (AH.) directly determined from the area of T. peak
gradually decreased as NR loading increased, referring to the reduction of the degree
of crystallization during heating (X..). It is consistent with the previous studies [10, 28].
The data derived from DSC curves in the first heating is tabulated in Table 4.1.

Considering the endothermic peaks of melting temperature (T,,), the
presence of double melting peaks was observed in PLA films blended with NR
probably due to melt-recrystallization mechanism of semi-crystalline PLA [29]. The
low melting temperature (T.,;) could be attributed to the melting of crystals
occurring during cold crystallization and the high melting temperature (T,,,) was
related to the melting of original crystals generating during blown film processing. It is
evident that the relative intensity of T.,; decreased as NR loading increased because
small amounts of crystals were produced during cold crystallization at high NR
loading. More interestingly, the degree of crystallization during melting (X)) in blown
films, related to the specific melting enthalpy (AH,,), increased with increase in NR
content [30]. The specific melting enthalpy (AH,,) was directly determined from the
area of T, peak. It might be explained by the fact that blending NR enhanced the

crystallization during blown film processing. Mostly, the percentage of crystallization
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(XJ occurring during blown film processing could be calculated as a following

equation:

AH_-AH

X x100

< AHox D

As expected, the values of X. increased with the presence of NR which was

a nucleating agent for binary blend films.
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Figure 4.1 DSC thermograms in first heating scan of binary blends PLA/NR films

Table 4.1 DSC data of binary blends PLA/NR films
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Sample T, Tee Ton1 Trnz AH,, AH Xen Xee Xc
PLA 59.5 | 122.6 - 150.5 14.9 12.3 16.0 | 133 | 27
PLA/NR5 | 59.8 | 107.2 | 146.0 | 151.8 24.7 21.2 279 | 240 | 39
PLA/NR10 | 59.2 | 106.6 | 146.3 | 151.8 21.9 17.9 26.1 | 214 | 4.7
PLA/NR15 | 59.0 | 102.1 | 145.1 | 151.7 23.5 19.4 298 | 245 | 52

Note: AH,, - The specific melting enthalpy (J/g)
AH.. - The specific cold crystallization enthalpy (J/g)
Xm -The degree of crystallization during melting (%)

X - The degree of crystallization during heating (%)

Xc - The degree of crystallinity (%)
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4.1.2 Morphology

In order to observe the morphology of NR in PLA matrix clearly, the fracture
specimens were stained with osmium tetroxide vapor before SEM experiment.
Osmium tetroxide vapor could react with the double bonds of the unsaturated
carbon-carbon bonds of NR chains, enhancing phase contrast. The morphology of
blown films was investigated both machine direction (MD) and transverse direction
(TD). Figure 4.2 illustrates SEM micrographs of fracture of films in MD. It is clearly
observed that binary blend films exhibit a phase-separated structure in which NR
domains were apparently dispersed in the continuous PLA matrix. Increasing NR
contents, the oval cavities or domains were larger probably due to the agglomeration
of NR.

As expected, the profile of dispersed NR domains in TD was different from
that in MD. More stretched NR domains were evident in fracture surface of films in
TD as shown in Figure 4.3. It can be explained by the effect of blow film processing.
A film bubble was continuously pulled up by a speed of nip rolls unit in MD and
expanded in TD by air blowing. Polymer chains were usually orientated in MD rather
than in TD. Accordingly, NR domains were more favorable to expand and stretch

along the direction of polymer chain orientation.
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Figure 4.2 SEM micrograph of binary (PLA/NR) blend films in MD

a) Neat PLA, b) PLA/NR5, ¢) PLA/NR10, d) PLA/NR15
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Figure 4.3 SEM micrograph of binary (PLA/NR) blend films in TD

a) Neat PLA, b) PLA/NR5, c) PLA/NR10, d) PLA/NR15
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4.1.3 Hydrophobicity and Moisture absorption

In order to investigate the hydrophobic characteristic of resultant films, the
contact angle of water droplet on their surfaces was measured. It was found that the
values of water contact angle slightly increased with increasing of NR contents as
shown in Table 4.2. This is indicated that PLA/NR films have lower water wettability
than neat PLA film.

Moisture absorption of samples was also examined as a function of
immersion time at 94.73 = 2.15 %RH and 19.94 + 1.23 °C. The percentage of
moisture absorption was rarely increased with increasing time as demonstrated in
Figure 4.4. Interestingly, the absorption rate of blend films was higher than that of
neat PLA film. The value of moisture absorption was not over 1 % for all samples
because of their hydrophobic characteristic. It is probably due to the absorption of
water molecules into the film mainly occurring at the interface between of PLA
matrix and NR domain [3]. The variation in the data of moisture absorption was
significantly observed. It might be reasoned by the effect of the weighing film process
in the open system which some water vapor molecules could evaporate during that

period of time.

4.1.4 Gas permeability properties

Water vapor permeation (WVP) and oxygen permeation (OP) of PLA films
blended with various contents of NR is depicted in Figure 4.5. The WVP values
slightly increased with the increase of NR content. Due to the immiscible blend and
low interfacial adhesion between PLA and NR, the gaps were formed at the interface.

Besides, draw-back of elastic NR domains after stretching in blow film processing also
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caused the large gaps between the phases, indicating high free volume fraction.
Mostly, elastic materials show high gas permeability because of high free volume in
their structure [17]. When NR content increased, free volume fraction of blown film
increased. Consequently, hish amounts of water vapor molecules could easily diffuse
through the film having high free volume fraction.

In addition, the OTR values remarkably increased 16.46, 31.99 and 40.41 %
by blending PLA with NR at 5, 10 and 15 wt9%, respectively. The phenomenon of OP
is similar to WVP as aforementioned.

Considering PLA film blended with NR 15 wt%, it was found that OP
enhanced 40.41 %, whereas WVP only increased 12.40 %. It is associated with the
polarity of gases and PLA/NR films. Oxygen (O,) is non-polar gas which is highly

soluble in non-polar films, resulting in higher O, adsorption on the surface of films.
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Table 4.2 Water contact angle of binary (PLA/NR) blend films

Water contact
Sample
angle (°)
Neat PLA 70.76 £ 0.19
PLA/NR 5 70.56 + 0.28
PLA/NR 10 73.95 + 0.01
PLA/NR 15 73.41 £ 0.30
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Figure 4.4 Moisture absorption of binary (PLA/NR) blend films
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Figure 4.5 Oxygen and water vapor permeation of binary (PLA/NR) blend films
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4.1.5 Mechanical properties

The tensile properties of binary blend films could be analyzed from the
stress-strain curves as displayed in Figure 4.6. Neat PLA exhibits brittle fracture
characteristic with short plastic deformation zone after yield point while PLA/NR films
show longer plastic flow region, indicating enhanced toughness. Figure 4.7
demonstrates the photograph of deformed specimens after tensile testing. The
corporation of NR led to the decrease of Young’s modulus and tensile strength as
seen in Figure 4.8.

As shown in Figure 4.9, it is noticeable that the elongation at break and
tensile toughness increased with adding NR into PLA matrix. The maximum value was
found at 10 wt% NR loading. This result confirms that the toughness of blend films
achieved with blending NR [3, 24, 28].

Furthermore, the tear strength of blown films as depicted in Figure 4.10
increased when the concentration of NR increased. Remarkably, the tear strength in
TD was higher than that in MD. Tear behavior was highly influenced by the
orientation distribution of polymer chains and dispersed domains with respect to the
tearing direction. The preferential orientation of PLA chains and stretched NR
domains parallel to the MD was responsible for the low tear strength in the MD and
the difference between the MD and TD tear strengths of blend films. The possible
tear mechanisms were proposed as illustrated in Figure 4.12.

Figure 4.12 shows the impact strength of neat PLA and PLA films blended
with different NR content. PLA film blended with 10 wt% NR provided the effective
enhancement which the impact strength increased about 6 folds, comparing with

neat PLA film. This is due to the fact that the dispersed NR domains could absorb
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and dissipate the applied energy to other domains before cracking. When NR content
increased, an acceptor of dissipation energy increased [24]. Considering at 15 wt% NR,
the impact strength trends to decrease because of the large size NR domain as
mentioned above.

From the results in this part, PLA film blended with 10 wt% NR was high
efficient system because the toughness and mechanical properties intensely
enhanced. Consequently, the concentration of NR at 10 wt% was selected to further

use in the section 4.3.
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Figure 4.6 Stress strain curve of binary (PLA/NR) blend films
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Figure 4.7 The photograph of deformed specimens after tensile testing of

neat PLA and PLA/NR blend films
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4.2 Binary blend films of PLA and TPS

In this part, cassava starch and 30 wt% of glycerol were used to prepare TPS

via gelatinization process in a twin screw extruder.

4.2.1 Preparation and Characterization of thermoplastic starch (TPS)

The structure of cassava starch granules and the fracture surface of TPS
extrudated were observed using SEM technique as shown in Figure 4.13. The granules
of cassava starch were irregular with the average size of 14.36 um. After gelatinization
process with glycerol, the granules of cassava starch were absented. It is indicated
that the TPS was successfully obtained. PLA films blended with TPS at 5, 10 and 15
wt% were blown with a thickness of 40 um. Effects of TPS content on properties of

PLA blown films were implemented.

2

’bEkU #“1i.5088 ieprm 2510604

Figure 4.13 Structure of a) normal granule cassava starch and b) the TPS
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4.2.2 Thermal properties

DSC curves of binary blend films are illustrated in Figure 4.14 and the
analyzed data is tabulated in Table 4.3. The T, decrease of PLA/TPS films was found
as the TPS increased which the value slightly reduced from ~60 °C for neat PLA film
to ~56 °C at PLA film blended with 15 wt% TPS. It is possible due to the glycerol in
TPS acted as a plasticizer in PLA matrix [31]. Beside that it is believed that the
decrease of T, was a result of some degree of miscibility between PLA and TPS
phases produced via a physical bonding. According to some of the previous works,
the weak interaction between phases was gained through the reaction between
hydroxyl groups or carboxylic acid of PLA and hydroxyl groups of TPS as
demonstrated in Figure 4.15 [32, 33].

The appearance of T peaks in PLA/TPS blend films was observed. It is
mainly because a plasticizer effect of glycerol in TPS enhanced molecular chain
mobility which facilitated the movement of chains from the amorphous phase to
crystal phase [31, 34]. It corresponded to the shift down of T,,; with the presence of
TPS, indicating faster crystallization.

Interestingly, the X, of blend film increased ~2 folds for blending 5 wt% TPS
compared with neat PLA film. It is pointed that the crystallization ability of PLA was
enhanced due to a plasticizer effect of glycerol in TPS domains. However, the value
of X. was slightly increased with further increasing TPS content. This might be
explained that a small amount of hydrolyzed products occurred during processing
served as a plasticizer, increasing the chain mobility and hence the crystallinity of
binary blend films. It agreed with the results reported in previous publications [35,

36].
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Figure 4.14 DSC thermograms in first heating scan of binary (PLA/TPS) blend films

Table 4.3 DSC data of binary (PLA/TPS) blend films

Sample T, Tee Tz e AH, AH X Xee X
PLA 59.5 | 1226 - 150.5 14.9 123 | 16.0 | 133 | 2.7
PLA/TPS5 | 56.4 99.4 | 1424 | 1499 | 256 212 | 289 | 240 | 49
PLA/TPS10 | 56.1 98.4 | 140.6 | 1483 | 26.8 224 | 321 | 268 | 5.2
PLA/TPS15 | 56.0 97.7 139.2 | 1472 | 225 179 | 285 | 227 | 57

Note: AH,, - The specific melting enthalpy (J/g)

AH - The specific cold crystallization enthalpy (J/g)

Xm -The degree of crystallization during melting (%)

X - The degree of crystallization during heating (%)

Xc - The degree of crystallinity (%)
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Figure 4.15 the possible site for the interaction between PLA and TPS
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4.2.3 Morphology

Figure 4.16 shows the fracture surface of PLA/TPS films. Considering SEM
images in MD and TD, large spherical TPS domains were visibly observed as TPS
loading increased. Unfortunately, the voids, some starch granules and some gaps
were also seen in SEM micrograph, especially at very high loading of TPS. The
occurrence of some voids and gaps might be due to the hydrolyzed products formed
during processing and the immiscible blend. As it can be seen, some TPS domains
were still embedded in fracture surfaces. This is suggested that there was some
interaction between PLA and TPS domains [3]. When the TPS level increased, large

TPS domains were easily observed on the surface of film, resulting in a rough surface.
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Figure 4.16 SEM micrograph of binary (PLA/TPS) blend films in MD and TD
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4.2.4 Hydrophobicity and Moisture absorption

As the result of the water contact angle shown in Table 4.4, it was found
that the presence of TPS fairly affected the polarity of blend films. Obviously, the
water contact angle decreased from 70.76 + 0.19 for neat PLA film to 61.36 + 1.41 °
for PLA film blended with TPS 15 wt%. The decrement of water contact angle
corresponded to the increase of hydrophilic TPS content in blend films. Furthermore,
the percentage of moisture absorption increased with increasing of TPS content.
Especially, the moisture absorption of PLA film blended with 15 wt% increased about
3.18 times compared with neat PLA film. It was attributed to hydroxyl group (-OH) of
TPS which provided hydrogen bonding with water molecules. Moreover, the
immiscible blend between PLA and TPS might generate the gaps at the interface in

which the water molecules could be absorbed and stored in films [37].

Table 4.4 Water contact angle of binary (PLA/TPS) blend films

Sample Water contact angle (°)
Neat PLA 70.76 + 0.19
PLA/TPS5 68.97+ 0.98

PLA/TPS10 62.54 + 2.22
PLA/TPS15 61.36 + 1.41
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4.2.5 Gas permeability properties

The values of WVP and OP of PLA blended with various TPS contents are
depicted in Figure 4.18. Owing to enhanced hydrophilic characteristic of PLA/TPS
films as mentioned above, WVP values linearly increased as a function of TPS
content. The molecules of water vapor more preferred to saturate at the hydrophilic
surface and then move through the films, resulting in high water vapor transmission
rate. For the permeability of O,, the OP value slightly increased for PLA film blended
with TPS 5 wt%. It might be due to the increase of free volume caused by the
phase-separated structure of PLA/TPS blend. However, the permeability strongly
dropped at higher TPS loading. It is mainly because the surface of blend films was
covered with a thin layer of water vapor molecules generated in a humidity chamber
(90 %RH), hindering the permeability of the nonpolar oxygen molecules through the

films [38].
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Figure 4.18 Oxygen and water vapor permeation of binary (PLA/TPS) blend films
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4.2.6 Mechanical properties

The effect of TPS content on mechanical properties of blend films is
presented in Figure 4.19. Young’s modulus and tensile strength of PLA/TPS blend
films in MD decreased about 21.45% and 41.50%, respectively, as shown in Figure
4.21. This indicates that PLA/TPS films were less stiff and easy to deform because of
the effect of soft TPS and immiscible blend [6].

Figure 4.22 displays elongation at break and tensile toughness also
decreased when the amounts of TPS increased thus the plastic deformation zone
was very small visible in the stress-strain curve of PLA/TPS films. It is probably due to
the crack initiation often generated from the large TPS domains in films [39]. The
fracture surface of stretched PLA/TPS films after tensile testing is demonstrated in
Figure 4.20. The deformed specimens show the brittle failure like neat PLA film,
primarily because TPS could not absorb and dissipate the applied energy.

Additionally, tear strength and impact strength of blend films decreased
with increasing of TPS loading as respectively displayed in Figure 4.23 and Figure 4.24.
It was attributed to the immiscible blend of PLA and TPS with low interfacial
interaction. Accordingly, large TPS domains would be a stress concentrator in which
the crack propagation was formed. It might be related to the fact that large TPS

domains could not absorb and dissipate the applied energy as well [40].
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4.3 Ternary blend films of PLA, NR and TPS

As the result as aforementioned, binary blend film of PLA/NR10 provided the
enhancement of toughness and mechanical properties that are one of the most
important properties for packaging application. Therefore, PLA/NR10 film is a
reference film in this section. For TPS, it exhibited high performance for achieving the
moisture absorption and WVP of PLA films blended with TPS. Consequently, TPS was
chosen to use in this section in order to improve the moisture sensitivity of blown
films. Ternary blend films were produced which the NR content was fixed at 10 wt%
and the TPS content was varied at 5, 10, 15 wt%. The various properties of ternary

blend films were investigated and compared with a reference film.

4.3.1 Thermal properties

DSC thermograms of ternary blend films in the first heating are depicted in
Figure 4.25 and the analyzed results are summarized Table 4.6. The T, of ternary
blend films was slightly decreased with increasing TPS content. The T, value reduced
from ~59°C for a reference film, which is PLA/NR10 film, to ~56°C for blend film of
PLA/NR10/TPS15. This is due to the plasticizer effect of glycerol in TPS and the
hydrolyzed products as aforementioned [35, 36].

The exothermic peak of T for all ternary blend films was narrower and
shifted to lower temperature when TPS content increased. It can be described by
the fact that the glycerol and the hydrolyzed products acted as the nucleating agent,
inducing faster crystallization and enhancing the crystallization ability in PLA/NR
matrix. Moreover, the T of ternary blend films were shifted to lower temperature

than the T of binary (PLA/TPS) blend films. This is because the glycerol content in
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TPS of ternary blend has higher when compared with binary blend. The comparison
of TPS content was reported in Table 4.5. Double melting peaks were still observed
in ternary blend films. Interestingly, the T,,; of these blend films was very small like a
shoulder of main melting peak compared with a reference film. It is due to the less
crystals forming during the cold crystallization with increasing TPS concentration,
which corresponded to the decrease of AH.. The X. of ternary blend films was
insignificantly changed as TPS content increased. It is probably due to the fact that
the decrease of PLA concentration reduced the crystallization ability in PLA matrix.
Another assumption is that NR domains might inhibit the potential of the plasticizer

and the nucleating agents derived from PLA and TPS.

Table 4.5 Comparison of glycerol content in binary and ternary blend films

Content (wt%) GLY:PLA
Sample

PLA TPS Glycerol (%)

PLA/TPS5 95 5 1.5 1.58
PLA/TPS10 90 10 3.0 3.33
PLA/TPS15 85 15 4.5 5.30
PLA/NR10/TPS5 85 5 1.5 1.76
PLA/NR10/TPS10 80 10 3.0 3.75
PLA/NR10/TPS15 75 15 4.5 6.00
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Sample s [ Tt Tz AH, | AH. X Xee X
PLA/NR10 59.2 | 106.6 | 146.3 | 151.8 | 21.9 | 179 | 16.0 | 133 | 27
PLA/NR10/TPS5 56.2 949 | 1410 | 149.1 | 228 | 19.2 | 26.1 | 214 | 47
PLA/NR10/TPS10 | 56.2 93.6 | 138.7 | 1478 | 21.2 | 17.7 | 289 | 242 | 4.6
PLA/NR10/TPS15 | 55.9 928 | 1378 | 1468 | 203 | 169 | 28,6 | 23.8 | 4.8

Note: AH,, - The specific melting enthalpy (J/g)

AH.. - The specific cold crystallization enthalpy (J/g)

Xm -The degree of crystallization during melting (%)

Xcc - The degree of crystallization during heating (%)

Xc - The degree of crystallinity (%)
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4.3.2 Morphology

As expected, SEM micrographs of ternary blend films in Figure 4.26 show the
characteristic of phase separation which the components of PLA, NR and TPS were
clearly evident. It can be seen that the fracture surface was very rough probably due
to multi-components and multi-interaction between phases. Observiously, TPS
domains were bigger than NR domains, and they were mostly embedded in both
surfaces of ternary blend film. Therefore, the roughness of blend films strongly
increased as TPS loading increased. Figure 4.27 illustrates the high resolution of SEM
image for ternary blend film. It can be seen that some TPS domains were covered

with NR domains, resulting in loss of their surface area.
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Figure 4.27 SEM micrograph of PLA/NR10/TPS15 domain in PLA matrix

4.3.3 Hydrophobicity and Moisture absorption

The moisture absorption curve as demonstrated in Figure 4.28, a rapid water
uptake for the initiate period of immersion time was noticeably observed for ternary
blend films, especially at high TPS loading. The water molecules were immersed and
stored in the interphases between PLA, NR and TPS of ternary blend films. Moreover,
water molecules were constructively absorbed in hydrophilic TPS portion via
hydrogen bonding between hydroxyl group of TPS and water molecule [37].
However, the percentage of moisture absorption of ternary blend films was lower
than that of binary blend films of PLA/TPS. It is mainly because some part of TPS
domains was adhered by NR domains as mentioned previously, reducing the
absorption of water vapor molecules. Besides, the water contact angle of ternary
blend films decreased with increasing of TPS content because of the hydrophilic

characteristic of TPS.
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Table 4.7 Water contact angle of ternary (PLA/NR10/TPS) blend films

Sample Water contact angle (°)
PLA/NR 10 7395 + 0.01
PLA/NR10/TPS 5 71.11 £ 0.95
PLA/NR10/TPS 10 70.62 + 2.53
PLA/NR10/TPS 15 68.67 + 2.12

15

94.73+2.15 %RH, 19.94+1.23°C — ©  PLA/TPS15
—®— p| A/NR10/TPS15

12 L —*— PLA/NR10/TPS10
—<— PLA/NR10/TPS5

Moisture absorption (%)

L 1 L L L
2 qa 6 8 10
Immersion time (days)

Figure 4.28 Moisture absorption curves for ternary (PLA/NR10/TPS) blend films

and PLA/TPS15 blend films
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4.3.4 Gas permeability properties

It is known that gas molecules could diffuse through the voids or a free
volume of films which were usually created by the immiscible blends. However, the
chemical affinity which can be defined by the interaction of that gas in films is an
important factor for gas transmission [17]. Ternary blend films having more polarity
would resist the diffusion of non-polar molecules such as oxygen. Thus, the OP
values of blend films mixed with TPS were lower than those of PLA/NR blend films
as shown in Figure 4.29. Additionally, the WVP value gradually increased as TPS
loading increased. The WVP value of PLA/NR10/TPS15 film increased about 25% and
36% when was compared with PLA/NR10 and neat PLA films, respectively. This is
again due to the effect of hydrophilic characteristic and chemical affinity between

water molecules and TPS domains.
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4.3.5 Mechanical properties

Tensile properties of PLA/NR/TPS films were found to decrease as shown in
Figure 4.32. Tensile strength decreases 33.33 % for the corporation of 15 wt% of TPS
because low interfacial interaction and inefficiency of TPS on ability of absorption
and dispersion stress [37]. Young’s modulus is also decrease to 24.49 % for
PLA/NR10/TPS15 film as demonstrate in Figure 4.33. This is associated to the effect of
adding NR domain and soft TPS which has glycerol contents. The effect of NR and
TPS in PLA matrix on elongation at break and tensile toughness of PLA/NR/TPS films
were shown in Figure 4.34. It was found to decrease because the large TPS domain
inhibits to transfer the stress and poor interfacial adhesion between PLA, NR and TPS
phases. However, the elongation at break of ternary blends was still higher than that
of PLA/TPS blend films because of the elastic properties of NR domain. This result
was discussed in detail as illustrated in Figure 4.32.

Tear strength of ternary films increased when adding of 5 wt% TPS. This is
because at low content of TPS, TPS can well disperse in PLA/NR matrix which leads
to more crack length. Therefore, the higher energy of tearing required to tears the
ternary films. However, the tear strength decreased with higher of TPS content. This
may be suggested that TPS domain contacted together or NR domain which induced

large zone at the crack tip blunted the crack and prevented.

Considering of impact strength, the values of impact strength were also
decreased with the corporation of TPS contents as shown in Figure 4.36. The
decrement of the impact strength is related to the large size of TPS which is not

absorbed and dissipated the applied energy.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATION

5.1 Conclusions

From the primary purpose of this research, the property development of PLA
blown films for using in green packaging application, especially for fresh produces,
was focused. Therefore, the effect of the presence of natural rubber (NR) and
thermoplastic starch (TPS) in binary and ternary blends in PLA-based blown films was
considered on thermal, physical and mechanical properties. The following major
conclusions can be drawn from these results.

For binary blends, PLA/NR and PLA/TPS blown films were productively
equipped. Dispersed NR domains acting as a nucleating agent could effectively
induce faster crystallization and high crystallinity percentage (X.) in PLA/NR blend
films. Oxygen permeability enhancement in PLA/NR blown films was obviously
achieved as well. The toughness and mechanical properties of PLA blown film were
intensely improved by blending with only 10 wt% NR.

Moreover, TPS was successfully prepared from 70 wt% cassava starch and 30
wt% glycerol via the gelatinization process in the twin screw extruder. The presence
of low-molecular-weight glycerol in TPS greatly enhanced the crystallization ability in
blown films. Comparing with neat PLA film, the value of X. increased approximately

two times for binary blend film of PLA/TPS5. Moisture absorption and water vapor
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permeation of PLA/TPS blend films were remarkably developed, especially at 15

wt% TPS.

For ternary blend films, NR content was fixed at 10 wt% and TPS loading was
varied. Hydrophilic characteristic of PLA/NR10/TPS films was noticeably improved,
corresponding to the decrease in water contact angle with increasing TPS content.
Besides, the existence of TPS in ternary blend films substantially affected high rate of
moisture absorption. Moisture absorption of PLA/NR10/TPS15 film was extremely
higher than that neat PLA film about 13 folds.

Accordingly, ternary blend films generated by blending PLA with NR and TPS
are very interesting candidate for green packaging application for fresh produces. Due
to the outstanding performance of blend films which rate of moisture absorption was
extremely high, the problem about the cumulative moisture from the respiration of

fresh produces in packaging might be overcome.

5.2 Recommendation

® (Considering gas permeation, the quantity of voids and the thickness of
films are the main effects. The increase of voids in thin film may be conducted by
removing the dispersed domains that adsorbed on the surface of films via the
suitable processes such as hot water dissolution

® Because each fresh produces has different rate of respiration, the
proper films should be tested in real condition for extended shelf life of each one.

® |n moisture absorption part, the weighting process should be

conducted in a closed system for the accurate data.
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Data of Water contact angle and moisture absorption

Table A.1 Water contact angle

APPENDIX

Appendix A
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Sample 1 2 3 Average SD
Neat PLA 70.59 70.72 70.96 70.76 0.19
PLA/NR 5 70.72 70.24 70.72 70.56 0.28
PLA/NR 10 73.94 73.95 73.95 73.95 0.01
PLA/NR 15 73.35 73.15 73.74 73.41 0.30
PLA/TPS 5 69.07 67.95 69.90 68.97 0.98
PLA/TPS 10 65.10 61.37 61.16 62.54 2.22
PLA/TPS 15 59.86 62.66 61.57 61.36 1.41
PLA/NR 10/TPS 5 72.1 70.96 70.24 71.11 0.95
PLA/NR 10/TPS 10 67.94 72.96 70.96 70.62 2.53
PLA/NR 10/TPS 15 66.49 68.81 70.72 68.67 2.12

Table A.2 The percentage of moisture absorption

Neat PLA

Days/No. ! ? ° Ave.
1 0.1857 0.0951 0.1833 0.1547 0.0517
2 0.1901 0.2750 0.2653 0.2434 0.0464
3 0.2786 0.2852 0.2653 0.2763 0.0101
4 0.3571 0.4625 0.3537 0.3911 0.0619
5 0.2750 0.3700 0.3537 0.3329 0.0508
6 0.2852 0.5500 0.2775 0.3709 0.1551
7 0.3714 0.2750 0.3700 0.3388 0.0553
8 0.5571 0.5500 0.3537 0.4869 0.1154
9 0.2786 0.2775 0.3537 0.3032 0.0437
10 0.3714 0.3666 0.2775 0.3385 0.0529




PLA/NR5

Days/No. 1 2 3 Aveg. SD
1 0.4535 0.1109 0.1091 0.2245 0.1984
2 0.7804 0.6579 0.1091 0.4794 0.3575
3 0.5574 0.1134 0.2181 0.2963 0.2321
a4 0.5574 0.4535 0.2176 0.4095 0.1741
5 0.6689 0.4535 0.6579 0.5934 0.1213
6 0.4459 0.8772 0.5453 0.6228 0.2258
7 0.2230 0.3401 0.7675 0.3704 0.1647
8 0.3344 0.3401 0.7675 0.4807 0.2484
9 0.3344 0.3401 0.4386 0.3711 0.0586
10 0.3344 0.4386 0.2181 0.3304 0.1103

PLA/NR10

Days/No, 1 2 3 Avg. SD
1 0.2320 0.3559 0.4343 0.3407 0.1020
2 0.5800 0.7117 0.5525 0.6148 0.0851
3 0.4640 0.7117 0.5525 0.5761 0.1255
a4 0.8121 0.2172 0.5525 0.5272 0.2983
5 0.4640 0.9490 0.7735 0.7288 0.2455
6 0.7092 0.6652 0.7117 0.6954 0.0262
7 0.5800 0.9456 0.4745 0.6667 0.2472
8 0.5800 1.0676 0.6630 0.7702 0.2609
9 0.5800 1.1038 0.3559 0.6666 0.3618
10 0.4640 1.2195 0.3559 0.6798 0.4705
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PLA/NR15

Days/No. 1 2 3 Avg. SD
1 0.2265 0.4367 0.4324 0.3652 | 0.1201
2 0.4367 0.6711 0.5488 0.5522 | 0.1173
3 0.5663 0.7830 0.7684 0.7059 | 0.1211
a4 0.5663 1.0917 1.0067 0.8882 | 0.2821
5 1.1186 0.5405 0.5488 0.7360 | 0.3314
6 0.8734 0.6711 0.5643 0.7029 | 0.1569
7 0.4474 0.4515 0.6586 0.5192 | 0.1208
8 0.3398 0.7642 0.7830 0.6290 | 0.2507
9 0.5663 0.4474 0.7684 0.5940 | 0.1623
10 0.4530 0.4474 0.6486 0.5164 | 0.1146

PLA/TPS5

Days/No, 1 2 3 Avg. SD
1 0.6313 0.9396 0.8130 0.3652 | 0.1201
2 0.8547 0.9396 0.8858 0.5522 | 0.1173
3 0.9497 0.9396 0.8858 0.7059 | 0.1211
a4 0.7597 0.9396 0.6890 0.8882 | 0.2821
5 0.8838 0.9497 0.8054 0.7360 | 0.3314
6 0.8547 0.6570 0.6890 0.7029 | 0.1569
7 0.6711 0.7114 0.7884 0.5192 | 0.1208
8 0.7576 0.8547 0.7884 0.6290 | 0.2507
9 0.9497 0.6570 0.7874 0.5940 | 0.1623
10 0.8838 0.4748 1.0827 0.5164 | 0.1146
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PLA/TPS10
Days/No. 1 2 3 Aveg. SD
1 0.9606 0.9709 1.1122 1.0146 | 0.0847
2 1.4409 1.5448 1.4156 1.4671 | 0.0685
3 1.5370 1.5534 1.5167 1.5357 | 0.0184
a4 1.9212 1.3619 1.6178 1.6336 | 0.2800
5 1.7291 13592 1.4156 1.5013 | 0.1993
6 1.6330 1.4563 1.4591 1.5162 | 0.1012
7 1.7508 1.6505 15167 1.6393 | 0.1174
8 1.7476 1.7510 1.7189 1.7392 | 0.0176
9 1.5370 1.7510 1.8200 1.7027 | 0.1476
10 1.7508 1.5534 1.7189 1.6744 | 0.1060
PLA/TPS15
Days/No, 1 2 3 Avg. SD
1 2.5759 2.5544 2.4528 25277 0.1550
2 6.5317 5.2259 5.0943 56173 0.0429
3 6.8077 7.4208 5.6604 6.6296 0.0343
a4 6.1538 7.0859 5.7547 6.3315 0.1292
5 3.9735 4.2534 4.7829 4.3366 0.0722
6 7.3516 6.1320 4.4208 5.9682 0.1061
7 4.2318 4.8869 | 4.6944 4.6044 0.0596
8 11.3374 9.5283 7.4270 9.4309 0.0496
9 5.2980 5.1584 5.4030 5.2865 0.1466
10 3.4959 4.0681 4.2534 3.9391 0.3099

95



PLA/NR10/
TPS5 1 2 3 Ave. SD

Days/No.
1 0.7735 0.6329 0.4420 0.6161 0.1664
2 0.9424 0.8574 0.8439 0.8812 0.0534
3 1.3613 1.2862 1.3713 1.3396 0.0465
4 1.3934 1.6878 1.2155 1.4322 0.2385
5 1.5470 1.6598 1.0549 1.4205 0.3217
6 1.3260 1.4523 1.2658 1.3480 0.0952
7 1.4365 1.6077 1.7932 1.6125 0.1784
8 1.6575 1.6598 1.3713 1.5628 0.1659
9 1.1050 1.5560 1.6878 1.4496 0.3056
10 1.5707 1.6598 1.1603 1.4636 0.2664

PLA/NR10/

TPS10 1 2 3 Ave. SD

Days/No.
1 2.5343 2.1075 2.2200 2.2873 0.2212
2 2.2175 2.0182 1.8219 2.0192 0.1978
3 2.3231 2.2129 2.2200 2.2520 0.0617
al 2.3182 2.3182 2.4191 2.3552 0.0640
5 2.3231 2.3182 2.3209 2.3207 0.0025
6 2.3231 2.1075 2.5290 2.3199 0.2108
7 3.8345 3.4773 3.1377 3.4832 0.3485
8 2.7397 2.9638 2.7328 2.8121 0.1314
9 2.6344 2.2200 2.4149 2.4231 0.2073
10 3.1612 2.9505 2.9352 3.0156 0.1263
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PLA/NR10/
TPS15 1 2 3 Ave. SD
Days/No.
1 3.3238 3.4483 3.1540 3.3087 0.1477
2 3.0389 2.8156 3.2129 3.0225 0.1991
3 3.6087 3.5422 3.4323 3.5278 0.0891
4 3.6087 3.1789 3.7149 3.5008 0.2838
5 3.3575 3.3606 3.4323 3.3835 0.0423
6 3.6087 2.1789 3.9157 3.5678 0.3701
7 4.3112 4.5372 4.7310 4.5264 0.2101
8 4.3735 4.3557 4.7189 4.4494 0.2370
9 3.8936 3.6331 3.9157 3.8141 0.1572
10 3.3575 3.2698 3.8153 3.4808 0.2929
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Appendix B

Data of oxygen and water permeation

Table B.1 Oxygen permeation

Sample (OP) 1 2 3 a4 Avg. SD

Neat PLA 532.658 | 547.361 576.081 622.517 | 569.652 | 39.587
PLA/NR5 670.126 | 670.049 670.073 643.475 | 663.431 | 13.304
PLA/NR10 734.369 | 717.802 784.996 770.376 | 751.886 | 31.127
PLA/NR15 775.516 | 771.908 843.192 | 808.778 | 799.848 | 33.322
PLA/TPS5 589.149 | 579.333 626.085 597.113 | 597.920 | 20.135
PLA/TPS10 487.921 | 483.632 499.043 496.112 | 491.677 7.136
PLA/TPS15 463.635 | 484.173 451.000 465.603 | 466.103 13.674
PLA/NR10/TPS5 679.700 | 624.784 644.066 662.948 | 652.874 | 23.719
PLA/NR10/TPS10 | 703.019 | 728.224 667.575 698.128 | 699.236 | 24.888
PLA/NR10/TPS15 | 728.038 | 694.572 687.583 755.853 | 716512 | 31.616




Table B.2 Water vapor permeation

99

Sample (WVP) 1 2 3 Avg. SD
Neat PLA 184.189 | 186.110 | 182252 | 184184 | 1929
PLAVNRS 199.102 | 196.693 | 200.819 | 198871 | 2073
PLAVNRIO 203.685 | 198258 | 202.803 | 201985 | 2907
FLAVNRLS 207.638 | 207.008 | 206.394 | 207013 | 0622
PLA/TPS5 206315 | 230.268 | 236535 | 239.039 | 6.402
PLA/TPS10 254.803 | 237.480 | 277591 | 256.624 | 20.117
PLA/TPS15 303370 | 294677 | 316110 | 304.719 | 10.780
PLA/NR10/TPS5 213.087 | 212378 | 252961 | 212732 | 0.501
PLANRIO/TPS10 | 225528 | 230.142 | 2159528 | 223.874 | 7.23757
PLA/NR 10/TPS 15 | 256835 | 247.339 | 248.6299 | 2509344 | 5.150409
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Appendix C

Data of mechanical properties

Table C.1 Mechanical properties in MD of neat PLA

No. | Tensile strength | Young’s modulus Elongation at Tensile
(MPa) (MPa) break toughness

(%) (mJ)

1 91.28 4100.75 4.07 111.12
2 91.14 4143.06 3.87 98.89
3 91.87 4138.17 2.49 53.46
4 91.54 4125.12 2.66 55.72
5 91.95 412191 2.52 53.22
Aveg. 91.56 4125.80 3.12 74.48
SD 0.36 16.54 0.78 28.21




Table C.2 Mechanical properties in MD of PLA/NR5
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No. | Tensile strength | Young’s modulus Elongation at Tensile
(MPa) (MPa) break toughness

(%) (mJ)

1 67.52 3642.06 11.66 263.57
2 68.68 3630.92 11.40 228.45
3 70.28 3673.00 16.26 311.23
a4 67.55 3625.84 14.01 202.32
5 67.04 3647.80 9.99 284.49
Avg. 68.70 3643.92 12.66 258.01
SD 1.03 18.44 2.47 43.41

Table C.3 Mechanical properties in MD of PLA/NR10
No. | Tensile strength | Young’s modulus Elongation at Tensile
(MPa) (MPa) break toughness

(%) (mJ)
1 56.83 3292.54 19.00 342.20
2 55.59 3255.34 15.44 268.79
3 52.15 3229.99 11.00 182.86
a4 53.58 3259.65 15.19 224.29
5 55.00 3246.19 20.34 329.95
Ave. 54.63 3256.74 16.19 282.22
SD 1.81 23.02 3.66 85.54




Table C.4 Mechanical properties in MD of PLA/NR15
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No. | Tensile strength | Young’s modulus Elongation at Tensile
(MPa) (MPa) break toughness
(%) (mJ)
1 44.12 3138.47 9.30 128.16
2 46.13 3195.24 8.85 117.77
3 45.67 3130.07 9.14 105.18
a4 a6.77 3256.00 9.90 124.20
5 46.52 3257.70 8.72 124.11
Avg. 45.84 3195.50 9.12 119.88
SD 1.05 61.37 0.53 9.02
Table C.5 Mechanical properties in MD of PLA/TPS5
No. | Tensile strength | Young’s modulus Elongation at Tensile
(MPa) (MPa) break toughness
(%) (mJ)
1 72.57 4041.66 X5 49.08
2 71.34 3992.75 2.61 45.14
3 72.97 4042.91 2.50 46.36
a4 70.29 4086.93 2.51 46.85
5 70.21 4022.97 2.49 48.62
Avs. 71.48 4037.44 2.54 47.21
>D 1.27 34.29 0.06 1.63




Table C.6 Mechanical properties in MD of PLA/TPS10
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No. | Tensile strength | Young’s modulus Elongation at Tensile
(MPa) (MPa) break toughness
(%) (mJ)
1 53.26 3298.92 2.44 41.70
2 53.78 3358.50 2.33 35.20
3 54.40 3388.83 2.28 39.15
il 52.88 3301.19 2.56 38.21
5 54.63 3429.81 2.49 38.89
Avg. 53.79 3322.38 242 38.63
°D 0.74 50.18 0.11 2.33
Table C.7 Mechanical properties in MD of PLA/TPS15
No. | Tensile strength | Young’s modulus Elongation at Tensile
(MPa) (MPa) break toughness
(%) (mJ)
1 53.73 3192.17 2.41 39.78
2 51.48 3270.55 2.46 37.65
3 55.77 3217.19 2.49 38.06
4 5391 3290.84 2.56 38.99
5 5291 3234.22 2.56 37.76
Ave. 53.56 3240.99 2.50 38.45
>D 1.57 39.86 0.07 0.91




Table C.8 Mechanical properties in MD of PLA/NR10/TPS5
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No. | Tensile strength | Young’s modulus Elongation at Tensile
(MPa) (MPa) break toughness
(%) (mJ)
1 53.16 3281.11 2.89 43.30
2 53.32 3292.33 3.69 57.32
3 52.62 3247.51 2.81 43.79
il 52.70 3283.21 2.76 40.37
5 52.84 3271.93 3.08 46.88
Avg. 52.93 3275.02 3.05 46.33
5D 0.30 16.99 0.38 6.56
Table C.9 Mechanical properties in MD of PLA/NR10/TPS10
No. | Tensile strength | Young’s modulus Elongation at Tensile
(MPa) (MPa) break toughness
(%) (mJ)
1 45.32 2934.64 2.53 35.88
2 44.80 2985.53 2.56 38.30
3 44.36 2958.88 2.78 3791
4 44.34 2994.67 2.73 37.53
5 45.24 2967.91 2.77 37.02
Avs. 44.81 2968.33 2.67 37.33
>D 0.46 23.53 0.12 0.94




Table C.10 Mechanical properties in MD of PLA/NR10/TPS15
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No. | Tensile strength | Young’s modulus Elongation at Tensile
(MPa) (MPa) break toughness

(%) (mJ)

1 35.70 249421 3.39 36.86
2 36.51 2446.95 3.01 36.77
3 35.26 2431.96 3.12 32.87
4 35.21 2434.84 3.01 33.75
5 26.64 2488.13 3.43 33.67
Avg. 35.86 2459.22 3.19 34.78

°D 0.68 29.78 0.20 1.89

Table C.11 Mechanical properties in TD of neat PLA
No. | Tensile strength | Young’s modulus Elongation at Tensile
(MPa) (MPa) break toughness

(%) (mJ)

1 74.54 4114.11 3.37 70.54
2 74.50 4126.53 2.81 56.24
3 74.56 4075.01 2.19 39.98
a4 74.65 4039.34 2.78 56.18
5 74.46 4140.96 3.23 69.18
Avg. 74.54 4099.19 2.88 58.42
SD 0.07 41.48 0.47 12.38




Table C. 12 Mechanical properties in TD of PLA/NR5
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No. | Tensile strength | Young’s modulus Elongation at Tensile
(MPa) (MPa) break toughness
(%) (mJ)
1 51.57 3523.47 15.15 91.14
2 50.98 §524130 13.13 142.60
3 51.72 3543.09 8.55 160.96
a4 50.05 3579.09 10.26 100.02
5 50.03 3558.11 12.23 128.01
Avg. 50.87 3545.78 11.86 124.55
SD 0.81 23.58 2.55 29.07
Table C.13 Mechanical properties in TD of PLA/NR10
No. | Tensile strength | Young’s modulus Elongation at Tensile
(MPa) (MPa) break toughness
(%) (mJ)
1 40.55 3097.90 15.21 222.52
2 40.30 3045.10 12.80 163.57
3 41.91 3177.80 17.26 217.69
a4 a1.47 3065.40 14.97 184.71
5 40.08 3126.40 12.06 152.71
Ave. 40.86 3102.52 14.46 188.16
SD 0.79 52.28 2.08 31.44




Table C.14 Mechanical properties in TD of PLA/NR15
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No. | Tensile strength | Young’s modulus Elongation at Tensile
(MPa) (MPa) break toughness
(%) (mJ)
1 32.79 3056.70 9.90 111.60
2 32.82 3050.50 10.04 110.52
3 32.22 3047.10 9.40 109.25
a4 32.77 3064.00 10.59 102.52
5 32.72 3096.00 9.16 108.91
Avg. 32.66 3062.86 9.82 108.56
SD 0.25 19.61 0.56 3.54
Table C.15 Mechanical properties in TD of PLA/TPS5
No. | Tensile strength | Young’s modulus Elongation at Tensile
(MPa) (MPa) break toughness
(%) (mJ)
1 55.07 3920.69 1.65 20.42
2 55.26 3942.37 1.64 20.26
3 55.18 3932.85 1.69 20.84
a4 54.59 3933.02 1.62 21.40
5 54.77 3966.33 1.66 21.23
AvS. 54.97 3939.05 1.65 20.83
D 0.28 17.08 0.03 0.49




Table C.16 Mechanical properties in TD of PLA/TPS10
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No. | Tensile strength | Young’s modulus Elongation at Tensile
(MPa) (MPa) break toughness

(%) (mJ)

1 47.33 3618.95 1.48 18.05
2 47.32 3645.56 1.62 17.00
3 47.42 3690.56 1.50 16.40
a4 50.71 3689.02 1.57 17.36
5 47.09 3622.00 1.52 15.09
Avg. a7.97 3653.22 1.54 16.78

5D 1.53 34.94 0.06 1.12

Table C.17 Mechanical properties in TD of PLA/TPS15
No. | Tensile strength | Young’s modulus Elongation at Tensile
(MPa) (MPa) break toughness

(%) (mJ)

1 50.21 3368.61 1.53 15.32
2 50.63 3390.44 1.47 14.54
3 50.18 3277.51 1.53 13.32
il 49.44 3343.63 1.41 15.97
5 50.23 3330.89 1.47 14.32
AvS. 50.14 3342.22 1.48 14.52

D 0.43 42.83 0.05 1.16




Table C.18 Mechanical properties in TD of PLA/NR/10/TPS5
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No. | Tensile strength | Young’s modulus Elongation at Tensile
(MPa) (MPa) break toughness
(%) (mJ)
1 42.20 3209.95 2.31 27.89
2 40.83 3111.61 2.36 27.80
3 41.22 3113.29 2.30 26.22
4 42.28 3130.40 2.14 24.14
5 40.88 3136.63 2.11 24.02
AV, 41.48 3140.38 2.24 26.01
5D 0.71 40.36 0.11 1.89
Table C.19 Mechanical properties in TD of PLA/NR/10/TPS10
No. | Tensile strength | Young’s modulus Elongation at Tensile
(MPa) (MPa) break toughness
(%) (mJ)
1 38.69 2871.09 242 27.33
2 39.67 2915.66 241 27.72
3 38.72 2916.69 1.96 20.51
4 39.30 2956.05 2.27 24.31
5 38.65 2949.73 2.16 23.67
AvS. 39.01 2921.84 2.24 24.71
D 0.45 33,87 0.19 2.95




Table C.20 Mechanical properties in TD of PLA/NR/10/TPS15
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No. | Tensile strength | Young’s modulus Elongation at Tensile
(MPa) (MPa) break toughness
(%) (mJ)
1 33.17 2396.80 2.26 23.44
2 33.63 2373.09 2.22 23.59
3 33.16 2384.57 2.20 21.00
4 33.25 2324.18 2.31 23.00
5 34.16 2311.35 2.16 22.79
Avg. 33.47 2358.00 2.23 22.76
5D 0.43 37.94 0.06 1.04




Appendix D

Data of impact and tear strength

Table D.1 Impact strength of binary blends (PLA/NR)

Impact Neat
strength Bia PLA/NR5 | PLA/NR10 | PLA/NR15
1 3.94 6.25 22.66 16.04
2 3.94 5.54 23.40 16.78
3 3.94 5.54 23.35 17.56
a4 3.94 6.25 21.84 17.65
5 3.94 6.25 23.71 17.65
Avg. 3.94 5.97 22.99 17.14
SD 0.00 0.39 0.75 0.71

Table D.2 Impact strength of binary blends (PLA/TPS)

Impact

streneth PLA/TPS5 | PLA/TPS10 | PLA/TPS15

1 3.84 3.75 3.14

2 3.84 3.14 3.14

3 3.84 3.14 3.14

4 3.84 3.14 3.14

5 3.84 3.75 3.14

Avg. 3.84 3.38 3.14

SD 0.00 0.34 0.00
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Table D.3 Impact strength of ternary blends (PLA/NR/TPS)

S'?;a; PLA/NR10/TPS5 | PLA/NR10/TPS10 | PLA/NR10/TPS15
1 12.18 12.84 12.88
2 12.84 10.83 10.42
3 14.86 13.50 12.25
q 10.13 11.49 8.59
5 14.20 8.77 7.36
Avg. 12.71 11.49 10.30
SD 1.88 1.85 235

Table D.4 Tear strength of binary blends (PLA/NR) in MD and TD

Tear strength (Nm)
Sample
MD D
Neat PLA 684.90 + 0.00 913.00 + 0.00
PLA/NR5 721.00 + 0.00 961.00 + 0.00
PLA/NR10 782.80 + 0.00 1043.00 + 0.00
PLA/NR15 | 1106.00 + 0.00 1382.00 + 0.00
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Table D.5 Tear strength of binary blends (PLA/TPS) in MD and TD

Tear strength (Nm)
Sample
MD D
PLAVTPSS 1 684.90 + 0.00 913.00 + 0.00
PLAVTPSIO | 456,60 + 0.00 668.20 + 0.00
PLA/TPSIS | 456,60 + 0.00 652.30 + 0.00

Table D.6 Tear strength of ternary blends (PLA/NR10/TPS) in MD and TD

Tear strength (Nm)
Sample
MD D
PLA/NRLIOZTPSS | 78580 + 0.00 1043.00 + 0.00
PLA/NR10/TPS10 9326.40 + 0.00 1170.00 + 0.00
PLA/NR10/TPS15 702.50 + 0.00 936.40 + 0.00
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