ผลของปริมาณไทเทเนียมต่อสมรรถนะของตัวเร่งปฏิกิริยาซีเกลอร์-นัตตา

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมเคมี ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2557 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย EFFECT OF TITANIUM CONTENT ON ZIEGLER-NATTA CATALYST PERFORMANCE

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Program in Chemical Engineering Department of Chemical Engineering Faculty of Engineering Chulalongkorn University Academic Year 2014 Copyright of Chulalongkorn University

Thesis Title	EFFECT OF TITANIUM CONTENT ON
	ZIEGLER-NATTA CATALYST PERFORMANCE
By	Miss Nittaya Sudsong
Field of Study	Chemical Engineering
Thesis Advisor	Professor Piyasan Praserthdam, Dr.Ing.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

> Dean of the Faculty of Engineering (Professor Bundhit Eua-arporn, Ph.D.)

THESIS COMMITTEE

C	hairman
(Associate Professor Joongjai Panpranot, P.	h.D.)
T	hesis Advisor
(Professor Piyasan Praserthdam, Dr.Ing.)	
E	xaminer
(Associate Professor Anongnat Somwangth	nanaroj, Ph.D.)
E	xternal Examiner
(Sumate Charoenchaidet, Ph.D.)	

นิตยา สุดส่ง : ผลของปริมาณไทเทเนียมต่อสมรรถนะของตัวเร่งปฏิกิริยาซีเกลอร์-นัตตา (EFFECT OF TITANIUM CONTENT ON ZIEGLER-NATTA CATALYST PERFORMANCE) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ศ. คร.ปิยะสาร ประเสริฐธรรม, 90 หน้า.

้วิทยานิพนธ์ฉบับนี้ได้ศึกษาผลของปริมาณไทเทเนียมในตัวเร่งปฏิกิริยาซีเกลอร์-นัตตา ้ผ่านการกำจัดเบสถิวอิสในโครงสร้างของแมกนี้เซียมคลอไรค์โดยใช้กรคลิวอิสชนิคต่างๆ ซึ่งเบส ้ถิวอิสที่ได้ทำการศึกษาแบ่งเป็น 2 ชนิด ได้แก่ เอทานอลและเตตระไฮโครฟูแรน สำหรับความ ้ว่องไวของตัวเร่งปฏิกิริยาได้ถูกทดสอบในปฏิกิริยาพอลิเมอร์ไรเซชันของเอทีลีน กรดลิวอิสที่ ้เลือกใช้ในระบบที่มีเอทานอลเป็นเบสลิวอิส ได้แก่ ไคเอทธิลอลมินัมคลอไรค์ (DEAC) เอทธิลอล มินัมไดคลอไรด์ (EADC) และสารผสมของ DEAC/EADC จากผลการทดลองเมื่อเพิ่มปริมาณ ของ DEAC ในการกำจัดเอทานอล พบว่าปริมาณไทเทเนียมในตัวเร่งปฏิกิริยาเพิ่มขึ้น อย่างไรก็ ตามความว่องไวสูงสุดของตัวเร่งปฏิกิริยาขึ้นอยู่กับปริมาณของ DEAC ที่เหมาะสม เมื่อพิจารณา เปรียบเทียบการใช้ DEAC และ EADC ในการกำจัดเอทานอล พบว่าตัวเร่งปฏิกิริยาที่ใช้ DEAC มีความว่องไวกว่าการใช้ EADC นอกจากนี้สารผสมของ DEAC/EADC ที่เหมาะสมยังทำให้ ้ตัวเร่งปฏิกิริยามีความว่องไวที่สูง ทั้งนี้การกำจัดของเอทานอลด้วยสารเหล่านี้ทำให้ช่วยเพิ่มพื้นที่ผิว และลดความความเป็นผลึกของแมกนี้เซียมคลอไรด์ ส่งผลให้เกิดปฏิกิริยาที่เหมาะสมระหว่าง ไทเทเนียมเตตระคลอไรค์และแมกนีเซียมคลอไรค์ จึงทำให้ตัวเร่งปฏิกิริยามีความว่องไวสูง สำหรับ ้อีกระบบที่ใช้เตตระไฮโครฟูแรนเป็นลิวอิสเบส ในระบบนี้กรคลิวอิสที่ถูกเลือกใช้ ได้แก่ อลูมิเนียม ์ ใตรคลอไรค์ แกลเซียมไดคลอไรค์ ไอรอนไดคลอไรค์ และซิงก์ไดคลอไรค์ ผลการทคลองพบว่า การสังเคราะห์ตัวเร่งปฏิกิริยาโดยใช้กรดถิวอิสผสมระหว่างอลุมิเนียมไตรคลอไรค์และไอรอนได ้คลอไรด์ ทำให้ได้ตัวเร่งปฏิกิริยาที่มีความว่องไวสูงสุด เนื่องจากตัวเร่งปฏิกิริยานี้สามารถกำจัดเต ตระ ไฮโครฟูแรนออกจากโครงสร้างของแมกนี้เซียมคลอไรค์ได้มากที่สุด ซึ่งผลนี้ถูกยืนยันจากการ ้วิเคราะห์ของ XRD และ FT-IR อย่างไรก็ตามปริมาณไทเทเนียมในระบบนี้ไม่ได้เพิ่มขึ้นตาม ปริมาณการกำจัดของเตตระ ไฮโครฟแรนที่เพิ่มขึ้น

ภาควิชา วิศวกรรมเคมี สาขาวิชา วิศวกรรมเคมี ปีการศึกษา 2557

ลายมือชื่อนิสิต
ลายมือชื่อ อ.ที่ปรึกษาหลัก

KEYWORDS:ZIEGLER-NATTACATALYST/ETHYLENEPOLYMERIZATION / LEWIS ACID / LEWIS BASE

NITTAYA SUDSONG: EFFECT OF TITANIUM CONTENT ON ZIEGLER-NATTA CATALYST PERFORMANCE. ADVISOR: PROF. PIYASAN PRASERTHDAM, Dr.Ing., 90 pp.

In this study, the effect of titanium content through using Lewis acid in the removal of Lewis base (EtOH and THF) in MgCl₂ structure was investigated. The catalytic activity of synthesized catalysts was tested in ethylene polymerization. For MgCl₂/EtOH system, the type of Lewis acid such as alkylaluminum chloride (DEAC, EADC and its mixture) was used. It was found that titanium content was increased with an increase of DEAC/MgCl₂ molar ratio. However, the suitable molar ratio of MgCl₂/DEAC exhibited the highest catalytic activity. In comparison between the use of DEAC and EADC, it was found that using of DEAC showed higher catalytic activity than the use of EADC. In addition, the suitable molar ratio of DEAC/EADC mixture also showed the high catalytic activity. The removal of ethanol using alkylaluminum chloride caused an increase in surface area and a decrease in the crystallinity of MgCl₂. This led to the suitable interaction of TiCl₄ and MgCl₂. For MgCl₂/THF system, the type of Lewis acid such as metal chloride (AlCl₃, CaCl₂, FeCl₂ and ZnCl₂) was selected. The results showed that the modification of AlCl₃ + FeCl₂ provided the highest activity because it had an efficiency to remove higher amount of THF, which can be confirmed by XRD and FT-IR. However, the titanium content was not increased by the removal of THF.

Department:	Chemical Engineering	Student's Signature
Field of Study:	Chemical Engineering	Advisor's Signature
Academic Year:	2014	

.....

ACKNOWLEDGEMENTS

First of all, I would like to express my most sincere thanks to my advisor, Professor Piyasan Praserthdam, for his good guidance, valuable suggestions and discussions in academic perspective throughout my research. His advices are persistently helpful. Second, I would like to thank Associate Professor Bunjerd Jongsomjit, one of the administrators in the Ziegler-Natta and Metallocene (ZM) catalyst group for his guidance and support.

Moreover, I would like to thank Associate Professor Joongjai Punpranot, Associate Professor Anongnat Somwangthanaroj and Dr. Sumate Charoenchaidet for their kindly guidance and serving as the committee members. Including thanks to Dr. Saovalak Sripothongnak, Dr. Kitti Tangjituabun, Dr. Wanna Phiwkliang and Dr. Mingkwan Wannaborworn, who help and advice is well throughout in my research.

I would also like to thank SCG Chemicals Co., Ltd. for the support of financial, chemicals, instruments and opportunity during this research.

In addition, I would like to thank my friends and the scientists in the Center of Excellence on Catalysis and Catalytic Reaction Engineering which share happy, encouraging and their kind help.

Finally, I would like to thank my warm family that always gave me suggestions, encouragement and full support.

CONTENTS

Page
THAI ABSTRACTiv
ENGLISH ABSTRACTv
ACKNOWLEDGEMENTSvi
CONTENTSvii
LIST OF TABLESix
LIST OF FIGURES
CHAPTER I INTRODUCTION1
1.1 Introduction1
1.2 Objective
1.3 Research scopes
1.4 Research Methodology
CHAPTER II THEORY AND LITERATURE REVIEWS
2.1 Introduction of Ziegler-Natta Catalyst4
2.2 MgCl ₂ -supported catalysts5
2.3 Preparation of Ziegler-Natta catalysts with MgCl2-Lewis base Adducts
2.4 The removal of Lewis base16
2.6 Polyethylene
2.7 Ti Oxidation State
CHAPTER III EXPERIMENTAL
3.1 Chemicals
3.2 Preparation of catalyst
3.3 Ethylene polymerization
3.4 Characterization techniques
CHAPTER IV RESULTS AND DISCUSSIONS
4.1 The MgCl ₂ support40
4.2 The TiCl ₄ /MgCl ₂ /EtOH catalytic systems41
4.3 The TiCl ₄ /MgCl ₂ /THF catalytic systems64
CHAPTER V CONCLUSIONS AND RECOMMENDATIONS

viii

	Page
5.1 Conclusions	.70
5.2 Recommendations	.72
REFERENCES	.73
APPENDIX	.82
APPENDIX A THE RESULTS RFOM ESR	.83
APPENDIX B THE RESULTS OF EFFECT OF DIFFERENT DEAC/EADC	
MOLAR RATIO	.87
APPENDIX C LIST OF PUBLICATIONS	.89
VITA	.90

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

LIST OF TABLES

Table 2.1 FT-IR bands of different kinds of complexes	
Table 2.2 The surface area for the preparation using different $MgCl_2 \cdot nEtC$	OH molar
ratio	
Table 2.3 The textural properties of support and Ti content on the catalys	t and the
catalytic activity	
Table 2.4 Characterization of supports and catalysts (ethanol adduct)	
Table 2.5 Characterization of supp orts and catalysts (ethanol and propan	ol adduct)22
Table 2.6 The IR spectrum of MgCl ₂ .6MeOH and MgCl ₂ .6EtOH support	s23
Table 2.7 The surface area of the $MgCl_2 \cdot nEtOH$ adduct, Support, and Cat	talysts24
Table 2.8 Density of polymer classification	
Table 4.1 The surface area of anhydrous $MgCl_2$ and $MgCl_2$ $\cdot 6EtOH$ adduced the surface area of anhydrous $MgCl_2$ and $MgCl_2$ $\cdot 6EtOH$ adduced and $MgCl_2$ $\cdot 6EtOH$ $\cdot 6EtOH$ adduced and $MgCl_2$ $\cdot 6EtOH$	xt41
Table 4.2 Effect of different molar ratio of DEAC/MgCl ₂ on element con	tent43
Table 4.3 The surface area of prepared support using the different molar	ratio of
DEAC/MgCl ₂	
Table 4.4 Effect of different molar ratio of DEAC/MgCl ₂ on catalytic act	ivity46
Table 4.5 Effect of different molar ratio of DEAC/MgCl ₂ on element con	tent47
Table 4.6 Element content of the synthesis catalyst on effect of molar ratio	io of
$TiCl_4/MgCl_2\ldots$	
Table 4.7 Effect of different molar ratio of DEAC/MgCl ₂ on polymer pro	operties52
Table 4.8 Effect of different molar ratio of $TiCl_4/MgCl_2$ on polymer prop	erties52
Table 4.9 Effect of different molar ratio of DEAC/EADC mixture on elem	ment
content	
Table 4.10 Element content of the synthesis catalyst on effect of molar rat	tio of
TiCl ₄ /MgCl ₂	60
Table 4.11 Comparison of element content in bulk and on surface	60
Table 4.12 The abbreviation of catalyst	64
Table 4.13 The element content and catalytic activity of catalysts	65

Page

	Page
Table 4.14 The effect of mixed metal chlorides on catalytic activity for ethylene	
polymerization and polymer properties	68
Table B.1 Effect of different molar ratio of DEAC/EADC on polymer properties	88

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

LIST OF FIGURES

Page
Figure 1.1 Flow diagram of research methodology for this work
Figure 2.1 Relationship between stationary rate and electron negativity of the metal
ion in metal chloride compound7
Figure 2.2 The form structure of α -MgCl ₂ (Large spheres is chloride atoms)7
Figure 2.3 The XRD patterns of $\alpha\text{-}MgCl_2$ and $\beta\text{-}MgCl_2$ 8
Figure 2.4 The XRD patterns of δ -MgCl ₂ 9
Figure 2.5 The results from the XRD pattern of α -MgCl ₂ and MgCl ₂ -alcohol
adduct
Figure 2.6 Proposed complexes of MgCl ₂ and C ₂ H ₅ OH13
Figure 2.7 Proposed reaction between $MgCl_2 \cdot C_2H_5OH$ and $C_4H_{10}AlCl$ (DEAC)14
Figure 2.8 The example of MgCl ₂ ·THF complex
Figure 2.9 The XRD patterns of anhydrous MgCl ₂ , TiCl ₃ (AA),TiCl ₃ (AA)/THF
and MgCl ₂ /THF15
Figure 2.10 XRD Patterns of MgCl ₂ , MgCl ₂ ·6C ₂ H ₅ OH, MgCl ₂ /TiCl ₄ , MgCl ₂ /TEA,
MgCl ₂ /EB/TEA and MgCl ₂ /EB/TEA/TiCl ₄ (EB is ethylbenzoate as an
electron-donor)18
Figure 2.11 The relationship between Ti content and activity of catalysts prepared by
thermal dealcoholation method19
Figure 2.12 The FT-IR spectra of catalyst in dealcoholation by precipitation with
SiCl ₄ , evaporation of the solvent and cooling24
Figure 2.13 The polymerization reaction between active center and monomer for
ZN catalyst26
Figure 2.14 Repeating units of polyethylene
Figure 3.1 Preparation of TiCl_4/MgCl_2/EtOH catalytic system
Figure 3.2 Preparation of $TiCl_4/MgCl_2/THF$ catalytic system
Figure 4.1 XRD pattern of anhydrous MgCl ₂ support40
Figure 4.2 The morphology of anhydrous MgCl ₂ and MgCl ₂ ·6EtOH adduct41
Figure 4.4 FT-IR of EtOH, MgCl ₂ ·EtOH adducts and catalysts with different
molar ratio of DEAC/MgCl ₂

Figure 4.5 Effect of titanium content on catalytic activity in the series of catalysts	
was synthesized using different molar ratio of DEAC/MgCl2	46
Figure 4.5 Effect of titanium content on catalytic activity in the series of catalysts	
was synthesized using different molar ratio of TiCl ₄ /MgCl ₂	48
Figure 4.6 The XRD patterns of the synthesized catalyst using different molar	
ratio of DEAC/MgCl ₂	50
Figure 4.7 The XRD patterns of the synthesized catalyst using different molar	
ratio of TiCl ₄ /MgCl ₂	51
Figure 4.8 The morphology of catalysts with different molar ratio of	
DEAC/MgCl ₂ is 2.0, 2.5, 2.7, 3.0 and 3.3	53
Figure 4.9 The morphology of catalysts with different molar ratio of	
TiCl ₄ /MgCl ₂ ; 0.87, 1.73, 2.60, 3.50 and 4.33	55
Figure 4.10 Effect of titanium content on catalytic activity in the series of catalysts	
was synthesized using different molar ratio of DEAC/EADC	59
Figure 4.11 Structures of DEAC and EADC	51
	101
Figure 4.12 The morphology of catalysts with different molar ratio of	51
Figure 4.12 The morphology of catalysts with different molar ratio of DEAC/EADC mixture; 3.00/0.00, 2.25/0.75, 1.50/1.50, 0.75/2.25 and	51
Figure 4.12 The morphology of catalysts with different molar ratio of DEAC/EADC mixture; 3.00/0.00, 2.25/0.75, 1.50/1.50, 0.75/2.25 and 0.00/3.00	52
 Figure 4.12 The morphology of catalysts with different molar ratio of DEAC/EADC mixture; 3.00/0.00, 2.25/0.75, 1.50/1.50, 0.75/2.25 and 0.00/3.00 Figure 4.13 The XRD patterns of Ca-Al, Fe-Al and Zn-Al catalysts. 	52 56
 Figure 4.12 The morphology of catalysts with different molar ratio of DEAC/EADC mixture; 3.00/0.00, 2.25/0.75, 1.50/1.50, 0.75/2.25 and 0.00/3.00 Figure 4.13 The XRD patterns of Ca-Al, Fe-Al and Zn-Al catalysts Figure 4.14 The FT-IR patterns of Ca-Al, Fe-Al and Zn-Al catalyst 	52 56 57
 Figure 4.12 The morphology of catalysts with different molar ratio of DEAC/EADC mixture; 3.00/0.00, 2.25/0.75, 1.50/1.50, 0.75/2.25 and 0.00/3.00 Figure 4.13 The XRD patterns of Ca-Al, Fe-Al and Zn-Al catalysts. Figure 4.14 The FT-IR patterns of Ca-Al, Fe-Al and Zn-Al catalyst Figure 4.15 The morphology of catalyst in TiCl₄/MgCl₂/THF system; None-Al, 	52 56 57
 Figure 4.12 The morphology of catalysts with different molar ratio of DEAC/EADC mixture; 3.00/0.00, 2.25/0.75, 1.50/1.50, 0.75/2.25 and 0.00/3.00 Figure 4.13 The XRD patterns of Ca-Al, Fe-Al and Zn-Al catalysts. Figure 4.14 The FT-IR patterns of Ca-Al, Fe-Al and Zn-Al catalyst Figure 4.15 The morphology of catalyst in TiCl₄/MgCl₂/THF system; None-Al, Ca-Al, Fe-Al and Zn-Al. 	52 56 57 59
 Figure 4.12 The morphology of catalysts with different molar ratio of DEAC/EADC mixture; 3.00/0.00, 2.25/0.75, 1.50/1.50, 0.75/2.25 and 0.00/3.00 Figure 4.13 The XRD patterns of Ca-Al, Fe-Al and Zn-Al catalysts. Figure 4.14 The FT-IR patterns of Ca-Al, Fe-Al and Zn-Al catalyst Figure 4.15 The morphology of catalyst in TiCl₄/MgCl₂/THF system; None-Al, Ca-Al, Fe-Al and Zn-Al. Figure A.1 The effect of Ti³⁺ before catalysts (vary the DEAC/TiCl₄) react with 	52 56 57 59
 Figure 4.12 The morphology of catalysts with different molar ratio of DEAC/EADC mixture; 3.00/0.00, 2.25/0.75, 1.50/1.50, 0.75/2.25 and 0.00/3.00 Figure 4.13 The XRD patterns of Ca-Al, Fe-Al and Zn-Al catalysts. Figure 4.14 The FT-IR patterns of Ca-Al, Fe-Al and Zn-Al catalyst Figure 4.15 The morphology of catalyst in TiCl₄/MgCl₂/THF system; None-Al, Ca-Al, Fe-Al and Zn-Al. Figure A.1 The effect of Ti³⁺ before catalysts (vary the DEAC/TiCl₄) react with TEA. 	52 56 57 59 33
 Figure 4.12 The morphology of catalysts with different molar ratio of DEAC/EADC mixture; 3.00/0.00, 2.25/0.75, 1.50/1.50, 0.75/2.25 and 0.00/3.00 Figure 4.13 The XRD patterns of Ca-Al, Fe-Al and Zn-Al catalysts. Figure 4.14 The FT-IR patterns of Ca-Al, Fe-Al and Zn-Al catalyst. Figure 4.15 The morphology of catalyst in TiCl₄/MgCl₂/THF system; None-Al, Ca-Al, Fe-Al and Zn-Al. Figure A.1 The effect of Ti³⁺ before catalysts (vary the DEAC/TiCl₄) react with TEA. Figure A.2 The effect of Ti³⁺ after catalysts (vary the DEAC/MgCl₂) react with 	52 56 57 59 33
 Figure 4.12 The morphology of catalysts with different molar ratio of DEAC/EADC mixture; 3.00/0.00, 2.25/0.75, 1.50/1.50, 0.75/2.25 and 0.00/3.00	52 56 57 59 33
Figure 4.12 The morphology of catalysts with different molar ratio of DEAC/EADC mixture; 3.00/0.00, 2.25/0.75, 1.50/1.50, 0.75/2.25 and 0.00/3.00Figure 4.13 The XRD patterns of Ca-Al, Fe-Al and Zn-Al catalysts.6Figure 4.14 The FT-IR patterns of Ca-Al, Fe-Al and Zn-Al catalyst6Figure 4.15 The morphology of catalyst in TiCl ₄ /MgCl ₂ /THF system; None-Al, Ca-Al, Fe-Al and Zn-Al.6Figure A.1 The effect of Ti ³⁺ before catalysts (vary the DEAC/TiCl ₄) react with TEA.6Figure A.2 The effect of Ti ³⁺ after catalysts (vary the DEAC/MgCl ₂) react with TEA.6Figure A.3 The effect of Ti ³⁺ after catalysts (vary the TiCl ₄ / MgCl ₂) react with6	52 56 57 59 33 34

Page

		Page
Figure A.4	The effect of Ti^{3+} after catalysts (vary the DEAC/EADC) react with	
	TEA	85
Figure A.5	The graph from ESR result	86
Figure B.1	The XRD patterns of the synthesized catalyst using different molar	
	ratio of DEAC/EADC	87

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

CHAPTER I INTRODUCTION

1.1 Introduction

The Ziegler-Natta (ZN) type catalyst was discovered in 1953 for production of polyethylene. After that, it is well known that ZN catalyst was used in industrial polymerization of olefins and there has been continuous research. The performance of the catalyst depends on the reaction between the catalytic active species and aluminum organic compound as co-catalyst to the formation of active site for polymerization with monomer [1, 2]. The ZN catalyst not only produced many new commercial polymers but also enhanced our basic knowledge of polymer properties and structures as well as polymerization processes.

Typical ZN catalyst is titanium tetrachloride supported on a magnesium dichloride (TiCl₄/MgCl₂). MgCl₂ has been almost invariably used for all the supported catalyst of practical interest, because it allows the realization of catalyst with the highest activity [3]. There are several preparation methods for ZN catalyst, such as ball milling, recrystallization, chemical reaction and alcohol adduct-based solution. Each method leads to the different nature of the active site, distribution of active site, shape or size distribution of the catalyst particle, etc. [4, 5]. It has been also found that the chemical treatment of MgCl₂ is more effective than the mechanical treatment [6, 7].

The treatment of α -MgCl₂ with a Lewis base such as esters, ethers, ketones and alcohols [8, 9] was called the adduct form. In the type of alcohol, ethanol is most extensively that react with MgCl₂ in order to the adduct formation (MgCl₂·*n*EtOH). It can increases the defects in the MgCl₂ support that leads to the suitable support structure for the ZN catalyst [10, 11]. Moreover, it can prevents the unsaturated Mg from re-aggregation [6]. In addition, introducing of ether such as THF in the form bound with the MgCl₂ support (MgCl₂(THF)_{*n*}) into a catalytic system yields a very stable and active titanium catalyst [12].

However, the remaining Lewis base in the final catalyst can be decrease in catalytic activity. In the case of $MgCl_2 \cdot nROH$ adducts, the remaining alcohol in

catalyst can react with $TiCl_4$ leading to produces titanium alkoxide which inactive to polymerization reaction [13, 14]. For in case of THF, the excess THF may have poisoned the catalyst sites too [15]. Therefore, the removal of the Lewis base in the adduct structure is very important to achieve the good final support and the high catalytic activity.

The removal of the Lewis base also makes the different amount of Ti content in final catalyst. However, all total number of Ti content found that some Ti species are not active (or dormant site) [16]. The preparation of catalyst containing high Ti content may leads to increase or decrease in the catalyst activity.

In this study, the ZN catalysts were synthesized in order to get different amount of Ti content. The various Lewis acids (such as DEAC, EADC, AlCl₃, CaCl₂, FeCl₂ and ZnCl₂) were used for the removal of Lewis bases (such as ethanol and THF). The effect of Ti content on catalysts was investigated on the catalytic activity for ethylene polymerization.

1.2 Objective

The objectives of this research are to study the effect of Lewis acid, both the molar ratio of Lewis acid/MgCl₂ and the various type of Lewis acid in the ZN catalyst system that consists of Lewis base (ethanol and THF). This is to obtain the different amount of loaded titanium and investigate the effect on the catalytic activity for ethylene polymerization.

1.3 Research scopes

1) MgCl₂ was selected as support of catalyst.

2) In MgCl₂/EtOH system, using of Lewis acids is DEAC and EADC, the polymerization of ethylene was carried out in a 2 L stainless steel reactor.

3) In MgCl₂/THF system, using of Lewis acids is AlCl₃, CaCl₂, FeCl₂ and ZnCl₂, the polymerization of ethylene was carried out in a 100 mL stainless steel autoclave reactor.

1.4 Research Methodology

Figure 1.1 Flow diagram of research methodology for this work

CHAPTER II THEORY AND LITERATURE REVIEWS

2.1 Introduction of Ziegler-Natta Catalyst

One the most important discoveries in polymer science and catalysis are polymerization of olefins using transition metal-based catalysts. In the early 1950s, Karl Ziegler (Germany) was the first to discover that transition metal halides such as TiCl₄, TiCl₃, ZrCl₄ and so on, in combination with aluminum organic compounds as co-catalysts convert ethylene to high molecular weight linear polyethylene. Later, Giulio Natta (Italy) independently discovered stereoregular polymers of α -olefins such as propylene, 1-butane and styrene. The monumental contributions of Karl Ziegler and Giulio Natta received universal recognition. In 1963, they were jointly awarded the Nobel Prize for chemistry in their discoveries of the polymerization catalysts named after them, Ziegler-Natta (ZN) catalyst.

The discoveries changed polymer chemistry forever, and provoked a worldwide research and development effort that terminated in many new commercial plastics and elastomers. The ZN catalyst became prominent in a special period in the history of polymer science, a period that not only produced many new commercial polymers but also enhanced our basic knowledge of polymer properties and structures as well as polymerization processes. [5, 17, 18]

It is well known that heterogeneous ZN catalyst has multiple active centers. It can produced the polyolefins with broad molecular-weight distribution (MWD) and broad chemical composition distribution (CCD) [16, 19, 20]. Polymers produced with ZN catalyst include many widely known commercial materials: high-density polyethylene (HDPE); linear low-density polyethylene (LLDPE); ethylene-based plastomers; crystalline isotactic polyolefins such as upolypropylene, poly(1-butene) and poly(4-methyl-1-pentene); crystalline syndiotactic polypropylene and polystyrene; ethylene-propylene elastomers; ethylene-cycloalkene engineering plastics, and synthetic rubbers based on polybutadiene and polyisoprene. [5]

The majority of transition metal ZN catalyst system consists of two components. The first component is a derivative of a transition metal such as titanium,

vanadium, zirconium, nickel, palladium, iron, cobalt, etc. For example, typical transition metal compound that was used in the early ZN catalyst and are still universally used for the manufacture of modern catalyst is TiCl₄, TiCl₃, VCl₄ and VOCl₃. The second components of the ZN catalyst system called co-catalyst such as organometallic compounds, mostly organoaluminum compounds. Typical organoaluminum co-catalysts are Al(CH₃)₃, Al(C₂H₅)₃, Al(i-C₄H₉)₃, Al(C₂H₅)₂Cl, Al(i-C₄H₉)₂Cl, Al₂(C₂H₅)₃Cl₃, etc.; and methylalumoxane, [Al(CH₃)O]_n. Neither of these two catalyst components, if used alone, can polymerize alkenes. However, when the two components of the products of these reactions, called active centers, readily polymerize alkenes and dienes. [5]

The heterogeneous ZN catalyst, Mg-based support began to be explored around 1960s, several highly efficient catalysts for olefins polymerization were developed. There was studied by based on the reaction between transition metal halides (mostly TiCl₄) and Mg compounds such as Mg(OH)₂, MgCl₂·3Mg(OH)₂ or MgSO₄·3Mg(OH)₂, which was believed to lead to the formation of Mg--O--TiCl₃ bonds. But finally found that the most active catalysts were based on active MgCl₂ or on reactions that led to its formation such as the reaction between TiCl₄ and Mg alkoxides, Grignard compounds or Mg-alkyls. [21]

In the current, the heterogeneous ZN catalyst is based on titanium tetrachloride supported on magnesium dichloride ($TiCl_4/MgCl_2$) is very important. It has been widely studied and continuous developed for both the academic researches and the industrial production of polyolefins [6, 11, 22, 23].

2.2 MgCl₂-supported catalysts

Anhydrous MgCl₂ is known as the principal support precursor for ZN catalyst. It was discovered since 1975 that as the highly active support ZN catalyst for the production of polypropylene [21]. In 1986, Norio Kashiwa reported liquid TiCl₄ supported on MgCl₂ which provide the higher activities than solid TiCl₃ 100 times [3]. MgCl₂ is suitable support for TiCl₄ due to its crystal and electronic structure including a similarity of ionic radii of MgCl₂ and TiCl₄ (Mg²⁺ and Ti⁴⁺ have ionic radii as 0.68 and 0.65 Å, respectively [24]). The MgCl₂ not only make the catalyst is

highly active with low cost, but it also good control of polymer particle morphology [25-28]. In addition, the morphology of the catalyst can also affect the polymer morphology [29].

Soga and Shiono [27] reported the investigation of additive various metal chlorides (MCl_x) effects on both the propylene and ethylene polymerization using the homogeneous catalyst system. Combination of the catalyst and MCl_x exhibited stationary polymerization rates. The correlation between the stationary rate and the electron negativity (X_i) of the metal ion in MCl_x was showed in Figure 2.1. In general, the chlorides of metal ions with X_i smaller than that of Ti³⁺ (10.5) enhanced the polymerization rate, while chlorides of metal ions with X_i larger than 10.5 decreased the polymerization rate. The enhancement of polymerization rate by the metal chloride to the active transition metal (Ti³⁺). They also reported the MgCl₂-supported catalyst system; show the highest activity for both propylene and ethylene polymerization.

In general, anhydrous MgCl₂ is in form of α -MgCl₂, has a rhombohedral structure with a close packed stacking of double chlorine layers with interstitial Mg²⁺ ions in six fold coordination as showed in Figure 2.2. The less crystalline β -MgCl₂ can be obtained by dehydration of MgCl₂·6H₂O with SOCl₂. The X-ray pattern of MgCl₂ was also showed in Figure 2.3, a strong peak (104) for d = 2.56 Å in form of α -MgCl₂ due to the cubic packing of the Cl atoms. For in form of β -MgCl₂ is less stable, has hexagonal close packed structure and a strong peak at d = 2.78 Å [21].

Figure 2.1 Relationship between stationary rate and electron negativity of the metal ion in metal chloride compound [27]

Chulalongkorn University

Figure 2.2 The form structure of α -MgCl₂ (Large spheres is chloride atoms) [21]

Figure 2.3 The XRD patterns of α -MgCl₂ (A) and β -MgCl₂ (B) [21]

However, the δ -MgCl₂ is form that active for preparation of ZN catalyst [21]. Figure 2.4 shows the XRD patterns of δ -MgCl₂ [30]. The dominant coordination in MgCl₂ supports are (104) and (110) surfaces, which five- and four-coordinate Mg cations, respectively. General, the XRD pattern of MgCl₂ has the peak at $2\theta = 15^{\circ}$ corresponding to the Cl–Mg–Cl triple layers and reflections at $2\theta = 35^{\circ}$ and $2\theta = 50^{\circ}$ corresponding to (100 or 104) and (110) peaks, respectively. The Cl–Mg–Cl triple layers are bound via van der Waals forces thus can most easily cleave between adjacent Cl layers [31, 32]. Comparison between α -MgCl₂ and active δ -MgCl₂, the δ -MgCl₂ are characterized that (104) peak become the broad halo. The diffraction peak at $2\theta = 15^{\circ}$ may be absent, indicating that the support has a single Cl–Mg–Cl structural layers (monolayers) [7].

Due to MgCl₂ has high crystallinity with low pore volume and surface area which poor interaction with TiCl₄ [33]. So, the anhydrous MgCl₂ need to have been improved to change α -MgCl₂ to active δ -MgCl₂ form together with improvement in its structure and morphology before the addition of TiCl₄ to obtaining a high dispersion of the active titanium species on the lower crystallinity and large surface of MgCl₂. There are many methods of morphological improvement of MgCl₂ support for highly active ZN catalysts, both mechanical and chemical treatment such as ballmilling, chemical conversion of Mg compounds, recrystallization or MgCl₂-Lewis base adducts [13, 33-36] which in combination with other methods, for example; melt quenching, spray drying and spray cooling etc. [3, 29]. These methods can change α -MgCl₂ form into the active δ form of MgCl₂.

Figure 2.4 The XRD patterns of δ-MgCl₂ [30]

Ball-milling method

For the ball-milling method, results in a significant increase in the specific surface area and province the very small crystallites of the support. This process can be monitored by X-ray diffraction which shows a broadening of the some typical peaks [5]. Although the main advantage is obtaining small crystallites of MgCl₂ lead to introduce an amount of titanium species in its crystal lattice, the disadvantage of the ball-milling method is difficult to control the morphology of polymer. [13, 34, 37]

Chemical reaction method

Chemical reaction method can prepared from the reaction between $TiCl_4$ and magnesium alkoxides such as $Mg(OEt)_2$ show a very high activity for the polymerization of ethylene and propylene. Magnesium alkoxide compounds consist of crystals with layers of magnesium cations and alkoxy anions with loose layers of alkyl chains of the alkoxy groups. Solvent can penetrate into these loose layers. These layers swell and the bonds are weakened. During the reaction with $TiCl_2$, hydrocarbon solvent are incorporated and a reaction with $TiCl_4$ takes place in this layer to form MgCl₂ and $TiCl_{4-n}(OEt)_n$ compounds. The in petrol suspended magnesium ethoxide is transformed into the MgCl₂ support and at the same time, $TiCl_4$ is absorbed. The soluble $TiCl_{4-n}(OEt)_n$ compounds are removed by washing with petrol. A catalyst particle with spherical shape, high porosity and high specific surface area is achieved. [38, 39]

Recrystallization method

The recrystallization method consists of a chemical activation by reaction of crystalline MgCl₂ with alcohol or ether to form adducts (such as MgCl₂·nROH and MgCl₂·THF), followed by a controlled regeneration of the active support through recrystallization by removing the added compound (quick cooling, solvent evaporation, titanation or spray drying etc.). In consequence, the assemblies of spherically fined MgCl₂ crystallites with highly distort and high number of uncoordinated magnesium sites is produced. [38, 39]

These methods lead to catalysts which differ from each other in the nature of the active sites, spatial distribution of active sites, shape or size distribution of the catalyst particles, etc. Therefore the synthetic methods of ZN catalysts strongly affect the kinetic profiles and morphology development [4]. It has been also found that the chemical treatment of MgCl₂ is more effective than the mechanical treatment [6, 7].

Pokasermsong and Praserthdam [39] have prepared two different methods of ZN catalysts to comparison. The first catalyst was synthesized by forming the adduct of MgCl₂·EtOH (recrystallization method) and the second catalyst was synthesized using Mg(OEt)₂ as the starting material for support (chemical reaction method). The results showed that the catalytic activity from chemical reaction was lower than recrystallization method because Mg(OEt)₂ was converted to MgCl₂ (confirmed by XRD and TGA), which transformed from alkyl group to Cl group. Thus probability of titanium was attached to support. And may be due catalyst reacted with cocatalyst to

form active site, which formed at the outer support (surface), titanium attached inner support was more than outer support, thus probability of formation to active site in chemical reaction was low led to lower activity than recrystallization method. Although, the specific surface areas and Ti content from chemical reaction was higher than recrystallization method.

Rojanotaikul et al. [3] studied the preparation of the MgCl₂-alcohol adduct with difference of alcohol (such as ethanol, *n*-propanol and *n*-butanol) using spray drying method. This method can produce the porous particles of support from droplets using heat transfer between hot gas and droplets. The results from the XRD pattern as shown in Figure 2.5, indicate that ethanol can destroy the most crystal structure of α -MgCl₂ which it is in contrast with propanol. The surface area and pore volume that increased in order of MgCl₂/EtOH > MgCl₂/BuOH > MgCl₂/PrOH > MgCl₂ which corresponding result to residual alcohol that decreased. The MgCl₂/EtOH can remove the alcohol by spray drying was the lowest because ethanol has the lowest boiling point, leaded to the highest surface area and pore volume. Whereas, the MgCl₂/PrOH can destroy the crystal structure of α -MgCl₂ that was very well. It was probably that propanol can attach within particle of MgCl₂.

Figure 2.5 The results from the XRD pattern of α -MgCl₂ and MgCl₂-alcoholadduct [3]

Sozzani et al. [11] mentioned the method of preparing MgCl₂, supporting the titanium species, affects the catalytic properties markedly. Mechanical and chemical routes were pursued for the formation of "active" MgCl₂ loaded with the catalyst. In particular, the reaction of MgCl₂ with a Lewis base, typically an alcohol, treated with an excess of TiCl₄ can produce super active catalyst. The use of MgCl₂/EtOH adducts with a restricted range of compositions yields, after inserting the transition metal, a most efficient and selective catalyst is the nature of the MgCl₂ precursors, obtained as complexes with Lewis bases, which undergo direct titanation. In fact, Lewis base/MgCl₂ ratios in the precursor determine, among other features, the activity and the isotacticity degree of the resulting polymer.

2.3 Preparation of Ziegler-Natta catalysts with MgCl₂-Lewis base Adducts

An adduct (come from the Latin *adductus*, "drawn toward") is the product of a direct addition of two or more distinct molecules, resulting in a single reaction product containing all atoms of all components. The treatment of α -MgCl₂ with a Lewis base (such as esters, ethers, ketones and alcohols [8, 9]) was called the formation of adducts. The reaction between MgCl₂ and Lewis base can be represented as follows Reaction 2.1:

$$MgCl_2 + nB \leftrightarrow MgCl_2 \cdot nB$$
; where B is Lewis base (2.1)

For examples include the adducts such as $MgCl_2 \cdot 6CH_3OH$, $MgCl_2 \cdot 6C_2H_5OH$ and $MgCl_2 \cdot 4C_4H_8O$ are obtained by dissolution of $MgCl_2$ in methanol, ethanol or tetrahydrofuran (THF), respectively [29, 37].

The MgCl₂-Lewis base adduct as chemical treatment in order to improve of MgCl₂ crystal structure which leading to the active ZN catalysts for olefin polymerization [10, 12]. The MgCl₂-Lewis base adducts can prepare by recrystallization method [29, 33, 36, 37, 40] or melt quenching method [6, 14, 29] which could be useful for controlling the supported catalyst and polymer morphology.

The alcohols which react with $MgCl_2$ can give adducts of different stoichiometry, depending on the type of alcohol (the length of alkyl group) [13]. All

of the alcohol, ethanol is most extensively that react with MgCl₂ in order to the adduct formation (MgCl₂·*n*EtOH), it was believed that can increases defects in the MgCl₂ support lead to the formation of a very perfect crystal in the preparation of suitable support structures for the ZN catalyst [10, 11]. Moreover, it can prevents the re-aggregation of unsaturated Mg from [6]. In addition, introducing a ether such as THF in the form bound with the MgCl₂ support (MgCl₂(THF)₂) into a catalytic system yields a very stable and active titanium catalyst, applicable in ethylene polymerization [12].

2.3.1 MgCl₂-EtOH Adducts

The Mg ions interact with ethanol through the oxygen of ethanol [9]. The formation is $MgCl_2 \cdot nEtOH$ that was believed to be formed according to Reaction 2.2 and Figure 2.6 [10].

$$MgCl_2 + nC_2H_5OH \rightarrow MgCl_2 \cdot nC_2H_5OH$$
(2.2)

Figure 2.6 Proposed complexes of MgCl₂ and C₂H₅OH [10]

Reaction of akylaluminum with alcohol give the corresponding aluminum alkoxide [41]. For the reaction between MgCl₂ $\cdot n$ EtOH and DEAC was proposed according to Reaction 2.3 and Figure 2.7.

$$MgCl_2 C_2H_5OH + C_4H_{10}AlCl \rightarrow MgCl_2 + C_6H_{15}OAl + HCl$$
(2.3)

Figure 2.7 Proposed reaction between MgCl₂·C₂H₅OH and C₄H₁₀AlCl (DEAC)

An excess of TiCl₄ was added in order to of leads to TiCl₄ supported on MgCl₂. However, TiCl₄ is reduced to a lower valence state with remaining aluminum alkyl compound in catalyst (reduction from Ti⁴⁺ to Ti³⁺ or Ti²⁺) [4]. For example, the reduction of TiCl₄ due to the large amount of DEAC shows in Reaction 2.4 [42].

$$(CH_3)_2AlCl + TiCl_4 \rightarrow CH_3TiCl_3 + CH_3AlCl_2$$
(2.4)

In addition, the remaining alcohol in catalyst was also removed by $TiCl_4$. Forte and Coutinho [43] have been described reactions during the support titanation. The reaction between $TiCl_4$ and EtOH represented follow Reaction 2.5;

$$MgCl_2 \cdot EtOH + TiCl_4 \rightarrow MgCl_2 + EtOTiCl_3 + HCl$$
(2.5)

$$MgCl_2 + TiCl_4 \rightarrow MgCl_2 \cdot TiCl_4 \text{ (catalyst)}$$
(2.6)

It is highly exothermic reaction, so the addition of $TiCl_4$ in during the catalyst preparation must be carried out at low temperature to prevent the above reaction. The by-product EtOTiCl₃ is soluble in hot $TiCl_4$, thus it is well removed from the catalyst by washing at high temperature. Finally, the obtained final catalyst as follow as Reaction 2.6.

2.3.2 MgCl₂-THF Adducts

The use of THF in catalyst synthesis is an important industrial route to prepare catalysts for the production of polyethylene. Grau et al. [44] reported that the nature of Ti species is modified by the interaction with MgCl₂ and THF to give Ti mononuclear species. the example of MgCl₂·THF complex shows in Figure 2.8.

Figure 2.8 The example of MgCl₂·THF complex [12]

Chang et al. [45] studied the THF in $TiCl_3(AA)/3MgCl_2/THF$ catalyst system. The XRD patterns showed in Figure 2.9, it was exhibited the anhydrous $MgCl_2$ and $TiCl_3(AA)$ structural transformation through the interactions with THF. The new peaks were believed to be complex of THF.

Table 2.1 shows the FT-IR spectra of pure THF had an asymmetrical and a symmetrical stretching bands at 912 cm⁻¹ and 1071 cm⁻¹ of C–O–C and also represents different kinds of complexes.

Figure 2.9 The XRD patterns of anhydrous MgCl₂, TiCl₃(AA) (T3(AA)), TiCl₃(AA)/THF (T3E) and MgCl₂/THF (ME) [45]

Sample	Absorbance (cm ⁻¹)	
THF	1071	912
TiCl ₄ /3MgCl ₂ /THF	1027	876
MgCl ₂ /THF	1036	891
TiCl ₃ (AA)/THF	1010	854
TiCl ₃ (AA)/3MgCl ₂ /THF	1027	876
TiCl ₃ /2.5MgCl ₂ (0.5MgEt)/THF	1035	885
$TiCl_{3}/2.5MgCl_{2}(0.5MgEt)/THF(0.2)$	1032	880
$TiCl_3/2.5MgCl_2(0.5MgEt)/THF(0.4)$	1028	878
TiCl ₃ /2.5MgCl ₂ (0.5MgEt)/THF(0.8)	1027	876
TiCl ₃ /2.5MgCl ₂ (0.5MgEt)/THF(1.2)	1022/997	876

Table 2.1 FT-IR bands of different kinds of complexes [46]

Ochezdzan-Siodłak and Nowakowska [47] studied the modification of the MgCl₂(THF)₂ with akylaluminium compound such as DEAC, MAO, TEA and TMA on heterogenisation of the metallocene catalyst (bis(cyclopentadienyl) zirconium(IV) dichloride; Cp₂ZrCl₂). It was found that the MgCl₂(THF)₂ support modified with AlEt₂Cl gave the heterogeneous catalyst whereas modified by MAO, TEA and TMA gave the homogeneous zirconocene catalyst.

hulalongkorn University

2.4 The removal of Lewis base

The suitable elimination of the Lewis base from adducts can provide a good support, affect the crystal structure leading to very active in the polymerization catalysis [6, 48]. However, the excess remaining Lewis base in the final catalyst can be decrease in catalytic activity. In the case of the MgCl₂·*n*ROH adducts, the remaining alcohol in catalyst can react with TiCl₄ (exothermic reaction) leading to produces titanium alkoxide which inactive to polymerization reaction [13, 14]. For in case of THF, the excess THF may have poisoned the catalyst sites too [15]. Therefore, the removal of the Lewis base in preparation of the support before the impregnation with TiCl₄ (active phase) is very important to achieve good final support and high

catalytic activity. In addition, the removal of Lewis base in adducts form is very important factor in control the size and shape of the catalyst particles, which the resulting on the morphology of polymer particles [43].

The removal of Lewis base has been used since 1980 [14]. There are many methods to remove of Lewis base from support particles both physical and chemical methods such as

a) heating under nitrogen flow [7]

b) evaporation with heating or no heating under vacuum [11, 13, 33]

c) treatment with alkyl aluminum or alkyl aluminum chloride [37, 40, 49]

d) treatment with metal halide such as SiCl₄, ZnCl₂ [13, 50, 51]

e) direct titanation with TiCl₄ [43, 52]

f) treatment by silanation [53, 54]

Jalali Dil et al. [14] prepared the spherical support using melt quenching method. Produced particles were dealcoholated using hot nitrogen flow. Three dealcoholated samples of different alcohol contents were used in the catalyst preparation. Results showed that by decrease in alcohol content of support particles, specific surface area, and pore volume of catalysts increased. Moreover, titanium content of final catalysts increased slightly. An increase in catalyst activity and enhancement of polypropylene powder morphology were observed as the alcohol content of support particles decreased.

Patthamasang et al. [55] studied the effect of EtOH/MgCl₂ molar ratios on the catalytic properties of ZN catalyst. The [EtOH]/[MgCl₂] ratio is a very important parameter to control the morphology and catalyst performance for MgCl₂-supported catalysts. In this research, MgCl₂-supported catalysts and MgCl₂-SiO₂-supported catalysts were synthesized with various MgCl₂·*n*EtOH adducts (*n* values ranging from 6 to 10). The catalytic activities for ethylene polymerization decreased markedly with increased molar ratios of [EtOH]/[MgCl₂] for the MgCl₂-supported catalysts, while for the bi-supported catalysts, the activities only decreased slightly. For bi-supported catalysts was found that the optimized [EtOH]/[MgCl₂] value for preparation of having high activity and good spherical morphology with little agglomerated MgCl₂

was 7. However, in the case of MgCl₂-supported catalysts, an excess amount of EtOH in the support could react with TiCl₄ and produce inactive species like titanium alkoxide. In contrast, the bi-supported catalysts showed the interesting result that the activity was relatively independent of the [EtOH]/MgCl₂] ratio. This indicates that the SiO₂ probably prevents the titanium active species from reacting further with ethanol. However, for the MgCl₂-SiO₂-supported catalyst, MgCl₂ can agglomerate on the SiO₂ surface at low [EtOH]/[MgCl₂] thus not being not suitable for TiCl₄ loading.

Park and Lee [33] studied the recrystallization of MgCl₂ by dissolved in ethanol with *n*-decane, ethanol was removed under vacuum drying and treating it with TEA before impregnation of TiCl₄. The XRD pattern was presented in Figure 2.10, Anhydrous MgCl₂ exhibited a cubic close packing structure giving strong reflection patterns at $2\theta = 35^{\circ}$ (004 plane), 15° (003 plane) and 50° (110 plane). For MgCl₂·6C₂H₅OH, at 35° , 15° and 50° disappeared and showed of new shape and different strength appeared at new positions. The XRD pattern of MgCl₂/TiCl₄ showed no reflections, meaning that it does not form a crystal.

Figure 2.10 XRD Patterns of a) MgCl₂, b) MgCl₂·6C₂H₅OH, c) MgCl₂/TiCl₄
d) MgCl₂/TEA, e) MgCl₂/EB/TEA and f) MgCl₂/EB/TEA/TiCl₄
(EB is ethylbenzoate as an electron-donor)

Hadian et al. [6] studied the thermal dealcoholation in MgCl₂·3.3EtOH adduct that was prepared by melt quenching method. Difference of obtained MgCl₂·nEtOH support from different temperature and time in dealcoholation process was in the range of 2.1 - 3.3 molar ratios. The surface areas of MgCl₂·nEtOH support by BET method showed a significant increase by the progression of the dealcoholation (in range of $7.4 - 12.8 \text{ m}^2/\text{g}$). The results of final catalysts were also showed the high surface area in range of $205 - 360 \text{ m}^2/\text{g}$. The performance of the catalyst was tested by propylene polymerization reaction. Figure 2.11 presented the relationship between Ti content (0.824 - 1.402 %wt) and the catalytic activity. It indicated that the activity was increased by increasing Ti content, but more increase in Ti showed lower activity. That means that Ti species were not all active in the polymerization reaction. So, the Ti content about 0.9 % wt gave the highest catalytic activity.

Figure 2.11 The relationship between Ti content and activity of catalysts prepared by thermal dealcoholation method [6]

Forte and Coutinho [43] studied the preparation of ZN catalyst form $MgCl_2 \cdot nEtOH$ adducts. The EtOH/MgCl_2 molar ratio for the support was varied in the range 0.4 – 1.7. The results of the surface area for prepared supports and catalysts were listed in Table 2.2. It was observed that the surface area of prepared support increased with decreasing in molar ratio of EtOH/MgCl_2. In contrast, after titanation

reaction at 120 °C in order to the catalyst, the surface area decreased with lower amount of ethanol in the support.

mal EtOII (gunnant)	Surface area (m ² /g)	
mor Eron (support) —	Support	Catalyst
1.7	9.2	249
1.5	9.1	221
1.0	11.5	66.5
0.4	36.3	66.5

Table 2.2 The surface area for the preparation using different MgCl₂·nEtOH molar ratio [43]

Phiwkliang et al. [50, 51] studied the homo- and co-polymerization system using TiCl₄/MgCl₂/THF catalysts modified with different metal halide additives (ZnCl₂, SiCl₄, and combined ZnCl₂-SiCl₄) were investigated. It was found that the catalyst modified with mixed ZnCl₂-SiCl₄ revealed the highest activities for both homo- and co-polymerization system. The increase in activities was due to the formation of acidic sites by modifying the catalysts with Lewis acids. And it can be observed the reduction in the peak intensity of MgCl₂/THF complexes with Lewis acid compounds as proven by XRD techniques.

Ghulalongkorn University

Almeida et al. [53] studied the different dealcoholation in the adduct MgCl₂.*n*EtOH. Both thermal treatment and chemical treatment (such as TiCl₄, TEA, dichlorodimethylsilane; Cl₂(CH₃)₂Si, and chlorotrimethylsilane; Cl(CH₃)₃Si) were used for dealcoholation. It was found that the different dealcoholation affect the specific area, pore volume, and size increase, and consequently on the increase of titanium content fixed on the surface of the crystal MgCl₂, as shown in Table 2.3. The treatment with TiCl₄ showed low activity due to reduction on texture properties led to low Ti content. Moreover, the titanium chloride alkoxides (inactive for polymerization) formed through reaction of TiCl₄ and ethanol in the adduct structure were not effectively removed during catalyst washing. The treatment with dichlorodimethylsilane also shows the low polymerization activity. It is possible that,

due to the presence of two chlorine atoms in the structure of dichlorodimethyl-silane, this becomes fixed in MgCl₂ surface defects in the form of diethoxysilane, filling positions where potentially active titanium could be fixed, which explains the decrease in activity of catalysts.

Dealcoholation method	Surface area ^a (m²/g)	Pore volume ^a (cm ³ /g)	Ti content ^b (wt %)	Activity ^b (kgPE/(gTi.h.atm))
Thermal	17.6	0.1	8.0	0.6
$TiCl_4$	7.0	0.005	6.8	0.1
TEA	18.4	0.05	4.8	1.2
Cl(CH ₃) ₃ Si	-///	29 - N	5.5	1.5
Cl ₂ (CH ₃) ₂ Si	7.2	0.04	7.4	0.004
Thermal + Cl ₂ (CH ₃) ₂ Si	20.2	0.1	6.5	0.006
^a Support	19	12	3	

Table 2.3 The textural properties of support and Ti content on the catalyst and the catalytic activity [53]

^b Catalyst

Chung et al. [34] studied the effect of the ethanol treatment in the MgCl₂ support by the recrystallization method. The MgCl₂ treatment performed with ethanol in an n-decane medium. Di-n-butyl phthalate (DNBP) was used as an internal electron donor. The MgCl₂EtOH was also treated with triethylaluminium (TEA) before impregnated with TiCl₄. They found that MgCl₂.EtOH was treated with TEA led to change in an amorphous of support due to the removal of ethanol in the form of aluminum ethoxide. The result was also confirmed by data form surface area as shown in Table 2.4. This result can be seen that the ethanol content decreased after the treatment with TEA. Moreover, the impregnation with TiCl₄ also could remove ethanol in the form of titanium ethoxide (by reaction of ethanol with TiCl₄).

Sample	Surface area	Ethanol content
Sumple	m²/g	wt %
MgCl ₂ /DNBP/EtOH	8.1	62.3
MgCl ₂ /DNBP/EtOH (30 mL)/TEA	101.5	19.7
MgCl ₂ /DNBP/EtOH (30 mL)/TEA/TiCl ₄	112.6	5.57

Table 2.4 Characterization of supports and catalysts (ethanol adduct) [34]

In later year (1996), Choi et al. [35] studied the effect of different alcohols (such as ethanol, propanol) treatment in the MgCl₂ support by the recrystallization method which a similar method but without the treatment with TEA. The surface area of the catalyst showed in Table 2.5 that indicate the surface area of the catalyst was large when propanol-treated in the MgCl₂ support. The propanol-treated also showed a lower alcohol content and Ti content than the ethanol-treated catalyst. The propylene polymerization, the ethanol-treated catalyst shows the lower catalytic activity than the propanol-treated catalyst. It is likely that large amount of alcohol in ethanol-treated react much more with TEA (cocatalyst) in polymerization to form aluminium ethoxide.

 Table 2.5 Characterization of supports and catalysts (ethanol and propanol adduct)

 [35]

Sample	Surface area	Alcohol content	Ti content
Sample	m²/g	wt %	wt %
MgCl ₂ /DNBP/EtOH/TiCl ₄	122.53	13.9	13.6
MgCl ₂ /DNBP/PrOH/TiCl ₄	182.24	9.3	12.1

Magalhaes et al. [37] studied the adduct of $MgCl_2$ with both methanol and ethanol. The $MgCl_2.6MeOH$ and $MgCl_2.6EtOH$ supports showed melting points by DSC of 118 °C and 76 °C, respectively. The IR spectrum of $MgCl_2.6MeOH$ and $MgCl_2.6EtOH$ supports showed in Table 2.6. The catalysts was prepared by treatment of adducts with TiCl₄ as single and double. It was found that Ti content in the obtained catalyst by double treatment with TiCl₄ had lower Ti contents than the obtained catalyst by single treatment. These results indicate that, in the second treatment with $TiCl_4$, the catalyst surface was "cleaned" by removing some titanium derivatives soluble in $TiCl_4$. The result of ethylene polymerization also shown that, the second treatment with $TiCl_4$ had higher activities. This result indicates that the double treatment with $TiCl_4$ removed titanium derivatives which were inactive sites in ethylene polymerization. Moreover, the obtained catalyst from methanol adduct showed higher the catalytic activity than the obtained catalyst from ethanol adduct for propylene polymerization.

Stretching	Absorption bands (cm ⁻¹)		
	MgCl ₂ .6MeOH	MgCl ₂ ·6EtOH	
OH stretching	$3600 - 3100 \text{ cm}^{-1}$	$3600 - 3000 \text{ cm}^{-1}$	
CH stretching	2950, 2850, 2780, 1410 cm ⁻¹	2980, 2900, 1500 – 1300 cm ⁻¹	
CO stretching	1 100 cm ⁻¹	1100 cm ⁻¹	

Table 2.6 The IR spectrum of MgCl₂·6MeOH and MgCl₂·6EtOH supports [37]

Bosowska and Nowakowska [12] studied the catalytic activity in ethylene polymerization of TiCl₄ supported on a MgCl₂(THF)₂/Al(C₂H5)₂Cl support which involving bimetallic Mg–Al complexes system by THF as the Lewis base. The catalytic activity was evaluated as well as its influence on the polymer properties (molecular weight and grain size distribution). The results also confirmed that the bimetallic system [MgCl₂(THF)₂/Al(C₂H5)₂Cl/TiCl₄] showed very active than monometallic system [MgCl₂(THF)₂/TiCl₄], while the stability is similar.

Parada et al. [13] prepared the adduct of MgCl₂ in 1-hexanol/isooctane by recrystallization method through different dealcoholation techniques such as evaporation of the solvent, cooling, precipitation with silicon tetrachloride (SiCl₄) and precipitation with TiCl₄. The FT-IR spectra of each catalyst as shown in Figure 2.12, they showed bands around at 3500 cm⁻¹ corresponding to the OH group and a strong peak at 1065 cm⁻¹ corresponding to C–O of titanium chloride alkoxide. It was also observed that disappearance the band of OH group in dealcoholation of catalyst by precipitation with SiCl₄. (For dealcoholation by TiCl₄ not was showed the IR spectra that it was similar the dealcoholation by evaporation and cooling.) The amount of Ti
content and catalytic activity also increased in order of the higher degrees of dealcoholation. In the case of the amount of alcohol present is greater led to lower catalytic activity due to the reaction between $TiCl_4$ with alcohol and the formation of $Cl_3Ti-O(1-hexyl)$, that is inactive for polymerization.

Figure 2.12 The FT-IR spectra of catalyst in dealcoholation by 1) precipitation with SiCl₄, 2) evaporation of the solvent and 3) cooling [13]

Jamjah et al. [29] studied the MgCl₂·*n*EtOH that was prepared by melt quenching method and was remove of EtOH by heating increases the surface area of the support. Effect of molar ratio of [EtOH]/[MgCl₂] = 2.8 - 3.0 were studied. Treatment of the support with excess TiCl₄ increased its surface area from 13.1 to 184.4 m²/g, as shown in Table 2.7. The best adduct of spherical morphology was obtained that is [EtOH]/[MgCl₂] = 2.9.

Sample	Surface area (m²/g)
MgCl ₂ ·nEtOH	2.7

13.1

184.4

Table 2.7 The surface area of the MgCl₂·*n*EtOH adduct, support and catalysts [29]

^aSupport is dealcoholated MgCl₂·nEtOH using heating

Support^a

Catalyst (TiCl₄/MgCl₂)

2.5 Polymerization reactions

The polymerization reaction [5] consists of the formation of active center, initial reaction, chain propagation reaction and chain termination reaction. The active centers in the catalysts are formed in reactions between M–X bonds in catalyst precursors (X is usually Cl, M is Ti or V) and the Al–R^{\prime} bond in a cocatalyst. The reaction produces the M–R^{\prime} group, as shown in Reaction 2.7.

$$[M]-Cl + Al R_3' \rightarrow [M]-R' + Al R_2'Cl \qquad (2.7)$$

Arlman and Cossee explained how active sites are formed at the surface of $TiCl_3$ crystal by the reaction with alkyl aluminum compounds. Each titanium cation is surrounded octahedrally by six chlorine anions. At the surface, titanium centers and chlorine anions are exposed, and thus accessible to other components. One chlorine ion is exposed in such a way that it can react with alkyl aluminum compounds and be replaced by an alkyl group.

The growth of a polymer chain with any transition metal catalyst occurs via the insertion reaction of the C=C bond of an alkene molecule CH_2 =CH–R into the transition M–C bond of an active center (Reaction (2.8)). This reaction is called the chain growth reaction (chain propagation reaction). In each insertion step of the activated complexed monomer into the Ti–C bond, a new Ti–C bond is formed, and the vacant site is regenerated for complexation of the next monomer molecule as shown in Figure 2.13.

$$[M]-R' + nCH_2 = CH-R \rightarrow [M] - (CH_2 - CHR)_n - R'$$
(2.8)

Figure 2.13 The polymerization reaction between active center and monomer for ZN catalyst [56]

The chain growth reaction usually occurs many thousands times before any other reaction intervenes. Very infrequently, an alkene molecule reacts with a growing polymer chain in a different way compared to that in Reaction (2.8).

$$[M]-(CH_2-CHR)_n-R'+CH_2=CH-R \rightarrow [M]-CH_2-CH_2-R + CH_2=CR-(CH_2-CHR)_{n-1}-R'$$
(2.9)

This reaction is called the chain transfer reaction to a monomer. Reaction (2.9) results in disengagement of the polymer chain from the active center, but the active center remains intact; it contains a short alkyl group CH_2 – CH_2 –R attached to the transition metal atom and it retains ability to insert double bonds of alkene molecules in Reaction (2.8) and to grow a new polymer chain. A special agent (nearly always, hydrogen) is usually added to polymerization reactions with ZN catalysts. It hydrogenates the M–C bond in the growing polymer chain.

$$[M]-(CH_2-CHR)_n-R+H_2 \rightarrow [M]-H+CH_3-CHR-(CH_2-CHR)_{n-1}-R \quad (2.10)$$

Reaction (2.10) is called the chain transfer reaction to hydrogen. The center with the M–H bond remains active; it also can insert double bonds of alkene molecules, similarly to Reaction (2.8). Reaction (2.10) proceeds with a much higher rate than Reaction (2.9), and the molecular weight of polymers produced in the presence of hydrogen is always much lower. It also has the b-hydride elimination which leads to removal of the polymer chain from the active center along with the formation of a vinyl group at the chain end.

Kissin [57] have studied on the formation rates of active centers (C^{*}) in polymerization reactions of ethylene with solid Ti-based ZN catalysts (γ and δ forms of TiCl₃, TiCl₂). The catalytic conversion of ethylene into a polymer (CH₂=CH₂)_n This reaction can be presented as Reaction (2.11).

$$C^* + nCH_2 = CH_2 \xrightarrow{k_p} Polymer (CH_2 - CH_2)_n + C^*$$
 (2.11)

The consumption rate of ethylene and the accumulation rate of polyethylene in Reaction (2.5) are both proportional to $[C^*]$ as Reaction (2.12).

Polymerization rate (R)
$$\approx k_p [C^*] [CH_2=CH_2]$$
 (2.12)

where k_p is in L/mol min, [C^{*}] is in mol/g catalyst, [CH₂=CH₂] is in mol/L, and R is in mol(ethylene)/(g catalyst·min). Effects of the factors on the center formation in ethylene polymerization reactions are discussed. The C^{*} formation rate strongly depends on temperature but does not depend on the concentration of the free monomer and depend on the concentration of the Al(C₂H₅)₃ cocatalyst. Even a small amount of ethylene is sufficient to convert Ti species on the catalyst surface into C^{*}. Introduction of H₂ into reactions significantly accelerates the C^{*} formation stage independently of the catalyst type. Introduction of 1-alkenes into reactions significantly accelerates the C^{*} formation rate only if the 1-alkenes can copolymerize with ethylene. And C^{*} formation rates with various solid and supported catalysts based on different Ti⁴⁺ and Ti³⁺ species are quite similar, which suggests that the nature of immediate precursors to the active centers is similar. However, the C^{*} formation rates are noticeably higher when the catalysts are derived from Ti²⁺ species

2.6 Polyethylene

The type of catalyst are known and used for production of polyethylene (PE) such as Phillips catalyst, ZN catalyst and metallocene catalyst. Each catalyst can produce PE with difference of MWD, for Phillips CrO_x/SiO_2 catalyst is in ultra-broad range of 10 - 30, ZN catalyst is in medium range of 3 - 6 and metallocene catalyst is a narrow MWD that is less than 3. The broader MWD of polymer induces greater flow ability in the molten state at higher shear rate, which is the most important factor for processability in the blowing and extrusion techniques. Phillips catalyst can produce PE with the highest broad MWD show good processability but the existence of residual toxic Cr species. For the operation of metallocene, its disadvantage is high cost and poor processibility for PE. Thus, ZN catalyst is still the main industrial catalysts for production of PE [23, 58].

Generally, the most simple of polymer is polyethylene. It consists of several repeated-CH₂-cell connections by polymerization process as shown in Figure 2.14. Polyethylene is classified into several types. It depends on its density and molecular structure. The polyethylene properties depend on condition such as temperature, pressure and catalyst type during polymerization. These conditions affect polyethylene shape because it can promote and break the chains of molecular branching. Thus, prepared polyethylene using different condition is main factor to produce various polyethylene types. Because of several types, Polyethylene is widely applied in many products. The products which are produced from polyethylene are trash bag packaging, containers, toys and various house wares.

Figure 2.14 Repeating units of polyethylene [17]

In 1937, The Society of the Plastics Industry (SPI) can separate three main types of polyethylene based on density:

- Low density: $0.910 0.925 \text{ g/cm}^3$
- Medium density: $0.926 0.940 \text{ g/cm}^3$
- High density: $0.941 0.965 \text{ g/cm}^3$

After that the American Society for Testing and Materials (ASTM) has also identified more several types of polyethylene than SPI, but also based on density as well. Polyethylene types which are classified by ASTM are shown in Table 2.8.

Table 2.8 Density of polymer classification

Polymer types	Density (g/cm ³)	
High density polyethylene (HDPE)	> 0.941	
Linear medium density polyethylene (LMDPE)	0.926 - 0.940	
Medium density polyethylene (MDPE)	0.926 - 0.940	
Linear low density polyethylene (LLDPE)	0.919 - 0.925	
Low density polyethylene (LDPE)	0.910 - 0.925	

LDPE is produced under high temperature and pressure. Its density range can be defined in 0.910 - 0.940 g/cm³. LDPE highly consists of short and long chain branching. For this reason, the chains of LDPE are not press closely. Thus its structure is amorphous. The important properties of LDPE are lightweight, good impact resistance, extremely flexible, easily cleaned, thermoforming performance, no moisture absorption, chemical- and corrosion-resistant. From the properties of LDPE, it can be produced in many products such as corrosion-resistant work surfaces, plastic wrap, various containers, and parts of computer hard.

Products which are produced from the polymerization at low temperature under low pressure are called High-density polyethylene (HDPE). HDPE cannot be produced by free radical polymerization. The structure of high-density polyethylene types consists of dense short branches, giving its stronger intermolecular forces, tensile strength and more linear than LDPE, but less flexible than LDPE. Nevertheless, due to the high crystalline structure, HDPE cannot match the clarity of LDPE or LLDPE film. The applications of HDPE are bottles for bleach, shampoo, detergent, extruded pipe for potable water and gas distribution, etc.

LLDPE is polyethylene which was produced from 1-butene, 1-hexene, and 1octene as comonomers. Therefore, LLDPE consists of short chain branches of ethyl, n-butyl, and n-hexyl groups. Density if this polymer is shown in 0.915 - 0.930 g/cm³. LLDPE has developed and improve properties. They are employed as a film in the packaging industry. Nevertheless, the produced film from LLDPE is not as clear as from LDPE because of the lower amorphous content and heterogeneous composition distribution.

2.7 Ti Oxidation State

Because the oxidation state of the transition metal of the active center significantly affects the structure of that center, much work has been done to establish its value for different ZN catalysts. It is, however, important to distinguish between the measured average oxidation state of the whole catalyst and the oxidation state or states of the individual centers. The first can usually be determined easily, but a direct assignment of oxidation state of the active centers is more difficult. First of all, the fraction of the total transition metal atoms that are active centers is small, about 1% or less. Suggestions that traces of the transition metal in an unmeasured oxidation state actually form the active centers in some catalysts cannot be lightly dismissed. [38]

The key concept of this study is to assume the variation in the oxidation state of the titanium species, depending upon the reactivity of the alkylaluminium used in the catalyst system. The determination of the Ti^{n+} species on the $TiCl_4/MgCl_2$ systems can carry out after contact it with cocatalyst by various methods such as potentiometric, polarographic or EPR or ESR methods and redox titration [59]. Fregonese et al. determined the Ti^{3+} and Ti^{2+} species by redox titration, while Ti^{4+} was calculated by difference, the total titanium amount being known [59]. XPS was applied to analyze the oxidation state and distribution of the titanium species on the supported catalysts [60, 61]. Garoff et al. [62] also determined of Ti^{4+} and Ti^{3+} by titration method. Moreover, The Ti Oxidation state also can formed by different types of Ti^{3+} species (isolates and clusters) as well as Ti^{2+} species in the catalysts [63]. However, the ESR technique is widely used to study Ti^{3+} species in the catalysts [63]. 64]. The results from ESR technique are associated with a g value which depending on the type of Ti^{3+} species.

It is well known that the reduction of TiCl₄ to Ti³⁺ and Ti²⁺ by reacting with alkylaluminum or cacatalyst. Ti³⁺ and Ti²⁺ species are active for ethylene polymerization while only Ti³⁺ species are active for propylene and other olefin polymerization [64]. However, titanium dichloride is also active in ethylene polymerization without organoaluminum cocatalyst [63]. In the experiments of Tregubov et el. [63], it were tested in the polymerization of ethylene using [η^{6} -BenzeneTiAl₂Cl₈]/MgCl₂ catalyst system that comprise the only isolated Ti²⁺ species, indicated that this catalyst showed high activity by absence of organoaluminum cocatalyst. However, when [η^{6} -BenzeneTiAl₂Cl₈]/MgCl₂ catalyst was treated with chloropentafluorobenzene (it became isolated Ti³⁺ species which was determined by ESR), is completely inactive in ethylene polymerization without cocatalyst.

CHAPTER III EXPERIMENTAL

In experimental chapter comprise of chemicals, preparation of catalyst, ethylene polymerization and characterization techniques.

3.1 Chemicals

- 1. Ethylene (C₂H₄) was purchased from Thai Industrial Gas Co., Ltd.
- 2. *n*-Hexane (C_6H_{14})was used as solvent, supplied from Thai Polyethylene Co., Ltd., dehydrated with molecular sieves 3Å and stored under nitrogen atmosphere. Some was purified by distillation and refluxing over sodium metal and benzophenone as an indicator.
- 3. Titanium tetrachloride (TiCl₄) was supplied from Thai Polyethylene Co., Ltd. and purchased from Merck Ltd.
- Anhydrous magnesium chloride (MgCl₂) was used as support, supplied from Thai Polyethylene Co., Ltd.
- Diethylaluminum chloride ((C₂H₅)₂AlCl or DEAC) was supplied from Thai Polyethylene Co., Ltd.
- Ethylaluminum dichloride (C₂H₅AlCl₂ or EADC) was supplied from Thai Polyethylene Co., Ltd.
- 7. Ethanol (C_2H_5OH or EtOH) was dehydrated with molecular sieves 3Å
- Triethylaluminum ((C₂H₅)₃Al or TEA) was used as a cocatalyst, supplied from Thai Polyethylene Co., Ltd.
- 9. Hydrochloric acid (HCl) was purchased Roongsub Chemical Ltd., Part.
- 10. Methanol (CH₃OH or MeOH) was purchased Roongsub Chemical Ltd., Part.
- 11. Ultra-high purity nitrogen (N₂) and argon (Ar) (99.999%) were purchased from Thai Industrial Gas Co., Ltd.
- Anhydrous aluminium trichloride (AlCl₃), calcium dichloride (CaCl₂), iron dichloride (FeCl₂) and zinc dichloride (ZnCl₂) were purchased from Sigma-Aldrich Inc.
- 13. Tetrahydrofuran (THF) was purchased from Sigma-Aldrich Inc.

Because of the sensitivity of the ZN catalyst system to air and moisture, all the operations were carried out under an inert atmosphere of nitrogen (standard Schlenk techniques) and argon (glove box).

3.2 Preparation of catalyst

3.2.1 TiCl₄/MgCl₂/EtOH

The catalyst was prepared according Mitsui Petrochemical Industries Ltd. [65]. As shown in Figure 3.1, 1 or 2 g of anhydrous MgCl₂ was added in a fournecked of 500 mL round bottom flask equipped with a magnetic stirrer. Then, 150 mL of *n*-hexane was added into the flask as a medium reagent. After, dried ethanol with the molar ratio of EtOH/MgCl₂ as 6 was added dropwise into the flask and stirred for 2 h. DEAC or EADC or DEAC/EADC mixture was added dropwise into the flask under stirring and constantly stirred for 2 h. Finally, the desired amount of TiCl₄ was injected dropwise into the flask. The reaction was controlled at 20 °C. After injecting of TiCl₄, the temperature was gradually increased to 80 °C within 2 h and then holds at this temperature for 2 h. The mixture was refluxed under nitrogen atmosphere and stirred. After the reaction was cooled to room temperature, the solid was washed 7 times with 100 mL of *n*-hexane. The obtained suspension catalyst was transferred to storage bottle and stored under argon atmosphere in glove box.

Chulalongkorn University

Figure 3.1 Preparation of TiCl₄/MgCl₂/EtOH catalytic system

3.2.2 TiCl₄/MgCl₂/THF

The catalyst of type TiCl₄/MgCl₂/THF/AlCl₃ + MxCl₂ (Mx is Ca, Fe and Zn) was prepared via a chemical route using MgCl₂ as a support precursor according to a procedure that was previously published [50] and showed in Figure 3.2. 2 g of anhydrous MgCl₂ was added in a four-necked 500 mL round bottom flask equipped with a magnetic stirrer. Then, 150 mL of THF was added into the flask. Later, AlCl₃ and MxCl₂ (molar ratio of AlCl₃/MgCl₂ and MxCl₂/MgCl₂ is equal to 0.063) were added. After that, 2 mL of TiCl₄ was injected dropwise into the flask under continuous stirring. The temperature was gradually increased to 68 °C and held at this temperature for 3 h. After the reaction mixture was cooled to 40 °C, the solid part was filtered and washed with 100 mL of *n*-hexane for 6 times. Finally, the catalyst obtained was dried under a vacuum at room temperature and catalyst powder was stored under argon atmosphere in a glove box.

Figure 3.2 Preparation of TiCl₄/MgCl₂/THF catalytic system

3.3 Ethylene polymerization

3.3.1 Reactor 1: 2 L Reactor

For TiCl₄/MgCl₂/EtOH catalytic system, the ethylene polymerization was carried out in a 2 L BuchiGlasUster stainless steel reactor fitted with a thermocouple and a mechanical stirrer (speed of 350 rpm). At 70 °C, the reactor was evacuated for 20 min and purged with nitrogen gas for 1 h. After that, reactor was cooled to room temperature. Then 1 L of *n*-haxane was fed into the reactor. TEA cocatalyst and the catalyst suspension were injected to the reactor by a syringe at room temperature, which the molar ratio of Al/Ti as 100. Hydrogen was used as a chain transfer agent to control molecular weight of polyethylene with hydrogen pressure at 2.5 bar, constant ethylene pressure at 8 bar and polymerization temperature at 80 °C. The catalytic activity was calculated from the amounts of consumed ethylene measured by a mass flow meter. Finally, the catalytic activities of each series of the synthesis catalyst were compared with the catalytic activity of commercial catalyst.

3.3.2 Reactor 1: 100 mL Reactor

For TiCl₄/MgCl₂/THF catalytic system, the polymerization of ethylene was carried out in a slurry 100 mL semi-batch autoclave reactor equipped with magnetic stirrer. *n*-haxane as medium agent for reaction (total volume of 30 mL), TEA solution as cocatalyst were injected into the reactor (Al/Ti molar ratio of 140). Then, 10 mg of catalyst powder was added into the autoclave reactor. The feeding of ethylene with the pressure of 50 psi was performed to start polymerization reaction at 80 °C and the amount of ethylene was fixed at 0.018 mmol. Finally, the reaction was terminated by adding acidic methanol. The product was washed with methanol and dried under vacuum.

3.4 Characterization techniques

3.4.1 Characterization of supports and catalysts

3.4.1.1 Inductively Coupled Plasma (ICP)

The inductively coupled plasma optical emission spectroscopy equipment (ICP-OES optima 2100 DV from PerkinElmer) was used to identify Ti, Mg and Al

content in catalyst. The solid catalysts was weighed and digested with HCl. The mixtures were stirred about 30 min. After catalyst was completely dissolved, the solution sample was diluted with DI water. The weight percentage of element content was calculated by analysis of value from ICP. The concentrations of each element standard solutions used for calibration range are 0 - 15 ppm.

3.4.1.2 Scanning Electron Microscopy (SEM) and Energy Dispersive Xray Spectroscopy (EDX)

SEM and EDX were used to determine the morphologies and elemental distribution, respectively. The SEM of JEOL mode JSM-6400 was applied. The EDX was performed using Link Isis series 300 program. The solid catalyst sample was prepared on stub in a glove box and store in bottle with Ar atmosphere. Under the N_2 gas flow, the sample was coated with platinum particles by ion sputtering device to provide electrical contact to the specimen.

3.4.1.3 X-ray Powder Diffraction (XRD)

The X-ray powder diffraction patterns were performed to determine the crystalline phase of samples and identify the type of powders sample. It was carried out using a Bruker D8 Advance Diffract meter at 40 kv, 40 mA with CuK α radiation ($\lambda = 1.54056 \text{ A}^\circ$). The XRD was recorded follow conditions: reflection mode at room temperature, scans from diffraction angle $2\theta = 10$ to 80° , scan speed of 0.3 sec/step and a step size of 0.02. All samples were prepared under argon atmosphere in glove box and loaded into a holder covered with a Mylar film to prevent air and moisture.

3.4.1.4 Electron Spin Resonance (ESR)

The electron spin resonance spectra of catalyst samples were recorded at ambient temperature, with the use of JEOL JES-FE1XG spectrometer under N_2 atmosphere. ESR was used to determine Ti³⁺ content in the catalysts. Because Ti³⁺ has an unpaired electron in the 3d orbital, this can detect by ESR. The slurry catalyst sample was put not more than 4 cm in an ESR tube (the length of 30 cm) and sealed to prevent air and moisture, which prepared in a glove box. If the catalyst was

activated with cocatalyst, it should be cooled with liquid N_2 to stop the interaction during awaiting analysis.

3.4.1.5 N₂ Physisorption

The specific surface area of catalyst was measured by physical adsorption of N_2 molecules on a solid surface (single point). The solid sample was prepared in a glove box by sample was put in a tube and sealed to prevent air and moisture. The adsorption was performed at -196 °C with liquid N_2 . The obtained peak area signal from desorption were used to calculate as follow: Surface area = Peak area (m²) / Weight of sample (g).

3.4.1.6 Fourier Transforms Infrared Spectroscopy (FTIR)

The FT-IR was applied with a Nicolet 6700 FTIR spectrometer. It was used to identify the function group of sample. For this work, want to identify the EtOH or EtOH-complex and THF or THF-complex in supports and catalysts. A scanning range from 400 cm⁻¹ to 4000 cm⁻¹ with scanning of 400 times was applied.

3.4.2 Characterization of polymers

3.4.2.1 Differential Scanning Calorimetry (DSC)

The melting temperature (T_m) and percentage of crystallinity (χ_c) of polyethylene were determined by DSC-TGA with TA Instruments SDT Q600 V8.1 Build 99. The characterizations were performed at a heating rate of 10 °C/min in the temperature range of 20-600 °C. However, the appearance of T_m is in the range of 100-200 °C. The crystallinity of polymers was calculated by the following equation:

$$\chi_{\rm c} = [\Delta H / (\Delta H^{\circ})] \times 100)$$

where ΔH is heat of fusion of polyethylene sample.

 ΔH° is the heat of fusion of standard (for linear polyethylene as 290 J/g) [50].

3.4.2.2 Measuring Flow Rate (MFR)

The MI of polyethylene determined by Extrusion Plastometer (Melt Indexer) measuring flow rate throughout Orifice diameter and length fixed at 10 min using load weights (2.16 kg) on the piston at temperature 190 ± 0.2 °C. Then can calculate the Melt Index in units of g/10 min.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

CHAPTER IV RESULTS AND DISCUSSIONS

4.1 The MgCl₂ support

MgCl₂ is known as the best support for the ZN catalyst polymerization. Several researches confirm that using MgCl₂ as a support catalyst exhibited high catalytic activity [25-28]. In Figure 4.1, anhydrous MgCl₂ was characterized by XRD analysis shows sharp peaks at $2\theta = 15$, 26, 32, 35 and 50°. Sharp peak at $2\theta = 15^{\circ}$ was involved with the stacking of Cl–Mg–Cl triple layers along the crystallographic direction, where two peaks, at $2\theta = 32$, 35 and 50° with stacking faults of the triple layers, which at $2\theta = 35$ and 50° was involved represent of (104) and (110) peaks, respectively. [6, 7]. The peaks at $2\theta = 26^{\circ}$ is Mylar film. Figure 4.2 (a) shows the morphology of anhydrous MgCl₂ supports. The smooth surface morphology and crystalline layers indicates the Cl–Mg–Cl triple layer structure.

Figure 4.1 XRD pattern of anhydrous MgCl₂ support

The anhydrous $MgCl_2$ was used as support precursor into the ZN catalyst synthesis by complexes with Lewis base such as ethanol and THF in order to activate catalyst. However Lewis base can poison the catalyst sites. Thus these Lewis base

must be removed from the catalyst before the addition of TiCl₄, which can be removed with Lewis acid, for this work such as DAEC, EADC, AlCl₃, CaCl₃, ZnCl₃, FeCl₃ and their mixture. However, the some kind of these compound can cause the over-reduction of Ti species at high concentration [15].

4.2 The TiCl₄/MgCl₂/EtOH catalytic systems

In this part, ethanol is type of Lewis base, which was used in this preparation to form molecular adduct in order to change α -MgCl₂ to δ -MgCl₂ form which as the active form for polymerization [6]. For the reaction of MgCl₂/EtOH adduct, in this work, we combine of 1 mole of MgCl₂ and 6 mole of ethanol (MgCl₂·6EtOH). The morphology of formation of MgCl₂ and ethanol as shown in Figure 4.2 (b) indicated that the destruction of layers of MgCl₂ structure became rough surface. The surface area of MgCl₂·6EtOH was also measured and compared with anhydrous MgCl₂ by N₂ physisorption technique, showed in Table 4.1 It indicates that ethanol can cause a porous MgCl₂ led to an increase of surface area.

Table 4.1	The surface are	a of anhydrous	MgCl ₂ and	l MgCl ₂ ·6EtOF	I adduct
-----------	-----------------	----------------	-----------------------	----------------------------	----------

Sample	Surface area (m ² /g)
anhydrous MgCl ₂	2.00
MgCl ₂ ·6EtOH	6.05

Figure 4.2 The morphology of a) anhydrous MgCl₂ and b) MgCl₂·6EtOH adduct

The next step for preparation of support involving removal of ethanol from $MgCl_2$ ·EtOH adduct using alkylaluminum chloride compound such as DEAC, EADC and their mixture. The reaction between $MgCl_2$ ·EtOH adduct and alkylaluminum compound lead to the removal of ethanol in the adduct structure. An excess of TiCl₄ was added in to reaction to obtain TiCl₄ supported on $MgCl_2$. However, TiCl₄ can be reduced to a lower valence state with remaining alkylaluminum compound in catalyst (reduction from Ti⁴⁺ to Ti³⁺ or Ti²⁺) [4, 15]. Therefore, the suitable amount of alkylaluminum compound was considered.

4.2.1 Effect of different molar ratio of DEAC/MgCl₂ in the synthesized catalyst

The molar ratio of DEAC/MgCl₂ in range from 2.0 to 3.3 was used to prepare the catalyst support. Table 4.2 presented the element contents and surface area in catalysts which were characterized by ICP and N₂ physisorption technique, respectively. It was found that Ti content was increased with an increase of DEAC/MgCl₂ molar ratio, whereas the Mg content was decreased led to increasing in the Ti/Mg ratio. This is because DEAC can react with ethanol in structure of MgCl₂/EtOH adducts and can be removed ethanol from the structure. An increase in the amount of DEAC lead to reaction between DEAC and ethanol is more; makes removal of ethanol is greater. The amount of remaining alcohols in support was confirmed by FT-IR as shown in Figure 4.3. It was observed that IR spectrum of the MgCl₂·6EtOH exhibits peak involving alcoholate such as in the regions of $3600 - 3000 \text{ cm}^{-1}$ corresponding to O–H stretching, at 2980 – 2900, 1500 – 1300 cm⁻¹ corresponding to C–H stretching and at 1100 cm⁻¹ corresponding to C–O stretching [37]. After removal of ethanol with DEAC, it clears that the large amount of DEAC

Catalyst ^a	DEAC/MgCl ₂	Element content (%wt)		DEAC/MgCl ₂ Element content (%wt)		Element content (%wt)		Surface (m^2/a)
	(molar ratio)	Ti	Mg	Al	(mol/mol)	area (m /g)		
TMC-160214	2.0	6.72	15.60	0.47	0.22	300		
TMC-020214	2.5	7.07	14.74	0.75	0.24	283		
TMC-211113	2.7	7.77	14.33	0.83	0.28	262		
TMC-271113	3.0	8.39	13.51	1.07	0.32	220		
TMC-091113	3.3	12.11	9.93	0.77	0.62	81		

Table 4.2 Effect of different molar ratio of DEAC/MgCl₂ on element content

^a TMC refers to Titanium Magnesium Catalyst, where the six numbers presents the order of the day, month and year in the synthesis

Figure 4.3 FT-IR of EtOH, $MgCl_2$ ·EtOH adducts and catalysts with different molar ratio of DEAC/MgCl₂

As a result, there is an increase in the surface area of support which was confirmed by N_2 physisorption technique. Table 4.3 shows the support which was selected to prepare for this characterization. It noticed that a decrease of ethanol with the large amount of DEAC relationship to an increase the surface area of support. Huang et al. [7] was also reported that the reaction between an alkyl aluminium compound and MgCl₂·*n*EtOH support led to significant increases in pore size and porosity.

Table 4.3 The surface area of prepared support using the different molar ratio ofDEAC/MgCl2

Surface area (m ² /g)	
15.37	
17.20	
18.85	
	Surface area (m ² /g) 15.37 17.20 18.85

After TiCl₄ was fixed and added in to the reaction, it was found that Ti content increased with increasing of DEAC/MgCl₂ molar ratio but the surface areas in the catalyst became decreased as showed in Table 4.2. This is due to TiCl₄ will react with remaining ethanol in support, at the temperature rose up to 80 °C, the large of ethanol caused the strong interaction with TiCl₄ and led to increasing the surface area rather than in the small of ethanol. After that, the remaining TiCl₄ will impregnate on catalyst, due to the amount of TiCl₄ was fixed, thus Ti content did not increased by increasing the surface area. The results are also consistent with research that has been published [43]. However, the reaction between TiCl₄ and ethanol will be formed as titanium chloride ethoxide (TiCl₃(OC₂H₅)) which is inactive for the polymerization [54]. So, it needs to be washed in final step of preparation.

The effect of Ti content on the catalytic activity of catalysts in ethylene polymerization system was indicated in Figure 4.4 and Table 4.4. It can be seen that an increase of DEAC/MgCl₂ molar ratio from 2.0 to 2.7, the activity was increased with an increase of Ti content. But when the molar ratio of DEAC/MgCl₂ was 3.0 or more, it was found that the activity decreased. It means that the Ti species were not all active.

In the polymerization process, the reaction between catalyst (TiCl₄) and cocatalyst (TEA) is important to form active site, which cause from reduction of TiCl₄ to Ti³⁺ and Ti²⁺ by reacting with TEA. It is well known that Ti³⁺ and Ti²⁺ species are active for ethylene polymerization. The ESR was used to characterize the Ti³⁺ species both before and after the catalyst react with TEA as shown in Table 4.4. In case of catalyst not reacted with TEA, it was observed that synthesized catalyst with DEAC/MgCl₂ mole ratio equal to 3.3 showed the highest in amount of Ti³⁺ species, while the other catalysts showed in only small amounts. This means that titanium species were reduced due to the large amount of DEAC [15], which the reaction of TiCl₄ with DEAC as follows Reaction 4.1 [42]:

$$(CH_3)_2AlCl + TiCl_4 \leftrightarrow CH_3TiCl_3 + CH_3AlCl_2$$
(4.1)

It can also noticed, the reduction of $TiCl_4$ with DEAC cause a change of color of the synthesized catalyst due to changes of Ti state. For this molar ratio of DEAC/MgCl₂ =3.3, it showed the dark brown color of catalyst. After this catalyst reacted with TEA, the amount of Ti^{3+} species is less compared to other catalysts due to over-reduction and led to decreasing in catalytic activity. However, all the synthesized catalysts, the amount of Ti^{3+} species are related to the catalytic activity as shown in Figure 4.4.

Chulalongkorn University

Figure 4.4 Effect of titanium content on catalytic activity in the series of catalysts was synthesized using different molar ratio of DEAC/MgCl₂

DEAC/MgCl ₂	Ti	Area of ES	Yield	Time ^b	Activity ^c		
		no react TEA	react TEA				
(molar ratio)	(%wt)	(a.u.)	(a.u.)	g PE	(h)	(kg PE/g Ti/h)	
2.0	6.72	883	3703	153	2.44	131	
2.5	7.07	757	5031	151	0.76	416	
2.7	7.77	907	5484	150	0.58	540	
3.0	8.39	826	5461	149	0.71	375	
3.3	12.11	3727	3788	153	2.00	160	

Table 4.4 Effect of different molar ratio of DEAC/MgCl₂ on catalytic activity

^a Relation with amount of Ti^{3+} (condition: catalyst = 0.0005 mmolTi, measured at room temp., reaction with TEA with Al/Ti = 100)

^b Time of ethylene polymerization reaction

 $^{\rm c}$ Polymerization condition: Al/Ti = 100, catalyst = 0.01 mmolTi, Temp. = 80 °C, H_2 = 2.5 bar, C_2H_4 = 8 bar

4.2.2 Effect of different molar ratio of TiCl₄/MgCl₂ in the synthesized catalyst

This experiment, the catalysts were synthesized with the difference of Ti content using different molar ratio of TiCl₄/MgCl₂. The molar ratio of DEAC/MgCl₂ was fixed as 3.0. The results of element content from ICP were showed in Table 4.5. It was found that Ti content was increased with an increase of TiCl₄/MgCl₂ molar ratio led to an increase in the Ti/Mg ratio, which similar in case of using different molar ratio of DEAC/MgCl₂. This is because a partial of TiCl₄ reacted with remaining EtOH in prepared support and another partial TiCl₄ impregnated on catalyst to activate. So, larger amount of TiCl₄ led to a higher Ti content. The other researches also discussed that the ethanol in final adducts could reduce with the amount of TiCl₄ and present high surface area [10, 43].

	TiCl ₄ /MgCl ₂	Element content (%wt)			Ti/Mg	Surface
Catalyst ^a	(molar ratio)	Ti	Mg	Al	(mol/mol)	area (m²/g)
TMC-300314	0.87	6.48	13.23	2.49	0.25	28
TMC-240214	1.73	7.52	13.42	1.10	0.28	203
TMC-151213	2.60	8.12	13.20	0.93	0.31	260
TMC-271113	3.50	8.39	13.51	1.07	0.32	220
TMC-140214	4.33	8.56	12.07	0.83	0.36	369

Table 4.5 Effect of different molar ratio of DEAC/MgCl₂ on element content

^a TMC refers to Titanium Magnesium Catalyst, where the six numbers presents the order of the day, month and year in the synthesis

The effect of Ti content on the catalytic activity of catalysts in ethylene polymerization system was indicated in Figure 4.4 and Table 4.6. It can be seen that an increase of $TiCl_4/MgCl_2$ molar ratio from 0.87 to 1.73, the activity was increased with an increase of Ti content. However, increasing greater of the molar ratio of

TiCl₄/MgCl₂ found that caused decrease in the catalytic activity. It means that the Ti species were not all active.

The results from ESR to characterize the Ti^{3+} species when the catalyst reacted with TEA showed in Table 4.6. It was also found that the amount of Ti^{3+} species is related to the catalytic activity except for molar ratio of $TiCl_4/MgCl_2$ as 4.33. This may be due to the effect of different Ti^{2+} .

Figure 4.5 Effect of titanium content on catalytic activity in the series of catalysts was synthesized using different molar ratio of TiCl₄/MgCl₂

TiCl ₄ /MgCl ₂	Ti	Area of ESR peak ^a	Yield	Time ^b	Activity ^c
(molar ratio)	(%wt)	(a.u.)	(g PE)	(h)	(kg PE/g Ti/h)
0.87	6.48	7532	155	1.00	269
1.73	7.52	7878	152	0.72	368
2.60	8.12	5169	154	0.96	279
3.50	8.39	5461	155	0.95	283
4.33	8.56	5434	155	1.26	213

Table 4.6 Element content of the synthesis catalyst on effect of molar ratio of $TiCl_4/MgCl_2$

^a Relation with amount of Ti^{3+} (condition: catalyst = 0.0005 mmolTi, measured at room temp., reaction with TEA with Al/Ti = 100)

^b Time of ethylene polymerization reaction

^c Polymerization condition: Al/Ti = 100, catalyst = 0.012 mmolTi, Temp. = 80 °C, $H_2 = 2.5$ bar, $C_2H_4 = 8$ bar

4.2.3 Comparison between the different molar ratio of TiCl₄/MgCl₂ and DEAC/MgCl₂

Compared between the synthesis of catalyst using different molar ratio of DEAC/MgCl₂ and TiCl₄/MgCl₂, it was observed that the catalyst with Ti content around 7.5 - 7.8 %wt exhibited the highest catalytic activity. This is because the suitable elimination of the ethanol or Lewis base from adducts can provide a good support. This affected the crystal structure leading to very active in the polymerization catalysis [6, 48]. The results are also consistent with Hadian et al. [6], which studied the thermal dealcoholation in MgCl₂·3.3EtOH adduct in order to the different molar ratio of EtOH/MgCl₂ in the range of 2.1 - 3.3 and the different Ti content as 0.824 - 1.402 %wt. The highest catalytic activity for the propylene polymerization reaction showed Ti content about 0.9 %wt. Moreover, Huang et al. [49] also found that the treatment alkylaluminum for MgCl₂/alcohol complex may be related to distribution of active titanium in ZN catalyst preparation. With lower concentration of TEA treatment, the distribution of Ti both on surface and in body of catalyst was quite

uniform. While with higher concentration of TEA treatment, the distribution of Ti found on the surface over, the distribution became to be non-uniform.

The example of the synthesized catalyst was also selected to characterize by XRD technique as shown in Figure 4.6 and Figure 4.7 which represent of the results using different molar ratio of DEAC/MgCl₂ and TiCl₄/MgCl₂, respectively. The XRD patterns show the reduction of intensity in all peak of α -MgCl₂. This is probably due to the interaction between Mg²⁺ and alcoholic oxygen. As a result, the insertion of alcohol between the Cl–Mg–Cl triple layers leads to an increase in the interplanar distance or decrease in 20 value [9], meaning that the formation of a crystal is low. It was also observed that the final catalysts show the position of board peak of δ -MgCl₂, which active for polymerization.

Figure 4.6 The XRD patterns of the synthesized catalyst using different molar ratio of DEAC/MgCl₂

Figure 4.7 The XRD patterns of the synthesized catalyst using different molar ratio of $TiCl_4/MgCl_2$

4.2.4 The polymer properties of using the different molar ratio of DEAC/MgCl₂ and TiCl₄/MgCl₂

The polymer properties both are using the different molar ratio of DEAC/MgCl₂ and TiCl₄/MgCl₂ in synthesis of catalyst as shown in Table 4.7 and Table 4.8. It showed that these parameters affected for MI. In general, low value of melt flow index relates to high molecular weight polymers, while and high melt flow index value relates to low molecular weight polymers [66, 67]. For the degree of crystallinity (χ_c) and the melting temperature (T_m) of polyethylene, it does not found any significant change.

DEAC/MgCl ₂	MI (2.16)	T _m	χc
(molar ratio)	(g/10min)	°C	%
2.0	0.799	138	65
2.5	1.108	135	64
2.7	1.526	136	63
3.0	1.900	136	62
3.3	2.001	138	63

Table 4.7 Effect of different molar ratio of DEAC/MgCl₂ on polymer properties

จุหาลงกรณ์มหาวิทยาลัย

GHULALONGKORN UNIVERSITY

Table 4.8 Effect of different molar ratio of TiCl₄/MgCl₂ on polymer properties

TiCl ₄ /MgCl ₂	MI (2.16)	T _m	χ
(molar ratio)	(g/10min)	°C	%
0.87	4.164	136	69
1.73	3.877	136	71
2.60	2.353	135	72
3.50	2.088	136	68
4.33	1.619	137	69

Figure 4.8 and Figure 4.9 shows the surface and porosity of the synthesized catalysts using different molar ratio of DEAC/MgCl₂ and TiCl₄/MgCl₂, respectively. It observed that, the rough surface and porosity of the catalysts were increased compared with MgCl₂·EtOH adduct. However, the influence of different molar ratio of DEAC/MgCl₂ and TiCl₄/MgCl₂ on does not effect on the surface, porosity and particle size of catalysts.

Figure 4.8 The morphology of catalysts with different molar ratio of DEAC/MgCl₂ is a) 2.0, b) 2.5, c) 2.7, d) 3.0 and e) 3.3

Figure 4.8 (cont.) The morphology of catalysts with different molar ratio of DEAC/MgCl₂ is a) 2.0, b) 2.5, c) 2.7, d) 3.0 and e) 3.3

Figure 4.9 The morphology of catalysts with different molar ratio of TiCl₄/MgCl₂; a) 0.87, b) 1.73, c) 2.60, d) 3.50 and e) 4.33

Figure 4.9 (cont.) The morphology of catalysts with different molar ratio of TiCl₄/MgCl₂; a) 0.87, b) 1.73, c) 2.60, d) 3.50 and e) 4.33

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

4.2.5 Effect of different molar ratio of DEAC/EADC mixture in the synthesized catalyst

Among the alkylaluminium chlorides employed as Lewis acids, in this part, EADC was chosen due to its low reduction power compared with other alkylaluminium chlorides [15, 68]. This is to avoiding the over-reduction of titanium species. For this experiment, the effect of DEAC/EADC mixture on Ti content and the catalytic activity was also studied.

The reaction of a mixture of DEAC and EADC with the monochloro and dichloro derivatives compound, respectively, as follows Reaction 4.2 [69]:

$$(C_2H_5)_2AlCl + C_2H_5AlCl_2 \rightarrow (C_2H_5)_3Al_2Cl_3$$

$$(4.2)$$

Data in Table 4.9 shows the result of catalysts which was synthesized using different molar ratio of DEAC/ EADC mixture. It was found that Ti content decreased with the increase of EADC molar ratio, whereas the molar ratio of DEAC decreased. On the other hand, Mg content was also increased led to a decrease in the Ti/Mg ratio. This is because DEAC can react with ethanol in structure of MgCl₂/EtOH adducts stronger than EADC. Therefore, it maked Ti content decreases when reduce the amount of DEAC. Huang et al. [49] also studied the removal of alcohol in the MgCl₂/alcohol complexes using two different types of alkylaluminum such as TEA and DEAC and found that TEA treatment showed the Ti content higher than DEAC treatment. The reason for this is because the reduction or alkylation power of alkylaluminum affects the removal of alcohol. The reduction and alkylation power is in the order of R₃Al > R₂AlCl > RAlCl₂ or Al(C₂H₅)₃ > Al(C₂H₅)₂Cl > Al(C₂H₅)Cl₂ or TEA > DEAC > EADC [42, 70]. However, the surface areas of all the catalyst were slightly different.

In the comparative study with types of alkylaluminium chloride compounds, DEAC and EADC were used to remove the ethanol in preparation of catalysts. The using of DEAC indicated the catalytic activity higher than using of EADC, as shown in Table 4.10 This phenomenon could be explained that Ti content in case DEAC is higher than in case EADC. Therefore, the higher Ti content leads to the higher activity.

	DEAC/EADC	Element content in bul		n bulk	Ti/Mg	Surface
Catalyst ^a		(%wt)				area
	(molar ratio)	Ti	Mg	Al	(mol/mol)	(m^2/g)
TMC-130414	3.00/0.00	7.92	13.47	1.07	0.30	206
TMC-130714	2.25/0.75	7.59	13.30	1.27	0.29	188
TMC-300614	1.50/1.50	6.21	13.99	0.96	0.23	196
TMC-120714	0.75/2.25	5.71	14.64	1.67	0.20	194
TMC-030414	0.00/3.00	5.07	17.86	0.87	0.14	187

Table 4.9 Effect of different molar ratio of DEAC/EADC mixture on element content

^a TMC refers to Titanium Magnesium Catalyst, where the six numbers presents the order of the day, month and year in the synthesis

For in case of DEAC and EADC mixed with different molar ratio, the results become surprising. It was found that the activity is not increased by increasing the Ti content, but at molar ratio of DEAC/EADC = 0.75/2.25 showed the high activity. At molar ratio of DEAC/EADC = 2.25/0.75, the activity was lowest. The results from ESR to characterize the Ti³⁺ species when the catalyst reacted with TEA showed in Table 4.10 and Figure 4.10. It was also found that the amount of Ti³⁺ species related to the catalytic activity.

The Ti/Mg on surface of catalyst was also approximated by EDX technique to compare with Ti/Mg from ICP technique, as shown in Table 4.11. The results showed that at molar ratio of DEAC/EADC = 0.75/2.25 catalyst exhibited the highest of Ti/Mg content, whereas at molar ratio of DEAC/EADC = 0.00/3.00 catalyst showed the lowest of Ti/Mg. This may mean the different type of alkylaluminum chloride and its mixture affected the dispersion of Ti species. Comparison the results from EDX and ICP, in case using DEAC/EADC mixture, it was noticed that the higher catalytic activity is related to the increase of Ti/Mg on surface though the total Ti/Mg in bulk was lower.

Figure 4.10 Effect of titanium content on catalytic activity in the series of catalysts was synthesized using different molar ratio of DEAC/EADC

DEAC/EADC	Ti	Area of ESR peak ^a	Yield	Time ^b	Activity ^c
(molar ratio)	(%wt)	(a.u.)	(g PE)	(h)	(kg PE/g Ti/h)
3.00/0.00	7.92	5325	129	1.11	404
2.25/0.75	7.59	3807	131	2.31	198
1.50/1.50	6.21	5091	130	1.37	330
0.75/2.25	5.71	5211	129	1.31	342
0.00/3.00	5.07	4580	135	1.75	268

Table 4.10 Element content of the synthesis catalyst on effect of molar ratio of $TiCl_4/MgCl_2$

^a Relation with amount of Ti^{3+} (condition: catalyst = 0.0005 mmolTi, measured at room temp., reaction with TEA with Al/Ti = 100)

^b Time of ethylene polymerization reaction

 $^{\rm c}$ Polymerization condition: Al/Ti = 100, catalyst = 0.012 mmolTi, Temp. = 80 °C, H_2 = 2.5 bar, C_2H_4 = 8 bar

DEAC/EADC	Ti/Mg	Element content ^b (%wt)		Ti/Mg	
(molar ratio)	in duik	Ti	Mg	on surface	
3.00/0.00	0.30	10.98	22.96	0.24	
2.25/0.75	0.29	8.76	27.35	0.16	
1.50/1.50	0.23	10.66	19.48	0.28	
0.75/2.25	0.20	12.71	17.58	0.37	
0.00/3.00	0.14	5.43	24.76	0.11	

Table 4.11 Comparison of element content in bulk and on surface

^a Results from ICP

^b Results from EDX

Diethylaluminum chloride (DEAC)

Ethylaluminum dichloride (EADC)

ĊI

Figure 4.11 Structures of DEAC and EADC

Considering the structure of DEAC and EADC are shown in Figure 4.11, it was found the difference in number of ethyl and chloride ligands coordinates to the Lewis acidic aluminum center. In general, the replacement alkyl group by chloride reduces the mobile nature of the remaining alkyl groups. On the other hand, the Lewis acidity of aluminum is more enhanced by halide substitution than by alkyl substitution [41]. A combination of DEAC and EADC with suitable molar ratio may affect the crystal structure of MgCl₂ support leads to the suitable dispersion of Ti species and the active catalyst. However, using of single DEAC showed the highest catalytic activity. Almeida et al. [53] discussed in his work and reported that the presence of chlorine atoms in the structure of chlorotrimethylsilane $Cl(CH_3)_3Si$ and dichlorodimethylsilane $Cl_2(CH_3)_2Si$ affect in MgCl₂ surface defects.

Figure 4.12 shows surface and porosity of the synthesized catalysts using different molar ratio of DEAC/EADC from SEM characterization. It was presented that effect of different molar ratio of DEAC/EADC on surface, porosity and particle size of catalysts was not significantly.

Figure 4.12 The morphology of catalysts with different molar ratio of DEAC/EADC mixture; a) 3.00/0.00, b) 2.25/0.75, c) 1.50/1.50, d) 0.75/2.25 and e) 0.00/3.00

Figure 4.12 (cont.) The morphology of catalysts with different molar ratio of DEAC/EADC mixture; a) 3.00/0.00, b) 2.25/0.75, c) 1.50/1.50, d) 0.75/2.25 and

e) 0.00/3.00

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

4.3 The TiCl₄/MgCl₂/THF catalytic systems

In this part, THF is the type of Lewis base, which was used in the preparation step to form molecular adduct to improve the surface of MgCl₂ support before treatment with an excess of TiCl₄. In the current, although alcohol is used as Lewis base greater, there are many researchers reported that the use of THF is easy to low cost, can control of polymer morphology and show good hydrogen response ability [71, 72]. Moreover, there are many researches that studied to improve the TiCl₄/MgCl₂/THF catalytic system [44, 73]. So, the TiCl₄/MgCl₂/THF catalytic system is one of the important ZN catalysts for the production of polyethylene. However, the remaining THF in the final catalyst leads to a decrease in catalytic activity because the excess of THF may poison the catalyst sites [15]. So, the removal of THF is very crucial for preparation of the catalyst.

In our previous research, the addition of mixed metal chlorides (Lewis acid) such as ZnCl₂/SiCl₄ could remove the THF in catalyst better than the single metal chloride. Thus, it leads to remarkably enhance the catalytic activity both in homo- and co- polymerization [50, 51]. Therefore, in this part, we focused on the removal of THF in MgCl₂·THF structure with various metal chlorides (CaCl₂, FeCl₂ and ZnCl₂) used in combination with AlCl₃. Since the presence of AlCl₃ in the TiCl₄/MgCl₂ could change the active center distribution resulting in the formation of more active center leading to an influence on performance of the catalyst and polymer properties [74, 75].

The abbreviations of synthesized catalysts were listed in Table 4.12.

Catalysts	Abbreviation
TiCl ₄ /MgCl ₂ /THF [50]	None
TiCl ₄ /MgCl ₂ /THF/AlCl ₃	None-Al
$TiCl_4/MgCl_2/THF/AlCl_3+CaCl_2$	Ca-Al
TiCl ₄ /MgCl ₂ /THF/AlCl ₃ +FeCl ₂	Fe-Al
$TiCl_4/MgCl_2/THF/AlCl_3+ZnCl_2$	Zn-Al

 Table 4.12 The abbreviation of catalyst

The total element content in catalysts such as Ti, Mg, Ca, Fe, Zn and Al upon various mixed metal chlorides is listed in Table 4.13. The external surface compositions of all catalyst were approximated by EDX technique, as shown in Table 4.13. The results showed that None-Al exhibited the highest of Ti content on surface because AlCl₃ can provide small particle size, high surface area, high porosity and high disorder structure of MgCl₂ [76]. The Fe-Al catalyst exhibited the highest of Ti content for various mixed metal chloride. Comparison with ICP technique, it was observed that the Ti content in the bulk for Fe-Al is the lowest suggesting that Fe-Al catalyst is mostly contained Ti atoms located on the catalyst pores. However, None-Al showed the highest Ti atoms located on the catalyst surface.

Catalwata	Element content in bulk ^a (wt %)				Ti on surface ^c	
Catalysis	Ti	Mg	MgMx ^b Al(wt %)	(wt %)		
None-Al	3.82	5.13		0.17	13.05	
Ca-Al	3.70	6.09	0.92	0.55	10.26	
Fe-Al	3.44	3.26	3.74	0.58	11.17	
Zn-Al	4.28	6.12	1.43	0.59	9.51	

 Table 4.13 The element content and catalytic activity of catalysts

^a Results from ICP

^b Mx refer to Ca, Fe and Zn

^c Results from EDX

From our previous research [50], the XRD patterns of the TiCl₄/MgCl₂/THF system shows peak of the MgCl₂/THF complex at $2\theta = 10.4$, 20.2 and 32.3°, the TiCl₄/THF complex at $2\theta = 11.1$ and 13.2°, and TiCl₃/THF complexes at $2\theta = 12.2$, 16.7, and 16.9°. Moreover, TiCl₄/MgCl₂/THF complex shows peaks around $2\theta = 11.5$ and 18.3°. Figure 4.13 shows the XRD patterns of catalysts with different addition of mixed metal chlorides. It was found that for the Fe-Al catalyst, the intensity of XRD patterns involving with structure of THF complex apparently decreased indicating that the THF in the structure of TiCl₄/MgCl₂/THF complex could be better removed by

adding the Fe-Al. However, the XRD cannot detect the metal in catalyst due to its crystallite sizes are smaller than 3 nm.

Figure 4.13 The XRD patterns of Ca-Al, Fe-Al and Zn-Al catalysts.

Figure 4.14 shows the absorption bands of THF examined by FT-IR technique. In general, a symmetrical and an asymmetrical C–O–C stretching band of THF is around 913 cm⁻¹ and 1071 cm⁻¹, respectively [77, 78]. However, after mixed metal chloride was introduced into the catalyst, the IR peaks of the C–O–C stretching bands of THF were slightly shifted from 913 cm⁻¹ to 872 cm⁻¹ and from 1071 cm⁻¹ to 1020 cm⁻¹ as a result of the strong Lewis acidity of Ti and Mg [77]. These results are also similar with those reported by Chu et al. [78], Kim [77], Pirinen et al. [72] and Phiwkliang et al. [51]. The FT-IR results were corresponding to the XRD results which indicated that THF was partially removed from the structure of MgCl₂/THF complex by the modification of mixed metal chlorides. It is clear that the Fe-Al catalyst displays the most efficiency in removal of THF, while in the Ca-Al catalyst, the removal of THF is the lowest.

Figure 4.14 The FT-IR patterns of Ca-Al, Fe-Al and Zn-Al catalyst

The catalytic activity for ethylene polymerization with various mixed metal chlorides in TiCl₄/MgCl₂/THF catalysts is shown in Table 4.15. The results show that the catalytic activity increases in order of Fe-Al > Zn-Al > Ca-Al > None-Al. All catalysts provide the higher activity than the unmodified one from our previous research [50]. The modification of AlCl₃ and FeCl₂ in TiCl₄/MgCl₂/THF catalyst provides the highest activity because Fe-Al had an efficiency to remove higher amount of THF, which can be confirmed by XRD and FT-IR. Comparison for electronegativity (EN) values of Ca, Fe and Zn, they are 1.04, 1.64 and 1.66, respectively. Although EN values of Fe is as high as Zn, the radius of Fe^{2+} (0.61 Å) is closer to Mg^{2+} (0.65 Å) than Zn^{2+} (0.74 Å) and Ca^{2+} (0.99 Å). Therefore, the compatibility efficiency of FeCl₂ with MgCl₂ could be better than of ZnCl₂ or CaCl₂ with MgCl₂. This reason suggested the co-addition of AlCl₃ and FeCl₂ resulting in higher THF removal. These results also accord with work of Jiang et al., the selection between LiCl and NaCl to doping in MgCl₂. LiCl was selected as a doping agent because the radius of Li⁺ (0.60 Å) is closer to Mg²⁺ (0.65 Å) than Na⁺ (0.95 Å). Therefore, the compatibility of LiCl and MgCl₂ could be better than that of NaCl and MgCl₂ [25]. However, the Ca-Al catalyst provides the lowest activity because the remaining THF may poison the catalyst sites which leads to the catalyst deactivation [15].

Catalysta	Activity	Polymer properties		
Catalysis	(kg PE/mol Ti h)	T_m (°C)	% χ _c ^a	
None [50]	406	134	53	
None-Al	903	132	55	
Ca-Al	979	131	54	
Fe-Al	1476	132	54	
Zn-Al	1009	130	52	

Table 4.14 The effect of mixed metal chlorides on catalytic activity for ethylene

 polymerization and polymer properties

^a $\chi_c = [\Delta H/(\Delta H^\circ)] \times 100 [51]$

The melting point (T_m), percentage of crystallinity (% χ_c) and density of polyethylene obtained were analyzed by DSC techniques as shown in Table 4.14. It shows that these properties are similar. Therefore, the modification of TiCl₄/MgCl₂/THF catalyst system with various metal chlorides did not significantly affect the thermal behavior of polyethylene. The morphology of catalyst was also showed in Figure 4.15.

Figure 4.15 The morphology of catalyst in TiCl₄/MgCl₂/THF system; a) None-Al, b) Ca-Al, c) Fe-Al and d) Zn-Al

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

CHAPTER V CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

5.1.1 The TiCl₄/MgCl₂/EtOH catalytic systems

In this part, ethanol is the type of Lewis base which was used to prepare MgCl₂·6EtOH adduct. The results indicated that ethanol destroyed structure of layers of MgCl₂ led to the rough surface and an increase of surface area. An alkylaluminum chloride compound such as DEAC, EADC and its mixture were used to remove of ethanol in the adduct structure before impregnation with TiCl₄. The molar ratio of DEAC/MgCl₂ in range from 2.0 to 3.3 was studied. Increasing the amount of DEAC led to reaction between DEAC and ethanol is more; makes removal of ethanol is greater. Thus, Ti content was increased with an increase of DEAC/MgCl₂ molar ratio. However, the surface areas in the catalyst became decreased due to the strong reaction of TiCl₄ and the remaining ethanol with highly exothermic reaction at 80 °C. For polymerization of ethylene, it showed that an increase of DEAC/MgCl₂ molar ratio from 2.0 to 2.7, the activity was increased with an increase of Ti content. But when the molar ratio of DEAC/MgCl₂ was 3.0 or more, it was found that the activity decreased because Ti species were reduced with the large amount of DEAC and overreduction when it reacted with TEA. The results of the amount of Ti³⁺ species that was approximated from ESR, also related to the catalytic activity.

The synthesis of catalysts with different molar ratio of TiCl₄/MgCl₂ in range of 0.87 to 4.44 was also studied. In experiment, the molar ratio of DEAC/MgCl₂ was fixed as 3.0, it was found that Ti content was increased with an increase of TiCl₄/MgCl₂ molar ratio This is because a partial of TiCl₄ would react with remaining EtOH in the prepared support and another partial TiCl₄ would impregnate on catalyst in order to active phase. For polymerization of ethylene, an increase of TiCl₄/MgCl₂ molar ratio from 0.87 to 1.73, the activity was increased with an increase of Ti content. However, increasing greater of the molar ratio of TiCl₄/MgCl₂, it was found that the catalytic activity was decrease. It means that the Ti species were not all active. It was also found that the amount of Ti³⁺ species related to the catalytic activity except for molar ratio of $TiCl_4/MgCl_2$ as 4.33. This may be due to the effect of different Ti^{2+} .

In comparison between using different molar ratio of DEAC/MgCl₂ and TiCl₄/MgCl₂, it was observed that the catalyst with Ti content around 7.5 - 7.8 %wt exhibited the highest catalytic activity. This is due to the suitable elimination of the ethanol or Lewis base from adducts can provide a good support and affect the crystal structure leading to very active in the polymerization catalysis

For the effect of different molar ratio of DEAC/EADC mixture, it was found that Ti content decreased with the increase of EADC molar ratio This is because DEAC can react with ethanol in structure of MgCl₂/EtOH adducts stronger than EADC. The using of single DEAC indicated the catalytic activity higher than using of single EADC due to the higher Ti content of using of single DEAC. For in case of DEAC and EADC, it were mixed with different molar ratio, the result become a surprising. It was found that the activity is not increased by increasing the Ti content. But at molar ratio of DEAC/EADC = 0.75/2.25, the activity was high, while at molar ratio of DEAC/EADC = 2.25/0.75 the activity was lowest. However, the amount of Ti³⁺ species also related to the catalytic activity. A combination of DEAC and EADC with suitable molar ratio may affect the crystal structure of MgCl₂ support leads to the suitable dispersion of Ti species and the active catalyst.

In addition, the polyethylene properties which different Lewis base and molar ratio affect the melt index but did not affect the thermal behavior of polyethylene.

5.1.2 The TiCl₄/MgCl₂/THF catalytic systems

In this part, THF is type of Lewis base which was used to prepare the MgCl₂/THF adduct. However, the remaining THF in the final catalyst led to decrease in catalytic activity because the excess THF may poison the catalyst sites. So, the removal of THF is very crucial for preparation of the catalyst. Therefore, in this part, we focused on the removal of THF in MgCl₂·THF structure with various metal chlorides such as AlCl₃, CaCl₂, FeCl₂ and ZnCl₂. The results showed that None-Al exhibited the highest of Ti content on surface because AlCl₃ can provide small particle size, high surface area, high porosity and high disorder structure of MgCl₂. For in case of mixed metal chlorides, the results from EDX showed that Fe-Al

catalyst exhibited the highest of Ti content on surface. Comparison with ICP technique, it was observed that the Ti content in the bulk is the lowest suggesting that Fe-Al catalyst is mostly contained Ti atoms located on the catalyst surface. For the catalytic activity for ethylene polymerization, it showed that the catalytic activity increased in order of Fe-Al > Zn-Al > Ca-Al > None-Al. The modification of AlCl₃ and FeCl₂ provides the highest activity because Fe-Al had an efficiency to remove higher amount of THF, which can be confirmed by XRD and FT-IR. This may be due to high electronegativity values of Fe and the radius of Fe²⁺ (0.61 Å) is which close to Mg²⁺ (0.65 Å) than Zn²⁺ (0.74 Å) and Ca²⁺ (0.99 Å). Moreover, the modification did not affect the thermal behavior of polyethylene.

5.2 Recommendations

1. The dispersion of surface Ti species in catalyst is one of the important factors that affect the catalytic activity. The dispersion of $TiCl_4$ by the different Ti content in the catalyst, where the lower Ti content leads to more isolated Ti species (each Ti species existed on the MgCl₂ surface in single Ti active center manner), whereas the higher Ti content gives more aggregated Ti species (the Ti-Ti interaction) which some called as clustered Ti species. [79-81]. Moreover, the isolated Ti species relate to an aspecific species, while the clustered Ti species relate to an isospecific species in propylene polymerization [82]. In work of Taniike et al. [81], the aggregation of the Ti species significantly reduced in ethylene polymerization activities, and was identified as one of the major deactivation mechanisms. However, it is difficult to clearly explain because both Ti³⁺and Ti²⁺ affect the catalytic activity of ethylene polymerization. To confirm these effects, it should be characterized or studied to compare in the propylene polymerization.

2. The activity from the effect of different DEAC/EADC molar ratio is still open discuss and should be taken into consideration later.

3. The modification of metal chloride may as guidelines to study to improve for the TiCl₄/MgCl₂/alcohol catalyst system.

REFERENCES

- Ha, J.W. and Chu, K.J. A study on the ethylene polymerization and ethylene copolymerization with different kinds of catalyst. Journal of Ind. & Eng. <u>Chemistry</u> 3(2) (1997): 113-118.
- [2] Bohm, L.L. The ethylene polymerization with Ziegler catalysts: Fifty years after the discovery. <u>Angew Chem Int Ed Engl</u> 42(41) (2003): 5010-30.
- [3] Rojanotaikul, P., Kunjara Na Ayudhya, S., Charoenchaidet, S., Faungnawakij,
 K., and Soottitantawat, A. Preparation of porous anhydrous MgCl₂ particles by
 spray drying process. <u>Engineering Journal</u> 16(3) (2012): 109-114.
- [4] Dashti, A., Ramazani Sa, A., Hiraoka, Y., Kim, S.Y., Taniike, T., and Terano,
 M. Kinetic and morphological study of a magnesium ethoxide-based Ziegler-Natta catalyst for propylene polymerization. <u>Polymer International</u> 58(1) (2009): 40-45.
- [5] Kissin, Y. <u>Alkene polymerization reactions with transition metal catalysts</u>. Elsevier Science, 2008.
- [6] Hadian, N., Hakim, S., Nekoomanesh-Haghighi, M., and Bahri-Laleh, N. Storage time effect on dynamic structure of MgCl₂·nEtOH adducts in heterogeneous Ziegler-Natta catalysts. <u>Polyolefins Journal</u> 1(1) (2014): 33-41.
- [7] Huang, R., Malizia, F., Pennini, G., Koning, C.E., and Chadwick, J.C. Effects of MgCl₂ crystallographic structure on active centre formation in immobilized single-centre and Ziegler-Natta catalysts for ethylene polymerization. <u>Macromol Rapid Commun</u> 29(21) (2008): 1732-1738.
- [8] Noto, V.D., Marigo, A., Viviani, M., Marega, C., Bresadola, S., and Zannetti,
 R. MgCl₂-supported Ziegler-Natta catalysts: Synthesis and X-ray diffraction characterization of some MgCl₂-Lewis base adducts. <u>Makromol. Chem.</u> 193 (1992): 123-131.
- [9] Thushara, K.S., Ajithkumar, T.G., Rajamohanan, P.R., and Gopinath, C.S. Structural investigations of porous MgCl₂-2-butanol molecular adduct as support for olefin polymerization. <u>Applied Catalysis A: General</u> 469 (2014): 267-274.

- [10] Ye, Z.Y., et al. Novel spherical Ziegler-Natta catalyst for polymerization and copolymerization. I. Spherical MgCl₂ support. <u>Journal of Polymer Science</u> <u>Part A: Polymer Chemistry</u> 40(18) (2002): 3112-3119.
- [11] Sozzani, P., Bracco, S., Comotti, A., Simonutti, R., and Camurati, I. Stoichiometric compounds of magnesium dichloride with ethanol for the supported Ziegler-Natta catalysis first recognition and multidimensional MAS NMR study. J. AM. CHEM. SOC. 125 (2003): 12881-12893.
- Bosowska, K. and Nowakowska, M. The roles for a Lewis base and MgCl₂ in third-generation Ziegler-Natta catalysts. <u>Journal of Applied Polymer Science</u> 69 (1998): 1005-1011
- [13] Parada, A., Rajmankina, T., and Chirinos, J. Study of the MgCl₂ recrystallization conditions on Ziegler-Natta catalyst properties. <u>Polymer</u> <u>Bulletin</u> 43 (1999): 231-238.
- [14] Jalali Dil, E., Pourmahdian, S., Vatankhah, M., and Afshar Taromi, F. Effect of dealcoholation of support in MgCl₂-supported Ziegler-Natta catalysts on catalyst activity and polypropylene powder morphology. <u>Polymer Bulletin</u> 64(5) (2009): 445-457.
- [15] Maria, L.C.d.S. Preparation of Ziegler-Natta catalyst based on TiCi₄ modified with metal chlorides for copolymerization of ethylene and propene. <u>Polymer</u> 36(14) (1995): 2845-2849.
- [16] Fan, Z., Zhang, L., Xia, S., and Fu, Z. Effects of ethylene as comonomer on the active center distribution of 1-hexene polymerization with MgCl₂supported Ziegler-Natta catalysts. <u>Journal of Molecular Catalysis A: Chemical</u> 351 (2011): 93-99.
- [17] Reddy, S.S. and Swaminathan, S. Homogeneous metallocenemethylaluminoxane catalyst systems for ethylene polymerization. <u>Prog.</u> <u>Polym. Sci.</u> 20 (1995): 309-367.
- [18] Huang, J. and Rempel, G.L. Ziegler-Natta catalysts for olefin polymerization: Mechanistic insights from metallocene systems. <u>Prog. Polym. Sci.</u> 20 (1995): 459-526.

- [19] Fan, Z.Q., Feng, L.X., and Yanc, S.L. Distribution of active centers on TiCl₂/MgCl₂ catalyst for olefin polymerization. <u>Journal of Polymer Science</u>: <u>Part A Polymer Chemistry</u> 34 (1996): 3329-3335.
- [20] Zhang, L.T., Fan, Z.Q., and Fu, Z.S. Dependence of the distribution of active centers on monomer in supported Ziegler-Natte catalysts. <u>Chinese Journal of</u> <u>Polymer Science</u> 26(5) (2008): 605-610.
- [21] Pier, C.B., Cecchin, G., and Noristi, L. The catalytic system Ticomplex/MgCl₂. <u>Advances in Polymer Science</u> 81 (1987): 1-81.
- [22] Mori, H., Hasebea, K., and Terano, M. Determination of titanium distribution on the catalyst surface of industrial supported Ziegler catalysts by means of scanning: Auger electron microscopy. <u>Macromol. Chem. Phys.</u> 199 (1998): 2709-2715.
- [23] Liu, B., Fukuda, K., Nakatani, H., Nishiyama, I., Yamahiro, M., and Terano, M. ²⁷Al MAS solid state NMR study on coordinative nature of alkyl-Al cocatalysts on a novel SiO₂-supported Ziegler-Natta catalyst for controlled multiplicity of molecular weight distribution. <u>Journal of Molecular Catalysis</u> <u>A: Chemical</u> 219(2) (2004): 363-370.
- [24] Kashiwa, N. The discovery and progress of MgCl₂-supported TiCl₄ catalyst.
 Journal of Polymer Science: Part A: Polymer Chemistry 42 (2004): 1-8.
- [25] Jiang, X., Wang, H., Tian, X., Yang, Y., and Fan, Z. Effects of doping LiCl into MgCl₂-supported Ziegler-Natta catalyst on the molecular weight distribution and isotacticity of polypropylene <u>Ind. Eng. Chem. Res.</u> 50 (2011): 259-266.
- [26] Wilke, G. Fifty years of Ziegler catalysts: Consequences and development of an invention. <u>Angew Chem Int Ed Engl</u> 42(41) (2003): 5000-5008.
- [27] Soga, K. and Shiono, T. Ziegler-Natta catalysts for olefin polymerizations. <u>Prog. Polym. Sci.</u> 22 (1997): 1503-1546.
- [28] Pettijohn, T.M. <u>Metal halide catalyst, method of producing the catalyst,</u> polymerization process employing the catalyst, and polymer produced by the polymerization process. 1993, Google Patents.
- [29] Jamjah, R., Zohuri, G.H., Vaezi, J., Ahmadjo, S., Nekomanesh, M., and Pouryari, M. Morphological study of spherical MgCl₂·nEtOH supported TiCl₄

Ziegler-Natta catalyst for polymerization of ethylene. Journal of Applied Polymer Science 101(6) (2006): 3829-3834.

- [30] Noto, V.D. and Bresadola, S. New synthesis of a highly active δ-MgCl₂ for MgCl₂/TiCl₄/AlEt₃ catalytic systems. <u>Macromol. Chem. Phys.</u> 197 (1996): 3827-3835.
- [31] Seth, M., Margl, P.M., and Ziegler, T. A density functional embedded cluster study of proposed active sites in heterogeneous Ziegler-Natta catalysts. <u>Macromolecules</u> 35 (2002): 7815-7829.
- [32] Boero, M., Parrinello, M., Weiss, H., and Huffer, S. A first principles exploration of a aariety of active surfaces and catalytic sites in Ziegler-Natta heterogeneous catalysis. J. Phys. Chem. A 105 (2001): 5096-5105.
- [33] Park, H.M. and Lee, W.Y. The effect of triethylaluminium treatment on a Ziegler-Natta catalyst supported on magnesium chloride prepared by a recrystallization medthod, for propylene polymerizatiom. <u>Eur. Polym. J.</u> 28(11) (1992): 1417-1422.
- [34] Chung, J.S., Choi, J.H., Song, I.K., and Lee, W.Y. Effect of ethanol treatment in the preparation of MgCl₂ support for the propylene polymerization catalyst. <u>Macromolecules</u> 28 (1995): 1717-1718.
- [35] Choi, J.H., Chung, J.S., Shin, H.W., Song, I.K., and Lee, W.Y. The effect of alcohol treament in the preparation of MgCl₂ support by a recrystallization method on the catalytic activity and isotactic index for propylene polymerization. <u>Eur. P & n. J.</u> 32(4) (1996): 405-410.
- [36] Wang, L., et al. Preparation of novel MgCl₂-adduct supported spherical Ziegler-Natta catalyst for α-olefin polymerization. Journal of Applied Polymer Science 99(3) (2006): 945-948.
- [37] Magalhaes, D.N.T., Filho, O.D.C., and Coutinho, F.M.B. Ziegler-Natta catalyst for ethylene and propylene polymerization supported on adducts of magesium chloride with methyl and ethyl alcohols. <u>Eur. Polym. J.</u> 27(8) (1991): 827-830.
- [38] Tangjituabun, K. <u>Modification of ziegler-natta catalysts for propylene</u> polymerization with organic and inorganic compounds. Doctor of Engineering, Chemical Engineering Chulalongkorn University, 2007.

- [39] Pokasermsong, P. and Praserthdam, P. Comparison of activity of Ziegler-Natta catalysts Prepared by recrystallization and chemical reaction methods towards polymerization of ethylene. <u>Engineering Journal</u> 13(1) (2009): 57-64.
- [40] Cho, H.S. and Lee, W.Y. Synthesis of inorganic MgCl₂-alcohol adduct via recrystallization method and its application in supported organometallic catalysts for the polymerization of ethylene with 1-hexene. <u>Journal of Molecular Catalysis A: Chemical</u> 191 (2003): 155-165.
- [41] Bellus, D., et al. <u>Science of synthesis: Houben-Weyl methods of molecular</u> <u>transformations vol. 7: Compounds of goups 13 and 2 (Al, Ga, In, Tl, Be...Ba)</u>. Thieme, 2014.
- [42] Scott, A.F. Survey of progress in chemistry. Elsevier Science, 1966.
- [43] Forte, M.C. and Coutinho, F.M.B. Highly active magnesium chloride supported Ziegler-Natta catalysts with controlled morphology. <u>Eur. Polym. J.</u> 32(2) (1996): 223-231.
- [44] Grau, E., Lesage, A., Norsic, S., Copéret, C., Monteil, V., and Sautet, P. Tetrahydrofuran in TiCl₄/THF/MgCl₂: A non-innocent ligand for supported Ziegler-Natta polymerization catalysts. <u>ACS Catalysis</u> 3(1) (2013): 52-56.
- [45] Chang, H.S., Song, W.D., Chu, K.J., and Ihm, S.K. Effects of removing THF from the TiCl₃(AA)₃/MgCl₂/THF catalyst system on the ethylene-propylene copolymerization mechanism. <u>Macromolecules</u> 25 (1992): 2086-2092.
- [46] Phiwkliang, W. Effect of lewis acid on the activity of Zigler Natta catalyst and the properties of polyethylene. doctor, chemical engineering chulalongkorn, 2013.
- [47] Ochedzan-Siodlak, W. and Nowakowska, M. Magnesium chloride modified with organoaluminium compounds as a support of the zirconocene catalyst for ethylene polymerisation. <u>European Polymer Journal</u> 40(4) (2004): 839-846.
- [48] Noto, V.D., Zannetti, R., Viviani, M., Marega, C., Marigo, A., and Bresadola, S. MgCl₂-supported Ziegler-Natta catalysts: A structural investigation by Xray diffraction and Fourier-transform IR spectroscopy on the chemical activation process through MgCl₂-ethanol adducts. <u>Makromol. Chem.</u> 193 (1992): 1653 -1663

- [49] Huang, W.Q., Zhao, X., Zhang, Y., and Yang, W.T. Characterization of MgCl₂/Alcohol based Ziegler-Natta catalyst and its precursors. <u>Advanced</u> <u>Materials Research</u> 233-235 (2011): 1568-1574.
- [50] Phiwkliang, W., Jongsomjit, B., and Praserthdam, P. Effect of ZnCl₂- and SiCl₄-doped TiCl₄/MgCl₂/THF catalysts for ethylene polymerization. <u>J. APPL.</u>
 <u>POLYM. SCI.</u> (2013): 1588-1594.
- [51] Phiwkliang, W., Jongsomjit, B., and Praserthdam, P. Synergistic effects of the ZnCl₂-SiCl₄ modified TiCl₄/MgCl₂/THF catalytic system on ethylene/1hexene and ethylene/1-octene copolymerizations. <u>Chinese Journal of Polymer</u> Science 32(1) (2014): 84-91.
- [52] Magalhaes, D.N.T., Filho, O.D.C., and Coutinho, F.M.B. Ziegler-Natta catalysts for ethylene and propylene polymerizations supported on the products of thermal desolvation of the adducts of magesium chloride with methyl and ethyl alcohols. <u>Eur. Polym. J.</u> 27(10) (1991): 1093-1096.
- [53] Almeida, L.A. and Marques, M.d.F.V. Synthesis of a TiCl₄ Ziegler-Natta catalyst supported on spherical MgCl₂·nEtOH for the polymerization of ethylene and propylene. <u>Macromolecular Reaction Engineering</u> 6(1) (2012): 57-64.
- [54] Parada, A., Rajamankina, T., Chirinos, J.J., and Morillo, A. Influence of support recrystallization techniques on catalyst performance in olefin polymerization. <u>European Polymer Journal</u> 38 (2002): 2093-2099.
- [55] Patthamasang, S., Jongsomjit, B., and Praserthdam, P. Effect of EtOH/MgCl₂ molar ratios on the catalytic properties of MgCl₂-SiO₂/TiCl₄ Ziegler-Natta catalyst for ethylene polymerization. <u>Molecules</u> 16(10) (2011): 8332-42.
- [56] Edward, P. and Moore, J. <u>Polypropylene handbook: Polymerization</u>, <u>characterization</u>, properties, processing, applications. 1 ed.: Hanser Gardner Pubns, 1996.
- [57] Kissin, Y.V. Active centers in Ziegler-Natta catalysts: Formation kinetics and structure. <u>Journal of Catalysis</u> 292 (2012): 188-200.
- [58] Mori, H., Ohnishi, K., and Terano, M. Multiplicity of molecular weight distribution of polyethene produced with modified-polypropene-supported Ziegler catalyst systems. <u>Macromol. Chem. Phys.</u> 199 (1998): 393-399.

- [59] Fregonese, D., Mortara, S., and Bresadola, S. Ziegler-Natta MgCl₂-supported catalysts: relationship between titanium oxidation states distribution and activity in olefin polymerization. <u>Journal of Molecular Catalysis A: Chemical</u> 172 (2001): 89-95.
- [60] Mori, H., Hasebe, K., and Terano, M. Variation in oxidation state of titanium species on MgCl₂-supported Ziegler catalyst and its correlation with kinetic behavior. <u>Polymer</u> 40(1389-1394) (1999).
- [61] Hasebe, K., Mori, H., and Terano, M. X-ray photoelectron spectroscopy analysis for oxidation states of titanium chloride on the surface of Ziegler-Natta catalysts. <u>Journal of Molecular Catalysis A: Chemical</u> 124 (1997): L1-L3.
- [62] Garoff, T., Johansson, S., Pesonen, K., Waldvogel, P., and Lindgren, D. Decrease in activity caused by hydrogen in Ziegler-Natta ethene polymerisation. <u>European Polymer Journal</u> 38 (2002): 121-132.
- [63] Tregubov, A.A., Zakharov, V.A., and Mikenas, T.B. Supported titaniummagnesium catalysts for ethylene polymerization: A comparative study of catalysts containing isolated and clustered titanium ions in different oxidation states. Journal of Polymer Science Part A: Polymer Chemistry 47(23) (2009): 6362-6372.
- [64] Pinyocheep, J., Ayudhya, S.K.N., Jongsomjit, B., and Praserthdam, P. Observation on inhibition of Ti³⁺ reduction by fumed silica addition in Ziegler-Natta catalyst with in situ ESR. Journal of Industrial and Engineering <u>Chemistry</u> 18(6) (2012): 1888-1892.
- [65] Kashiwa, N., Fuji, S., and Tanaka, M. Process for polymerization or copolymerization of olefin and catalyst compositions used therefor. 1978, Mitsui Petrochemical Industries Ltd.: Japan.
- [66] Garoff, T., et al. <u>Procatalyst for ethylene polymer production, method for its</u> preparation and use. 1995, Google Patents.
- [67] Hindryckx, F., Dubois, P., Jerome, R., and Matti, M.G. Ethylene polymerisation by a high activity MgCl₂ supported Ti catalyst in the presence of hydrogen and/or 1-octene. <u>Polymer</u> 39(3) (1998): 621-629.

- [68] Wailes, P.C. <u>Organometallic chemistry of titanium, zirconium, and hafnium</u>. Elsevier Science, 2012.
- [69] Petrova, V.D., Rzhevskaya, N.N., Shcherbakova, N.V., Sangalov, Y.A., and Mlnsker, K.S. Reaction of alkylaluminum chlorides with water. <u>Plenum</u> <u>Publishing Corporation</u> (1978): 1194-1199.
- [70] Ceausescu, E. <u>Stereospecific polymerization of isoprene</u>. Elsevier Science, 1983.
- [71] Luo, H. Studies on the formation of new highly active silica-supported Ziegler-Natta catalyst for ethylene polymerization. <u>Journal of Catalysis</u> 210(2) (2002): 328-339.
- [72] Pirinen, S., Koshevoy, I.O., Denifl, P., and Pakkanen, T.T. A single-crystal model for MgCl₂-electron donor support materials: [Mg₃Cl₅(THF)₄Bu]₂(Bu =n-Butyl). <u>Organometallics</u> 32(15) (2013): 4208-4213.
- [73] Bialek, M., Ochedzan-Siodlak, W., Dziubek, K., Czaja, K., and Bosowska, K.Coordination (co)polymerization of olefins. <u>CHEMIK</u> 68(4) (2014): 268-279.
- [74] Chen, Y.P. and Fan, Z.Q. Ethylene/1-hexene copolymerization with TiCl₄/MgCl₂/AlCl₃ catalyst in the presence of hydrogen. <u>European Polymer</u> <u>Journal</u> 42(10) (2006): 2441-2449.
- [75] Chen, Y.P., Fan, Z.Q., Liao, J.H., and Liao, S.Q. Molecular weight distribution of polyethylene catalyzed by Ziegler-Natta catalyst supported on MgCl₂ doped with AlCl₃. Journal of Applied Polymer Science 102(2) (2006): 1768-1772.
- [76] Deeprasert, S. <u>Synthesis and characterization of Ziegler-Natta catalyst via</u> <u>impregnation on magnesium chloride supportor</u>. Master of Science, Chemical Engineering Chulalongkorn University, 1989.
- [77] Kim, J.H. Copolymerization of ethylene and 1-butene with highly active Ti/Mg bimetallic catalysts. Effect of partial activation by AlEt₂Cl. <u>Macromol.</u> <u>Rapid Commun.</u> 16 (1995): 113-118.
- [78] Chu, K.J., Chang, H.S., and Ihm, S.K. Effect of diethyl aluminum chloride (DEAC) addition to the catalysts prepared by reduction of TiCl₄ with EtMgCl on ethylene-propylene copolymerization. <u>Eur. Polym. J.</u> 30(12) (1994): 1467-1472.

- [79] Taniike, T., Wada, T., Kouzai, I., Takahashi, S., and Terano, M. Role of dispersion state of ti species in deactivation of MgCl₂-supported Ziegler-Natta catalysts. <u>Macromolecular Research</u> 18(9) (2010): 839-844.
- [80] Wang, J.F., Wang, L., Zhao, Z.R., Wang, W.Q., and Chen, T. Study on the distribution of active centers in novel low Ti-loading MgCl₂-supported Ziegler-Natta catalyst. <u>Journal of Zhejiang University SCIENCE</u> 5(8) (2004): 912-917.
- [81] Taniike, T., Takahashi, S., Wada, T., Kouzai, I., and Terano, M. Effects of molecular dispersion state of surface Ti species on ethylene-propylene copolymerization with TiCl₃-based Ziegler-Natta model catalyst. <u>Macromolecular Research</u> 18(9) (2010): 834-838.
- [82] Taniike, T. and Terano, M. Reductive formation of isospecific Ti dinuclear species on a MgCl₂ (110) surface in heterogeneous Ziegler-Natta catalysts. <u>Macromol Rapid Commun</u> 29(17) (2008): 1472-1476.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

APPENDIX A THE RESULTS RFOM ESR

The ESR was used to characterize the amount of Ti^{3+} species in the synthesized catalyst. Figure A.1 showed peaks of ESR in case of catalyst not reacted with TEA. At molar ratio of DEAC/MgCl₂ as 3.3 presented the highest peak because it was reduced with the large amount of DEAC.

When the catalyst reacted with TEA (Figure A.2 – A.4), it can be seen that the amount of Ti^{3+} species exhibited peak with relative g value equal to 1.965 and 1.956 in all catalysts. It was noted that several g-values of Ti^{3+} species indicated heterogeneity of catalyst sites (multiple active site catalysts) [15]. The g values equal to 1.965 are assigned to the tetrahedral coordination of Ti^{3+} [64].

Figure A.1 The effect of Ti³⁺ before catalysts (vary the DEAC/TiCl₄) react with TEA

Figure A.2 The effect of Ti³⁺ after catalysts (vary the DEAC/MgCl₂) react with TEA

Figure A.3 The effect of Ti³⁺ after catalysts (vary the TiCl₄/ MgCl₂) react with TEA

Figure A.4 The effect of Ti³⁺ after catalysts (vary the DEAC/EADC) react with TEA

The calculation of ESR peak

Simpson's rule is a method for numerical integration, the numerical approximation of definite integrals. It was applied to find the area under the graph from ESR results, the example as shown in Figure D.1.

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} \Big[f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + f(x_4) + \dots + 4f(x_{4-1}) + f(x_n) \Big]$$

where $h = \frac{b-a}{n}$, $x_0 = a$ and $x_n = b$

Area = Area 1 + Area 2

Figure A.5 The graph from ESR result

APPENDIX B

THE RESULTS OF EFFECT OF DIFFERENT DEAC/EADC MOLAR RATIO

The results from XRD

The synthesized catalyst was characterized by XRD technique as shown in Figure B.1. It was observed that the final catalysts show the position of board peak of δ -MgCl₂, meaning the formation of a crystal is low.

Figure B.1 The XRD patterns of the synthesized catalyst using different molar ratio of DEAC/EADC

The effect of different molar ratio of DEAC/EADC on polymer properties

The polymer properties of using the different molar ratio of DEAC/EADC in synthesis of catalyst were showed in Table B.2. It showed that slightly affected for MI except in molar ratio of DEAC/EADC = 2.25/0.75 which showed the highest MI. For density and degree of crystallinity (χ_c), it does not observe any significant change. While the melting temperature (T_m) was slightly change.

DEAC/EADC	MI (2.16)	T _m	χc	
(molar ratio)	(g/10min)	°C	%	
3.00/0.00	0.965	136	69	
2.25/0.75	1.804	137	64	
1.50/1.50	0.873	135	61	
0.75/2.25	1.110	136	63	
0.00/3.00	1.186	135	53	

Table B.1 Effect of different molar ratio of DEAC/EADC on polymer properties

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

APPENDIX C LIST OF PUBLICATIONS

Poster: <u>Nittaya Sudsong</u>, Wanna Phiwkliang and Piyasan Praserthdam "Effects of various mixed metal chlorides-AlCl₃ in Ziegler-Natta catalyst for ethylene polymerization". Asian Polyolefin Workshop 2013 (APO 2013), Beijing, China, October 15-19, 2013.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

VITA

Miss Nittaya Sudsong was born on June 26, 1989 in Nakhon Si Thammarat, Thailand. She graduated with a Bachelor's degree on the major of Chemical Engineering, Faculty of Engineering from Srinakharinwirot University with GPA 3.23 in June, 2012. Afterward she has continued her study in Master's degree, majoring in Chemical Engineering at Chulalongkorn University and joined the Center of Excellence on Catalysis and Catalytic Reaction Engineering in October, 2012.

Chulalongkorn University