

การประเมินสมรรถนะเชิงเปรียบเทียบของนโยบายการแคชจากส่วนกลางและระดับการมองเห็น
เนื้อหาในโครงข่ายแบบสารสนเทศเป็นศูนย์กลางโดยใช้ระบบทดสอบโอเพนโฟลว์

นายชันทาน เฮล

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต
สาขาวิชาวิศวกรรมไฟฟ้า ภาควิชาวิศวกรรมไฟฟ้า
คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2557
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

COMPARATIVE PERFORMANCE EVALUATION OF CENTRALIZED IN-NETWORK CACHING
POLICIES AND CONTENT VISIBILITY LEVELS IN INFORMATION CENTRIC NETWORK BY

USING OPENFLOW TESTBED

Mr. Chanthan Hel

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Engineering Program in Electrical Engineering

Department of Electrical Engineering
Faculty of Engineering

Chulalongkorn University
Academic Year 2014

Copyright of Chulalongkorn University

Thesis Title COMPARATIVE PERFORMANCE EVALUATION OF
CENTRALIZED IN-NETWORK CACHING POLICIES
AND CONTENT VISIBILITY LEVELS IN
INFORMATION CENTRIC NETWORK BY USING
OPENFLOW TESTBED

By Mr. Chanthan Hel
Field of Study Electrical Engineering
Thesis Advisor Assistant Professor Chaiyachet Saivichit, Ph.D.

 Accepted by the Faculty of Engineering, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Master's Degree

 Dean of the Faculty of Engineering

(Professor Bundhit Eua-arporn, Ph.D.)

THESIS COMMITTEE

 Chairman

(Associate Professor Watit Benjapolakul, Ph.D.)

 Thesis Advisor

(Assistant Professor Chaiyachet Saivichit, Ph.D.)

 Examiner

(Assistant Professor Chaodit Aswakul, Ph.D.)

 External Examiner

(Associate Professor Poompat Saengudomlert, Ph.D.)

 iv

THAI ABSTRACT

ชันทาน เฮล : การประเมินสมรรถนะเชิงเปรียบเทียบของนโยบายการแคชจากส่วนกลาง
และระดับการมองเห็นเนื้อหาในโครงข่ายแบบสารสนเทศเป็นศูนย์กลางโดยใช้ระบบ
ทดสอบโอเพนโฟลว์ (COMPARATIVE PERFORMANCE EVALUATION OF
CENTRALIZED IN-NETWORK CACHING POLICIES AND CONTENT VISIBILITY
LEVELS IN INFORMATION CENTRIC NETWORK BY USING OPENFLOW TESTBED)
อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ผศ. ดร.ชัยเชษฐ์ สายวิจิตร, 66 หน้า.

สมรรถนะเป็นปัจจัยหลักส าหรับการออกแบบโครงข่ายที่มีข้อมูลเป็นศูนย์กลาง (ICN)
ภายใต้การสนับสนุนของโครงข่ายที่ก าหนดโดยซอฟต์แวร์(SDN) นอกจากนี้การด าเนินการระหว่าง
นโยบายการแคชในโครงข่ายรวมศูนย์และระดับการมองเห็นเนื้อหาก็ส่งผลกระทบต่อสมรรถนะการ
ท างานด้วย โดยเฉพาะตัวควบคุมจะมีบทบาทส าคัญอย่างยิ่งในการประสานงานระหว่างโครงข่ายแคช
และกลไกการมองเห็นเนื้อหาส าหรับโครงข่ายที่มีข้อมูลเป็นศูนย์กลางนี้ ดังนั้นวิทยานิพนธ์ฉบับนี้จึงมี
แผนที่จะประเมินสมรรถนะการท างานของโครงข่ายที่มีข้อมูลเป็นศูนย์กลางภายใต้สถาปัตยกรรมเอ
สดีเอ็น เมื่อพิจารณาสามกลไกที่แตกต่างกันระหว่างการแคชของโครงข่ายรวมศูนย์และการมองเห็น
เนื้อหานั้นจะถูกน ามาใช้กับระบบทดสอบโอเพนโฟลว์ อีกทั้งยังมีวัตถุประสงค์เพ่ือศึกษาผลกระทบ
ของโครงสร้างโครงข่ายต่อสมรรถนะการท างานของโครงข่าย โดยที่สามกลไกที่กล่าวถึงประกอบไป
ด้วยกลไกที่ไม่มีความร่วมมือ กลไกการร่วมมือระหว่างเส้นทาง และกลไกความร่วมมือรวมทั้งระบบ
เพ่ือที่จะประเมินผลของสมรรถนะการท างานจะมีสี่ตัวชี้วัดสมรถนะการท างานมาใช้ ส าหรับการ
ทดสอบจะแบ่งการทดสอบเป็นสองสภาพแวดล้อมคือระบบทดสอบโอเพนโฟลว์ทีมีนโยบายการแคช
และการจ าลองโดยใช้โปรแกรมมินิเน็ต ในการทดสอบนั้น ผู้วิจัยแนะน าให้ใช้ มินิเน็ตในการทดสอบ
เพราะใช้ทรัพยากรน้อยกว่าแต่ยังคงให้ผลเช่นเดียวกับการทดสอบบนสภาพแวดล้อมโอเพนโฟลว์ใน
เครื่องคอมพิวเตอร์บุคคล ผลการทดสอบพบว่าในการทดสอบกับโครงข่ายขนาดเล็ก กลไกความ
ร่วมมือทั้งระบบมีสมรรถนะสูงกว่ากลไกรูปแบบอ่ืนๆ แต่เมื่อโครงข่ายที่ใช้ทดสอบมีขนาดใหญ่ขึ้น
กลไกความร่วมมือทั้งระบบจะแสดงข้อด้อยบางประการในด้านอัตราการส่งข้อความระหว่างชั้ น
ควบคุมและชั้นข้อมูล และจุดคอขวดของทราฟฟิกในข่ายเชื่อมโยง นโยบายการแคชแบบไม่
ประสานงานและระดับการมองเห็นของแต่ละโนดให้ผลสมรรถนะต่ าที่สุด โดยแนวทางการเลือก
กลไกนั้นจะข้ึนอยู่กับการตั้งค่าจริงของผู้ดูแลระบบโครงข่ายและทรัพยากรที่มีอยู่ในระบบขณะนั้น

 ภาควิชา วิศวกรรมไฟฟ้า

สาขาวิชา วิศวกรรมไฟฟ้า

ปีการศึกษา 2557

ลายมือชื่อนิสิต

ลายมือชื่อ อ.ที่ปรึกษาหลัก

 v

ENGLISH ABSTRACT

5570579421 : MAJOR ELECTRICAL ENGINEERING
KEYWORDS: CENTRALIZED IN-NETWORK CACHING / CONTENT VISIBILITY / OPENFLOW TESTBED /
INFORMATION CENTRIC NETWORK (ICN) / SOFTWARE DEFINED NETWORKING (SDN) /
PERFORMANCE EVALUATION

CHANTHAN HEL: COMPARATIVE PERFORMANCE EVALUATION OF CENTRALIZED IN-
NETWORK CACHING POLICIES AND CONTENT VISIBILITY LEVELS IN INFORMATION
CENTRIC NETWORK BY USING OPENFLOW TESTBED. ADVISOR: ASST. PROF. CHAIYACHET
SAIVICHIT, Ph.D., 66 pp.

Performance is a key factor for designing Information Centric Network (ICN) under the
support of Software Defined Networking (SDN). Moreover, the implementation of centralized in-
network caching policies and content visibility levels surely affects the performance. This
dissertation plans to evaluate the performance of ICN under SDN support when three different
mechanisms of centralized in-network caching policy with content visibility level are applied by
using OpenFlow testbed. It also aims to study the effects of network topology on the network
performance. Those three mechanisms consist of non-cooperative in-network caching policy with
individual content visibility mechanism, path cooperative in-network caching policy with path
content visibility level mechanism and global cooperative in-network caching policy with global
content visibility level mechanism. To evaluate the performance; four performance metrics
including server hit ratio, average hop count, message rate between control and data plane,
and bottleneck link traffic were utilized. The experiments were conducted in two experimental
environments including PC-based OpenFlow testbed and emulation by Mininet. In each
environment, two different network topologies were tested. The results show that each
mechanism has its strengths and weaknesses. Also, the network performance corresponding to
each mechanism depends on the types of network topology. While the network is simple, the
global cooperative in-network caching policy with global content visibility level mechanism
outperforms others. But, when the network becomes larger, this mechanism shows some
disadvantages in terms of message rate between control and data plane, and the bottleneck
link traffic. The non-cooperative in-network caching policy with individual content visibility
mechanism performs the worst compared to others. On the other hand, emulation by Mininet is
recommended to use because it utilizes less resource and gives the same results as those in PC-
based OpenFlow testbed environment.

Department: Electrical Engineering
Field of Study: Electrical Engineering
Academic Year: 2014

Student's Signature

Advisor's Signature

 vi

ACKNOWLEDGE MENTS

ACKNOWLEDGEMENTS

First of all, I would like to show my gratitude to my advisor, Asst. Prof. Dr.
Chaiyachet Saivichit. He always gives me good advices and comments for
conducting this research. Without him, I cannot complete this dissertation. I would
also like to thank Asst. Prof. Dr. Chaodit Aswakul for his useful comments and
suggestions. He usually considers me as one of his advisees and helps me a lot.
On the other hand, I also thank to Assoc. Prof. Dr. Watit Benjapolakul and Assoc.
Prof. Dr. Poompat Saengudomlert for being the chairman and external committee
for my thesis.

I also thank to all my friends, seniors and juniors in Network Research
Group who are always helpful to me. They share me the research experiences,
comments and suggestions during my study here. Especially, we are like brothers
and sisters; I feel warm during my stay here and they make me feel like home
here.

 I, particularly, express my acknowledgement to AUN/Seed-net, JICA
project for financial support during my stay here. Also, this research has been
financially supported by the Special Task Force for Activating Research (STAR)
Funding in Wireless Network and Future Internet Research Group, Chulalongkorn
University.

Without Institute of Technology of Cambodia (ITC), I cannot be here now.
I express my grateful to ITC for giving me a good opportunity to study here,
Thailand.

Finally, I would like to express my profound grateful to my parents and
family. They have sacrificed everything for me, without them I cannot have today.

CONTENTS
 Page

THAI ABSTRACT ... iv

ENGLISH ABSTRACT ...v

ACKNOWLEDGEMENTS ... vi

CONTENTS ... vii

LIST OF TABLES ... xi

LIST OF FIGURES .. xii

CHAPTER 1 INTRODUCTION .. 1

1.1 Introduction ... 1

1.2 Problem statement ... 2

1.3 Objectives .. 3

1.4 Scope of thesis ... 3

1.5 Expected outcomes and contributions ... 4

1.6 Organization of dissertation ... 5

CHAPTER 2 BACKGROUND AND LITERATURE REVIEW .. 6

2.1 Background .. 6

2.1.1 Information centric network .. 6

2.1.2 Software defined networking .. 6

2.1.3 OpenFlow .. 7

2.1.4 Information centric network over software defined networking 9

2.2 Literature review .. 10

CHAPTER 3 CENTRALIZED IN-NETWORK CACHING POLICY WITH CONTENT
VISIBILITY LEVEL MECHANISMS AND PC-BASED OPENFLOW TESTBED 13

 viii

 Page

3.1 Operation of various centralized in-network caching policy with content
visibility level mechanisms ... 13

3.1.1 Non-cooperative in-network caching policy with individual content
visibility mechanism ... 13

3.1.2 Path cooperative in-network caching policy with path content
visibility level mechanism .. 16

3.1.2.1 Path content visibility/searching level ... 16

3.1.2.2 Path content/in-network caching policy ... 17

3.1.3 Global cooperative in-network caching policy with global content
visibility level mechanism .. 22

3.1.3.1 Global content visibility/searching level ... 22

3.1.3.2 Global content/in-network caching policy 24

3.2 PC-based OpenFlow testbed implementation .. 27

3.2.1 Testbed component implementation .. 28

3.2.1.1 ICN node .. 28

3.2.1.2 Network controller ... 29

3.2.1.3 Content server .. 30

3.2.1.4 Requester ... 30

3.2.2 Types of packets .. 30

3.2.3 Naming process .. 31

3.2.4 Operation on packets ... 32

3.2.4.1 Operation in ICN node .. 32

3.2.4.2 Operation in server .. 32

3.2.4.3 Operation in controller ... 33

 ix

 Page

3.3 Summary .. 34

CHAPTER 4 PERFORMANCE EVALUATION... 35

4.1 Performance Metrics ... 35

4.2 Parameter selection and assumption .. 35

4.2.1 Content replacement policy ... 36

4.2.2 Cache dimensioning, size of contents and numbers of content object .. 36

4.2.3 Content popularity and request pattern .. 37

4.3 Experimental setup ... 38

4.3.1 General setup .. 38

4.3.2 Implementing the three mechanisms in cascade and tree topology 40

4.3.2.1 Non-cooperative in-network caching policy with individual
content visibility mechanism .. 40

4.3.2.2 Path cooperative in-network caching policy with path content
visibility level mechanism ... 41

4.3.2.3 Global cooperative in-network caching policy with global
content visibility level mechanism ... 44

4.4 PC-based OpenFlow testbed experiment .. 45

4.4.1 Results from cascade topology .. 45

4.4.1.1 Server hit ratio .. 46

4.4.1.2 Average hop count .. 46

4.4.1.3 Message rate between control and data plane 47

4.4.2 Results from tree topology ... 49

4.4.2.1. Server hit ratio ... 49

4.4.2.2 Average hop count .. 50

 x

 Page

4.4.2.3 Message rate between control and data plane 50

4.4.2.4 Bottleneck link traffic .. 51

4.5 Emulation experiment .. 52

4.5.1 Results from cascade topology .. 53

4.5.2 Results from tree topology ... 55

4.6 Conclusion ... 57

CHAPTER 5 CONCLUSION .. 58

REFERENCES ... 60

APPENDIX .. 64

VITA .. 66

LIST OF TABLES

Table 4. 1: Parameters for experiment .. 39

xii

LIST OF FIGURES

Figure 2. 1: Logical architecture of SDN ... 7

Figure 2. 2: OpenFlow network components .. 8

Figure 2. 3: Packet’s header field can match against flow entries 8

Figure 2. 4: ICN over SDN architecture ... 9

Figure 3. 1: Sequences of operation on packets in non-cooperation mechanism 15

Figure 3. 2: A shortest path selected by the controller ... 17

Figure 3. 3 : ICN nodes store contents in path in-network caching 18

Figure 3. 4: Sequences of operation to fetch the content C1 for the first time 20

Figure 3. 5: Sequences of operation to fetch the content C1 for the later time 21

Figure 3. 6: Content searching steps in the controller.. 23

Figure 3. 7: Tree network topology ... 25

Figure 3. 8: Sequence of operation to fetch the content C1 .. 26

Figure 3. 9: Cascade network topology used for experiment ... 27

Figure 3. 10: PC-based OpenFlow testbed .. 28

Figure 3. 11: Interfaces of the PC-based ICN node .. 29

Figure 3. 12: Packet’s header field to identify name and type of packet: (a) is a
data packet with name 1; (b) is request packet with name 1 31

Figure 3. 13: Sequences of operation on packets at the ICN node while there is
no packet matching .. 32

Figure 4. 1: Zipf popularity distribution of ten classes of content with different
values of ... 38

Figure 4. 2: Cascade topology .. 39

Figure 4. 3: Three-level binary tree topology ... 40

file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084415
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084416
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084417
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084418
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084419
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084420
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084421
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084422
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084423
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084424
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084425
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084426
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084427
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084428
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084429
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084430
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084430
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084431
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084431
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084432
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084432
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084433
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084434

xiii

Figure 4. 4: Server hit ratio in cascade topology .. 46

Figure 4. 5: Average hop count in cascade topology .. 47

Figure 4. 6: Message rate in cascade topology ... 48

Figure 4. 7: Server hit ratio in tree topology ... 49

Figure 4. 8: Average hop count in tree topology ... 50

Figure 4. 9: Message rate between control and data plane .. 51

Figure 4. 10: Bottleneck link traffic ... 52

Figure 4. 11: Server hit ratio in cascade topology.. 53

Figure 4. 12: Average hop count in cascade topology .. 54

Figure 4. 13: Message rate in cascade topology ... 54

Figure 4. 14: Sever hit ratio in tree topology .. 55

Figure 4. 15: Average hop count in tree topology ... 55

Figure 4. 16: Bottleneck link traffic in tree topology ... 56

Figure 4. 17: Message rate in tree topology .. 56

file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084435
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084436
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084437
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084438
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084439
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084440
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084441
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084442
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084443
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084444
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084445
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084446
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084447
file:///D:/MASTER%20PREPARATION/Course%20at%20CU/Thesis/Thesis/Thesis%20Format%20from%20E%20thesis/Final%20Template/Complete%20thesis/Completed_thesis_than_2.docx%23_Toc406084448

CHAPTER 1

INTRODUCTION

1.1 Introduction

Currently, the Internet usage is rapidly increasing. People need more services
and applications of Internet to make their daily life easier. Hence, many companies
and Internet service providers have been creating more services to maintain their
market shares in this competitive world. However, the current Internet architecture
based on the IP network has a lot of obstacles to deploy the new Internet services
and applications; it is a host centric network. The researchers proposed another new
network architecture named “Information Centric Network (ICN)”. In contrast to IP
network, ICN focuses on the name of content rather than the location. It is believed
that the ICN might replace the current IP network architecture in the future. To make
the network more transparent and easy to manage, the concept of ICN architecture
under the support of Software Defined Networking (SDN) has been proposed. This
network architecture could be also called ICN over SDN. This network is a centralized
network. It is separated into two planes, data plane and control plane. There is one
or many network controllers, situated in the control plane, control the ICN nodes
that located in the data plane.

In order to design the ICN over SDN, the network performance needs to be
taken into account. In-network caching is one of the main functionalities of ICN
besides routing, and naming. It is the process that all the ICN nodes inside the
network cache the data content in their own content storage. According to many
researches, in-network caching policy has influence on the network performance. On
the other hand, content visibility/searching level also affects the effectiveness of
request forwarding to the destination. In ICN over SDN architecture concept, the
controller is a key player to coordinate the in-network caching policy and content
visibility/searching process. Nevertheless, the controller can search for the content’s
location and coordinate the ICN nodes to perform in-network caching with many

2

different manners. We believe that different levels of content searching and caching
managed by the controller will cause different network performance. It is important
to be aware of the network performance corresponding to various in-network caching
polices and content visibility/searching levels. It helps network administrators select
the best mechanism suitable for their preference and resource availability.

1.2 Problem statement

 Performance is the main issue that must be considered as a key factor to
design the ICN architecture. Moreover, researches show that one of many ways to
improve the performance of ICN is cooperative in-network caching. It means that the
ICN nodes must collaborate with each other to cache data content inside the
network. Furthermore; content visibility, the ability of ICN nodes to see contents
inside the network, also affects the whole network performance. Some researchers
proposed the partial cooperative in-network caching policy with partial content
visibility level in the network [4]. Other researchers proposed path cooperative in-
network caching policy with path content visibility level that only the ICN nodes on
the path from the requester to the server can do the collaboration to cache the
content and share content information with each other [5], [6]. But, the work studied
the effect of global cooperative in-network caching policy with global content
visibility level on the network performance is uncommon. Also, most of proposed
works are based on the distributed network not the centralized network [4], [5], [6].
There is neither experiment nor simulation study to compare the performance of ICN
over SDN by applying different centralized in-network caching policies with different
levels of content visibility by using OpenFlow testbed. On the other hand, the global
content visibility level is not paid much attention to. In ICN over SDN, the controller
plays a very important role to coordinate in-network caching and content
searching/visibility process. At this point, three mechanisms of centralized in-network
caching policy with content visibility/searching level are considered. Namely, they are
non-cooperative in-network caching policy with individual content visibility
mechanism, path cooperative in-network caching policy with path content visibility
level mechanism and global cooperative in-network caching policy with global

3

content visibility level mechanism. Each mechanism is composed of an in-network
caching policy and a level of content visibility/searching. In the non-cooperative in-
network caching policy with individual content visibility mechanism, the network
controller just only keeps the routes to forward request/interest and data/content
packets in the network. The controller does not coordinate the ICN nodes to cache
or look for the data content. For the path cooperative in-network caching policy with
path content visibility level mechanism, the controller chooses only the ICN nodes
along the shortest path from the requester to the server to cooperate with one
another to cache data contents. Also, the controller can only search for location of
required content storage along the same path. Finally, in the global cooperative in-
network caching policy with global content visibility level mechanism, the controller
has the ability to search for locations of all contents in the network and to decide to
cache data packet in any ICN nodes inside the network. Furthermore, the network
topology may also be influential in the network performance. By seeing problems as
aforementioned, we have questions as follow:

1. Among the three mechanisms as aforementioned, which mechanism gives
better performance in ICN under the support of SDN and OpenFlow?

2. Does performance in question (1) vary depending on the network topology?

1.3 Objectives

This thesis plans to evaluate the performance of ICN under the support of
SDN when different mechanisms of centralized in-network caching policy with
content visibility level are applied by using OpenFlow testbed. Also, it aims to
observe the effects of the network topologies on the network performance.

1.4 Scope of thesis

This research focuses on the ICN’s performance evaluation. Performance
metrics used in this work including server hit ratio, average hop count, message rate
between control and data plane and bottleneck link traffic. The research will cover
and consider on the following issues:

4

1. Conducting experiment only in one autonomous system of ICN over SDN
based on OpenFlow testbed.

2. Two experimental environments are taken into account for this research, PC-
based OpenFlow testbed and emulation by Mininet.

3. Implementing the PC-based OpenFlow testbed for performing the
experiment.

4. Studying only three different centralized in-network caching policy with
content visibility level mechanisms in ICN under the support of SDN.

5. The content caching process in path cooperative in-network caching policy
with path content visibility level mechanism and global cooperative in-
network caching policy with global content visibility level mechanism is
heuristic, the most popular content is cached as near as possible to the
requesters.

6. Testing in two types of network topologies, cascade and three-level binary
tree network topology.

7. The message content shall be sent as one entity, not to be fragmented
8. The request pattern is assumed to be known and all requesters request

content with the same request pattern.

1.5 Expected outcomes and contributions

After finishing this research, we expect to get benefits as follow:
1. Evaluating the performance of ICN over SDN while applying various

centralized in-network caching policy with content visibility level mechanisms
by using OpenFlow testbed. Which mechanism will give the best performance
corresponds to specifically given conditions.

2. Offering knowledge to the network administrators to pick the best mechanism
for implementing in ICN over SDN architecture corresponding to their
available resources.

3. Understanding the effects of network topologies on the ICN-based network
performance.

5

4. Contributing the PC-based OpenFlow testbed platform for one autonomous
system of ICN under SDN support dedicated only for in-network caching and
content visibility for other researchers to use as the ideas for moving ICN
architecture or developing other testbed under the support of
SDN/OpenFlow concept which is the main component for future networking.

1.6 Organization of dissertation

 The rest of this thesis is arranged as follow. Chapter 2 describes the
background of information centric network, software defined networking and ICN over
SDN concept as well as OpenFlow. The literature review is also included in that
chapter. The detail of the three centralized in-network caching policy with content
searching/visibility level mechanisms and how to implement the PC-based OpenFlow
testbed for performing the experiment are demonstrated in Chapter 3. Chapter 4
evaluates the performance results obtained from the experiment while deploying
three mechanisms as aforementioned. The conclusion of the whole work and the
future research direction discussion are indicated in Chapter 5.

6

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 Background

2.1.1 Information centric network

Information Centric Network (ICN) is a new network architecture paradigm that
catches attentions from researchers around the globe. This network is hoped to
substitute the current IP-based network in the future. Its concept focuses on the
name of content rather than content’s location. It means that requesters or users
can request data content by name. Also; ICN nodes, routers or switches in the
network, forward packets based on the name of content. Another special feature of
ICN is in-network caching; all the in-network ICN nodes have ability to cache the
content passing through them. Many ICN architectures have been proposed [7], [8].
Although those ICN-based network architectures are different, they aim to the same
direction by focusing on the content-centric rather than host-centric architecture. To
realize this network, three main research topics, ICN’s components, are being
conducted such as naming, routing by name and in-network caching process [9].

2.1.2 Software defined networking

Unlike the conventional network architecture, Software Defined Networking
(SDN) is a network where the control and the data plane are separated from each
other [2]. Also, the network functionality and service can be programed by using
software. In this network, the controller, situated in the control plane, has the ability
to configure and command network components in the data plane to forward packet
or apply any actions on the packets in the network. This concept makes the network
more transparent. It means that the controller has the global overview of the whole
network infrastructure. Furthermore, it is easy for infrastructure or service providers to
manage, reconfigure or modify their services or network functionalities by just using
the software in the controller. Figure 2.1 demonstrates the logical architecture of
SDN.

7

There are four main planes in the network: application plane, control plane, data
plane, and management plane located on top of the other three planes. But, the
most important thing to differentiate SDN concept from the traditional networking
concept is the separation between the control and data plane.

2.1.3 OpenFlow

 OpenFlow is the standard communication interface between control and data
plane of OpenFlow network/SDN architecture [2]. There are three main components
in the OpenFlow network; they are OpenFlow switch, OpenFlow controller and
OpenFlow protocol as shown in Figure 2.2.
 OpenFlow switch is a switch that supports OpenFlow. It is situated in the data
plane of the network. Its role is to do packet matching and apply action on the
packet based on its flow entries in the flow table. There are at least three
components in the OpenFlow switch including flow table, secure channel and
OpenFlow protocol [10]. A flow table contains one or several flow entries used for

Figure 2. 1: Logical architecture of SDN [2], [3]

8

performing packet matching. The flow entry consists of rule that is used to match
against packet’s header field; action utilized for performing the action on packet
based on the rule matching; and statistic of the packets. Figure 2.3 demonstrates the
packet’s header field can be matched against flow entries in OpenFlow switch
specification version 1.0.0. The secure channel is utilized to enable communication
between the OpenFlow switch and the controller through OpenFlow protocol.

 The OpenFlow controller plays an extremely important role to control the
packet flow in the network. It can modify flow entries in the flow table and
command the OpenFlow switch to apply action on packet.

Figure 2. 2: OpenFlow network components [1]

Figure 2. 3: Packet’s header field can match against flow entries [1]

9

2.1.4 Information centric network over software defined networking

The design concept of this network is to build ICN based on SDN concept and
under the support of OpenFlow protocol. The ICN architecture is separated into two
planes, the control and the data plane. The communication protocol between these
two planes is OpenFlow protocol. The network architecture design, the operations
on ICN packets and packet design etc., were previously studied and discussed in
[8],[11], [9] and [12]. Figure 2.4 shows the architecture of ICN over SDN. There are at
least four main hardware components comprising the controller situated in the
control plane; ICN nodes, content requesters and content server, in the data plane.
Again, the roles of the controller and the ICN node are similar to those of the
OpenFlow controller and the OpenFlow switch respectively. The controller of this
network is very crucial. It helps coordinate the packet flow in the data plane. It also
keeps the whole overview of network architecture and routing information. Every
mechanism, policy, e.g. caching policy, is implemented in the controller. The ICN
node is responsible for performing packet matching, storing the data content and
communicating with the controller. However, the requester and the server just only
requests and serves the data, accordingly.

 Figure 2. 4: ICN over SDN architecture

10

2.2 Literature review

 Information Centric Network (ICN) is a new network architecture for the
Internet and is currently under studying. Many researchers and research organizations
have proposed several ICN architectures and concepts [7]. Performance is the key
metric needed to be considered in order to design ICN. In-network caching is a hot
topic for ICN’s design. Lots of researchers and research organizations have been
conducting many researches to improve the performance of ICN by taking the in-
network caching into account. There is a consensus that the in-network caching
affects the performance of ICN [5], [13]. Some researchers proposed in-network
caching policies by considering the collaboration of all ICN nodes for making content
caching decision; and others proposed another relevant in-network caching issues.
The goal of these researches is to contribute some ideas or researching findings to
improve the performance of ICN that is under studying and developing. There are
several kinds of cooperative in-network caching such as partial, path, neighboring and
global cooperation policy [13]. Most of the works were studied in the distributed and
decentralized network. Routers in the network decide by themselves whether to
cache content passed through them according to information they get from other
routers [5], [4], [6].

Moreover, content visibility level also affects the ICN’s performance. It related
closely to the cooperative in-network caching policy. The term content visibility here
refers to the ability of ICN nodes for seeing the available content in the network [13].
When the ICN node can know more available contents, the performance of network
can be enhanced because the ICN node can forward the request to reach the
content’s location more effectively. In order to improve the content visibility in the
network, the content must be advertised frequently. To do so, it requires more
message overheads, bandwidth and especially it is difficult to realize the global
visibility level with distributed network. If the global content visibility level is
considered, the best way is to implement a centralized network where all contents
are registered or updated to the global routing/resolution system [13]. This point
shows that the centralized network should be adopted to improve content visibility

11

level. Many works considered only partial and individual content visibility [5], [4], [6].
It is difficult to find the works that took global content visibility into account for their
study. Also, the works that compared the performance of ICN by applying various
cooperative in-network caching policies and content visibility levels are uncommon.

Reference [14] compared the performance of ICN based on three cache
placement policies. Namely, they are Least recently used (LRU), single-path and
network-wide caching policies. The LRU is the manner of non-cooperative in-network
caching. The single-path is a caching policy that ICN nodes along the path from the
requester to the server do collaboration together to cache data content. Moreover,
for the network-wide, all ICN nodes inside the network cooperate with each other to
perform in-network caching [14]. This literature also used Mixed Integer Programing
(MIP) to determine the location where the content should be cached in order to
minimize delivery cost. But, that work was studied in decentralized manner and the
ICN node can only search for data contents in its own storage. There is no global
content visibility. Among the proposed ICN architectures, PUISUIT [15] is an
architecture that has a Rendezvous system. The content publishers must advertise
their content to the Rendezvous system. All the requests are forwarded to the
Rendezvous for doing content matching [7], [15]. It follows the concept of the
centralized control and the global content visibility. However, researches that used
that concept to evaluate the performance of ICN with cooperative in-network
caching policy are rare.

Meanwhile, Software Defined Networking (SDN) is increasingly interested by
researchers. OpenFlow also plays a very important role to support the SDN concept.
It can provide tools to create the testbed for performing experiments in the real
network architecture [10]. SDN and OpenFlow are becoming more and more
important for future networking. Many networking commercials such as Cisco, NEC,
Ericsson and others, start migrating their networking products to operate with
OpenFlow protocol. Cisco Company now is developing Cisco Open Networking
Environment (Cisco ONE) product that is based on SDN concept. Their idea is to
separate the control and the data plane of the network from each other [16], [17].
According to this fact, ICN architecture should be designed under the support of SDN

12

and OpenFlow. At this point; [8], [11], [9] proposed the ICN architecture based on
SDN concept under the support OpenFlow protocol. The detail of how the ICN over
SDN is designed in real application such as operations on packets in network, naming,
routing and packet forwarding process were also indicated. Moreover, they also gave
details of how the ICN can be implemented in SDN/OpenFlow testbed. This network
is a centralized-control network. However, those works focused on how to migrate
the whole conventional ICN into SDN/OpenFlow concept, but they did not focus
much on the in-network caching yet. They did not conduct any experiments to
evaluate performance of ICN by using various levels of cooperative in-network
caching and content visibility. Also, the researches that evaluated network
performance by deploying various levels of cooperative in-network caching and
content visibility in ICN over SDN architecture are uncommon. This has left the gap
that we have to do more investigation about it. However, [18] applied quite similar
concept that we want to do. It aimed to study advantages and disadvantages of web
cache collaboration by using centralized-control network. They evaluated the
performance of the network by changing level of in-network caching policies such as
no caching, independent caching and cooperative caching. The result of this work
shows that the cooperative caching with centralized control gives better performance
compare to independent and no caching of web page in backbone network. But the
network studied by [18] is IP-based network, it is not the ICN-based. The control and
the data plane were not purely separated because, at that time, there was no SDN
protocol to do pure plane separation.

In our work, we want to observe and compare the performance of ICN under
SDN support by applying different levels of centralized in-network caching and
content visibility using SDN/OpenFlow testbed. We adopt many ideas from [11], [9],
[8] in order to implement OpenFlow testbed for our experiment. We follow their ICN
under the support of SDN architecture design, but we take only one autonomous
system into account for our study.

13

CHAPTER 3

CENTRALIZED IN-NETWORK CACHING POLICY WITH CONTENT VISIBILITY

LEVEL MECHANISMS AND PC-BASED OPENFLOW TESTBED

This chapter will explain the operations of three centralized in-network
caching policy with content visibility/searching level mechanisms in ICN over SDN
which are taken into account in the performance evaluation. Each mechanism is the
combination of one centralized in-network caching policy and one level of content
visibility. These three mechanisms consist of non-cooperative in-network caching
policy with individual content visibility, called “non-cooperation mechanism”; path
cooperative in-network caching policy with path content visibility level, called “path
cooperation mechanism”; and global cooperative in-network caching policy with
global content visibility level, called “global cooperation mechanism”. The main
difference between these mechanisms is the ability of the network controller to look
for content storage in the network (content visibility) and to command ICN nodes to
perform cooperation for content caching (in-network caching policy). Moreover, this
part will also describe the detail of the PC-based OpenFlow testbed implementation
used for performing our experiment.

3.1 Operation of various centralized in-network caching policy with
content visibility level mechanisms

3.1.1 Non-cooperative in-network caching policy with individual content
visibility mechanism

Non-cooperative in-network caching policy with individual content visibility
mechanism is simple; it can be called “non-cooperation mechanism”. The network
controller does not coordinate ICN nodes to cache the content. Also, it does not
help the ICN nodes search for any data contents. Each ICN node is responsible by
itself for content caching or searching. The controller just only stores the routes to

14

forward request/interest and data/content packets in the network, shortest path for
this work.

When a request packet arrives at one of the ICN nodes connected to the
requester, it would be called “edge node”, this node checks the desired data
content in its own cache. If the requested content is previously stored in its cache, it
will reply with the data back to the requester. If there is no desired data in the
cache, it will ask the controller which port this request packet should be forwarded
to get the shortest path to the server. Based on the network topology, the controller
can determine the shortest path from the requester to the server. The controller
commands the edge node to forward the request to the next ICN node along the
determined path and to store this set of action in the edge node’s flow table. While
the request packet reaches the ICN node 2 as depicted in Figure 3.1, the ICN node
looks for the desired data packet in its content storage. In case that the desired data
is found, that data packet will be forwarded back to the edge node, the ICN node
that just sent the request packet to the ICN node 2. Rather, the ICN node 2 cannot
find the desired data packet; it inquires the controller where to transmit that request
packet to. The controller does the same action as it did with the edge node. The
process is repeated for every ICN node receiving the request packet along the path
from the requester to the server. The outcomes received from the controller are
stored in ICN nodes. ICN nodes will know where to forward the request to without
asking the controller again later. In another case that the requested data content is
not stored in any ICN nodes’ storage along the shortest path, the request packet will
be served by the content server.

 On the other hand, every ICN node along the path from the ICN node that
replies the requested data to the content requester will copy every data packet. If
the cache of ICN node is full, one content will be removed randomly from the cache
and replaced by the new content. It is the manner of the “always” caching policy as
described in [19] and the random replacement policy.

Figure 3.1 shows the sequences of operation on packets in non-cooperative
in-network caching policy with individual content visibility mechanism. It is a simple
example of one path that is selected by the controller composed of two ICN nodes,

15

one requester and one server. Let us assume that the requester requests the data
content name “D1”. The request packet is sent to the edge node. The edge node
replies with the data back if the data is stored in that ICN node (step 1 of Figure 3.1).
The operation will continue to step 2 if the requested data is not kept in the edge
node. The edge node inquires the route from the controller, the controller replies
with a set of actions on packet and routing information back to the edge node. The
edge node, then, employs action received from the controller on the request packet
by sending it to the ICN node 2. If the desired data is stored in ICN node 2, the node
will forward the data back to the edge node. The edge node copies the data to store
in its cache and sends packet to the requester. In another case that the data is
stored in the server, the request is transmitted to the server as in step 3. The ICN
node 2 and the edge node will cache the data “D1” before sending it out.

Figure 3. 1: Sequences of operation on packets in non-cooperation mechanism

16

3.1.2 Path cooperative in-network caching policy with path content visibility
level mechanism

This mechanism is a combination of path cooperative in-network caching
policy and path content visibility/searching level. The controller chooses only the
ICN nodes along the shortest path from the requester to the server to cooperate
with one another to cache contents/data. Also, the controller can only search or see
locations of required data along the same path. This mechanism can be named
“path cooperation mechanism”.

3.1.2.1 Path content visibility/searching level

Contents in ICN nodes along the shortest path from the requester to the
server can be seen and searched for by the controller. This is called path content
visibility level. The contents’ location searching process is processed by the
controller when it receives the request packet’s information from edge nodes.

When a request packet first reaches one of the edge nodes, that packet’s
information is sent to the controller. The controller, then, checks the requested data
in the list obtained from the edge node. If required data packet is previously stored
in the edge node’s cache, the controller will instruct the edge node to reply with
the data back to the requester. If the desired content is not stored in the edge
node’s cache, the controller will determine the shortest path from the requester to
the server. Then, the controller looks for the location of the desired data content. It
checks in lists obtained from other ICN nodes along the path in the direction to the
server until it can find the data packet. Firstly, the controller finds out the required
data in the ICN node situated one hop away from the edge node, i.e. ICN node 2 as
depicted in Figure 3.2. In case that the required data can be found in the ICN node 2,
the controller will instruct the edge node to modify the header field of the request
packet by adding an identifier to determine that the desired data packet is stored at
the ICN node 2, then, forward the request packet to the ICN node 2. In another case
that the controller cannot see the data in the ICN node 2, it will continue to search
for the data packet located two hops, three hops and so on, away from the edge
node along the path in the direction to the server until it can find the location of

17

required data packet. Once the requested data is found at, for example, the ICN
Node i, the controller will command a set of actions to the edge node to modify
header’s field of the interest packet by adding an identifier to define that the desired
data is located in the ICN node i and to send the packet out. So, when ICN nodes
along the path between the edge node and the ICN node i receive the request
packet, they will check their flow tables in order to perform actions on the packet. If
they cannot find any actions in the flow table, the request packet’s information will
be updated to the controller. The controller will then issue a command for ICN
nodes to forward this packet and to store routing information in the ICN nodes’ flow
tables. In another case which the controller cannot find the requested data packet
inside the network, it will send instead the route to forward that request packet to
the server.

3.1.2.2 Path content/in-network caching policy

In this mechanism, the path in-network caching policy was applied. It is the
popularity-based in-network caching policy. The controller decides upon the
location where the data should be cached along the same path that the request
packet has passed through based on content popularity that it has collected from
the edge nodes in the network. In the path in-network caching policy, the most
popular contents are cached in the edge node and other ICN nodes as near as
possible to the requester, along the path. The less popular contents are stored
farther from requesters. This will distribute diversity of contents in the network.

Figure 3. 2: A shortest path selected by the controller

18

 The network controller classifies contents requested by the requesters in
several classes: the first most popular class, the second most popular class, the third
and so on. Contents of the first most popular class are cached in the edge node or
the ICN node situated one hop away from edge node or two hops away and so on
along the path. It depends on the popularity of that content class. The number of
ICN nodes storing the first most popular class’s contents is proportional to
percentage of popularity of such that content class. For example, if the contents of
the first most popular class are requested 50% of the total requests, so 50% percent
of total ICN nodes along the path in the direction from the requester to the server
can cache the contents (Figure 3.3). Note that, in this caching policy, one data
content is stored in only one ICN node; there is no data duplication. The contents of
the second most popular class can be stored in the last ICN node that caches the
contents of the first most popular class and/or in the other upstream ICN nodes. The
contents of the third most popular class are cached farther from the requester
compared to the second most popular class. Content of the less popular classes are
cached farther from requester. The number of ICN nodes that cache the contents of
each content class is proportional to the percentage of content class popularity.

When a request packet reaches the ICN node containing the requested data,
its information is transmitted to the controller. The controller decides to cache the
data packet in any ICN node along the same path the request packet has travelled

Figure 3. 3 : ICN nodes store contents in path in-network caching

19

across depending on the content popularity. Then, the controller commands a set of
actions to modify the header field of the data packet by adding an identifier to
determine the location where the data content ought to be cached before sending it
out. This operation is similar to the content searching process. While the data packet
arrives at intermediate ICN nodes of the path, ICN nodes will forward packet
according to the routes in their flow tables. In contrast, ICN nodes will transmit the
data packet’s information to the controller to ask for the route to forward the packet
unless there is matching in their flow tables. All the outcomes from the controller
are stored in ICN nodes’ flow tables. On the other hand, if the data is from the
server and arrives at the ICN node connected to the server, that ICN node will send
packet’s information to the controller. The controller will decide upon the location
where that data should be cached in the same manner as aforementioned. Note
that for this mechanism, the controller can only decide where to cache the data in
the ICN nodes along the path from the server to the requester as predetermined by
the controller during the content searching process.

In order to be easy to understand, we will demonstrate an example about
this path cooperative in-network caching policy with path content visibility level
mechanism. Let us assume that the shortest path chosen by the controller is shown
in Figure 3.4 and the desired content C1 is stored in the ICN node 3. In this case, C1
is not popular content, so the controller decides to keep the content C1 in the same
place, i.e. ICN node 3. The sequences of operation to get content C1 when there is
no route to the content’s location are shown in Figure 3.4.

20

Once the content C1 is first requested and the request packet arrives at the edge
node, the edge node sends the information to the controller for obtaining the set of
action on that request. After the controller finishes the content searching process, it
commands the edge node to perform actions on the request packet. The edge node
modifies the header field of request packet by adding ID = 3 to determine that the
desired data content is stored in the ICN node 3. The request packet is forwarded to
the ICN node 2. While the request packet arrives at the ICN node 2, the ICN node
does packet matching against the flow entries of its flow table. In this case, the C1 is
firstly requested, so there are no flow entries matching the request packet. The
request packet information is again sent to the controller. The controller commands
the ICN node 2 to forward the request packet to the ICN node 3 and to store the

Figure 3. 4: Sequences of operation to fetch the content C1 for the first time

21

routing information in the ICN node 2’s flow table, i.e. Request packet with ID = 3,
Action: forward to ICN node 3. Now, the request reaches the ICN node 3. The
information is transmitted to the controller to determine the location where the data
content C1 should be cached. At this time, the controller decides to keep the data
content C1 in the same place, i.e. ICN node 3. So, the controller issues the command
for the ICN node 3 to add ID = 100, the ID to identify the location of the requester, in
the content C1’s header field. The data is sent to the ICN node 2. The ICN node 2
and the edge node inquire the action sets from the controller to act on the data
packet. The routing outcomes are store in the flow tables.

When the content C1 is requested again, the sequences of operation are
manifested in Figure 3.5. Some ICN nodes, i.e. the ICN node 2 and the edge node,
have already stored the routing information for forwarding the request and the data
C1 in their flow tables, so the packets can be matched against the flow entries
without questioning the controller again.

 Figure 3. 5: Sequences of operation to fetch the content C1 for the later time

22

3.1.3 Global cooperative in-network caching policy with global content visibility
level mechanism

In this mechanism, the controller has an ability to search for locations of all
contents in the network and to select any ICN nodes where the data should be
cached inside the network. That is why this mechanism is called global cooperative
in-network caching policy with global content visibility level mechanism or in short
“global cooperation mechanism”. This mechanism is a combination of the global
content visibility/searching level and the global content/in-network caching policy.

3.1.3.1 Global content visibility/searching level

Unlike the path cooperative in-network caching policy with path content
visibility level mechanism, the controller in the global cooperative in-network
caching policy with global content visibility level mechanism has the ability to search
for desired data contents in every ICN node in the network (global visibility level),
not just only along the shortest path.

When a request packet reaches the edge node, its information is sent to the
controller. The controller then searches globally for the location of the desired data
content. First of all, the controller checks for required data in the content list
obtained from the edge node, and then it finds out in the lists obtained from every
node situated one hop, and continues in the next two hops and so on, away from
the edge node. The content searching process is finished when the controller finds
the location of the data content (Figure 3.6). In case that the data is not in the
network, the controller will choose the shortest path to send that request packet to
the server. In another case where the data content is stored in the network but not
at the edge node, the controller will calculate the shortest path from the requester
to the ICN node that stores the desired data. The controller will order the edge node
to put an identifier in the header field of the request packet before sending out to
the next ICN node.

23

When the request packet arrives at the next node, for example ICN node 2 in Figure
3.2, the ICN node 2 then checks in its flow table whether any flow entry matches
against the request packet. If it cannot see any route to forward that packet, it will
send the packet’s information to the controller. Then, it applies action directed from
the controller on the request packet and sends the packet to next hop. The
operation is repeated until the request packet reaches the ICN node that stores the
required data. All the routing information from the controller will be stored in the
intermediate ICN nodes between the edge node and the ICN node containing desired
packet. The operations on the request packet at the intermediate ICN nodes are

Figure 3. 6: Content searching steps in the controller

24

similar to those of the path cooperative in-network caching policy with path content
visibility level mechanism.

3.1.3.2 Global content/in-network caching policy

In this mechanism, the global in-network caching policy was utilized. It is the
popularity-based in-network caching policy. The most popular contents will normally
be cached near the requesters. The controller has global view of the network
topology and it also has all the statistics of contents in every ICN nodes. The data
content is not only cached in ICN nodes along the path from the requester to the
ICN node that stores the data content, but it can also be cached in other ICN nodes
in the network (global in-network caching decision). The contents are divided into
several classes based on their popularity such as the first most popular class, the
second most popular class, the third most popular class and so on. In this in-network
caching policy, contents of the first most popular class are stored in the edge nodes
and other ICN nodes nearest to most of requesters that have the same request
pattern. Contents of the second, the third most popular class and so on are cached
more farther from most of requesters comparing to the first, the second most
popular class and so on, respectively. Numbers of ICN nodes storing contents in each
class are proportional to the percentage of content class popularity. On the other
hand, contents requested by a requester might be replicated to store in other ICN
nodes near the other requesters also. It depends on the network topology.

When a request packet reaches the ICN node storing requested data packet,
the request packet’s information is transmitted to the controller. At this point, the
controller selects the ICN nodes in the network to cache the data content. When the
decision of content caching is done, the controller instructs the ICN node to reply
with the data and forward such data content to the requester along the same path
that the request packet has passed through. An identifier is attached in the data
packet’s header field in order to indicate which node to cache such that content. If
the controller decides to cache the data packet in several ICN nodes in the network,
the controller will instruct the ICN node that stores the data to copy several data
packets, then send them to various directions. The controller will help ICN nodes

25

forward data packets to deliver to the requester and the ICN nodes that need to
cache such data packet. The sequences of operation on the data packets in the
intermediate ICN nodes, the ICN nodes located between the ICN node that stored
the desired data and the ICN nodes that will cache the desired data, in this
mechanism are same as those in path cooperative in-network caching policy with
path content visibility level mechanism.

For example, if Requester 1 requests content C1 and this request arrives at
the ICN node containing the desired content, i.e. ICN node 7 as depicted in Figure
3.7, the controller will decide upon the location where the content C1 will be
cached. Assume that C1 is not only the most popular content for the Requester 1,
but also for the Requester 4. Then, the controller decides to cache C1 in the ICN
node 1 and the ICN node 4. The set of instruction is sent to the ICN node 7 to copy
two packets; one is forwarded to the ICN node 1 and another to the ICN node 4
(Figure 3.8). Before sending out, the identifiers are attached to the header field of
those packets to define that those packets will be cached in the ICN node 1 and 4.
For example, ID=1 and ID=4 are attached in the data packets travelling in the
direction to the ICN node 1 and 4, accordingly.

 ICN node 6

Controller

Server

 ICN node 1

 ICN node 7

 ICN node 4

 ICN node 5

Requester 1 Requester 4

Figure 3. 7: Tree network topology

26

The intermediate ICN nodes, i.e. ICN node 5, will do content C1 packet matching with
its flow table’s flow entry. While there is no matching, the ICN node 5 will send data
packet’s information to the controller to ask for the route to forward this packet. The
controller will give a set of route and action for performing on such that data packet
C1. The routing outcome from the controller is stored in the ICN node 5’s flow table.
This case is for the data packet C1 that is forwarded to the ICN node 1 direction. The
operation on the data C1 for the direction to the ICN node 4 is same as those to the
ICN node 1 too.

The brief of operation in this mechanism is shown in Figure 3.8. Let us
assume that the Requester 1 in Figure 3.7 requests content C1 and C1 is stored in
ICN node 7. The controller decides to cache C1 in the ICN node 1 and 4 as being
mentioned above. Also, there is no any flow entry in ICN nodes yet.

 Figure 3. 8: Sequence of operation to fetch the content C1

27

3.2 PC-based OpenFlow testbed implementation

In the real ICN under SDN support design, OpenFlow might be one of the
communication protocols between control and data plane. Every network’s
component must have OpenFlow interfaces. Those interfaces will be used for
enabling OpenFlow protocol between ICN nodes and the controller. On the other
hand, the ICN packet should be differently designed from the current IP packet.
However, in this work, the network architecture and packet design are not much
considered. For ICN over SDN architecture and packet design, we adopt the
concept of [11], [9], [8]. In order to realize our experiment, it is very important that
the OpenFlow testbed must be implemented. This part will explain in detail how the
PC-based OpenFlow testbed for ICN is implemented in just only one autonomous
system (AS). How the network components and the ICN packets are created, how to
differentiate the name and types of ICN packets, and the operation on packets will
be described in this part.

Our PC-based OpenFlow testbed is created in order to conduct experiments
in small scale lab testbed to evaluate the performance of ICN as being described in
the objectives of this work. Figure 3.10 is the picture of the PC-based OpenFlow
testbed that is implemented in Telecommunication Laboratory, Chulalongkorn
University. Figure 3.9 is one of the network topologies taken into account for this
research.

Server

Requester

ICN node

Controller

Cache Flow table

Requester

Figure 3. 9: Cascade network topology used for experiment

28

3.2.1 Testbed component implementation

There are four main hardware components in this testbed including: ICN
nodes, the network controller/controller, requesters and the content server.

3.2.1.1 ICN node

The ICN node is a network component located at the data plane in ICN under
the support of SDN. Its role is to match against and forward packets based on the
flow entries in its flow tables. It works as a switch or a router. Additionally, it has its
own embedded cache to store the contents as shown in Figure 3.9. However,
according to our implementation, the ICN node cannot store the real contents. It
only updates the packet’s information to the controller, and then the controller
records the names of contents and stores them in its list.

To create one ICN node, a computer (PC) is utilized. That PC has 2Gbytes
RAM and Celeron-2.7GHz clock speed CPU. That PC is installed with open vswitch
software version 1.9 [20]. This enables the PC becomes an OpenFlow switch. USB
ports are considered as the ICN node ports. In order to make the USB interfaces

Figure 3. 10: PC-based OpenFlow testbed

29

become Ethernet interfaces as in the real switch, USB-to-LAN adapters are used.
Some switch’s ports are added to the data plane interface and another switch port is
utilized as secure channel-supported interface to connect to the controller as shown
in Figure 3.11.

3.2.1.2 Network controller

The network controller or the controller plays a very important role to
coordinate the mechanisms mentioned in section 3.1. It keeps all routing and
network topology information. Moreover, it collects and keeps all contents’
information such as contents’ names from every ICN nodes’ caches. Based on these
statistics and control coding; the controller can determine the actions on packets
such as packet forwarding, packet caching or removing, etc. Also, the controller can
modify the flow entries in the ICN’s flow table. The code or any algorithm can be
implemented in the controller. The controller’s codes corresponding to each
mechanism in this work are developed and run in the controller.

To build the controller; python-based OpenFlow controller software, POX
[21], is installed in a core-i5-1.8 GHz clock speed computer. POX supports only
OpenFlow switch specification 1.0 [1].

Figure 3. 11: Interfaces of the PC-based ICN node

30

3.2.1.3 Content server

In the real network, the content server keeps all the contents. In case that
the controller cannot find any requested contents in in-network caches, it can apply
actions to direct the request packet to the content server. In this work, it is really
hard to create the content server that can store real contents. We use a PC installed
with open vswitch software version 1.9 as a server and it is controlled by the
controller also. In this study, the payload of request and data packet is the same; so
it is easy to create the server by using open vswitch, the detail of operation is
demonstrated in section 3.2.4.2.

3.2.1.4 Requester

A Scapy-installed PC is used as a requester. In this work, Scapy software [22] is
utilized to manipulate request packets by adding UDP source port number and
source MAC address in packet’s header field. The UDP source port number is used to
identify the name of content and source MAC address is to recognize the request
packet.

3.2.2 Types of packets

In the ICN, there are two types of packets flow in the network, the request
packet and the data packet. The request packet refers to a packet that requesters
generate to demand data contents in the network. The data packet is a packet which
contains the data content requested by requesters. These packet types must be
separated from each other by some identifiers that OpenFlow can identify. However;
in our experiment, the IP packets are considered as the ICN packets. The OpenFlow
protocol now can only support the IP packet type. In this testbed, the request and
the data packet have the same payload. It means that one packet is one time a
request packet and another time a data packet. But the difference between those
two types of packet is packet’s header. To identify the type of ICN packet, the
tagging solution is applied in the header field of IP packet. These kinds of packet are
separated by the MAC address of requesters. The request packet is a packet whose
header contains the MAC address of a requester as its source MAC address no matter

31

where it is in the network. The data packet is a packet whose header contains a
requester’s MAC address as its destination MAC address. Note that, the header’s field
of the packet in OpenFlow network is transparent and modifiable for the controller.
That why it is very easy to use any packet’s header field to recognize the packet
type in tagging process. On the other hand, in the testbed setup, none of the TCP/IP
protocol suites such as TCP, UDP protocol is used in the data plane. The requester
just only generates and injects request packets into the network; then, the packet is
processed by the OpenFlow network. The IP packet is borrowed to use as the ICN
packet in this case.

3.2.3 Naming process

All contents in ICN must have different names. There are two naming systems
that are usually used in the ICN naming concept, flat and hierarchical naming scheme
[7]. In this research, the naming scheme is not much focused. The flat naming
scheme is chosen. The requester requests contents according to contents’ name. In
order to be easy to implement the testbed, the requesters are allowed to request
contents by UDP source port number s instead of readable names as proposed in [8].
Because it can be processed in the OpenFlow network, it does not need to have
hash tables/function to convert the original name field to field that can be
processed by the OpenFlow network. The UDP source port number is a 16 bits

header field [1], so there are 162 65536 different contents in the network. That
number of contents will be sufficient for conducting our experiment; we need only
1000 different contents. Figure 3.12 demonstrates packet’s header field to identify
packet type and name of content. Let us assume that “A” is the MAC address of
requester in Figure 3.9. MAC address “B” can be any address which is not conflict
with MAC addresses of other requesters.

(a) (b)

Source
MAC: B

UDP src
port=1

Destination
MAC: A

Source
MAC: A

UDP src
port=1

Destination
MAC: B

Figure 3. 12: Packet’s header field to identify name and type of packet: (a) is a
data packet with name 1; (b) is request packet with name 1

32

3.2.4 Operation on packets

This section describes the operation on ICN packets in both planes of our PC-
based OpenFlow testbed. It shows how the packets flow in the testbed network.

3.2.4.1 Operation in ICN node

First of all, the operation on packets in data plane is explained. ICN nodes are
the main components of this plane. When an ICN packet, either a request packet or
a data packet, arrives at the ICN node, the packet is matched against flow entries in
the ICN node’s flow table. If packet matching succeeds, the set of action correspond
the matched flow entry will be applied on that packet. Otherwise, the ICN node will
send OpenFlow packet-in message containing packet’s information to the controller.
Then, the controller will take the actions to respond to that packet according to its
coding algorithm. The action set is sent to the ICN node via OpenFlow message. The
ICN node will follow the action set from the controller. The sequences of operation
while there is no packet matching with flow entry in the ICN’s flow table are
illustrated in Figure 3.13.

3.2.4.2 Operation in server

When a first request packet reaches the content server; the server, a PC
installed with open vswitch software, sends packet’s information to the controller via
OpenFlow packet-in message. The controller will modify and install flow entries in
the content server’s flow table by attaching the set of actions on the request packet
such as firstly swapping the request packet’s source MAC address to destination MAC

(1) Request or
data packet

arrives at the
ICN node

(2) The ICN
node sends

message to the
controller

(3) The ICN
node receives
set of action

from the
contoller

(4)The ICN
node applies
action on the

packet

Figure 3. 13: Sequences of operation on packets at the ICN node while there is no
packet matching

33

address and vice versa, that packet will become the data packet as being explained
in section 3.2.2, then forwarding the packet to its incoming port for every incoming
packet. Those actions are sent to the content server by using OpenFlow message.
The server adopts the actions from the controller. After the flow entry is installed,
next incoming request packets will be matched in server’s flow table and the set of
actions will be applied. The server does not need to send the request packet’s
information to the controller again later. It acts as the real server by using the
request packet itself to be the data packet.

3.2.4.3 Operation in controller

The controller is a component in which the in-network caching and content
visibility process coding is implemented. In this part, only some crucial operations are
presented. First of all, the operation of identifier attachment in the packet is
demonstrated. The ICN node transmits packet’s information to the controller via
OpenFlow packet-in message when it cannot find packet matching in its flow table.
Assuming that, according to network state, the controller decides to direct the packet
to a specific ICN node in the network. An identifier is needed to attach in the packet
header as being described in the section 3.1.3.2, the controller commands the ICN
node to add a UDP destination port number to that packet’s header. The UDP
destination port number is used as the identifier in our testbed. The set of
commands is sent to ICN node via OpenFlow message.

Another important operation is data reply. While the request packet arrives at
the ICN node containing required data, the controller helps coordinate the data reply
in our experiment because the ICN node does not store the real contents; the
request packet is used as the data packet. This is one of the drawbacks of our
testbed implementation. The controller instructs the ICN node to swap the request
packet’s source MAC address to destination MAC address and vice versa, then
forward the packet to its incoming port. That request packet now becomes the data
packet after MAC address swapping. The identifier might be added to the packet
header also.

34

The last most important operation is content caching process. As being
mentioned in the path cooperative in-network caching policy with path content
visibility level mechanism and the global cooperative in-network caching policy with
global content visibility level mechanism section, the content is cached at the ICN
node and caching updating information is stored in controller’s lists. However, in our
experiment, only the name of content is kept in the controller list and the real
content is not cached in any ICN nodes. Once the controller decides to cache the
content in any ICN node and when the content arrives at that ICN node, the ICN
node will update information to the controller. The controller will then update the
name of content in its list.

In conclusion, according to the limitation of our testbed, none of data
packets is stored in the ICN node in our testbed. Instead, only the lists of contents of
all ICN nodes are recorded in the controller. This causes some slightly differences
from our centralized in-network caching policy with content visibility level
mechanism as well as the real application. Moreover, this experiment will affect the
message rate between control and data plane metric of non-cooperative in-network
caching policy with individual content visibility mechanism because the caching
process is done in the controller. But, in non-cooperative in-network caching policy
with individual content visibility mechanism, the caching is conducted in ICN nodes.
Nevertheless, other performance metrics are still valid with this experiment.

3.3 Summary

This chapter explains the detail of the three in-network caching policy with
content visibility level mechanisms deployed in our work. Each mechanism consists
of an in-network caching policy and a level of content visibility. The in-network
caching and content searching operation of each mechanism were presented. It also
gives the information of the PC-based OpenFlow testbed implementation. The detail
of network component implementation, software used, ICN packet design and other
operations were discussed in this chapter.

35

CHAPTER 4

PERFORMANCE EVALUATION

This chapter intends to evaluate the performance of the ICN over SDN by
considering the three centralized in-network caching policy with content visibility
level mechanisms as being mentioned in section 3.1. This part also describes the
experimental setup in both PC-based OpenFlow testbed and emulation
environments. Moreover, performance metrics, necessary parameters and
assumption in the experiment are pointed out as well. Finally, results of ICN’s
performance are discussed.

4.1 Performance Metrics

To evaluate the performance of ICN under SDN support, four performance
metrics are taken into account. They are server hit ratio, average hop count,
message rate between control and data plane, and bottleneck link traffic. It is
believed that these performance metrics will show both strength and weakness of
each proposed mechanism. The smaller values of performance metrics are the
better performance obtained.

1) Server hit ratio: It is the ratio of number of requests that hit the server
over the total requests of all requesters in the network.

2) Average hop count: It is the average number of ICN nodes that one
request packet needs to pass through for fetching the desired data content.

3) Message rate between control and data plane: This refers to total
number of communication messages, OpenFlow messages [1], sent in both directions
(controller-switches) between control and data plane per time unit.

4) Bottleneck link traffic: It aims to measure the traffic in both directions at
the bottleneck links in the network.

4.2 Parameter selection and assumption

In order to reduce the complexity of the experiment, it is necessary to make
assumption of many parameters. This investigation focuses on content level. One

36

packet is referred to one content; the content is not divided into small chunks.
Below are parameters and processes assumed and utilized in this work.

4.2.1 Content replacement policy

Content replacement policy is applied when the ICN node’s cache is full.
One or more contents will be removed from the content storage to give the space
for the new content. According to many research papers such as [23], [24], [25],
content replacement policies do not affect much to ICN’s performance. For
example, the random replacement policy gives quite the same performance as the
Least recently used (LRU) [24], [25]. In this thesis, random replacement policy is
selected. It means that one content will be removed randomly from the cache if the
space is needed.

4.2.2 Cache dimensioning, size of contents and numbers of content object

Cache dimensioning also has influence on the network performance. In the
design concept of ICN, the cache should operate at line rate [13], so the size of
cache should be limited. In previous works, the cache size varies from 500KBytes [26]
to 10GBytes [25]. On the other hand, many research papers considered different
numbers of content objects in the network. Reference [19], [27] and [28] allowed
having 20000 different content objects in the network. [25] took the number of
contents equal to 108 , and 10000 contents was taken by [26]. However, in [29],
there were only 900 different contents. If we look at the size of content, [26] fixed
the size of content to be 1KBytes, [18] took the size of content from 4 to 13KBytes
while [25] and [29] took 10MBytes and 140KBytes respectively. The size of content
and cache in [19] were 6.9MBytes and 2GBytes respectively. The size of cache,
content and number of contents varied according to the application, i.e. video, files,
etc. Anyway, in our research, the small network is considered, so the following values
were decided to use:

 Number of content : 1000 contents
 Content’s size : 1024 byte

37

 Cache size : 50, 75 and 100 contents
The size of content cannot be more than 1500 byte because it is the

maximum transmission unit at Ethernet port. Moreover, the cache sizes in this study
are 50, 75 and 100 contents. This work plans to limit the cache size not to exceed
the total number of contents in one class.

4.2.3 Content popularity and request pattern

Requesters request contents based on content popularity. Requester
requests the most popular contents quite often while it requests fewer unpopular
contents. In this work, all requesters have the same request pattern. It follows the
Zipf popularity distribution [19], [25]. The Zipf distribution divides contents into N
classes and the popularity of class k where k 1,2,3 ,N is defined by

1

1

1k N

n

kp

n

 (1)

where is Zipf exponent. It characterizes the skewness of popularity [19]. It means
that if is large, there are few contents’ classes with high popularity; if is small,
there are many contents’ classes with similar popularity but not so high (Figure 4.1).
On the other hand, assuming that the total request rate is t , so the request rate for
each class is k k tp . The time interval between two requests of a requester is
fixed. In our research, the total contents are divided to 10 classes, each class has

1000 100
10

n contents. The value of exponent is 2 . Also, contents in the

same class have the same probability to be requested.

38

4.3 Experimental setup

4.3.1 General setup

This work performs the experiments in two different experimental
environments. They are PC-based OpenFlow testbed as being described in section
3.2 and emulation by using Mininet [30]. The parameters used in these two
environments are identical as shown in Table 4.1 that is the summary from section
4.2. Moreover, the experiments are conducted over two network topologies, the
cascade and the three-level binary tree topology. The cascade network topology
consists of one network controller, one content server, two content requesters and
six ICN nodes as depicted in Figure 4. 2. The second topology is three-level binary
tree topology. It comprises four content requesters, one content server, one network
controller and seven ICN nodes as shown in Figure 4.3.

Figure 4. 1: Zipf popularity distribution of ten classes of content
with different values of

39

Table 4. 1: Parameters for experiment

Parameters Value
Number of total contents 1000

Number of content classes 10

Number of contents per
class

100

Request rate for each
requester

5 / sec

Content size 1Kbyte
Total requests for each
requester

5000

Zipf exponent 2

Figure 4. 2: Cascade topology

40

4.3.2 Implementing the three mechanisms in cascade and tree topology

How to implement the three mechanisms as being mentioned in section 3.1
in the cascade and tree topology is described here.

4.3.2.1 Non-cooperative in-network caching policy with individual content
visibility mechanism

As described in section 3.1.1, the content visibility level of this mechanism is
individual; it means that each ICN node searches for the desired data content in its
own storage only. The request packet is forwarded to the next ICN node along the
shortest path to the server if the current ICN node does not have the desired
content. There are two shortest paths from requesters to the server in cascade
topology as depicted in Figure 4.2. The cascade_path_1 is the path from the ICN
node 1 to the server; cascade_path_2 is the path from the ICN node 3 to the server.
Also, ICN nodes copy all data contents passing through them.

The same concept as aforementioned is applied in tree topology (Figure 4.3).
There are four shortest paths from requesters to the server. The tree_path_1 consists
of the ICN node 1, node 5, node 7 and the server. The tree_path_2 consists of the

Figure 4. 3: Three-level binary tree topology

41

ICN node 2, node 5, node 7 and the server. The tree_path_3 consists of the ICN
node 3, node 6, node 7 and the server. The tree_path_4 consists of the ICN node 4,
node 6, node 7 and the server.

4.3.2.2 Path cooperative in-network caching policy with path content visibility
level mechanism

In cascade topology, the controller can look for the desired data in ICN nodes
along the cascade_path_1 when it gets the request from Requester 1. However, the
controller can only search for the required data content in the cascade_path_2 if
the request is from the Requester 2. According to section 4.2.3, the request pattern
of each requester follows the Zipf popularity with value of exponent 2 and the
contents are divided into 10 classes. It means around 64% and 16% of total requests
are contents of class 1 and class 2 respectively. The other 20% of total requests are
contents of class 3 to class 10. Based on this content popularity proportion, if the
Requester 2 requests contents, the contents are cached in the cascade_path_2 as
follow:

- Contents of class 1 are stored in the ICN node 3 while the ICN node 3’s
cache is not full. But, when the cache of ICN node 3 is full, contents are
cached in the ICN node 4 (Figure 4.2). When both ICN nodes’ caches are full,
one among those two ICN nodes is randomly chosen to keep the content;
the old content is removed and replaced by the new content.

- Contents of class 2 are cached in the ICN node 4 together with contents of
class 1. If the cache of the ICN node 4 is full, the old content is randomly
removed to give space for the new content.

- Contents of other classes are stored in the ICN node 5 and ICN node 6
If the Requester 1 requests data contents, contents are cached in the
cascade_path_1 as follow:

- Contents of class 1 are cached in the ICN node 1 when the ICN node 1’s
cache is not full. The ICN node 2 stores the contents when the cache of ICN
node 1 is full. When both ICN nodes’ caches are full, one among those two

42

ICN nodes is randomly selected to cache the content; the old content is
removed and replaced by the new content.

- Contents of class 2 are stored in the ICN node 2. If the cache of the ICN node
2 is full, the old content is randomly removed to give space for the new
content.

- Contents of other classed are cached in ICN node 5 and ICN node 6
In tree topology, the controller can search for desired data contents in ICN

nodes along the tree_path_1, tree_path_2, tree_path_3, and tree_path_4 if the
requests are from the Requester 1, Requester 2, Requester 3, and Requester 4
respectively (Figure 4.3). In this network topology, the request pattern of each
requester is same as which in the cascade topology. If the contents are requested by
the Requester 1, they are stored in ICN nodes of the tree_path_1 as follow:

- Contents of class 1 are cached in the ICN node 1 if the ICN node 1’s cache is
not full yet. When the cache of ICN node 1 is full, the contents are stored in
the ICN node 5. On the other hand; if both ICN nodes’ caches are full, one of
those two ICN nodes is randomly selected to store the content.

- Contents of class 2 are cached in the ICN node 5 while the space of that ICN
node’s cache is available. When the cache of the ICN node 5 is full, the old
content is randomly removed and replaced by the new content.

- Contents of the other classes are stored in the ICN node 7 only. One content
is randomly removed if the space is needed for the new content.

If the contents are requested by the Requester 2, they are stored in ICN nodes of the
tree_path_2 as follow:

- Contents of class 1 are cached in the ICN node 2 if the ICN node 2’s cache is
not full yet. When the cache of ICN node 2 is full, the contents are stored in
the ICN node 5. On the other hand; if both ICN nodes’ caches are full, one of
those two ICN nodes is randomly selected to store the content.

- Contents of class 2 are cached in the ICN node 5 while the space of that ICN
node’s cache is available. When the cache of the ICN node 5 is full, the old
content is randomly removed and replaced by the new content.

43

- Contents of the other classes are stored in the ICN node 7 only. One content
is randomly removed if the space is needed for the new content.

If the contents are requested by the Requester 3, they are stored in ICN nodes of the
tree_path_3 as follow:

- Contents of class 1 are cached in the ICN node 3 if the ICN node 3’s cache is
not full yet. When the cache of ICN node 3 is full, the contents are stored in
the ICN node 6. On the other hand; if both ICN nodes’ caches are full, one of
those two ICN nodes is randomly selected to store the content.

- Contents of class 2 are cached in the ICN node 6 while the space of that ICN
node’s cache is available. When the cache of the ICN node 6 is full, the old
content is randomly removed and replaced by the new content.

- Contents of the other classes are stored in the ICN node 7 only. One content
is randomly removed if the space is needed for the new content.

If the contents are requested by the Requester 4, they are stored in ICN nodes of the
tree_path_4 as follow:

- Contents of class 1 are cached in the ICN node 4 if the ICN node 4’s cache is
not full yet. When the cache of ICN node 4 is full, the contents are stored in
the ICN node 6. On the other hand; if both ICN nodes’ caches are full, one of
those two ICN nodes is randomly selected to store the content.

- Contents of class 2 are cached in the ICN node 6 while the space of that ICN
node’s cache is available. When the cache of the ICN node 6 is full, the old
content is randomly removed and replaced by the new content.

- Contents of the other classes are stored in the ICN node 7 only. One content
is randomly removed if the space is needed for the new content.
Note that there is no duplicated content stored in ICN nodes along a path in

both cascade and tree topology. All contents in the path are different from each
other.

44

4.3.2.3 Global cooperative in-network caching policy with global content
visibility level mechanism

According to global content visibility level of this mechanism in section
3.1.3.1, the locations of all data contents are seen by the controller. If the desired
data packet is stored in any in-network ICN node, the controller will forward the
request packet to be served by the in-network ICN node storing such that content
first in both cascade and tree topology. In case that there is no required data
content storing in ICN nodes, the request will be forwarded to the server.

In cascade topology, based on the global in-network caching policy and the
content popularity, contents are cached as follow if Requester 1 or Requester 2
requests such contents:

- Every content packet of class 1 is duplicated; one content packet is stored in
the ICN node 3 and another is stored in the ICN node 1 if the caches of those
ICN nodes are not full. When the caches of those ICN nodes are full, one
content packet is stored in the ICN node 4 and another is stored in the ICN
node 2. In case that the caches of those four ICN nodes are full, a pair of ICN
nodes (ICN node 1, 3 and ICN node 2, 4) is selected to store the same
content by replacing the old content randomly.

- Every content packet of class 2 is also duplicated; one content packet is
stored in the ICN node 4 and another is stored in the ICN node 2 if the
caches of those ICN nodes are not full. When the caches of those ICN nodes
are full the old contents are randomly replaced by the new contents.

- Contents of class 3 to class 10 are stored in the ICN node 5 and the ICN node
6. When the cache of ICN node 5 is not full, contents are stored in ICN node
5. If the cache of ICN 5 is full, the contents are stored in the ICN node 6. In
case that both caches of those ICN nodes are full, one ICN node is randomly
selected to store the new content by removing the old content.
In tree topology, when the Requester 1 or the Requester 2 or the Requester 3

or the Requester 4 requests the contents, and such those contents are from the
server, contents are cached in the ICN nodes in the same manner as which of tree

45

topology in the path cooperative in-network caching policy with content visibility
level mechanism (section 4.3.2.2, tree topology). On the other hand, when the
Requester 1 requests the data contents of class 1 and the request is served by the
in-network ICN node 2 or the ICN node 3 or the ICN node 4 (edge nodes), the
content is cached in the ICN node 1. When the requests are served by the edge
nodes; the contents of class 1 are cached in the ICN node 2 or the ICN node 3 or the
ICN node 4 if the Requester 2 or the Requester 3 or the Requester 4 requests such
contents respectively. If the Requester 1 or Requester 2 requests contents of class 1
or class 2 and the requests are served by the ICN node 6, the contents are cached in
the ICN node 5. . If the Requester 3 or Requester 4 requests contents of class 1 or
class 2 and the requests are served by the ICN node 5, the contents are cached in
the ICN nod 6. The contents of other classes, i.e. class 3 to class 10, are kept in the
same ICN nodes after such those ICN nodes reply the data back to the requesters.

4.4 PC-based OpenFlow testbed experiment

This part discusses performance evaluation of the three mechanisms in the
PC-based OpenFlow testbed. The experiment is conducted based on the
experimental setup in Table 4.1. In this study, the experiment is repeated for four
times. The results shown in this part are the average values of the four time
experimental results. The codes corresponding to the three mechanisms are
implemented in the controller.

The non-cooperative in-network caching policy with individual content
visibility mechanism, path cooperative in-network caching policy with path content
visibility level mechanism and global cooperative in-network caching policy with
global content visibility level mechanism are called in short as non-cooperation, path
cooperation and global cooperation mechanism respectively in this chapter.

4.4.1 Results from cascade topology

For the cascade network topology (Figure 4.2), only three performance
metrics are taken into account. Because of the simplicity of the network topology,
the bottleneck link traffic metric is not included.

46

4.4.1.1 Server hit ratio

After conducting the experiment, the result of server hit ratio was obtained as
depicted in Figure 4.4. The global cooperation mechanism gives better performance
compared to others for every cache size. When the cache size equals to 50 contents,
more than half of requests were served by the server in the non-cooperation
mechanism. However, in the path and the global cooperation mechanism, only 37%
and 27% of requests reached the server respectively. Usually, when the ICN’s cache
size is large, the server hit ratio of all the three mechanisms decreases. This is
because while the cache is large, more contents can be copied in the caches of the
ICN nodes. Most of requests could be served by the in-network ICN nodes.

4.4.1.2 Average hop count

Figure 4.5 shows the average hop count of the three mechanisms. Again, the
global cooperation mechanism outperforms others. To fetch the data content, a
request packet travelled across fewer ICN nodes than other mechanisms. In the
global cooperation mechanism, the controller can search for the location of content
globally (global content visibility level), so it can direct the request packet to be
served by the nearest ICN node as possible. This reduced the average hop count.

Figure 4. 4: Server hit ratio in cascade topology

47

The non-cooperation mechanism is the worst case in terms of both server hit ratio
and average hop count. Not surprisingly; the bigger the cache size is the better
performance obtained for all mechanisms.

4.4.1.3 Message rate between control and data plane

Figure 4.6 illustrates the message rates between control and data plane. Note
that these message rates are slightly different from the definition of the message
rates in section 4.1 because the message rates shown in the Figure 4.6 are not the
pure OpenFlow messages. They are the TCP messages. In the PC-based OpenFlow
testbed experiment, communication messages between control and data plane are
taken place through TCP connection, so the pure OpenFlow messages are
encapsulated into TCP messages; some overheads such as acknowledgement are
included. Based on the PC-based OpenFlow testbed implementation, the in-network
caching and content searching processes of the non-cooperation mechanism could
not be done at the ICN nodes as being mentioned in section 3.1.1. Instead, these
processes were conducted in the controller. Thus, the message rate between control
and data plane in the non-cooperation mechanism is not valid. Consequently, only

Figure 4. 5: Average hop count in cascade topology

48

the message rate in the path and the global cooperation mechanism were discussed
in this study. However, in the non-cooperation mechanism, the message rate must
be lower than other mechanisms, according to the description in section 3.1.1. For
every cache size, the message rates in the path cooperation mechanism and in the
global cooperation mechanism are similar.

This is because the cascade network topology is simple. According to the path and
the global cooperation mechanism, most of communication messages between
control and data plane take place when the ICN nodes send the request or the data
packet information to the controller for performing content searching or content
caching decision. The main factor to differentiate the message rate of those two
mechanisms is content caching or in-network caching process. For the cascade
topology in this work, the global cooperation mechanism did not copy the same
data content to store in various ICN nodes. The topology is small and simple, so it is
easy to cache the content near to all requesters without keeping the replica in many
ICN nodes. It reduces the message rate of the global cooperation mechanism.

Figure 4. 6: Message rate in cascade topology

49

4.4.2 Results from tree topology

This part presents the experimental results of the three mechanisms in three-
level binary tree topology as depicted in Figure 4.3. All the performance metrics are
considered in this topology.

4.4.2.1. Server hit ratio

First of all, the server hit ratio of the three mechanisms is shown in Figure 4.7.
Similar to the results from the cascade network topology, the global cooperation
mechanism outperforms others. In case that the cache size is small, i.e. 50 contents;
the server hit ratio of the global cooperation mechanism is much smaller than the
other two mechanisms. It means that most of the requests are served by in-network
ICN nodes. More than half of the total requests are served by the server in the non-
cooperation and the path cooperation mechanism. But, when the cache size
increases, the server hit ratio of the path and the global cooperation mechanism
converge to be similar.

Figure 4. 7: Server hit ratio in tree topology

50

4.4.2.2 Average hop count

No matter what kind of network topology, the average hop count of the non-
cooperation mechanism is still higher than others. The request packet needs to
travel across many ICN nodes to get the desired data. Interestingly, the average hop
count of the path and the global cooperation mechanism are almost the same for
every cache size as depicted in Figure 4.8. In this case, the network became larger, so
the request packets in the global cooperation mechanism could travel across many
ICN nodes in the network to fetch the data content. But, the caching policy in this
mechanism tried to cache the popular contents as close as possible to requesters; it
could reduce the hop count. These factors might cause the similarity of average hop
count between the path cooperation and the global cooperation mechanism.

4.4.2.3 Message rate between control and data plane

Unlike the result in the cascade topology, the message rates between control
and data plane of the path cooperation is lower than those of the global
cooperation mechanism in tree topology (Figure 4.9). This is because the request
packet might travel across many ICN nodes to fetch the content, hence the
communication message between the planes increased. While the network topology

Figure 4. 8: Average hop count in tree topology

51

becomes larger and more complex, the global cooperation mechanism shows the
disadvantage in terms of the message rate between the planes.

4.4.2.4 Bottleneck link traffic

The bottleneck link here refers to the network link that can be caused traffic
congestion easily because of high traffic flow. The bottleneck link of the tree
topology in this work is the link between the ICN node 5 and the ICN node 7 as
depicted in Figure 4.3. The result of bottleneck link traffic is shown in Figure 4.10.
The bottleneck link traffic of the non-cooperation mechanism is higher than others.
This is because the in-network caching and the content searching process in this
mechanism are taken place in the individual ICN node without the coordination from
the controller. Hence, the same content might be stored in several ICN nodes’
caches. This reduces the diversity of contents in the network. In consequence, many
requests are forwarded to fetch the data from the server. On the other hand, when
cache size is small, the bottleneck link traffic of the global cooperation is higher than
which of the path cooperation mechanism because the requests might be forwarded
to and be served at other ICN nodes in another side of the network. Remember that
in the global cooperation mechanism, the controller can search for the location of

Figure 4. 9: Message rate between control and data plane

52

required data globally. On the contrary, the bottleneck link traffics of the path and
the global cooperation mechanism are almost same when cache size increases.

4.5 Emulation experiment

In this experiment; all parameters, operations on packets and tagging method
are identical to those of the PC-based OpenFlow testbed experimental environment.
But, this experiment used virtual network topology. It means that the whole network
topology is run in only one computer. Mininet is chosen as the network emulator
for the experiment. The ICN nodes and the server in the data plane are virtual nodes
installed with open vswitch version 1.9. Requesters are also virtual nodes. These
components are created by using Mininet VM image 2.1.0 run in a VirtualBox [31] in
Core-i5-1.8 GHz clock speed Sony machine. Then, the POX controller [21], [32] is run
remotely in the same VirtualBox. The VirtualBox is set to have 2GBytes of RAM in the
experiment.

Figure 4. 10: Bottleneck link traffic

53

4.5.1 Results from cascade topology

After conducting the experiment, the results of performance metrics obtained
are almost the same as those obtained from the PC-based OpenFlow testbed
experiment in the cascade network topology, except the message rate between
control and data plane. Figure 4.11, Figure 4.12 and Figure 4.13 demonstrate the
results of server hit ratio, average hop count, and message rate between control and
data plane respectively. Figure 4.13 shows that the message rates in the cascade
topology of this experiment are almost equal to half the message rates obtained in
the PC-based OpenFlow testbed experiment. This is because, in this experiment, the
virtual network topology was utilized and the experiment was conducted in a virtual
box, so the communication message between the controller and the ICN nodes are
pure OpenFlow messages. But, in the PC-based OpenFlow testbed, the real
computers were utilized as the network components. The connection between ICN
nodes and the controller are via TCP connection, so the higher message rate of that
experiment was caused by the higher TCP message overheads required. However,
the number of pure OpenFlow messages between control and data plane in the PC-
based OpenFlow testbed experiment and the emulation experiment must be same.

Figure 4. 11: Server hit ratio in cascade topology

54

Figure 4. 12: Average hop count in cascade topology

Figure 4. 13: Message rate in cascade topology

55

4.5.2 Results from tree topology

Again, in the tree topology, the results of performance metrics obtained from
the PC-based OpenFlow testbed and from the emulation are almost identical,
except the message rate between control and data plane. The results of server hit
ratio, average hop count, bottleneck link traffic are illustrated in Figure 4.14, Figure
4.15 and Figure 4.16 respectively.

Figure 4. 14: Sever hit ratio in tree topology

Figure 4. 15: Average hop count in tree topology

56

The message rate between control and data plane is depicted in Figure 4.17.
Like the result in the cascade topology, the message rates in the tree topology in the
emulation are almost equal to half the message rates obtained in the PC-based
OpenFlow testbed experiment. Again, the number of pure OpenFlow messages
between control and data plane in these two experiments must be same.

Figure 4. 16: Bottleneck link traffic in tree topology

Figure 4. 17: Message rate in tree topology

57

4.6 Conclusion

This chapter shows the network performance results of the three
mechanisms in both PC-based OpenFlow testbed and emulation environment. The
parameter selection and assumption, and experimental setup are also described in
this chapter. There are four performance metrics taken into account in this work
including server hit ratio, average hop count, message rate between control and
data plane, and bottleneck link traffic. Also, two different network topologies, the
cascade and the three-level binary tree topology are tested. Each result of
performance metric is also discussed in this chapter.

58

CHAPTER 5

CONCLUSION

The main objectives of this dissertation are to evaluate the performance of
information centric network (ICN) under the support of software defined networking
(SDN) while three different centralized in-network caching policy with content
visibility level mechanisms were deployed. Those three mechanisms consist of non-
cooperative in-network caching policy with individual content visibility mechanism or
in short “non-cooperation mechanism”, path cooperative in-network caching policy
with path content visibility level mechanism or in short “path cooperation
mechanism” and global cooperative in-network caching policy with global content
visibility level mechanism or in short “global cooperation mechanism”. This work
also studies the effect of the network topology on the performance. To realize this
work, the detail of sequences of operation for each mechanism and how to
implement the PC-based OpenFlow testbed for the experiment were pointed in
Chapter 3. The experiment and result discussion were in Chapter 4.

 Performance results from the PC-based OpenFlow testbed and the
emulation experiment are almost identical except message rate between control
and data plane. This is because the message types of these two experiments are
different. In the PC-based OpenFlow testbed experiment, the communication
messages are TCP messages, the pure OpenFlow messages are encapsulated into
TCP messages and some overheads are added. In the emulation experiment, the
messages are pure OpenFlow messages. However, the number of pure OpenFlow
messages in both experiments must be the same. The emulation by Mininet is
recommended to use for the experiment because it consumes less resource and
gives almost same results as those in PC-based OpenFlow testbed.

 Each mechanism has its own advantages and drawbacks. The result indicates
that network topology has significant effects on the performance of ICN over SDN.
When the network is small and simple, the global cooperative in-network caching
policy with global content visibility level mechanism outperforms others. But, when

59

network topology becomes larger and complex, this mechanism illustrates some
disadvantages in terms of message rate between control and data plane, and the
bottleneck link traffic. The non-cooperative in-network caching policy with individual
content visibility mechanism shows the worst performance in almost every
performance metrics and network topologies. However, according the mechanism
description, the non-cooperative in-network caching policy with individual content
visibility mechanism would generate less message rate compared to the other two
mechanisms. Because of the limitation of our testbed design, the message rate in
this mechanism is not valid; hence the result was not shown.

On the other hand, the selection of the mechanism is actually based on the
network administrators’ preference and available resources. For example, if the
system needs to reduce content requested from the server, the global cooperation
mechanism is the best choice. But, the message rate between control and data
plane may increase. Nevertheless, these results are applicable only with our
parameter setting in one autonomous system. This work is just a starting point to
investigate effects of centralized in-network caching policies and content visibility
level in ICN under SDN support. Also, the in-network caching process of this work is
heuristic; there is no optimization technique used in this research yet.

For the future work, the time-related performance metrics should be
included and optimization process for the centralized in-network caching should be
considered. Moreover, the further study in the future should use the real files such
as video or any types of file in the experiment not just only the packets generated
from Scapy program as in the current experiment. Larger and more sophisticated
network topology should be studied because, in the ICN architecture design, the
network topology is arbitrary not the simple topology. The number of data content,
size of content, cache size, etc., could be adopted from the real application such as
video or file or the mixture of both file types. Most importantly, the large ICN-based
network architecture comprises many autonomous systems should be considered.

REFERENCES

[1] OpenFlow switch specification. version 1.0.0 [Online]. Available:
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf

[2] Software-Defined Networking: The New Norm for Networks [Online]. Available:
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/white-papers/wp-sdn-newnorm.pdf

[3] SDN architecture overview version 1.0 [Online]. Available:
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/technical-reports/SDN-architecture-overview-1.0.pdf

[4] L. Zhe and G. Simon, "Time-Shifted TV in Content Centric Networks: The Case
for Cooperative In-Network Caching," in Communications (ICC), 2011 IEEE
International Conference on, 2011, pp. 1-6.

[5] M. Zhongxing, M. Xu, and W. Dan, "Age-based cooperative caching in
Information-Centric Networks," in Computer Communications Workshops
(INFOCOM WKSHPS), 2012 IEEE Conference on, 2012, pp. 268-273.

[6] C. Kideok, L. Munyoung, P. Kunwoo, T. T. Kwon, C. Yanghee, and P. Sangheon,
"WAVE: Popularity-based and collaborative in-network caching for content-
oriented networks," in Computer Communications Workshops (INFOCOM
WKSHPS), 2012 IEEE Conference on, 2012, pp. 316-321.

[7] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman, "A survey
of information-centric networking," Communications Magazine, IEEE, vol. 50,
pp. 26-36, 2012.

http://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
http://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
http://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
http://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
http://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/SDN-architecture-overview-1.0.pdf
http://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/SDN-architecture-overview-1.0.pdf

61

[8] S. Salsano, N. Blefari-Melazzi, A. Detti, G. Morabito, and L. Veltri, "Information
centric networking over SDN and OpenFlow: Architectural aspects and
experiments on the OFELIA testbed," Computer Networks, vol. 57, pp. 3207-
3221, 11/13/ 2013.

[9] N. B. Melazzi, A. Detti, G. Mazza, G. Morabito, S. Salsano, and L. Veltri, "An
OpenFlow-based testbed for information centric networking," in Future
Network & Mobile Summit (FutureNetw), 2012, 2012, pp. 1-9.

[10] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
et al., "OpenFlow: enabling innovation in campus networks," SIGCOMM
Comput. Commun. Rev., vol. 38, pp. 69-74, 2008.

[11] L. Veltri, G. Morabito, S. Salsano, N. Blefari-Melazzi, and A. Detti, "Supporting
information-centric functionality in software defined networks," in
Communications (ICC), 2012 IEEE International Conference on, 2012, pp.
6645-6650.

[12] A. Ooka, S. Ata, T. Koide, H. Shimonishi, and M. Murata, "OpenFlow-based
content-centric networking architecture and router implementation," in Future
Network and Mobile Summit (FutureNetworkSummit), 2013, 2013, pp. 1-10.

[13] G. Zhang, Y. Li, and T. Lin, "Caching in information centric networking: A
survey," Computer Networks, vol. 57, pp. 3128-3141, 11/13/ 2013.

[14] Y. Kim and I. Yeom, "Performance analysis of in-network caching for content-
centric networking," Computer Networks, vol. 57, pp. 2465-2482, 9/9/ 2013.

[15] D. Trossen, G. Parisis, B. Gajic, J. Riihijarvi, P. Flegkas, P. Sarolahti, et al.,
"Architecture Definition, Components Descriptions and Requirements," 2011.

62

[16] Software Defined Networking (SDN), OpenFlow and Cisco ONE [Online].
Available:
http://www.cisco.com/web/TH/assets/docs/seminar/techupdate_20130712_S
oftware_Defined_Networks_SDN_and_OpenFlow.pdf

[17] Cisco ONE Available: www.cisco.com/go/one

[18] S. Paul and Z. Fei, "Distributed caching with centralized control," Computer
Communications, vol. 24, pp. 256-268, 2/1/ 2001.

[19] K. Suksomboon, S. Tarnoi, J. Yusheng, M. Koibuchi, K. Fukuda, S. Abe, et al.,
"PopCache: Cache more or less based on content popularity for information-
centric networking," in Local Computer Networks (LCN), 2013 IEEE 38th
Conference on, 2013, pp. 236-243.

[20] Open Vswitch [Online]. Available: http://openvswitch.org/

[21] POX [Online]. Available: http://www.noxrepo.org/pox/versionsdownloads/

[22] Scapy [Online]. Available: http://www.secdev.org/projects/scapy/

[23] J. Hongseok, L. Byungjoon, and S. Hoyoung, "On-path caching in information-
centric networking," in Advanced Communication Technology (ICACT), 2013
15th International Conference on, 2013, pp. 264-267.

[24] D. Rossi and G. Rossini, "Caching performance of content centric networks
under multi-path routing (and more)," Telecom ParisTech2011.

[25] G. Rossini and D. Rossi, "A dive into the caching performance of Content
Centric Networking," in Computer Aided Modeling and Design of
Communication Links and Networks (CAMAD), 2012 IEEE 17th International
Workshop on, 2012, pp. 105-109.

http://www.cisco.com/web/TH/assets/docs/seminar/techupdate_20130712_Software_Defined_Networks_SDN_and_OpenFlow.pdf
http://www.cisco.com/web/TH/assets/docs/seminar/techupdate_20130712_Software_Defined_Networks_SDN_and_OpenFlow.pdf
http://www.cisco.com/go/one
http://openvswitch.org/
http://www.noxrepo.org/pox/versionsdownloads/
http://www.secdev.org/projects/scapy/

63

[26] W. Sen, J. Bi, and W. Jianping, "On Performance of Cache Policy in
Information-Centric Networking," in Computer Communications and Networks
(ICCCN), 2012 21st International Conference on, 2012, pp. 1-7.

[27] L. Muscariello, G. Carofiglio, and M. Gallo, "Bandwidth and storage sharing
performance in information centric networking," presented at the Proceedings
of the ACM SIGCOMM workshop on Information-centric networking, Toronto,
Ontario, Canada, 2011.

[28] G. Carofiglio, M. Gallo, L. Muscariello, and D. Perino, "Modeling data transfer in
content-centric networking," in Teletraffic Congress (ITC), 2011 23rd
International, 2011, pp. 111-118.

[29] T. Li, N. V. Vorst, R. Rong, and J. Liu, "Simulation studies of OpenFlow-based
in-network caching strategies," presented at the Proceedings of the 15th
Communications and Networking Simulation Symposium, Orlando, Florida,
2012.

[30] Mininet [Online]. Available: http://mininet.org/

[31] Virtualbox [Online]. Available: https://www.virtualbox.org/

[32] POX Tutorial. Available: https://openflow.stanford.edu/display/ONL/POX+Wiki

http://mininet.org/
http://www.virtualbox.org/

APPENDIX

65

Appendix
List of Publications

C. Hel and C. Saivichit, "PC-based OpenFlow testbed implementation for in-

network caching of information centric network," presented at the 6th AUN/SEED-Net
Regional Conference on Electrical Engineering 2014, Kuala Lumpur, Malaysia, 2014.

C. Hel and C. Saivichit, "Performance evaluation of centralized in-network

caching and content visibility in information centric network over SDN/OpenFlow," in
International Conference on Electrical Engineering, Computer Science and
Informatics 2014 (EECSI 2014), Yogyakarta, Indonesia, 2014, pp. 29-33.

C. Hel and C. Saivichit, "Evaluation of software defined-information centric

network's performance by considering in-network caching and content searching
mechanism," in International Workshop on Internet Architecture and Applications
2014, Chiang Mai, Thailand, 2014, pp. 51-56.

66

VITA

VITA

Chanthan Hel was born in 1989 in Takeo, Cambodia. He got his
bachelor’s degree in Telecommunication Engineering from Institute of Technology
of Cambodia in 2012. Currently, he is a master’s degree student at Electrical
Engineering Department, Chulalongkorn University. His research interests include:
Future Internet, Network Protocol, and Telecommunication Networking.

	THAI ABSTRACT
	ENGLISH ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1 INTRODUCTION
	1.1 Introduction
	1.2 Problem statement
	1.3 Objectives
	1.4 Scope of thesis
	1.5 Expected outcomes and contributions
	1.6 Organization of dissertation

	CHAPTER 2 BACKGROUND AND LITERATURE REVIEW
	2.1 Background
	2.1.1 Information centric network
	2.1.2 Software defined networking
	2.1.3 OpenFlow
	2.1.4 Information centric network over software defined networking

	2.2 Literature review

	CHAPTER 3 CENTRALIZED IN-NETWORK CACHING POLICY WITH CONTENT VISIBILITY LEVEL MECHANISMS AND PC-BASED OPENFLOW TESTBED
	3.1 Operation of various centralized in-network caching policy with content visibility level mechanisms
	3.1.1 Non-cooperative in-network caching policy with individual content visibility mechanism
	3.1.2 Path cooperative in-network caching policy with path content visibility level mechanism
	3.1.2.1 Path content visibility/searching level
	3.1.2.2 Path content/in-network caching policy

	3.1.3 Global cooperative in-network caching policy with global content visibility level mechanism
	3.1.3.1 Global content visibility/searching level
	3.1.3.2 Global content/in-network caching policy

	3.2 PC-based OpenFlow testbed implementation
	3.2.1 Testbed component implementation
	3.2.1.1 ICN node
	3.2.1.2 Network controller
	3.2.1.3 Content server
	3.2.1.4 Requester

	3.2.2 Types of packets
	3.2.3 Naming process
	3.2.4 Operation on packets
	3.2.4.1 Operation in ICN node
	3.2.4.2 Operation in server
	3.2.4.3 Operation in controller

	3.3 Summary

	CHAPTER 4 PERFORMANCE EVALUATION
	4.1 Performance Metrics
	4.2 Parameter selection and assumption
	4.2.1 Content replacement policy
	4.2.2 Cache dimensioning, size of contents and numbers of content object
	4.2.3 Content popularity and request pattern

	4.3 Experimental setup
	4.3.1 General setup
	4.3.2 Implementing the three mechanisms in cascade and tree topology
	4.3.2.1 Non-cooperative in-network caching policy with individual content visibility mechanism
	4.3.2.2 Path cooperative in-network caching policy with path content visibility level mechanism
	4.3.2.3 Global cooperative in-network caching policy with global content visibility level mechanism

	4.4 PC-based OpenFlow testbed experiment
	4.4.1 Results from cascade topology
	4.4.1.1 Server hit ratio
	4.4.1.2 Average hop count
	4.4.1.3 Message rate between control and data plane

	4.4.2 Results from tree topology
	4.4.2.1. Server hit ratio
	4.4.2.2 Average hop count
	4.4.2.3 Message rate between control and data plane
	4.4.2.4 Bottleneck link traffic

	4.5 Emulation experiment
	4.5.1 Results from cascade topology
	4.5.2 Results from tree topology

	4.6 Conclusion

	CHAPTER 5 CONCLUSION
	REFERENCES
	APPENDIX
	VITA

