

DESIGN PATTERNS FOR INTEGRATING ENTERPRISE APPLICATION WITH

ANY BUSINESS PROCESS MANAGEMENT SYSTEMS

Mr. Wittakarn Keeratichayakorn

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in Computer Science and Information

Technology
Department of Mathematics and Computer Science

Faculty of Science
Chulalongkorn University

Academic Year 2014
Copyright of Chulalongkorn University

แบบรูปการออกแบบเพ่ือผสานโปรแกรมประยุกต์ขององค์กรเข้ากับระบบการจัดการกระบวนการ

ทางธุรกิจใดๆ

นายวิทกานต์ กีรติฉายากร

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
สาขาวิชาวิทยาการคอมพิวเตอร์และเทคโนโลยีสารสนเทศ ภาควิชาคณิตศาสตร์และวิทยาการ

คอมพิวเตอร์
คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2557
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title DESIGN PATTERNS FOR INTEGRATING ENTERPRISE
APPLICATION WITH ANY BUSINESS PROCESS
MANAGEMENT SYSTEMS

By Mr. Wittakarn Keeratichayakorn
Field of Study Computer Science and Information Technology
Thesis Advisor Assistant Professor Saranya Maneeroj, Ph.D.

 Accepted by the Faculty of Science, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Master's Degree

 Dean of the Faculty of Science

(Professor Supot Hannongbua, Dr.rer.nat.)

THESIS COMMITTEE

 Chairman

(Associate Professor Peraphon Sophatsathit, Ph.D.)

 Thesis Advisor

(Assistant Professor Saranya Maneeroj, Ph.D.)

 External Examiner

(Associate Professor Damras Wongsawang, Ph.D.)

 iv

THAI ABSTRA CT

วิทกานต์ กีรติฉายากร : แบบรูปการออกแบบเพื่อผสานโปรแกรมประยุกต์ขององค์กรเข้ากับ
ระบบการจัดการกระบวนการทางธุรกิจใดๆ (DESIGN PATTERNS FOR INTEGRATING
ENTERPRISE APPLICATION WITH ANY BUSINESS PROCESS MANAGEMENT
SYSTEMS) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ผศ. ดร.ศรันญา มณีโรจน์, 78 หน้า.

ส่วนใหญ่เทคโนโลยีการจัดการกระบวนการทางธุรกิจ(Business Process Management)
จะมีโปรแกรมที่ใช้ออกแบบส่วนต่อประสานกราฟิกกับผู้ใช้ (Graphic User Interfaces) ที่ใช้ท างาน
ร่วมกับระบบการจัดการกระบวนการทางธุรกิจเป็นของตัวเอง แต่ทว่าโปรแกรมที่ใช้ออกแบบส่วนต่อ
ประสานกราฟิกกับผู้ใช้นั้นไม่สามารถออกแบบส่วนต่อประสานกราฟิกกับผู้ใช้ที่มีความซับซ้อนได้
ในขณะที่ผู้ใช้ระบบการจัดการกระบวนการทางธุรกิจของแต่ละองค์กร มีความต้องการส่วนต่อประสาน
กราฟิกกับผู้ใช้ที่ซับซ้อนแตกต่างกัน เพื่อรักษาความสามารถในการท างานร่วมกันดังกล่าวในต่างกัน
ผู้พัฒนาระบบจึงสร้างโปรแกรมประยุกต์(Enterprise Application) ที่มีส่วนต่อประสานกราฟิกกับผู้ใช้ที่
เหมาะสมต่อระบบธุรกิจของแต่ละองค์กร โปรแกรมประยุกต์นี้สามารถที่จะเชื่อมต่อกับระบบจัดการ
กระบวนการทางธรุกิจโดยใช้ใช้ Application Programming Interfaces (APIs) ของระบบการจัดการ
กระบวนการทางธุรกิจ แต่ทว่าระบบการจัดการกระบวนการทางธุรกิจ แต่ละยี่ห้อมี APIs ที่ใช้เชื่อต่อที่ไม่
เหมือนกัน ในกรณีที่นักพัฒนาระบบต้องการเปลี่ยนยี่ห้อระบบการจัดการกระบวนการทางธุรกิจ เพื่อให้
เหมาะสมกับทรัพยากรและอุปกรณ์ของลูกค้ารายใหม่ นักพัฒนาระบบต้องเขียนโปรแกรมในส่วนที่ใช้
เชื่อต่อกับ API ใหม่ทุกครั้ง ดังนั้นกรอบการท างานที่ใช้ในการพัฒนาระบบเพื่ออ านวยความสะดวกต่อ
การเปลี่ยนยี่ห้อระบบการจัดการกระบวนการทางธุรกิจในโครงการต่อๆไปจึงเป็นสิ่งที่ขาดไม่ได้ . ใน
วิทยานิพนธ์นี้ กรอบการท างานใหม่ได้ออกแบบและสร้างโดยประยุกต์ใช้แบบรูปการออกแบบ เพื่อเป็น
แนวทางสร้างกรอบการท างาน ที่ให้มีคุณภาพ น่าเชื่อถือและมีประสิทธิภาพ. กรอบการท างานดังกล่าวนี้
ได้น าแบบรูปการออกแบบ 6 ชนิด ได้แก ่แบบรูป Bridge, แบบรูป Decorator, แบบรูป Factory, แบบ
รูป Singleton, แบบรูป Facade และแบบรูป General-Hierarchy มาใช้เพื่อให้เกิดความยืดหยุ่น ง่าย
ต่อการเพิ่มและปรับปรุงเปลี่ยนแปลง เพื่อรองรับระบบการจัดการกระบวนการทางธุรกิจใดๆ. เพื่อสาธิต
การออกแบบ กรอบการท างานได้ถูกสร้างและพัฒนาโดยประยุกต์ใช้ แบบรูปการออกแบบกับระบบการ
จัดการกระบวนการทางธุรกิจของ Oracle และ Bonita. การประเมินผลกรอบการท างาน ท าโดยวัด
ประสิทธิภาพของ coupling หลังจากใช้แบบรูปการออกแบบ. ผลลัพธ์ของการประเมิน coupling แต่
ละชนิดเช่น Stamp coupling, Control coupling และ Routine coupling ถูกท าให้ลดลงผ่านแบบ
รูปการออกแบบดังกล่าว.

ภาควิชา คณิตศาสตร์และวทิยาการคอมพิวเตอร์

สาขาวชิา วิทยาการคอมพิวเตอร์และเทคโนโลยี
สารสนเทศ

ปีการศึกษา 2557

ลายมือชื่อนสิิต

ลายมือชื่อ อ.ที่ปรึกษาหลัก

 v

ENGLISH ABSTRACT

5672607823 : MAJOR COMPUTER SCIENCE AND INFORMATION TECHNOLOGY
KEYWORDS: DESIGN PATTERNS / ENTERPRISE APPLICATION / BPMS / REUSABLE

WITTAKARN KEERATICHAYAKORN: DESIGN PATTERNS FOR INTEGRATING
ENTERPRISE APPLICATION WITH ANY BUSINESS PROCESS MANAGEMENT
SYSTEMS. ADVISOR: ASST. PROF. SARANYA MANEEROJ, Ph.D., 78 pp.

Most of existing Business Process Management (BPM) technologies have their
own designer tools. The designer tool is easy to use to design and create graphical user
interface (GUI) to work with their own BPM. However, designer tools usually do not
support advance GUI execution. Thus, users working in different environment but
involved in business processes are more likely to work with a different set of advance
GUI. In order to maintain such interoperable capability on heterogeneous environments
or platforms, developers have to build a specific set of GUI for enterprise applications
which are suitable for each business process. This is accomplished by using BPM API to
create communication between enterprise applications and BPM. However, different
BPM vendors have different APIs integrated into the system. If the developers need to
change BPM vendor for existing resources compatibility, they have to rewrite code to
interact with new set of APIs every time. Thus, a framework that is easy to plug
enterprise applications to connect with any BPM systems and reusable is necessary. In
this thesis, a new framework applying Design pattern principles is studies for creating
reusable software efficiently. This framework employs six types of Design pattern which
are Bridge pattern, Decorator pattern, Factory pattern, Singleton pattern, Façade
pattern, and General-Hierarchy pattern. The objectives are reusability, flexibility, and
maintainability of GUI that can easily support any BPM vendors. The framework is
demonstrated and implemented by applying Design patterns on Oracle BPM and Bonita
BPM. Evaluation is done through coupling of the new code obtained from the
application of the above Design patterns. Results of the evaluation present modules
coupling such as Stamp coupling, Control coupling, and Routine coupling are reduced
by apply above Design patterns.

Department: Mathematics and Computer
Science

Field of Study: Computer Science and
Information Technology

Academic Year: 2014

Student's Signature

Advisor's Signature

 vi

ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to Assistant Professor Dr.

Saranya Maneeroj, my research advisor, for her patient guidance, suggestions and
recommendations of this research work. In addition, I would like to thank the
other members of my committee, Associate Professor Dr. Peraphon Sophatsathit,
and Associate Professor Dr. Damras Wongsawang for the assistance for sparing the
precious time for these thesis examinations and for their invaluable comments.

I would also like to thank my family for the support they provided me
through my entire life. I also would like to thank all my friends for helpful and
encouragement throughout my study.

Finally, I recognize that my graduation would not have been possible
without the scholarship from Summit Computer Co., Ltd.

CONTENTS
 Page

THAI ABSTRACT ... iv

ACKNOWLEDGEMENTS ... vi

CONTENTS ... vii

LIST OF TABLES ... ix

LIST OF FIGURES .. x

1. CHAPTER I INTRODUCTION ... 1

1.1 Objectives ... 3

1.2 Scope of thesis and constraints ... 3

1.3 Expected Outcomes ... 3

2. CHAPTER II THEORITICAL BACKGROUND ... 4

2.1 Oracle Business Process Management Suite ... 4

2.2 Bonita Business Process Management .. 5

2.3 Coupling .. 8

2.4 Reusable .. 9

2.5 Design pattern .. 9

2.5.1 Bridge pattern .. 10

2.5.2 Factory pattern .. 15

2.5.3 Decorator pattern ... 19

2.5.4 Singleton pattern .. 26

2.5.5 Façade pattern .. 29

2.5.6 General-Hierarchy pattern ... 31

3. CHAPTER III RELATED WORKS ... 36

 viii

 Page

4. CHAPTER IV PROPOSED METHOD .. 40

4.1 Bridge pattern for creating BPM Interface. ... 42

4.2 Decorator pattern is applied to create objects using BPM Interface method. ... 43

4.3 Factory pattern for automating to select BPM Interface for interoperation
with BPM system. .. 47

4.4 Singleton pattern for restricting number of BPM instances to exist in
Enterprise application. ... 48

4.5 Façade pattern for reducing complex of methods caller. 50

4.6 General-Hierarchy pattern for wrapping any kinds of exception to become a
general type. .. 53

5. CHAPTER V EXPERIMENTS AND RESULTS ... 55

5.1 The framework provides to change BPM vendors by little re-programming. 55

5.2 Analysis the framework. ... 59

5.2.1 The Control coupling in BPM vendor changing .. 62

5.2.2 The Stamp coupling of a method argument .. 64

5.2.3 The Stamp coupling of an exception ... 65

5.2.4 The Routine call coupling in operations .. 66

5.2.5 Summaries of improvement ... 68

6. CHAPTER VI CONCLUSION .. 74

REFERENCES ... 75

VITA .. 78

 ix

LIST OF TABLES

Page

Table 2.1 Type of coupling .. 8

Table 5.1 Comparing code apply Bridge pattern ... 64

Table 5.2 Comparing code apply Decorator pattern .. 65

Table 5.3 Comparing code apply General-Hierarchy pattern .. 66

Table 5.4 Comparing code apply Façade pattern ... 67

Table 5.5 Summaries of improvement .. 68

 x

LIST OF FIGURES

 Page

Figure 2.1 Oracle JDeveloper workspace 5

Figure 2.2 Bonita BPM Studio workspace 6

Figure 2.3 Advance Graphic User Interfaces 7

Figure 2.4 Implementer and ConcreteImplementer 11

Figure 2.5 Abstraction and RefinedAbstraction 12

Figure 2.6 Factory class diagrams for initialization a bicycle. 16

Figure 2.7 Conponent and ConcreteComponent of coffee 20

Figure 2.8 Decorator and ConcreteDecorator for decoration coffee. 21

Figure 2.9 Printer class applying Singleton pattern 26

Figure 2.10 PrinterFacade class applying Façade pattern 29

Figure 2.11 Hierarchy of FileSystem 32

Figure 3.1 Enterprise application call BPM A directly 37

Figure 3.2 Enterprise application call BPM B directly 38

Figure 3.3 Use Interfaces to place as a bridge between APIs and application 39

Figure 4.1 Interface using Bridge pattern 41

Figure 4.2 Bridge pattern component 41

Figure 4.3 Design Conponent (Item) and ConcreteComponent (BonitaItem,
OracleItem) by applying Decorator pattern 45

Figure 4.4 Design Decorator (WorkItem) and ConcreteDecorator (SchedulerItem,
LeaveItem) by applying Decorator pattern 46

Figure 4.5 Represent method putContentToWorkItem is called at runtime 47

Figure 4.6 Five method are encapsulated into listPendingTask 52

 xi

Figure 4.7 Group of exception applying General-Hierarchy pattern 54

Figure 5.1 The Throwable class diagram 66

Figure 5.2 The caller listPendingTasks do not re-write code when operations have
been changed 67

1. CHAPTER I
INTRODUCTION

Large business organizations encounter with rapidly changing in business
environment. Thus, system that provides flexibility for solving any organizations
business process is arisen. Business Process Management Systems (BPMS) is a system
which is used to improve performance and optimize organization's business process.
A Business Process in BPMS comprises many activities and variety tasks. Resources are
required to perform each task, and business rule links these activities and tasks. The
task is performed by human and/or machine actors [1].

Most of the existing BPM technologies have provided a designer tool. This
allows developers generate input forms and related graphical user interfaces (GUI) of
each task to review, track, edit activities, and act upon notifications (automate,
integrate, monitor, and adjust processes). However, the designer tool does not
support to create advanced GUI such as dynamic GUI. The facts that users of
different organizations involved in a business process are more likely to work with a
different set of GUI for interaction, but sometime designer tools cannot create GUI
that corresponding to user’s requirement. For creating user friendly GUI, developers
create GUI by their own code in an enterprise application by applying JSF, JSP or
HTML. After that, they develop gateways for receiving request from GUI. Then the
gateway passes data to BPMS by using BPM Application Programming Interfaces (APIs)
to do the rest of the job. BPM APIs are a set of commands and functions for allowing
other software components interaction; they are usually used for interaction
between enterprise application and BPMS. Consequently, developers have to build
the specific set of GUI to create communication between GUI of enterprise
application and BPM system, and they use BPM APIs to create custom configuration,
design, runtime management, and monitoring clients. Developers, who build
enterprise application integration with BPM system, will select the most suitable BPM
for their organization from the market. Then, BPM is plugged into the system by

 2

integrating with the enterprise application in order to provide management process,
evacuation task, task tracking function, etc.

Currently, interoperation between an Enterprise application and only one
BPMS is not difficult, but designing an Enterprise application for interoperating with
different BPMSs are very hard. Since, different BPM vendors have different APIs
integrated into system, implementation of integrating between enterprise application
and BPM is very complex. When developers need to change BPM vendor for
corresponding to existing resources and devices of new customer, the developers
have to rewrite code to interact with such new BPM APIs every time. In order to
make Enterprise application interoperates with any BPMSs, the developers must
consider relation between set of code their own cods and set of command or
function of any BPM APIs.

Since, there are some stable sets of code, and developers usually prefer to
reuse such packages of code delivered. In order to make common module to be
used into further projects, relations between group of classes and group of objects
must be considered and formulated in design part. The better way for reducing
complication of finding such relations is applying the object oriented design principle.
Object oriented design principle is applied ideas in Design patterns especially
encapsulation, inheritance and polymorphism to make the code more generalized
and loosely coupled [2]. The Design patterns are description or template of design
structures. They are applied to solve recurrent design problems in different
situations. Furthermore, design patterns aim to avoid expensive cycle of revalidation,
reinventing and rediscovering common software solution. In this work, a framework is
designed and created an evolution based on Java EE specification to support BPM
vendor changing. Six kinds of Design patterns, which are Bridge pattern, Decorator
pattern, Factory pattern, Singleton pattern, Façade pattern and General-Hierarchy
pattern, are used to make plug-and-play ability of any BPMSs and reduce coupled
between business objects with any BPM APIs.

 3

1.1 Objectives

1) To analyze a framework that is suitable for design patterns to integrate loosely
coupled BPM APIs into enterprise application.

2) To create a framework for supporting BPM vendor changing.

1.2 Scope of thesis and constraints

In this work, an evolution framework is developed based on:

1) Java EE specification to support BPM vendor changing through BPM APIs.

2) Two BPM vendors: Bonita BPM and Oracle BPM.

3) The emphasis of analysis is placed on improving module coupling.

1.3 Expected Outcomes

1) A framework that can ease to develop an enterprise application interacts with
any BPM vendor easier.

2) A framework that can reduce coupling between enterprise application and BPM
APIs.

 4

2. CHAPTER II
THEORITICAL BACKGROUND

Large business organizations encounter with rapidly changing in business
environment. Thus, systems that provide flexibility for solving any organizations
business process is arose. Business Process Management System (BPMS) is a system
which is used to improve performance and optimize organization's business process.
The BPMS supports collaboration and boosts team efficiency. Streamline process
application development, it is built business applications rapidly and move a process
from model to test to production. Therefore, using BPMS to raise employee
productivity and reduces costs with tools for helping people work better together.

A standard Business Process Model and Notation (BPMN) is use to create a
business process model, then BPMS interpret BPMN to create a business process. A
business process comprises many activities and variety tasks. Resources are required
to perform each task, and business rule links these activities and tasks. The task is
performed by human and/or machine actors [1]. Most of the existing Business
process management (BPM) technologies have provided a designer tool. This allows
developers generate input forms and related graphical user interface (GUI) of each
task to review, track, edit activities, and act upon notifications (automate, integrate,
monitor, and adjust processes). Oracle Business Process Management Suite and
Bonita Business Process Management are top-evaluated BPMS. The two are applied
to streamline and automate business process flow, and also reduce cost and
increase revenue of an organization.

2.1 Oracle Business Process Management Suite

Oracle Business Process Management Suite is the most business user-friendly
BPM solution. The Oracle BPMS supports design and implementation of all type of
business process flow. Since, Oracle BPMS is a commercial product, design and
implementation are made easily by using designer tool(Oracle JDeveloper). In Fig 2.1,

 5

the figure shows workspace of Oracle JDeveloper. The Oracle JDeveloper is a
development environment that is used to design and implement BPM process.
Moreover, The BPM processes also provide Oracle Form Designer. It is a browser
based simple drag-and-drop tool for allowing modeling implementing process model.
Oracle BPM are complete design modelling and optimization, to automation,
execution and monitoring and act upon notifications.

Figure 2.1 Oracle JDeveloper workspace

2.2 Bonita Business Process Management

Bonita Business Process Management is one of the open source BPMS.
According to Bonita BPMS is an open source software, it do not provide features on
the same level of Oracle BPMS, but Bonita BPMS have a designer tool(Bonita BPM
Studio) which provide graphical environment for creating a business process flow as
show in Fig. 2.2. The Bonita BPM Studio is like an Oracle JDeveloper of Oracle, but
lacking some features such as drag-and-drop tool for implementing Business Rule.
Although Bonita BPM lacks in some features, Developer can use it fairly for
implementation on any business process.

 6

Figure 2.2 Bonita BPM Studio workspace

Although most of the BPMS have a designer tool, but the designer tool
cannot create advance graphic user interfaces for every kind of work processes. In
Fig. 2.3, the figure show an example of advance GUI. The facts that users of different
organizations involved in a business process are more likely to work with a different
set of advance GUI for interaction. Consequently, developers have to build the
specific set of GUI to create communication between GUI of enterprise application
and BPM system, and they use BPM API to create custom configuration, design,
runtime management, and monitoring clients. Developers, who build enterprise
application integration with BPM system, will select the most suitable BPM for their
organization from the market. Then, BPM is plugged into the system by integrating
with the enterprise application in order to provide task tracking, process managed
function and etc.

 7

Figure 2.3 Advance Graphic User Interfaces

Since different BPM vendors have different APIs integrated into system,
implementation of integrating between enterprise application and BPM is very
complex. When developers need to change BPM vendor for corresponding to existing
resources and devices of new customer, the developers have to rewrite codes to
interact with such new BPM APIs every time. In case of developers want to sell
enterprise application as a software product package, the software is developed for
selling to any organizations. Conversely, if an enterprise application that comprise
with Human Resources system, Payroll system and etc., and some modules in
enterprise application interoperate with BPM system. For selling as much as customer
the enterprise application should support any BPM vendors. In order to support any
BPM vendors, a framework that is easy to plug into enterprise application to reduce
coupling between enterprise application and any BPM systems for connecting to any
BPM systems is necessary. Since there are some stable sets of codes, and developers
usually prefer to reuse such packages of codes delivered. In order to make common
module to be used into further projects, relations between group of classes and

 8

group of objects must be considered and formulated in design part. The better way
for reducing complication of finding such relations is applying the Object Oriented
Design principle. The coupling in programming and important of software reusable is
descripted in next issues.

2.3 Coupling

Coupling in term of computer programming is degree of each program
module relies on other modules. Low coupling is refer to a module in program is
changed; other modules that relies on that module are little changed. Coupling is
divided into various types; each type has different level of coupling. Below, the types
of coupling [3] are summarized in table 2.1 in order of highest to lowest coupling.

Table 2.1 Type of coupling

Coupling type Description

Content coupling “public instance variable” is an example of Content coupling.

A worse of Content coupling is harder to detect, occurs when
instance variable is changed value directly from another class.
For reducing this coupling, encapsulate all instance variables
by declaring as a private variable.

Common coupling Using a global variable (public static) is a Common coupling.
Encapsulation can be reducing this type of coupling.

Control coupling Control coupling occurs when one method have any return
statements. Polymorphism concept can be reducing this type
of coupling.

Stamp coupling Stamp coupling occurs whenever Object of class is used as
parameter of method. Using an Interface as a parameter of
the method or passing simple variables in order to reduce this
coupling.

 9

Data coupling This type of coupling occurs whenever simple variables such
as String are used as parameters of method.

Routine call
coupling

This occurs whenever two or more methods are called as
sequences. This type of coupling can be reducing by
encapsulation the sequence.

2.4 Reusable

Reusable in Object Oriented is hard to design due to relation between group
of classes and group of objects must be considered and formulated in design part.
Consideration in design part is the key for achieving reusable class. Basically,
developers design classes diagrams before they start to implement systems. If
relation between groups of classes is unsuitable for reuse, developers return to
design classes diagrams. Developers who have a lot of experience in Object Oriented
can design reusable classes for acknowledgment. While a newbie in Object Oriented
cannot design reusable class, but he or she can follow recurring design structures or
patterns to achieve reusable classes. The recurring design structures or patterns are
Design patterns.

2.5 Design pattern

Object Oriented Design Principle is applied ideas in Design patterns especially
encapsulation, inheritance and polymorphism to make the codes more generalized
and loosely coupled [2]. According to newbies in Object Oriented follow the Design
pattern to design reusable classes, the Design pattern is used to reduce Object
Oriented Design experience gap between newbies and senior developers.
Furthermore, design patterns aim to avoid expensive cycle of revalidation,
reinventing and rediscovering common software solutions. Therefore, "Ease of
development" was the theme of the Design pattern.

 10

As mention in the introduction, six kinds of Design patterns, which are Bridge
pattern, Decorator pattern, Factory pattern, Singleton pattern, Façade pattern and
General-Hierarchy pattern are applied in this work. Descriptions of the six Design
patterns are presented in this topic.

2.5.1 Bridge pattern

Basically, Interface class and Implementation class are declared dependent;
Implementation section cannot change at runtime. The Bridge pattern focus on
Interface class and Implementation class, it decouple an Interface from its
implementation. In this idea, group of classes are divided into Abstraction,
Implementor and ConcreteImplementor in order to reduce coupling between two
sections. By applying Bridge pattern, the two sections are separated independently.

The participant’s classes in the bridge pattern

Abstraction

This class is interacted with Client, it aggregate Implementor Interface into its.

RefinedAbstraction

This is a sub class of Abstraction; it is directly called from Client.

Implementor

This Interface defines the interface for implementation classes. The
Implementor does not need to have methods correspond directly to Abstraction
class and can be very different. In this case, Client class invokes methods of
Implementor Interface by using Abstraction methods.

ConcreteImplementor

Responsibility of ConcreteImplementor are Implementing methods of
Interface Implementor.

 11

Client

Client class calls method which is declare in Abstraction class, it call method
in Abstraction by using Object of RefinedAbstraction.

Example

Duck simulation Wallpaper, SimuDuck. The Wallpaper can show two types of
duck species making quacking sounds, but different duck species will have a different
quacking sound. In Fig. 2.4, 2.5 present class diagrams of the SimuDuck program.

Figure 2.4 Implementer and ConcreteImplementer

 12

Figure 2.5 Abstraction and RefinedAbstraction

 13

public interface ActingDuck { 1

 public String quack(); 2

 public String swim(); 3

} 4

public abstract class Duck implements Serializable{ 5

 protected ActingDuck actingDuck; 6

 protected Duck(ActingDuck actingDuck){ 7

 this.actingDuck = actingDuck; 8

 } 9

 public abstract void display(); 10

} 11

public class SimulatorDuck extends Duck implements Serializable{ 12

 public SimulatorDuck(ActingDuck actingDuck) { 13

 super(actingDuck); 14

 } 15

 @Override 16

 public void display() { 17

 System.out.println("Display" + " ===== " + actingDuck.quack() + " ===== " + 18
actingDuck.swim()); 19

 } 20

} 21

public class RedheadDuck implements ActingDuck, Serializable{ 22

 @Override 23

 public String quack() { 24

 return "Redhead duck quack"; 25

 } 26

 @Override 27

 public String swim() { 28

 14

 return "Redhead duck swim"; 29

 } 30

} 31

public class RubberDuck implements ActingDuck, Serializable{ 32

 @Override 33

 public String quack() { 34

 return "Rubber duck say nothing"; 35

 } 36

 @Override 37

 public String swim() { 38

 return "Rubber duck is drowning"; 39

 } 40

} 41

public class App { 42

 public static void main(String[] args) { 43

 Duck[] ducks = new Duck[]{new SimulatorDuck(new RedheadDuck()), 44

 new SimulatorDuck(new RubberDuck())}; 45

 for (Duck duck : ducks) { 46

 duck.display(); 47

 } 48

 } 49

} 50

 15

2.5.2 Factory pattern

 In Object Oriented Programming (OOP), an Object is created through “new”
keyword. This pattern provides a best ways to create an object without exposing the
creation logic, which is "new" operation, to the client. Therefore, the Factory pattern
is applied to define statement to decide class instantiation.

The participant’s classes in the Factory pattern

Product

Product is a class or Interface. It provides methods for overriding. This class is
used in Factory class for different return type (Polymorphism).

ConcreteProduct

ConceteProduct is Sub class of Product.

Factory

The factory instantiates a ConcreteProduct and then returns to the client by
applying Polymorphism concept.

Client

This class call instate() in Factory class for instantiation a ConcreteProduct.

Example

A class provides for creating MountainBike Object or RoadBike Object by using
only one parameter. Class diagram of classes which use to initial a bicycle object are
shown in Fig. 2.6.

 16

Figure 2.6 Factory class diagrams for initialization a bicycle.

 17

public interface Bicycle{ 1

 public abstract void printDescription(); 2

} 3

public class MountainBike implements Bicycle, Serializable{ 4

 @Override 5

 public void printDescription() { 6

 System.out.println("Description of MountainBike"); 7

 } 8

} 9

public class RoadBike implements Bicycle, Serializable{ 10

 @Override 11

 public void printDescription() { 12

 System.out.println("Description of RoadBike"); 13

 } 14

} 15

public class BicycleFactory { 16

 public static Bicycle createBicycle(String order){ 17

 Bicycle bicycle = null; 18

 if(order.equals("MountainBike")){ 19

 bicycle = new MountainBike(); 20

 }else if(order.equals("RoadBike")){ 21

 bicycle = new RoadBike(); 22

 } 23

 return bicycle; 24

 } 25

} 26

public class App { 27

 public static void main(String[] args) { 28

 18

 //create an instance of MountainBike 29

 Bicycle mount = BicycleFactory.createBicycle("MountainBike"); 30

 mount.printDescription(); 31

 32

 //create an instance of RoadBike 33

 Bicycle road = BicycleFactory.createBicycle("RoadBike"); 34

 road.printDescription(); 35

 } 36

}37

 19

2.5.3 Decorator pattern

In Object Oriented Programming, methods of class are used to define class
responsibility. If class A has methods m1, m2 and m3, so class A has responsibility
m1, m2, m3. In the case of class B is Sub class of class A, class B can override
methods m1, m2 and m3 for changing specific behavior; therefore, applying
Inheritance concept can decorate or increase responsibility of class in declaration
phase.

Inheritance and Aggregation concept are applied in this pattern in order to
increase or change specific behavior at runtime indecently.

The participant’s classes in the Decorator pattern

Conponent

This is an Interface, it is used to define methods for method overriding, which
can have responsibilities added dynamically.

ConcreteComponent

The ConcreteComponent is an implementation of Conponent interface. This
class is aggregated to The Decorator at runtime.

Decorator

The Decorator class aggregates a Component. This class allows adding
responsibilities at runtime.

ConcreteDecorator

This is Sub classes of the Decorator class. Developers use this class to add
responsibilities to the original Component.

 20

Example

ABC Coffee shop wants a system that calculates value of various type of
coffee. Customer of ABC Coffee shop can ask for several condiments like milk, soy,
and mocha to build coffee with any condiments. The class diagrams of ABP Coffee
shop program are shown in Fig. 2.7 and 2.8.

Figure 2.7 Conponent and ConcreteComponent of coffee

 21

Figure 2.8 Decorator and ConcreteDecorator for decoration coffee.

 22

public abstract class Coffee implements Serializable{ 1

 protected String description; 2

 public String getDescription() { 3

 return description; 4

 } 5

 public void setDescription(String description) { 6

 this.description = description; 7

 } 8

 public Coffee() { 9

 } 10

 public Coffee(String description) { 11

 this.description = description; 12

 } 13

 public abstract double cost(); 14

} 15

public abstract class CondimentDecorator extends Coffee implements Serializable{ 16

 public abstract String getDescription(); 17

} 18

public class Cappuccino extends Coffee implements Serializable { 19

 public Cappuccino() { 20

 description = "Cappuccino"; 21

 } 22

 public double cost() { 23

 return 70; 24

 } 25

} 26

public class Espresso extends Coffee implements Serializable { 27

 public Espresso() { 28

 23

 description = "Espresso"; 29

 } 30

 public double cost() { 31

 return 60; 32

 } 33

} 34

public class Latte extends Coffee implements Serializable{ 35

 public Latte() { 36

 description = "Latte"; 37

 } 38

 public double cost() { 39

 return 65; 40

 } 41

} 42

public class Milk extends CondimentDecorator implements Serializable { 43

 Coffee coffee; 44

 public Milk(Coffee coffee) { 45

 this.coffee = coffee; 46

 } 47

 public String getDescription() { 48

 return coffee.getDescription() + ", Milk"; 49

 } 50

 public double cost() { 51

 return 2.15 + coffee.cost(); 52

 } 53

} 54

public class Mocha extends CondimentDecorator implements Serializable { 55

 Coffee coffee; 56

 24

 public Mocha(Coffee coffee) { 57

 this.coffee = coffee; 58

 } 59

 public String getDescription() { 60

 return coffee.getDescription() + ", Mocha"; 61

 } 62

 public double cost() { 63

 return 4.20 + coffee.cost(); 64

 } 65

} 66

public class WhipCreme extends CondimentDecorator implements Serializable { 67

 Coffee coffee; 68

 public WhipCreme(Coffee coffee) { 69

 this.coffee = coffee; 70

 } 71

 public String getDescription() { 72

 return coffee.getDescription() + ", WhipCreme"; 73

 } 74

 public double cost() { 75

 return 3.13 + coffee.cost(); 76

 } 77

} 78

public class App { 79

 public static void main(String[] args) { 80

 Coffee coffee1 = new Cappuccino(); 81

 coffee1 = new Mocha(coffee1); 82

 coffee1 = new Mocha(coffee1); 83

 coffee1 = new WhipCreme(coffee1); 84

 25

 System.out.println(coffee1.getDescription() + " " + coffee1.cost() + " Bath."); 85

 Coffee coffee2 = new Espresso(); 86

 coffee2 = new Milk(coffee2); 87

 coffee2 = new Mocha(coffee2); 88

 coffee2 = new WhipCreme(coffee2); 89

 System.out.println(coffee2.getDescription() + " " + coffee2.cost() + " Bath."); 90

 } 91

} 92

 26

2.5.4 Singleton pattern

In some systems instantiate Object is restricted in only one instance. For
example, in a system there should be only one print spooler for centralized
management. The concept is called singleton. The Singleton pattern is applied to
restrict instance of class.

The participant’s classes in the Singleton pattern

Singleton

This class has getInstance() method which is used to create and restrict
number of Objects instantiation.

Example

In small and medium company, they have any devices which connect to only
one printer. Therefore one moment in time a printer should support only one task.
In Fig 2.9, the figure present class diagram of printer which apply Singleton pattern.

Figure 2.9 Printer class applying Singleton pattern

 27

public class Printer implements Serializable{ 1

 private String name; 2

 private static Printer instance; 3

 public static Printer getInstance(String name){ 4

 Printer spooler = null; 5

 if(instance == null){ 6

 instance = new Printer(); 7

 instance.name = name; 8

 System.out.println("Getting spooler of printer :" + name); 9

 spooler = instance; 10

 }else{ 11

 System.out.println("Spooler is not avaliable"); 12

 } 13

 return spooler; 14

 } 15

 public static void returnInstance(Printer spooler){ 16

 if(instance != null && spooler.equals(instance)){ 17

 System.out.println("Printer " + spooler.name + " is now avaliable"); 18

 spooler = null; 19

 instance = null; 20

 }else{ 21

 System.out.println("Spooler is now avaliable or passing wrong spoller"); 22

 } 23

 } 24

 public void print(){ 25

 if(instance != null){ 26

 System.out.println("Paper had been printed finish"); 27

 }else{ 28

 28

 System.out.println("Spooler is not avaliable"); 29

 } 30

 } 31

} 32

public class App { 33

 public static void main(String[] args) { 34

 //Spooler of HP printer is get by client1 35

 Printer hp1 = Printer.getInstance("HP"); 36

 //Spooler of HP printer is get by client2 37

 Printer hp2 = Printer.getInstance("HP"); 38

 //client1 return spoller to context 39

 Printer.returnInstance(hp1); 40

 //Spooler of HP printer is get by client3 41

 Printer hp3 = Printer.getInstance("HP"); 42

 } 43

} 44

 29

2.5.5 Façade pattern

 For reducing complex of multiple methods caller in some activity, an Object
or a method is created to compose of all the methods are significant. This pattern is
applied to create a simplified interface that easy to use. It also decouples the code
from the multiple methods, making it easier to modify subsequently.

The participant’s classes in the Façade pattern

Façade

Façade is a class that composes related methods. This class delegate’s client
requests to appropriate related methods.

ClassN

ClassN provide methods which is called by façade.

Example

In printing paper operation, developers must call method getInstance, print
and returnInstance sequentially. For reducing complex of multiple method caller,
senior develops is assign to think How to ease that problem. In Fig. 2.10, method
printPaper wrap three operations into itself by applying Façade pattern.

Figure 2.10 PrinterFacade class applying Façade pattern

 30

public class PrinterFacade implements Serializable { 1

 /** 2

 * Wrapping three method into only one method, this method can reduce 3

 * complicated method caller. 4

 */ 5

 public static void printPaper() { 6

 Printer spooler = Printer.getInstance("HP"); 7

 spooler.print(); 8

 Printer.returnInstance(spooler); 9

 } 10

} 11

public class App { 12

 public static void main(String[] args) { 13

 PrinterFacade.printPaper(); 14

 } 15

} 16

31

2.5.6 General-Hierarchy pattern

 This pattern occurs in many class diagrams. The General-Hierarchy pattern has
define two classes are related both by a generalization. This pattern is applied to
provide flexible way of representing the hierarchy that all the objects share common
features.

The participant’s classes in the General-Hierarchy

Node

Node is an Abstract class that provides methods to share common features.

SuperiorNode

SuperiorNode is Sub class of Node. This class provide an attribute of Node in
order to aggregate Sub class of Node into its.

NonSuperiorNode

This class is Sub class of Node, but it not has any attribute for aggregation.

Example

File system, which can store both directories and file into system, and
directories can be store into other directory. In order to create File system, the
General-Hierarchy is applied to create Hierarchy class of File System which shows at
Fig. 2.11.

32

Figure 2.11 Hierarchy of FileSystem

33

public abstract class FileSystem implements Serializable{ 1

 private String name; 2

 private String size; 3

 public String getName() { 4

 return name; 5

 } 6

 public void setName(String name) { 7

 this.name = name; 8

 } 9

 public String getSize() { 10

 return size; 11

 } 12

 public void setSize(String size) { 13

 this.size = size; 14

 } 15

} 16

public class Directory extends FileSystem implements Serializable{ 17

 private List<FileSystem> fileSystems; 18

 public Directory() { 19

 fileSystems = new ArrayList<FileSystem>(); 20

 } 21

 public List<FileSystem> getFileSystems() { 22

 return fileSystems; 23

 } 24

 public void setFileSystems(List<FileSystem> fileSystems) { 25

 this.fileSystems = fileSystems; 26

 } 27

 public void addNewDirectory(FileSystem fileSystem){ 28

34

 fileSystems.add(fileSystem); 29

 } 30

 public static void printAllFileSystem(Directory directory){ 31

 Directory d; 32

 File f; 33

 System.out.println("Directory: " + directory.getName() + "/" + directory.getSize()); 34

 for (FileSystem fileSystem : directory.getFileSystems()) { 35

 if(fileSystem instanceof Directory){ 36

 d = (Directory)fileSystem; 37

 printAllFileSystem(d); 38

 }else{ 39

 f = (File)fileSystem; 40

 System.out.println("File: " + f.getName() + "/" + f.getSize()); 41

 } 42

 } 43

 } 44

} 45

public class File extends FileSystem implements Serializable{ 46

 private String type; 47

 public File(String type) { 48

 this.type = type; 49

 } 50

 public String getType() { 51

 return type; 52

 } 53

 public void setType(String type) { 54

 this.type = type; 55

 } 56

35

} 57

public class App { 58

 public static void main(String[] args) { 59

 Directory d1 = new Directory(); 60

 d1.setName("d1"); 61

 Directory d2 = new Directory(); 62

 d2.setName("d2"); 63

 File f1 = new File("jpeg"); 64

 f1.setName("f1"); 65

 f1.setSize("1kb"); 66

 File f2 = new File("txt"); 67

 f2.setName("f2"); 68

 f2.setSize("3kb"); 69

 File f3 = new File("properties"); 70

 f3.setName("f3"); 71

 f3.setSize("1kb"); 72

 d2.addNewDirectory(f3); 73

 d2.setSize("1kb"); 74

 d1.addNewDirectory(f1); 75

 d1.addNewDirectory(f2); 76

 d2.setSize("4kb"); 77

 d2.addNewDirectory(d1); 78

 Directory.printAllFileSystem(d2); 79

 } 80

}81

36

3. CHAPTER III
RELATED WORKS

The design patterns apply the idea of object oriented design principle, which
can reduce coupling or dependency of program module. Different types of design
patterns have ability to solve different problems in object oriented programming. For
instance, Bridge pattern, which is one of the design patterns, apply object-oriented
programming idea to create Interface programming and aggregation. This idea can
decouple an abstraction from its implementation without concerning about many
concrete implementations. Bridge pattern has been discussed in [4], which takes an
example to show implementation of this pattern to ease solving modules coupling.
The example demonstrates a set of modules that connect to database, when either
username or password is changed; all of those modules need to be modified.
Instead of rewriting in all original modules, Lejiang Guo, Wenjie Tu and Liang Liu
applied Bridge pattern to create a new abstract module, which was placed as a
bridge between sets of that modules and database, so those code is modify only
one place; it causes no impact to other function modules. In [5], Hao Dai presented
Adapter, Factory, and Decorator pattern that can reduce degree of coupling between
application and database. They used Adapter pattern to build DataAccessor to
decouple data access code from business logic. Therefore, developers can easily
adjust data optimization strategy for the database features. Factory pattern is used to
build BusinessObjectFactory that can construct business object through the data
access layer corresponding to the raw data. Therefore developers no longer
concerned about relationship between business objects and corresponding fields in
data tables. Furthermore, Decorator pattern is used to define a StatementDecorator
to debug log information by tracing application’s SQL statement automatically. After
applying this pattern, developers do not need to execute SQL statements by adding
the log entry code manually. In addition, a Model-View-Controller (MVC) pattern is
very famous among architecture patterns. The MVC pattern separate model, view
and control independently, while Presentation-Abstraction-Control (PAC) pattern uses

37

hierarchy of control components. Thus web application that adopts these two types
of pattern will be maintainable and scalable in web applications. Phek Lan Thung
et.al. [6] analyzed two architecture patterns (MVC and PAC) for web applications
based on their structure. The design patterns not only reduce coupling of program
module, but also improve performance of module. In [7], Chen Liyan et.al. used
Facade pattern, Service locater pattern, Singleton pattern and Value object (VO)
pattern to optimize EJB. Service locater pattern helps extract service object from
JNDI, and put them in static variables. The Singleton pattern reduces number of
objects initialization, and the Facade pattern embeds entity bean in the session
bean, and provides an interface for client, including reducing the number of remote-
calling. VO pattern makes use of value object to encapsulate business data, so data
transmission is optimized by VO pattern.

Very few researches have been applied design patterns to the BPM system.
Chaoying Ma, Liz Bacon, Miltos Petridis and Gill Windall proposed the idea of how to
integrate and collaborate cross-domain with heterogeneous BPM system [8]. They
used IFM (InterFace Mapper) to bridge gaps between GUI and the various BPM
systems. This solution reduces the complication of rewriting code to interact with
APIs to the back-end services. In [9], Le Yang et.al. illustrate examples, for
customizing BPM system with users friendly GUI. They customized uEngine, one of
top-evaluated open source BPM system [10], to create custom GUI and APIs for
flexible requirements.

Figure 3.1 Enterprise application call BPM A directly

38

Figure 3.2 Enterprise application call BPM B directly

In current researches, they did not propose frameworks to support BPM

vendor changing. Generally, enterprise application interacts with BPM by using BPM
APIs. Referring to Fig. 3.1, it illustrates how enterprise application calls BPM system
via BPM APIs. When developers need to change BPM vendor for corresponding to
existing resources and devices of a new customer, developers have to rewrite code
in enterprise application to interact with a new BPM as show in Fig. 3.2. In addition,
business objects that have to be processed in BPM system from enterprise
application must be changed from an old set of objects to a new set, which is
compatible with that of new BPM system. In the proposed framework, I use interface
class to embed BPM APIs of any BPM vendors, see Fig. 3.3. There are three different
types of BPM APIs, which are Implement A, B and C. Fundamentally developers must
create three connectors to communicate with all of those three different types of
BPM APIs. Therefore Interface programming and polymorphism concept is applied to
create concrete classes to implement an Interface. Then that Interfaces is used to
place as a bridge between enterprise application and any BPM APIs. To reduce this
difficulty, it is necessary that a framework is used to reduce complexity of interaction
with BPM system in order to help developers in developing programs faster.
Therefore, Design patterns are applied in the proposed framework to create abstract
and interface class to embed BPM APIs of any BPM vendors. In real life, different
electric devices have different types of remote control. Fortunately, interface assists
to develop universal remote, which can be used with any electric devices. For
creating a framework that can interoperate with any BPM system, Bridge pattern is
applied to build an interface, which placed as a bridge between enterprise
application and BPM system to support BPM vendor changing. In the case of passing
data to BPM system, Decorator pattern is applied on a set of business object in order

39

to map business object to data objects [11] of any BPM vendors, where each data
object containing variables used to define the type of information corresponding to
business process. Factory pattern is applied to automatically initial business object
without exposing the instantiation logic to the client while the Singleton pattern is
applied to restrict number of BPM instance to interact with BPM system. For reducing
complexity of multiple methods caller between enterprise application and BPM APIs,
the Façade pattern is applied to encapsulate those multiple methods caller. At last,
General-Hierarchy pattern is applied to create general types of exception for
wrapping any kind of exception.

Figure 3.3 Use Interfaces to place as a bridge between APIs and application

40

4. CHAPTER IV
PROPOSED METHOD

This research uses six design patterns for creating a framework in order to
integrate loosely coupled BPM API into enterprise applications. The design patterns
are described in six sections. In section 4.1, Bridge pattern idea is used to build a BPM
Interface to interoperate with any BPM system. In section 4.2, the Decorator pattern
is applied to create objects to support BPM vendor changing. This pattern decorates
set of fine-grained objects to become a new object suitable for new BPM systems. In
section 4.3, the Factory pattern is used to automate selecting a class that
implements a BPM Interface for initialization at runtime. In section 4.4, Singleton
pattern is applied to restrict number of BPM instances to exist in Enterprise
application. In section 4.5, Façade pattern is applied to reduce complex of methods
caller. In the last section, General-Hierarchy pattern for wrapping any kinds of
exception to become a general type.

41

Figure 4.1 Interface using Bridge pattern

Figure 4.2 Bridge pattern component

42

4.1 Bridge pattern for creating BPM Interface.

In the case of enterprise application interoperating with Oracle BPM system
[12] via Oracle BPM APIs, developers must create a new instance of object of Oracle.
On the other hand, they create an instance of object of Bonita for interoperating with
Bonita BPM system [13]. They use different packages of codes to interact with BPM
system. When BPM vendor is changed to correspond to existing resources and
devices of new customer requirements, developers must modify packages of codes
for interoperating with new BPM vendor. To reduce this difficulty, Bridge pattern idea
is proposed in the framework to create group of classes to place as a bridge between
enterprise application and any BPM systems. Bridge pattern is applied with object-
oriented designing ideas to focus on Interface programming and Aggregation. In this
idea, group of classes are divided into Abstraction, Implementor and
ConcreteImplementor. In Fig. 4.2 represent components of this framework which
apply Bridge pattern. By applying Aggregation concepts, BPM Interface is aggregated
into Abstraction of Bridge pattern, which is BPMContext in Fig. 4.1. BPM Interface that
shows in Fig. 4.1 referring to the Interface box in Fig. 3.3, is used to place as a bridge
between enterprise application and BPM systems to become an Implementor of
Bridge pattern. While BonitaBPMImpl class and OracleBPMImpl class in Fig. 4.1 are
Implement A and Implement B in Fig. 3.3 respectively, which are
ConcreteImplementor. The ConcreteImplementor overrides methods of BPM
Interface. Therefore BPM Interface is the key of “plug-and-play” ability to
interoperate with any BPM APIs. BPM Interface is aggregated into BPMContext, which
is Abstraction. BPMContext is able to receive parameter to select appropriate
ConcreteImplementor that implements BPM Interface. When developers want to
change BPM vendor from Oracle to Bonita, they just use BonitaBPMImpl to
implement BPM Interface instead of using OracleBPMImpl. Therefore, BPMcontext
class can be selected to interact with Oracle or Bonita BPM system automatically.
Namely, enterprise application can interact with any BPM APIs by using BPM Interface
through BPMContext class. Since the framework applies the idea of Bridge pattern,

43

developers can change BPM API to interact with BPM system easily. Example of
codes is proposed at Appendixes A, B, C.

4.2 Decorator pattern is applied to create objects using BPM Interface method.

In business process, data objects are used to define information to use in
BPM system, while business objects are used to define information in enterprise
application. In the case of passing business object to BPM system through BPM
Interface, a set of business object is mapped to a set of data object. Therefore an
object used to map a set of business object to a set of data object of any BPM
vendors is important. In proposed framework, the mapped object is represented by a
WorkItem object. Decorator pattern is applied to reduce degree of coupling between
each object. For applying the Decorator pattern idea in proposed framework,
business objects are separated to BonitaItem, OracleItem, SchedulerItem, LeaveItem
and etc. Those of them are called fine-grained objects. Then the fine-grained objects
are decorated to become a WorkItem object. WorkItem object is a new business
objects replacing the old one to define information to pass to any BPM systems.
WorkItem object is showed in many parameters in method at Fig. 4.1. In Fig. 4.3 and
Fig 4.4, a WorkItem object applies Decorator pattern idea to decorate BPM object
(BonitaItem and OracleItem) and business objects (SchedulerItem and LeaveItem). In
the case of changing BPM vendor, LeaveItem can change behavior by passing a BPM
object (BonitaItem and OracleItem) to its constructor. For example, LeaveItem object
is decorated to interoperate with Oracle BPM as below.

LeaveItem item = new LeaveItem(new OracleItem());

In order to change BPM vender to interoperate with Bonita BPM instead of
Oracle BPM, developers just change instance of an object at the parameters of
constructor. The codes are presented below.

LeaveItem item = new LeaveItem(new BonitaItem());

In the case of getting leave data from work item from workflow of Oracle
BPM. putContentToWorkItem method must be invoked, as show in Fig. 4.5, the

44

putContentToWorkItem method is used to get data from HashMap to javaBeans
(LeaveItem) properties [14], on the outmost decorator, LeaveItem. Then LeaveItem
performs its operation, and invokes putContentToWorkItem on the OracleItem to do
the rest of the job. Therefore WorkItem object is going to delegate computing
content to the objects it decorates.

45

Figure 4.3 Design Conponent (Item) and ConcreteComponent

(BonitaItem, OracleItem) by applying Decorator pattern

46

Figure 4.4 Design Decorator (WorkItem) and ConcreteDecorator

(SchedulerItem, LeaveItem) by applying Decorator pattern

47

Figure 4.5 Represent method putContentToWorkItem is called at runtime

4.3 Factory pattern for automating to select BPM Interface for interoperation
with BPM system.

Refer to section 4.1 and 4.2, an object is selected for instantiating manually
through new operation. According to section 4.1, codes is written to create
BPMContext of Oracle, see below for details.

BPMContext bpm = new BPMContext(new OracleBPMImpl());

In section 4.2, codes are written to create LeaveItem object, to pass to Oracle
BPM system, as show in below.

LeaveItem item = new LeaveItem(new OracleItem());

In order to reduce number of instantiation above, Factory pattern idea is
applied to automate to select concrete classes (BonitaBPMImpl class and
OracleBPMImpl) for interoperation with BPM. In the Java programming language, each
object is created by using the "new" operator to initialize an object. The framework is
made to automate initializing object by putting full package string into OracleItem
and BonitaItem classes, as show in below.

private static final String itemType = "com.wittakarn.bpm.oracle.OracleBPMImpl";

private static final String itemType = "com.wittakarn.bpm.oracle.BonitaBPMImpl";

Therefore, objects are initiated at runtime through BPMContext constructor,
as show in next page.

48

bpm = (BPM) Class.forName(workItem.getItem().getItemType()).newInstance();

Because of applying Factory pattern idea, the number of manual initialization
can be reduced by below group of code.

 LeaveItem item = new LeaveItem(new OracleItem());

 BPMContext bpm = new BPMContext(item);

4.4 Singleton pattern for restricting number of BPM instances to exist in
Enterprise application.

 Currently, BPM systems consume a lot of memory resources. Therefore,
System architect, who are plan and configure resources of a server, prefers to deploy
BPM systems into a server and leave another system to deploy into different servers.
But some customers, they do not a lot of budget to provide different servers for
deploying systems. In this case, System architect cannot avoid deploying both an
enterprise application and a BPM system into only one server. For deploying both an
enterprise application and a BPM system into a server, developers must consider and
beware to develop an enterprise application in order to avoid memory leak on the
server.

 Most of memory consuming occurs whenever tasks in BPM system are
searched by either inside or outside process. Therefore, restriction number of process
can avoid memory leak on the server. In this work Singleton pattern is applied to
restrict number of BPM instances. By applying this framework, method getInstance in
BPMContext class, which is used to create an instance of BPM, is improved to check
number of instance in the entire system, and if number of instance not greater than
limit, the method return new instance, but if number of instance greater or equals
with limit, the method return null to client. The method getInstance has been
presented in next page

49

private static Vector<BPM> instance = new Vector<BPM>(limit);

public static BPM getInstance(WorkItem workItem) {

 boolean found = false;

 int index = -1;

 BPM result = null;

 try{

 for (int i = 0; i < limit; i++) {

 /*Check number of instance for sending to client

 If an instance that not greater than limit and did not used by other

 process, create a new one for sending to client

 */

 if((instance.elementAt(i) == null) && !found){

 instance.remove(i);

 instance.add(i, (BPM)
Class.forName(workItem.getItem().getItemType()).newInstance());

 index = i;

 found = true;

 result = (BPM) instance.elementAt(index);

 }

 }

 if(result == null){

 System.out.println("No avaliable BPM instance");

 }

 return result;

50

 } catch (InstantiationException e) {

 throw new WorkflowException(e);

 } catch (IllegalAccessException e) {

 throw new WorkflowException(e);

 } catch (ClassNotFoundException e) {

 throw new WorkflowException(e);

 }

}

 By applying the group of code, an enterprise application is restricted number
of BPM instance to interact with BPM system. This approach can avoid an enterprise
application memory overload on a server.

4.5 Façade pattern for reducing complex of methods caller.

 Most of the methods in BPM APIs, which are interoperated with BPM system,
are reusable method. Some method such as authenticate method,
generateResponstTask are used whenever developers want to access tasks in BPM
system. In order to develop searchTasks method, developers must invoke activity
such as authenticate, get pending tasks and generate response, for getting pending
tasks list. For simplify searchTasks method, doTenantLogin,
getPendingHumanTaskInstances, getProcessAPI, generateResponseTask and
doTenantLogout are wrapped into method listPendingTasks in order to provide a
single method to make it easy to access a whole subsystem of classes. Group of
code of searchTasks method in class BonitaBPMImpl, which call listPendingTasks, are
presented below. In Fig. 4.6, the figure present five methods, which are
doTenantLogin, getPendingHumanTaskInstances, getProcessAPI,
generateResponseTask and doTenantLogout, are encapsulated into listPendingTask.

51

/**

 * Class BonitaBPMImpl.java

 */

public Object searchTask(WorkItem workItem) throws SearchTaskException {

 try {

 return BonitaWrapper.listPendingTasks(workItem.getUserId(),
workItem.getPassword());

 } catch (Exception e) {

 throw new SearchTaskException(e);

 }

}

/**

 * Class BonitaWrapper.java

 * List all pending tasks for the logged user

 * @throws BonitaException

 * if an exception occurs when listing the pending tasks

 */

public static List<HashMap<String, Object>> listPendingTasks(String user, String
password) throws BonitaException {

 // login

 APISession session = doTenantLogin(user, password);

 try {

 ProcessAPI processAPI = getProcessAPI(session);

52

 // the result will be retrieved by pages of PAGE_SIZE size

 int startIndex = 0;

 int page = 1;

 List<HumanTaskInstance> pendingTasks = null;

 // get all tasks.

 pendingTasks = processAPI.getPendingHumanTaskInstances(session.getUserId(),
startIndex, PAGE_SIZE, ActivityInstanceCriterion.LAST_UPDATE_ASC);

 // print all tasks.

 return generateResponseTask(page, pendingTasks, processAPI);

 } finally {

 // logout

 doTenantLogout(session);

 }

}

Figure 4.6 Five method are encapsulated into listPendingTask

The Façade pattern is applied to reduce complex activities of methods
searchTasks, initialTask, updateTask and etc.

53

4.6 General-Hierarchy pattern for wrapping any kinds of exception to become a
general type.

 When an error occurs within BPM APIs, the BPM API throws an exception. After
that, the runtime system searches the call stack to find an appropriate handler, and
then the runtime system passes the exception to the handler for caching an
exception [15].

Generally, different BPM APIs have different types of exception. In the case of
Bonita APIs occurs an error, they will throw BonitaException. While the
WorkflowException will be throw from Oracle APIs whenever an error occurs at
runtime system. In order to reduce stamp coupling from any BPM APIs exceptions,
developers can use super class of exception instead of using BonitaException or
WorkflowException. Although, the super class of exception can be used to reduce
stamp coupling of any BPM APIs exceptions, it cannot specific type of exception to
notify to the client. Therefore, developers should create a general type of exception
instead of using super class of exception.

In this work, General-Hierarchy pattern is applied to create hierarchy of
exceptions. In Fig. 4.7 represent CancelClaimTaskException, InitialTaskException,
CountTaskException, SearchTaskException, UpdateTaskException,
CompleteTaskException and ClaimTaskException are sub class of BPMException. The
SearchTaskException is created to handle an error from searchTask method of any
BPM APIs. Similarly, UpdateTaskException is used to handle an error from updateTask
method of any BPM APIs. Since, RuntimeException is super class of BPMException,
the BPMException become an unchecked exceptions. The unchecked exception type
is used as super class whenever a client cannot do anything to recover from the
exception [16]. Most of the operations of BPM APIs, which enterprise application
interoperate with BPM system, require the rollback feature. In the case that
enterprise application updates data in database and submits some data to BPM
System, the enterprise application will pass some data to BPM system for routing a
task to next step after database update. If an exception occurs, all the operations
will be rollback to the original state. By using RuntimeException as a super class, the

54

framework support Enterprise JavaBeans (EJB) [17] to automatic rollback whenever
the enterprise application occurring an exception [18].

Figure 4.7 Group of exception applying General-Hierarchy pattern

 In the proposed framework, BPM APIs exceptions are divided into
InitialTaskException, CountTaskException, SearchTaskException,
UpdateTaskException, CompleteTaskException, ClaimTaskException,
CancelClaimTaskException and BPMException to handle the different kinds of
exceptions from any BPM APIs.

55

5. CHAPTER V
EXPERIMENTS AND RESULTS

In order to evaluate the proposed framework, comparisons between original
code (without using the proposed framework) and developed code (using the
proposed framework) are shown and discussed in this chapter. First, groups of code
are demonstrated to present how to change BPM vendors by using the framework.
After that, framework analyzing is demonstrated whether it is suitable for each design
pattern in loosely coupled integration between BPM APIs and enterprise application.

5.1 The framework provides to change BPM vendors by little re-programming.

Base on the research framework, this framework is created for supporting BPM
vendor changing in further project with little re-programming, and also develop
programs faster. Thus, this framework is created to simplify the use of BPM vendor
changing. For demonstration, group of code of completeTask method, which is used
to move a task of Bonita BPM process to another step, are presented in next page.

56

private static void executeTask(){ 1

 HashMap<String, Object> hash; 2

 LeaveItem item; 3

 BPM bpm; 4

 try { 5

 item = new LeaveItem(new BonitaItem()); 6

 item.setUserId("admin"); 7

 item.setPassword("bpm"); 8

 item.setTaskId("60003"); 9

 bpm = BPMContext.getInstance(item); 10

 hash = (HashMap<String, Object>) bpm.completeTask(item); 11

 item.putContentToWorkItem(hash); 12

 BPMContext.returnInstance(bpm); 13

 System.out.println("item = " + item); 14

 } catch (BPMException we) { 15

 we.printStackTrace(); 16

 } finally { 17

 hash = null; 18

 item = null; 19

 bpm = null; 20

 } 21

}22

57

Group of code of completeTask method, which is used to move a task of Oracle BPM
process to another step, are presented in next page.

58

private static void executeTask(){ 1

 HashMap<String, Object> hash; 2

 LeaveItem item; 3

 BPM bpm; 4

 try { 5

 item = new LeaveItem(new OracleItem()); 6

 item.setUserId("admin"); 7

 item.setPassword("bpm"); 8

 item.setTaskId("60003"); 9

 bpm = BPMContext.getInstance(item); 10

 hash = (HashMap<String, Object>) bpm.completeTask(item); 11

 item.putContentToWorkItem(hash); 12

 BPMContext.returnInstance(bpm); 13

 System.out.println("item = " + item); 14

 } catch (BPMException we) { 15

 we.printStackTrace(); 16

 } finally { 17

 hash = null; 18

 item = null; 19

 bpm = null; 20

 } 21

} 22

59

 Different between two groups of code are represented by line 7 in method
executeTask of both Oracle and Bonita. Developers use operation “new
LeaveItem(new BonitaItem())” whenever they want to interoperate with Bonita BPM.
Similarly, they use operation “new LeaveItem(new OracleItem())” in order to interact
with Oracle BPM. By applying proposed framework, developers just change only one
line of code for changing BPM vendor interoperation.

5.2 Analysis the framework.

 In the following chapter, this research applies six kinds of Design patterns to
create the framework. For analysis, the framework is suitable for design patterns to
integrate loosely coupled BPM APIs into enterprise application. Demonstration
between development by using the framework and development without using the
framework are presented to compare coupling among those two demonstrations.
Controls coupling in BPM vendor changing have been reduced to Stamp coupling is
shown in section 5.2.1. In section 5.2.2 and 5.2.3, a demonstration shows the Stamps
coupling have been reduced by applying Decorator pattern and General-Hierarchy
pattern respectively. The Routine coupling of method’s operation has been reduced
by applying Façade pattern is shown in section 5.2.4. In addition, the summaries of
improvement by applying six Design patterns are shown in section 5.2.5.

In next page, group of original code, which is used to interact with Oracle and
Bonita BPM without using the framework?

60

public List<LeaveItem> searchTask(String vendor){ 1

 List<LeaveItem> leaveItems = new ArrayList<LeaveItem>(); 2

 List<HashMap<String, Object>> hashs = new ArrayList<HashMap<String, 3
Object>>(); 4

 if(vendor.equals("Oracle")){ 5

 try { 6

 OracleLeaveItem leaveItem = new OracleLeaveItem(); 7

 leaveItem.setUserId("xxx"); 8

 leaveItem.setPassword("yyy"); 9

 hashs = searchOracleTask(leaveItem); 10

 } catch (WorkflowException ex) { 11

 Logger.getLogger(App.class.getName()).log(Level.SEVERE, null, ex); 12

 } 13

 }else if(vendor.equals("Bonita")){ 14

 BonitaLeaveItem leaveItem = new BonitaLeaveItem(); 15

 leaveItem.setUserId("xxx"); 16

 leaveItem.setPassword("yyy"); 17

 try { 18

 hashs = searchBonitaTask(leaveItem); 19

 } catch (BonitaException ex) { 20

 Logger.getLogger(App.class.getName()).log(Level.SEVERE, null, ex); 21

 } 22

 } 23

 // map list of HashMap to listof leaveItem. 24

 // TODO Auto-generated method stub 25

 return leaveItems; 26

} 27

 28

61

private List<HashMap<String, Object>> searchBonitaTask(BonitaLeaveItem leaveItem) 29
throws BonitaException{ 30

 //getting all tasks from bonita. 31

 List<HashMap<String, Object>> hashs = (List<HashMap<String, Object>>) 32
BonitaWrapper.listPendingTasks(leaveItem.getUserId(), leaveItem.getPassword()); 33

 return hashs; 34

} 35

 36

private List<HashMap<String, Object>> searchOracleTask(OracleLeaveItem leaveItem) 37
throws WorkflowException{ 38

 //getting all tasks from oracle. 39

 List<HashMap<String, Object>> hashs = (List<HashMap<String, Object>>) 40
OracleWrapper.searchTask(leaveItem.getUserId(), leaveItem.getPassword()); 41

 return hashs; 42

} 43

public static void main(String args[]){ 44

 App test = new App(); 45

 test.searchTask("Oracle"); 46

}47

62

5.2.1 The Control coupling in BPM vendor changing

 According to the line 5 and line 14 of original code, the method searchTask
will have to change whenever any of its callers adds a new vendor. This occurring
problem is called Control coupling. However, Control coupling in OOP can be
reducing by applying polymorphism concept. In this research, Bridge pattern and
Factory pattern are applied to reduce control coupling.

Bridge pattern is applied in the framework to create an Interface to make any
module caller by using polymorphic operation. Developed code, which is used the
framework are presented in next page.

63

public List<WorkItem> searchTask(WorkItem item) { 1

 List<WorkItem> items = new ArrayList<WorkItem>(); 2

 List<HashMap<String, Object>> hashs = null; 3

 BPM bpm; 4

 try { 5

 item.setUserId("admin"); 6

 item.setPassword("bpm"); 7

 bpm = BPMContext.getInstance(item); 8

 hashs = (List<HashMap<String, Object>>) bpm.searchTask(item); 9

 // map list of HashMap to listof leaveItem. 10

 // TODO Auto-generated method stub 11

 return items; 12

 } catch (BPMException we) { 13

 we.printStackTrace(); 14

 return items; 15

 } finally { 16

 item = null; 17

 bpm = null; 18

 } 19

} 20

public static void main(String[] args) { 21

 App test = new App(); 22

 test.searchTask(new LeaveItem(new BonitaItem())); 23

} 24

64

 In line 8, method getInstance is applied Factory pattern to select a suitable
concrete of Bonita BPM APIs in order to invoke method searchTask of Bonita APIs.
Therefore, Bridge pattern, which are applied Interface and polymorphism concept,
can reduce Control coupling. In table 5.1 shows the different between the original
code and the developed code which the original one did not use Bridge pattern but
the other one used.

Table 5.1 Comparing code apply Bridge pattern
Original code Developed code

if(vendor.equals("Bonita")){

searchBonitaTask(leaveItem);

}

item = new LeaveItem(new BonitaItem());

bpm = BPMContext.getInstance(item);

bpm.searchTask(item);

5.2.2 The Stamp coupling of a method argument

 Refer to line 10 of the original code, the OracleLeaveItem object is send as a
parameter to method searchTask. The OracleLeaveItem object is a customer’s leave
information. Any time a developer add new variable in the OracleLeaveItem class, he
or she will have to check the searchTask method to see if it needs to be changed.
The OracleLeaveItem class is also not reusable. This occurring problem is called
Stamp coupling.

 This framework apply Decorator pattern to create abstract WorkItem in order
to decorate LeaveItem or SchedulerItem to become a WorkItem object. WorkItem
object, which is super class of both LeaveItem and SchedulerItem, is send as a
parameter to method searchTask instead of use a concrete class for reducing Stamp
coupling. By applying this concept the Stamp coupling is resolved, and WorkItem
object is also reusable. Example of code appears in section 5.2.1 at line 23 in
method main. The WorkItem object can decorate by wrapping a BonitaItem object to
a LeaveItem object. In table 5.2 shows the different between the original code and

65

the developed code which the original one did not use Decorator pattern but the
other one used.

Table 5.2 Comparing code apply Decorator pattern

Original code Developed code

BonitaLeaveItem leaveItem = new
BonitaLeaveItem();

searchBonitaTask(leaveItem);

WorkItem item = new LeaveItem(new
BonitaItem());

searchTask(item);

5.2.3 The Stamp coupling of an exception

 Because of different BPM APIs have different classes for handling exceptions,
developers have to create some operation to handle different kinds of exception.
Refer to line 11 and line 20 in the original code; Oracle and Bonita throw different
kinds of exception whenever error is occurred in BPM APIs. Since, the Stamp coupling
has been reduced by using an Interfaces or super class, General-Hierarchy pattern is
applied to create general exceptions mentioned in section 4.6. In general, both
BonitaException and WorkFlowException are original exception of Bonita BPM APIs
and Oracle BPM APIs respectively. They are sub class of Exception class In Fig. 5.1,
the figure presents hierarchy of Throwable class. According to BPMException,
RuntimeException is supuer class of BPMException. Therefore, BPMException can
incorporate either BonitaException or WorkFlowException.

66

Figure 5.1 The Throwable class diagram

By applying General-Hierarchy pattern, either BonitaException or
WorkFlowException are aggregated into sub class of BPMException for handling
appropriated exception. In table 5.3, there are the differences between the original
code and the developed code which the original one did not use General-Hierarchy
pattern but the other one used.

Table 5.3 Comparing code apply General-Hierarchy pattern

Original code Developed code

try {

} catch (BonitaException ex) {

 // TODO Auto-generated method stub

}

try {

} catch (BPMException we) {

 // TODO Auto-generated method stub
}

5.2.4 The Routine call coupling in operations

 Refer to Fig. 4.7, five methods, which are doTenantLogin,
getPendingHumanTaskInstances, getProcessAPI, generateResponseTask and
doTenantLogout, are encapsulate to become the method listPendingTasks. In the
case of one of the five methods, which is getProcessAPI has been changed its

67

operation to new method (getNewProcessAPI), the caller of the method
listPendingTasks do not re-write anything.

Figure 5.2 The caller listPendingTasks do not re-write code when operations

have been changed

Since, Façade pattern can reduce Routine call coupling, single routine
(listPendingTasks) that encapsulate the five methods. Thus, any time a maintainer
changes one of the five method operation he or she will have to check only the
encapsulated method to see if it needs to be changed. In table 5.4 there are the
different between the original code and the developed code which the original one
did not use Façade pattern but the other one used.

Table 5.4 Comparing code apply Façade pattern

Original code Developed code

doTenantLogin()

getProcessAPI()

getPendingHumanTaskInstances()

generateResponseTask()

doTenantLogout()

listPendingTasks()

68

5.2.5 Summaries of improvement

 In this work, eight methods of Bonita and Oracle (total is sixteen), which are
initialTask, countTask, searchTask, updateTask, completeTask, claimTask,
cancelClaimTask, searchTaskByTaskId are created to interoperate with any BPM
Systems.

 In this work, two types of task, which are leave object and schedule object
are created to pass data to any BPM Systems.

Table 5.5 Summaries of improvement
Factory pattern

Framework’s advantage Original pattern Improved pattern

Control coupling, which is
used for creating an object
when interoperating with any
BPMS, has reduced to be Data
coupling. One if-else
statement of return statement
has been eliminated.

If(vendor.equals(“Oracle”)){

 return new Oracle();

}else if(vendor.equals(“Bonita”)){

 return new Bonita();

}

return Class.forName(

 workItem.getItem()

 .getItemType())

 .newInstance()

Bridge pattern

Framework’s advantage Original pattern Improved pattern

Control coupling, which is
applied to selecting BPM
vendor to interoperation, has
reduced to be Stamp
coupling. Eight if-else
statements have been
reduced to zero. Next
columns present three of
eight if-else statements which
are reduced coupling.

public void searchTask(){

 if(vendor.equals(“Oracle”)){

 searchOracleTask();

 }else if(vendor.equals(“Bonita”)){

 searchBonitaTask();

 }

}

public void initialTask(){

 if(vendor.equals(“Oracle”)){

Public void searchTask(){

 item = new LeaveItem(new
BonitaItem());

 bpm =
BPMContext.getInstance(item);

 bpm.searchTask(item);

}

Public void initialTask(){

 item = new LeaveItem(new

69

 initialOracleTask();

 }else if(vendor.equals(“Bonita”)){

 initialBonitaTask();

 }

}

public void searchTaskByTaskId(){

 if(vendor.equals(“Oracle”)){

 searchOracleTaskByTaskId();

 }else if(vendor.equals(“Bonita”)){

 searchBonitaTaskByTaskId();

 }

}

BonitaItem());

 bpm =
BPMContext.getInstance(item);

 bpm.initialTask(item);

}

Public void searchTaskByTaskId(){

 item = new LeaveItem(new
BonitaItem());

 bpm =
BPMContext.getInstance(item);

 bpm.searchTaskByTaskId(item);

}

Decorator pattern

Framework’s advantage Original pattern Improved pattern

BonitaItem and OracleItem
are created to aggregate with
any kinds of task such as
leave and schedule in order
to make reusable objects.
Four kinds of object, which
are leaveItem scheduleItem,
BonitaItem and OracleItem,
are reusable.

BonitaLeaveItem item = new
BonitaLeaveItem();

OracleLeaveItem item = new
OracleLeaveItem();

BonitaScheduleItem item = new
BonitaScheduleItem();

OracleSchduleItem item = new
OracleSchduleItem();

WorkItem item = new
LeaveItem(new BonitaItem());

WorkItem item = new
LeaveItem(new OracleItem());

WorkItem item = new
ScheduleItem(new BonitaItem());

WorkItem item = new
ScheduleItem(new OracleItem());

Stamp coupling of sixteen
methods have been reduced
by passing arguments through
super class instead of

searchOracleTaskByTaskId(OracleLe
aveItem item)

searchBonitaTaskByTaskId(BonitaLea
veItem item)

searchTask(WorkItem workItem)

70

concrete class. Next columns
present four of sixteen
methods which are reduced
coupling.

countOracleTaskTask(OracleLeaveIt
em item)

countBonitaTaskTask(BonitaLeaveIte
m item)

countTask(WorkItem workItem)

General-Hierarchy pattern

Framework’s advantage Original pattern Improved pattern

Stamp coupling of exception
in sixteen methods have been
reduced by throwing
aggregation class of exception.
Next columns present four of
sixteen methods which are
reduced coupling.

searchOracleTaskByTaskId(OracleLe
aveItem item) throws
WorkflowException

searchBonitaTaskByTaskId(BonitaLea
veItem item) throws
BonitaException

countOracleTaskTask(OracleLeaveIt
em item) throws
WorkflowException;

countBonitaTaskTask(BonitaLeaveIte
m item) throws BonitaException;

searchTask(WorkItem workItem)
throws CountTaskException

countTask(WorkItem workItem)
throws SearchTaskException

Since, all of custom
exceptions are sub class of
RuntimeException, sixteen
methods will have rollback
ability when error occurring.

- -

The Control coupling in three
methods has been reduced to
be Stamp coupling.
Developers do not use if-else
statements for checking what
kinds of exception. This can
reduce if-else statement in
those three methods.

public void search(){

 try{

 }catch(BPMException ex)

 messageError(Type.search);

 }

}

public void create(){

 try{

public void search(){

 try{

 }catch(BPMException ex)

 messageError(ex);

 }

}

public void create(){

 try{

71

 }catch(BPMException ex)

 messageError(Type.create);

 }

}

public void update(){

 try{

 }catch(BPMException ex)

 messageError(Type.update);

 }

}

public static void
messageError(String type){

 if(type.equals(“Type.search”)){

 //do something

 }else
(type.equals(“Type.create”)){

 //do something

 } else
(type.equals(“Type.update”)){

 //do something

 }

}

 }catch(BPMException ex)

 messageError(ex);

 }

}

public void update(){

 try{

 }catch(BPMException ex)

 messageError(ex);

 }

}

public static void
messageError(BPMException ex){

 message(SEVERITY_ERROR, ex);

}

Façade pattern

Framework’s advantage Original pattern Improved pattern

Developers need not concern
about re-coding when some
methods are changed their
operation. This proposed can

public Object searchBonitaTask(){

 doTenantLogin();

 getProcessAPI();

public Object searchTask(){

 listPendingTasks();

}

72

reduce Routine coupling at
least three methods by
wrapping a set of routine
methods into only one
method. Next columns
present two of three methods
which are reduced Routine
coupling.

 getPendingHumanTaskInstances();

 generateResponseTask();

 doTenantLogout();

}

public void initialBonitaTask(){

 doTenantLogin()

 getProcessAPI()

 getProcessDefinitionId()

 startProcess()

 doTenantLogout()

}

public void initialTask(){

 instantiateProcess();

}

Singleton pattern

Framework’s advantage Original pattern Improved pattern

If-else statements in three
methods, which are used to
check number of instance for
accessing the BPMS, are not
further necessary.

public void search(){

 int num =
getNumberOfBPMInstance();

 if(num < 5){

 searchTask();

 }

}

public void create(){

 int num =
getNumberOfBPMInstance();

 if(num < 5){

 initialTask();

 }

public void search(){

 BPM bpm = getInstance(item)

 bpm.searchTask();

}

public void search(){

 BPM bpm = getInstance(item)

 bpm.initialTask();

}

public void search(){

73

}

public void update(){

 int num =
getNumberOfBPMInstance();

 if(num < 5){

 completeTask();

 }

}

 BPM bpm = getInstance(item)

 bpm.completeTask();

}

74

6. CHAPTER VI
CONCLUSION

An implementation of integrating between enterprise application and BPM is
very complex. Since developers need to change BPM vendor to interoperate with
enterprise application, they have to rewrite code to interact with a new BPM system.
In this thesis, Design framework has been presented for enterprise application
interoperates with any BPM systems. The framework applied Bridge pattern to place
as a bridge between enterprise application and BPM APIs. For the Factory pattern,
the idea is applied to select concrete class for interoperation with BPM
automatically. To integrate Factory pattern with Bridge pattern, the framework
acquires the “plug-and-play” ability. Decorator pattern and General-Hierarchy pattern
idea are applied to reduce Stamp coupling of an enterprise application and any BPM
APIs, method argument and exception handling respectively. Furthermore, the
framework adopts the Façade pattern to create a single routine that encapsulate the
multiple methods. Finally, the Singleton pattern is adopted to create a module to
restrict number of BPM instance to interact with BPM system for the purpose of
reducing workload on the server. Using the proposed framework is possible to
change BPM vendor in further project with one group of code replacement for each

module, and develop programs easier.

REFERENCES

1. Ma, C., et al., Integration of BPM Systems. 2010: INTECH Open Access
Publisher.

2. Akin, E., Object Oriented Programming via Fortran 90/95. 2001.
3. Laganière, T.C.L.a.R., Object-Oriented Software Engineering: Practical Software

Development using UML and Java. 2001: McGraw Hill.
4. Xiao, T., et al., Design pattern's application, in Electronic and Mechanical

Engineering and Information Technology (EMEIT), 2011 International
Conference on. 2011. p. 4799-4801.

5. Hao, D. Effective Apply of Design Pattern in Database-Based Application
Development. in Computational and Information Sciences (ICCIS), 2012
Fourth International Conference on. 2012.

6. Phek Lan, T., et al. Improving a web application using design patterns: A case
study. in Information Technology (ITSim), 2010 International Symposium in.
2010.

7. Chen, L., L. Tan, and Y. An. Design Pattern Integration Method for Improving
Performance of EJB and Its Applications. in Environmental Science and
Information Application Technology, 2009. ESIAT 2009. International
Conference on. 2009.

8. Chaoying, M., et al. A Design Pattern for Integration of Business Process
Management Systems. in Information Reuse and Integration, 2007. IRI 2007.
IEEE International Conference on. 2007.

9. Le, Y., C. Yongsun, and J. Jinyoung. API and Component Based Customization
of an Open Source Business Process Management System: uEngine. in
Networked Computing and Advanced Information Management, 2008. NCM
'08. Fourth International Conference on. 2008.

10. uengine. 2014; Available from: http://www.uengine.org.
11. Dumas, M., et al., Fundamentals of Business Process Management. 2013:

Springer.

http://www.uengine.org/

76

12. Oracle BPM - Business Process Management. 2014; Available from:
http://www.oracle.com/us/technologies/bpm/overview/index.html.

13. Bonita BPM. 2014; Available from: http://www.bonitasoft.com.
14. Properties. 2014; Available from:

http://docs.oracle.com/javase/tutorial/javabeans/writing/properties.html.
15. Exception. 2014; Available from:

http://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html.
16. Unchecked Exceptions. 2014; Available from:

http://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html.
17. Enterprise JavaBeans. 2014; Available from:

http://www.oracle.com/technetwork/java/javaee/ejb/index.html.
18. Container-Managed Transactions. 2014; Available from:

http://docs.oracle.com/javaee/6/tutorial/doc/bncij.html.

http://www.oracle.com/us/technologies/bpm/overview/index.html
http://www.bonitasoft.com/
http://docs.oracle.com/javase/tutorial/javabeans/writing/properties.html
http://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
http://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
http://www.oracle.com/technetwork/java/javaee/ejb/index.html
http://docs.oracle.com/javaee/6/tutorial/doc/bncij.html

APPENDIX

78

VITA

VITA

Wittakarn Keeratichayakorn was born on 21 June 1986 in Bangkok,

Thailand. He graduated bachelor degree in Computer Science from Chulalongkorn
University, in the year 2009. In the meaning time, he works at Summit Computer
Co., Ltd. in developer position. Moreover, He contributes his time to answer
questions about JSF, Primefaces, Java-EE on website http://stackoverflow.com. His
reputation, which is used to measurement of how much the Stackoverflow
community trusts him, is greater than 2000 reputation. His score and answers have
been shown on http://stackoverflow.com/users/1242160/wittakarn.

Currently, doing Master degree in Computer Science and Information
Technology from Chulalongkorn University, in the year 2014. His paper was Design
patterns for integration between enterprise application with any business process
management systems, have been published in Fourth International Conference
on Digital Information and Communication Technology and it's Applications
(DICTAP), on 6-8 May 2014, in Bangkok, Thailand, and the publisher is IEEE.

	THAI ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1. CHAPTER I INTRODUCTION
	1.1 Objectives
	1.2 Scope of thesis and constraints
	1.3 Expected Outcomes

	2. CHAPTER II THEORITICAL BACKGROUND
	2.1 Oracle Business Process Management Suite
	2.2 Bonita Business Process Management
	2.3 Coupling
	2.4 Reusable
	2.5 Design pattern
	2.5.1 Bridge pattern
	2.5.2 Factory pattern
	2.5.3 Decorator pattern
	2.5.4 Singleton pattern
	2.5.5 Façade pattern
	2.5.6 General-Hierarchy pattern

	3. CHAPTER III RELATED WORKS
	4. CHAPTER IV PROPOSED METHOD
	4.1 Bridge pattern for creating BPM Interface.
	4.2 Decorator pattern is applied to create objects using BPM Interface method.
	4.3 Factory pattern for automating to select BPM Interface for interoperation with BPM system.
	4.4 Singleton pattern for restricting number of BPM instances to exist in Enterprise application.
	4.5 Façade pattern for reducing complex of methods caller.
	4.6 General-Hierarchy pattern for wrapping any kinds of exception to become a general type.

	5. CHAPTER V EXPERIMENTS AND RESULTS
	5.1 The framework provides to change BPM vendors by little re-programming.
	5.2 Analysis the framework.
	5.2.1 The Control coupling in BPM vendor changing
	5.2.2 The Stamp coupling of a method argument
	5.2.3 The Stamp coupling of an exception
	5.2.4 The Routine call coupling in operations
	5.2.5 Summaries of improvement

	6. CHAPTER VI CONCLUSION
	REFERENCES
	VITA

