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CHAPTER I 

INTRODUCTION 

1.1 RESEARCH BACKGROUND AND RATIONALE 

Perna viridis or Asian green mussel (AGM) shell is the two valves shell with 

sharp and smooth surface covered with a periostacum layer (i.e. the green organic 

layer covering the outer surface of the shell). The inner layer of shell shows color and 

luster like pearl. This layer is called nacreous layer or nacre. Nacre of AGM shell is 

hierarchical structure of aragonite calcium carbonate layers (200-500 nm thick) bound 

by thin organic binding layers (20-30 nm thick) [1-13] 

Every year, over 100,000 tons of the shells become an agricultural waste [14]. 

Most of the shells are disposed as landfill [15]. There were several reports on using 

the wasted mussel shells as a raw material for high value applications [16-20]. For 

example, the mussel shells were utilized as an ingredient for high strength cement and 

mortar [16-18]. The calcined mussel shells exhibited promising applications in 

environmental remediation as an excellent absorber for heavy metals, especially 

arsenic and mercury ions [19]. Calcium oxide with high surface area after calcination 

at 1,050 
o
C was employed as an efficient solid alkaline catalyst for biodiesel 

production having a high yield of 94.1% [20]. Although, the several applications have 

been reported, the benefit of expressed colors derived from its own structural 

assembly of the AGM shells in order to realize novel applications of the optical effect.   

In this work, we developed a method to study pearlescent effect expressed from 

AGM shells, pearlescent flakes disintegrated from AGM shells and individual 

aragonite plates using simple chemical techniques. The pearlescent flakes and 

individual aragonite plates were exploited for some innovative applications such as a 

color-shifting pigment, pearlescent pigment, surface coating pigment for decorative 

applications, solid support materials, and transparent filler for coating polymer.  
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1.2 OBJECTIVES 

Study optical phenomena of pearlescent flakes and individual plate-shaped 

aragonite plates prepared from Asian green mussel shells.  

 

1.3 SCOPE OF THE DISSERTATION 

1.3.1 Develop process to prepare pearlescent flakes and individual aragonite plates. 

1.3.2 Study optical phenomena of pearlescent flakes and individual aragonite plates. 

1.3.3 Study morphology, surface roughness, composition and molecular information 

obtained produces. 

1.3.4 Exploit the pearlescent flakes and individual aragonite plates in several 

applications such as colors-shifting pigment, coating pigment, transparent filler 

for coating polymer. 

 

1.4 BENEFIT OF THE DISSERTATION 

1.4.1 Gain insight understanding of structure-color relationship of AGM shell nacre as 

well as nacre of other shells, pearls, natural and artificial structure composed of 

stratified layer. 

1.4.2 Value creation for agricultural waste in Thailand. 
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CHAPTER II 

THEORETICAL BACKGROUND 

2.1 Nacre  

The nacre of mollusk shells exhibit alternating layer of aragonite calcium 

carbonate and organic matrix composed of protein, chitin, peptide, lipid, and 

polysaccharide [1-13]. The chitin coated with protein and polysaccharide acts as a 

template and induces a deposition of amorphous calcium carbonate (ACC). In case of 

nacre, ACC is grown and transformed into aragonite microplates [5,6]. The brick-and-

mortar like structure of nacre could be explained by mineral bridge model where the 

aragonite crystals grow through the pore of organic layers [2,4,7].  

 

 

 

Figure 2-1. Hierarchical organization in nacre of Asian green mussel shell. 
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Nevertheless, the aragonite plates have been under debate in terms of structural 

development. The number of research articles interested in this topic has increased 

[2,5,7,8,12,13,22-24]. Briefly, there have three different famous models explaining 

the formation of aragonite plates. 

1. A single crystal model. This model is based on crystallographic explanation. 

The biopolymers act as a template to induce the formation of plates from 

calcium and carbonate ions to ACC. ACC can grow to single crystal of 

aragonite plate [2, 22-24].  

2. The tablet is an ACC-coated single crystal model. The plates have single 

crystal core covered by ACC shell. The ACC will be transformed into 

aragonite under electron irradiation [5]. 

3. Pseudo-single-crystal model. This model was observed based on atomic force 

microscopy and high-resolution transmission electron microscope. The 

aragonite plate comprises co-oriented nanocrystals (mesocrystal) to form 

aragonite plate [7,8,12,13].   

Nacre structure is one of the natural-material models receiving considerable 

research attentions in the past two decades due to their excellent mechanical 

properties and unique optical effect [25-28]. Jackson et al. reported that a Young’s 

modulus Pinctada imbricata nacre of 70 GPa and tensile strength of approximately 

170 MPa [25]. Moreover, the toughness of nacre was also very interesting as the 

hydration effect could increase the toughness of nacre from 350-450 J m
-2

 to 1,240 J 

m
-2

, 1,000 times tougher than calcium carbonate monolith [25]. In case of optical 

effect of nacre, due to the stratified bilayers of aragonite and organic binding layers, 

nacre expressed the rainbow reflection called pearlescent colors. This fascinating 

effect could be explained by diffraction, interference or their combination [3, 27-28]. 

Many applications of nacre related to decoration and were used as an ingredient in 

cosmetic industry [29,30]. Recently, the pearlescent colors from AGM shell and 

pearlescent enhancement by replacing of organic binding layers with air gaps were 

reported by our group [3]. 
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2.2 Pearlescent effect 

Pearlescent effect is a unique optical phenomenon originated by an interference 

of visible light with biomaterial having periodic structure such as pearls, mother-of-

pearls, mollusk shells, beetle wings, and butterfly wings. The pearlescent colors were 

attributed to reflective index of matters, angle of incidence, and thickness of stratified 

layers within periodic structure [31-33]. The word ‘pearlescent colors’ is normally 

used with the color expression of mollusk-shells nacre such as mussel, pearl oyster, 

abalone shells [3,27,28]. Liu, et al. demonstrated that the pearlescent colors of 

Pinctada Margaritifera shell were due to the diffraction induced by the grating-like 

structure of the shell [27]. Tan, et al. described that the exceptionally vivid pink and 

blue-green pearlescent colors in the abalone (Haliotis Glabra) shell was due to the 

interaction of light with the uniform stack of calcium carbonate layers [28]. 

 

 

 

Figure 2-2. Photographic images of (A) Pinctada Margaritifera, (B) Haliotis Glabra 

and their SEM images. The pearlescent colors expressed from the mollusk 

shells originated from interaction of white light with periodic structure 

[27,28]. 
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2.3 Nacre like structure and plate-shaped calcium carbonate: Biomimetic design 

of biomaterials inspired by nacre 

Nacre is a high-performance composite materials for researchers to produce 

tough, strong and stiff structural materials. The nacre inspired composite materials of 

poly(vinyl alcohol) (PVA)/nanoclay composite provided high strength and stiffness as 

this material could dissipate the external force. The PVA/nanoclay was prepared by 

immersion of dispersed montmorillonite into PVA solution under subsequently stirred 

overnight. The excess PVA was removed by centrifugation and the composite 

material was then purified by washing with water. Finally, composite films were 

obtained after vacuum filtration PVA/nanoclay composite solution through a 

hydrophilic membrane and drying at 80 
o
C for 48 h [34]. 

 

 

 

Figure 2-3. Hierarchical structure of PVA/nanoclay composite bioinspired by nacre. 

(A) A schematic representation of the film formation process for 

construction of PVA/nanoclay nacre. (B) TEM image of a PVA/nanoclay 

nacre film and schematic representation of layer structure [34].  

   

In case of plate-shaped CaCO3, there have been many researches inspired by the 

fascinating mechanical and optical properties of this biomaterials. The CaCO3 

microplates could be synthesized in the presence of protein [9-11], ammonia [35], 

cellulose derivative [36], controlling the supersaturation condition of ACC [37], and 

microemulsion route [38]. The uniform hexagonal plate-shaped CaCO3 with average 

A B
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diameter of 5-10 μm synthesized in the presence of N-trimethylammonium derivative 

of hydroxyethyl cellulose by aggregation-mediated crystallization was reported [36]. 

 

 

 

Figure 2-4. (A and B) SEM images of the obtained uniform CaCO3 microplates grown 

in the presence of hydroxyethyl cellulose. (B) A high-resolution SEM 

image shows each hexagonal plate consists of CaCO3 nanoparticles [36]. 

 

2.4 Transfer matrix method  

The unique optical effect of nacre, pearlescent flakes and individual aragonite 

plates prepared from nacre of sea shells were achieved because we have strong 

theoretical background on the interaction of light with stratified materials. The 

modified transfer matrix method was employed to calculate the reflectance. Based on 

stratified bilayers of our system, the shell consists of N isotropic bilayers. The 

aragonite calcium carbonate is represented by layer A while organic matrix and air are 

represented by layer B. The jth bilayer consists of layer A and layer B with a 

thicknesses of dA and dB and a reflective indices of nA and nB. The stratified bilayer is 

bounded by air (i.e., air function as both incident medium and substrate in the 

simulation algorithm).  

 

A B



 

 

8 

 

 

Figure 2-5. A cross-sectioned SEM image of nacre and the corresponding schematic 

representation of stratified bilayers. The thicknesses and reflective 

indexes of the stratified layers were adopted from our experimental results 

and literatures [2,3,27,28]. The aragonite layers, organic binder, and air 

gaps were assumed non-absorbing in the visible region (i.e., absorption 

coefficient k =0) [3]. 

 

When an incident radiation of wavelength   impinges on the stratified bilayers 

with an angle of incidence , the Fresnel reflection and transmission coefficients are 

given by: [3,39,40] 

11 12 air air 21 22 air
.

11 12 air air 21 22 air

( ) ( )

( ) ( )

M M q q M M q
r

M M q q M M q


  


  
, (Eq. 1) 

air
.

11 12 air air 21 22 air

2

( ) ( )

q
t

M M q q M M q
 

  
.  (Eq. 2) 

 

Where  indicates parallel-polarized radiation and   indicates perpendicular-

polarized radiation. Mmn is an element of the characteristic matrix M(22) of the 
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stratified bilayers. The matrix M is expressed in terms of the experimental conditions 

and material parameters by: 

A A A A B B B B

A B

1

A A A A A B B B B B

cos( ) sin( ) cos( ) sin( )

sin( ) cos( ) sin( ) cos( )

N
j j j j j j j j

j j

j

j j j j j j j j j j

i i
k d k d k d k d

q qM

iq k d k d iq k d k d


    
   

    
       

 , (Eq.3) 

 

 where 
1/ 2( 1)i   , 

2/j j jq k n  for parallel-polarized radiation, and j jq k  for 

perpendicular-polarized radiation. jk  (
2 2 2 1/ 2

air[(2 / ) ]j jk n k   ) is the wavevector 

in each layer while airk  (
2 2 1/ 2

air air(2 / )[ sin ]k n   ) is the wavevector in the incident 

medium (air). The reflectance and transmittance are given in terms of the Fresnel 

reflection and transmission coefficients as: 

2

R r  and 
2

air air

2

air

Re[ / ]

/ air

k
T t

k n


 ;   for parallel polarized radiation, (Eq.4) 

2
R r   and 

2air

air

Re[ ]k
T t

k
  ; for perpendicular polarized radiation, (Eq.5) 

( ) / 2R R R   and ( ) / 2T T T  ; for non-polarized radiation. (Eq.6) 
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CHAPTER III 

EXPERIMENTAL SECTION 

3.1 Air-gap-enhanced pearlescent effect in periodic stratified bilayers of AGM 

shell 

Sodium hydroxide (NaOH) pellets were purchased from Merck (Thailand). Tap 

water was employed as the solvent throughout the experiment. The AGM were 

thoroughly cleaned to remove residual tissues and other contaminants. The shells 

were then boiled in sodium hydroxide solution (0.5 M) under a high pressure (2.5 bar) 

for 2 h. The detached periostacum, i.e., the green organic layer covering the outer 

surface of the shells, was removed by washing with water. The dried shells were later 

baked at 200 
o
C for 2 h. The thermally treated shells were then immersed in water for 

24 h to remove the degraded organic matrix. The dissolution of organic residues could 

be noticed as the water turned brownish yellow. The shells were thoroughly cleaned 

with water and air dried before keeping in a desiccator for further investigation. The 

treated shells were slightly whitened with an enhanced pearlescent effect as indicated 

by a greater reflection with a more vivid color compared to the virgin shells. Scanning 

electron microscopy (SEM) and atomic force microscopy (AFM) were used to verify 

the structural integrity of the shell. A decrease of organic content after the treatment 

was confirmed by thermal gravimetric analysis (TGA). A development of the air gaps 

inside the treated shell were confirmed by an incorporation of dyes.  

 

3.2 Selective colors reflection from stratified aragonite calcium carbonate plates 

of AGM shell  

The pearlescent flakes from AGM shells were thoroughly cleaned to remove 

residual tissues and other contaminants before drying under an ambient air. The dried 

shells were baked at 300 
o
C for 2 h. The shells were then immersed in 30 % wt. 

hydrogen peroxide (H2O2, Merck, Thailand) for 24 h to dissolve the brownish-

degraded organic binder. The H2O2-whiten shells showed observable rainbow colors. 

The shells were brittle and easily broken-down into small flakes. The flakes were 
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cleaned with tap water several times to remove dust particles. The flakes showed 

vivid rainbow colors observable by naked eyes when they were dispersed in water. 

The flakes were air dried before keeping in a desiccator for further investigation. SEM 

and AFM were employed to investigate the structural architecture of the flakes. The 

expressed colors of pearlescent flakes were recorded by a CCD attached on an optical 

microscope (OM). The reflection spectra of pearlescent flakes were collected by a 

fiber optic spectrometer  

 

3.3 Individual aragonite plates from nacre of shells 

Powders of individual aragonite plates were disintegrated from nacres of AGM 

shells including of abalone (Haliotis asinina), pearl oyster (Pinctada maxima) shells. 

The shells were cleaned to remove residual tissues and other contaminants before 

drying under an ambient air. The dried shells were baked at 300 
o
C for 2 h to 

thermally decompose the organic matrices. The thermally treated shells were 

immersed in 30 wt % H2O2 (Merck, Thailand) for 2 h to remove the degraded organic 

matrices. During H2O2 treatment, ultrasonic radiation (VCX750, SONICS & 

MATERIALS Inc.) was employed to accelerate the disintegration. The shells were 

broken down to small fragments of individual CaCO3 microplates with glittering 

reflection observable by naked eyes. The large fragments were filtrated out using a 

200 mesh stainless steel. The CaCO3 microplates were cleaned with tap water to 

remove the residual chemicals and degraded organic binder before drying at 100 
o
C. 

The white powder of CaCO3 microplates was kept in a desiccator for further 

investigation. Optical microscope images of CaCO3 microplates were recorded by a 

CCD camera (Carl Zeiss, AxioCam HRc) attached on an OM. SEM was employed for 

structural characterization of microplates. The average bisector length of microplates 

was calculated from 300 plates selected from unique SEM images. Surface topology 

and average surface roughness (Ra) of the plates were examined by AFM. The organic 

contents and organic residuals in the microplates were quantified by TGA.  
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Figure 3-1. An experimental procedure for the preparation of CaCO3 microplates 

from AGM shells. 

 

3.4 Characterization techniques 

Optical image acquisition  

To record the pearlescent effect of virgin and treated shells, photographic 

images were taken with a Nikon D90 digital camera. The pearlescent colors of the 

fragmented shells were recorded by a CCD camera (Carl Zeiss, AxioCam HRc) 

attached on an optical microscope (OM, Carl Zeiss Axio Scope.A1). The reflection 

spectra of both the virgin and the treated shells were collected by a fiber optic 

spectrometer (OceanOptics USB4000 portable UV-visible spectrometer) coupled to 

the OM.  
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Figure 3-2. Experimental setup of simultaneously acquires a visible spectrum and the 

corresponding OM image of a pearlescent flake. 

 

Organic content determination 

The organic contents of virgin and treated shells were quantitatively determined 

by thermal gravimetric analysis (PerkinElmer, Pyris 1). The sample (~10 mg) was 

loaded into a ceramic crucible and heated up to 850
 o

C at a heating rate of 10 
o
C/min 

under a nitrogen environment.  

 

Structural characterization 

Scanning electron microscope (SEM, JEOL, JSM-6510A) was employed for the 

structural investigation of the stratified architecture of virgin AGM shells and the 

calcium carbonate prepared from treated shells using a low acceleration voltage of 5 

kV. To collect cross-sectioned SEM images of a large fragment of virgin and treated 

shells, a specimen were wrapped with an aluminum foil before mounting onto a 
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modified stub normal to the electron beam. The small flakes and also calcium 

carbonate powder were dispersed in water and dropped on carbon tape attracted to 

stub. The samples were dried under vacuum condition at room temperature. 

Surface topology, thickness of aragonite layers, and their roughness (Ra) were 

determined by an atomic force microscope (AFM, SPA 400, SII NanoTechnology 

Inc.). The AFM images were recorded by a non-contact mode with a scanning rate of 

1 Hz using silicon cantilever with a tip rounding size of 20 nm, force constant of 17 

N/m, and a resonance frequency of 139 KHz.  

 

The air gaps determination 

The developed air gaps between aragonite layers after the removal of organic 

binder were verified by a dye diffusion experiment. Solutions of rhodamine 6G (R6G, 

1 mM, 5 L), methylene blue (MB, 1 mM, 5 L), and water were diffused into the 

generated air gaps via capillary effect by placing a drop of the solution on the treated 

shell. The dye residual on the shell surface was removed by washing several times 

until the water become colorless. An incorporation of the dye into the air gaps was 

examined by the OM under bright field and dark field illuminations.  

 

Raman spectroscopy 

Raman spectroscopy (DXR Raman Microscope, Thermo Scientific) was 

employed to acquire molecular information of the microplates using 780 nm laser  

(5 mW laser power) with 2s exposure time and 32 number of exposures. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

4.1 Air-gap-enhanced pearlescent effect in periodic stratified bilayers of AGM 

shell 

The pearlescent colors originated by an interaction between visible light with 

materials having periodic stratified layers are a well-established phenomenon. An 

AGM shell is a stratified bilayers assembly of alternated 200-500 nm thick aragonite 

calcium carbonate layers bound by 20-30 nm thick organic binding layer. However, 

after a consecutive alkaline/thermal treatment that removed the organic layer, the shell 

expresses a more vivid pearlescent effect, Figures 4-1A and 4-1B. Although the 

treated shells were more brittle than the virgin shells due to the removal of organic 

binder, the treated shells still retained its original structure without any dimensional 

change. The reflection spectrum of the virgin shell shows a narrow peak at 657 nm 

and a broad shoulder at 450-600 nm which agrees with the red and yellow colors 

observed in the OM image (Figure 4-1C). The reflection spectrum of the treated shell, 

on the other hand, shows two broad peaks centered at 512 and 598 nm, Figure 4-1D. 

Since the reflection bands cover 475-650 nm spectral range, the treated shell 

expresses vivid green, yellow, and red pearlescent colors under a normal observation 

as seen in Figure 4-1B and OM image in Figure 4-1D. The spectral change 

corroborated the more vivid and brighter pearlescent colors observed in treated shell 

compared to that of the virgin shell. The Raman spectra of the virgin and treated 

AGM shells with characteristic external lattice vibrations at 147, 183, and 194 cm
-1

, a 

strong scattering at 209 cm
-1

, and a doublet at 703 and 706 cm
-1 

of carbonate moiety 

confirm the aragonite crystal (Figure 4-2A and Table 4-1) [1, 2]. The corresponding 

FT-IR spectra in Figure 4-2B also confirm the aragonite crystal by the doublet at 705 

and 708 cm
-1

 associated with the in-plane bending of carbonate vibrations [3-6]. Since 

the molecular information did not show any spectroscopic signature of calcite or 

vaterite forms, the calcium carbonate building block of the AGM shell is presumably 

pure aragonite crystal.  
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Figure 4-1 Photographic images of (A) virgin and (B) treated AGM shells. 

Normalized reflection spectra of (C) virgin and (D) treated shells. The 

inserts are 500X magnification OM images of the shells under the bright 

field illumination. 
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Figure 4-2 (A) Raman and (B) Diffuse reflectance FT-IR spectra of virgin and treated 

shells. 

 

According to the TGA profiles in Figure 4-3, there are two major thermal 

decompositions. The first weight loss at 200-300 
o
C was due to organic matrix 

decomposition. The TG curve indicates that the organic content in the virgin shell was 

6.9 % while that of the treated shell was 2.1 %. A 4.8 % reduction in organic content 

was due to the degradation and dissolution of organic matrix from the AGM shell by 

the treatment process. The remaining organic matrix in the treated shell was expected 

to be the un-removable organic matrix within the aragonite tiles [5-7]. The existence 

of organic matrix in both the virgin and treated shells were confirmed by the amide I 

absorption at 1630 cm
-1

 [4,5], Figure 4-2B. The second decomposition with 42 % 

weight loss at 600-800 
o
C was due to the liberation of carbon dioxide as calcium 

carbonate was thermally decomposed to calcium oxide. According to the results from 
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thermal and spectroscopic analyses, the treatment process removed organic matrix 

from the nacreous layer without altering the aragonite crystal as the Raman and FT-IR 

spectra of the treated shell are the same as those of the virgin shell, Figure 4-2. 

 

 

Table 4-1 Raman and FT-IR spectrum peak assignment of virgin and treated shells 

[1-6].  

 

 

Green mussel shell
Raman band 

(cm-1)
FTIR band

(cm-1)

Aragonite calcium carbonate vibration

in plane bending , 4

out of plane bending, 2

symmetric stretching, 1

asymmetric stretching, 3

combination band, 1+4

external lattice vibration

O-H stretching from 

703, 706 (m) 

856 (w)

1089 (s)

1465 (w)

147 (m), aragonite

156 (s)

183 (w), aragonite

194 (w), aragonite

209 (s), aragonite

705, 708 (m)

858 (w)

1082 (m)

1787 (s)

2520 (s)

Protein vibration

amide I

C-H stretching

1630 (s)

2920 (m)

-

3HCO
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Figure 4-3 Thermal gravimetric (TG) thermogram and the corresponding differential 

thermal gravimetric (DTG) thermogram of (A) virgin and (B) treated 

AGM shells. 

 

SEM images of cross-sectioned shell in Figures 4-4A and 4-43B show 

characteristic stratified structure of the AGM shell where a distinct structural 

assembly of aragonite layers into a stratified structure is clearly observed. A single 

layer consists of aragonite tiles connected together. Based on the cross-sectioned and 

top-view SEM images, an individual pseudo-hexagonal aragonite tile has 3-5 

micrometer bisector length and 350-nm thick. The organic binding layers between 

aragonite layers are not noticeable in the SEM image (Figure 4-4A). This may be due 

to its extremely thin thickness of 20-30 nm [8-13]. A noticeable electrostatic charge 

up of the bombarding electron beam could be noticed in Figure 4-4A. After treatment, 

the organic layers were removed. A significant improvement in clarity of the SEM 

image with less electrostatic charge up in Figure 4-4B implied a disappearance of 

organic binder. 
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Figure 4-4 Cross-sectioned SEM images of (A) virgin and (B) treated AGM shells 

(scale bar = 1 μm). The inserts are the corresponding top-view images 

(scale bar = 5 μm). The SEM images were acquired without a coating of 

conductive metals. The thickness of the aragonite layer is estimated from 

AFM images of (C) virgin and (D) treated AGM shells. (E) Schematic 

drawing of organic matrix removal in nacreous layer without alternation 

of aragonite building block. 
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To verify thickness and surface roughness of aragonite layers, surface 

topologies of stacked aragonite layers were probed by the AFM technique. AFM 

images in Figures 4-4C and 4-4D indicate an average thickness of the aragonite layer 

in virgin and treated shells are 366 and 370 nm, respectively. The average roughness 

(Ra) of the treated and non-treated aragonite layers was 1.3 nm. The insignificant 

difference in thicknesses and similarity in surface roughness of the virgin and the 

treated shells suggested that the treatment process did not alter the original structure 

of the shell. The structural stability is may be due to the mineral bridges connecting 

between aragonite layers [11-13]. Figure 4-4E shows schematic drawing of nacreous 

assembly and related changes upon the alkaline/thermal treatment.   

The existence of the air gaps were confirmed by the dye-diffusion experiments 

where the vacancies were filled with dyes and transparent liquid while the 

corresponding optical changes due to the incorporated liquids were monitored by an 

optical microscope (Figure 4-5). When the air gaps were filled with water (Figure 4-

5C), the OM images of the water-filled shell were the same as those of the un-

modified shell (Figure 4-5B). However, when the treated shells were filled with red 

rhodamine 6G (R6G, Figure 4-5D) and methylene blue (MB, Figure 4-5E), the 

characteristic colors of the dyes was enhanced under the dark field illumination. The 

expressions of the colors were due to the multiple reflection within the stratified 

bilayers under the oblique angle of incidences as the radiation was coupled into the 

structures via the dark field illumination. These results implied the existence of air 

gaps after the organic matrix removal. The OM images of the dye-filled shells under 

the bright field illumination were similar to those of the un-modified shell. A slight 

variation of the color expression in bright field illumination in Figures 4-5B-4-5E was 

due to the minor interference of the reflection beyond the first layer. A pale color of 

the incorporated dyes observed under the bright field illuminations in Figures 4-5D 

and 4-5E is due to the interference of reflectance beyond the surface. Since the water 

soluble dyes can be efficiently trapped within the generated air gaps (i.e., the dyes 

remain within the treated shells after a multiple washing), the treated shells with 

nanometer size air gaps can be employed as solid encapsulation media.   
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 In the case of the virgin shell, the dye cannot diffuse into the organic layers, 

even when the shell was ground into small pieces (data does not show). The structural 

stability of the shell is very excellent as an insignificant change was observed after an 

hour of boiling in hot water. However, some dye can be adsorbed onto the surface of 

the untreated shell. As a result, color expression of the virgin shell under the bright 

field illumination was similar to that of the dark field illumination since the observed 

color was due to the adsorbed dye on the surface. 

 

 

 

Figure 4-5 (A) Schematic drawing of dye diffuses into the treated AGM shell 

structure. (B) OM images (500X magnification) of treated shell under 

bright field and dark field illuminations. The corresponding OM images 

with water-, R6G-, and MB-filled air gaps are shown in C, D, and E, 

respectively. 
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The generated air gaps after the removal of organic layers significantly affect 

the optical expression of the treated shell as observed in Figure 4-1. The air gaps 

increased the difference in reflective indices at the interface of the aragonite layer 

(n=1.6) as the organic binder layer (n=1.5) was replaced by air (n=1.0). To 

theoretically verify the effect of air gaps on the observed pearlescent colors, the 

modified transfer matrix method was employed for the calculation of the reflectance. 

A schematic representation of the interaction between incident light and nacreous 

layer is shown in Figure 4-6. The virgin shell is the stratified bilayers consisting of 

aragonite calcium carbonate layers (thickness=200-500 nm, n=1.6) and organic 

binding layers (thickness=20-30 nm, n=1.5) [3, 11-13]. According to the result in 

Figure 4-4, the treated shell consists of the same aragonite layers separated by air gaps 

(n=1.0) of the same thickness as that of the organic layers.  

 

 

Figure 4-6 A cross-sectioned SEM image of AGM shell and the corresponding 

schematic representation of stratified bilayers. The thicknesses and 

reflective indexes of the stratified layers were adopted from our 

experimental results and literatures [3, 11-13]. The aragonite layers, 

organic binder, and air gaps were assumed non-absorbing in the visible 

region (i.e., absorption coefficient k =0). 
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Figure 4-7 3D plots of angle dependent reflection spectra of stratified bilayers 

representation of (A) virgin and (B) treated shells. The following 

parameters were employed: nA=1.6, nB=1.5 (organic matrix) or 1.0 (air), 

dA=350 nm, dB=20 nm, N=1,000 bilayers,  = 0
o
-80

o
 and  = 400-700 

nm. 
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Figure 4-7 shows 3D plots of angle dependent reflection spectra of a virgin shell 

consisting of alternative aragonite layers (350 nm thick) and organic binder layers (20 

nm thick) and the corresponding treated shell consisting of alternative aragonite layers 

(350 nm thick) and air gaps (20 nm thick) with N=1000. When a white light ( = 400-

700 nm) is impinged on the virgin shell with a normal angle of incidence (=0
o
), the 

reflection spectrum showed a predominant total reflection band centered at 589 nm 

(FWHM=6.4 nm). The band indicated a selective reflection of yellow color of the 

incident white light. Since all components of the stratified layers are transparent with 

zero extinction coefficient (
3

1.6CaCOn  , 
3

0CaCOk  , 1.5proteinn  , 0proteink  ), the 

selective reflection is originated by the interference within the stratified bilayers. The 

reflection band blue shifts (i.e., with 589-460 nm reflection maxima) as the angle of 

incidence was increased from 0
o 

to 80
o
. The blue shift of the angle dependent 

reflection is the origin of pearlescent phenomenon (i.e., the color at a particular spot 

changes with the angle of incidence) observed in nacreous materials such as green 

mussel shells, pearls, mother-of-pearl, and abalone shells [3, 14-16].   

In case of the treated shell, the organic binder was replaced by the air gaps of 

the exact same thickness. The pearlescent phenomenon as that observed in the virgin 

shell was also observed but with a more vivid color and greater intensity. A greater 

blue shift (with reflection maxima of 590-440 nm) and a wider FWHM of the 

reflectivity shown in Figure 4-7B support the more vivid visual observation in Figure 

4-1B. With a normal incidence (=0
o
), a 4-time more intense reflectance is expected 

from the treated shell compared to that of the virgin shell as indicated by an increase 

of the FWHM from 6.4 nm to 25.1 nm.  
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Figure 4-8. Calculated reflectivity of (A) aragonite/organic matrix, (B) aragonite/air 

stratified layers of various thicknesses, and (C) the reflectivity as a 

function of number of bilayer: (square) aragonite/air, (circle) 

aragonite/organic matrix. The reflectivity was measured at the reflection 

maxima. The simulation parameters are: nA=1.6, nB=1.5 (organic matrix) 

or 1.0 (air), dA=350 nm, dB=20 nm, and  = 40
o
. 
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brighter and more vivid color of the pearlescent effect observed in the treated shell 

(i.e., a wider range of blue shift and broader FWHM) compared to those of the virgin 

shell.  

 

4.2 Selective colors reflection from stratified aragonite calcium carbonate plates 

of shell  

The flakes form AGM shells were used as a model material for our study on 

color expression of the nacre structure. The pearlescent effect of a virgin AGM shell 

originated by an interaction between light with nacre is shown in Figure 4-9A. . To 

acquire the structural information of the shell, we recorded SEM images across the 

thickness of the AGM shell. The cross-sectioned SEM images in Figure 4-9C show a 

gradual increment of the thickness of aragonite plates as they aged (i.e., the thickness 

increases toward the outside layers).  

 

 

Figure 4-9. (A) Pearlescent colors of AGM shell. (B) Thickness of AGM shell. (C) A 

cross-sectioned SEM images of AGM shell. The detailed SEM images 

across the thickness (C1-C4) show a gradual thickness increment of the 

aragonite plates from the inner layers towards the outside layers. The 

scale bars indicate 1 μm. 
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After the removal of organic matrix, the treated shells showed stronger 

reflection with more vivid colors compared to the virgin shells. The shells became 

brittle and easily broken into small fragments (i.e., the pearlescent flakes). Due to 

scattering effect, the pearlescent flakes appeared white to the naked eyes (Figure 4-

10A) but expressing vivid colors at normal angle of OM (Figure 4-10B) The SEM 

images suggest that the pearlescent flake is in fact an alternated stack of aragonite 

layers and air gaps [17]. The removal of organic binder with a consecutive 

development of air gaps was confirmed by TGA analyses (Figure 4-11). The 200-to-

500-nm-thick aragonite layer is a single ply assembly of 3-5 μm bisector length 

pseudo-hexagonal aragonite plates, Figures 4-9. 

 

 

 

Figure 4-10. (A) SEM images of pearlescent flakes. The flakes are stratified bilayers 

of aragonite layers and air gaps. The flakes appear white to the naked 

eyes. (B) OM image of pearlescent flakes under a bright-field 

illumination (10X objective). The inset shows the corresponding dark-

field illumination image. (C) Reflection spectra of selected pearlescent 

flakes acquired by coupling the reflected light into a fiber optic 

spectrometer via a 50X objective. 
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Figure 4-11. TG and DTG curves of (A) AGM shell and (B) pearlescent flakes and 

their corresponding cross-sectioned SEM images. The thermal analyses 

results indicated a removal of organic binding layers between aragonite 

layers. The remaining organic binder (1.6 %wt.) is expected to be those 

within the aragonite plates [7]. The SEM images confirm the removal 

of the organic binder layers. Air gaps could be noticed in Fig. S3B. The 

significant reduction of the electron charge up in SEM image in Fig. 

S3B compare to that in Fig. S3A corroborate the removal of the 

organic binding layer [11]. 

 

Figure 4-10B shows OM image of pearlescent flakes while Figure 4-10C 

shows the corresponding reflection spectra of selected pearlescent flakes. Although, 

the flakes were white powder when observed by the naked eyes, the vivid colors 

appeared under an OM. The strong and narrow reflection spectra corresponded to the 

expressed colors under OM. The purple-blue, blue, green and red pearlescent flakes 

show spectra with reflection maxima at 457, 485, 553, and 654 nm, respectively. 
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In Figure 3B, the aragonite flake ‘f’ appears dark while its corresponding 

reflection spectrum in Figure 3C was rough across the visible region as the flake does 

not reflect any incident radiation. The corresponding SEM images (Figure 4-12) 

suggest that the flake was fragmented from the outer part of the shell where the 

aragonite plates are irregularly thick with highly rough surface. 

 

 

 

Figure 4-12. (A) The flake ‘f’ (from OM image of Figure 4-10B) does not express any 

color due to its structure architecture. (B and C) SEM and cross-

sectioned SEM image of flake ‘f’. 

 

The pearlescent flakes with blue, green, and red were selected for further 

detailed investigation (Figure 4-13). As indicated by the OM images and the 

corresponding SEM and AFM images (Figures 4-13A-4-13I), the aragonite plates of 

the flakes expressing blue, green, and red colors with reflection maxima at 441, 523, 

and 577 nm have thickness of 25610, 31012, and 35310 nm, respectively. The 

histogram in Figure 4-13J suggests that the pearlescent flakes expressing single vivid 

color composed of aragonite layers having narrow thickness distribution. When the 

thicknesses were employed for spectral simulations, the calculated spectra agreed 

very well with the experimentally measured spectra (Figure 4-13K). The results in 

Figure 4-13 confirm that the thickness of transparent aragonite layers govern the 

expressed colors of the pearlescent flakes. 
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Figure 4-13. OM, cross-sectioned SEM and AFM images of pearlescent flakes 

expressing colors: (A, D, G) blue, (B, E, H) green, and (C, F, I) red. 

Histogram (J) show thickness distribution of aragonite layers within 

the colored pearlescent flakes. (K) Comparisons of experimental (solid 

line) and calculated (dash line) reflection spectra of pearlescent flakes. 

The experimentally measured thicknesses were employed for the 

calculations.  

 

To calculate the reflection spectra of pearlescent flakes expressing blue, green, 

and red colors, the thickness of the aragonite layers were assigned according to the 

experimental results shown in Figure 4 with a refractive index of 1.6 (nA=1.6). The air 

gaps (nB=1.0) with 20 nm thick assumed [17]. At an incident angle perpendicular to 

the stratified layers, the calculated reflection spectrum with aragonite thicknesses of 

256, 310, and 353 nm showed reflection peaks centered at 439, 519 and 583 nm, 

respectively, Figure 4-13K. The calculated spectra agreed very well with the 

experimentally measured spectra (Figure 4-13K). Since the flake was constructed 

from transparent aragonite layers and air gaps, the interaction between incident light 

and structural architecture of the flake (i.e., aragonite thickness, air gap thickness, and 

number of layer) induced color selective reflection spectrum. The noticeable broader 
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reflection peaks in the experimentally measured spectra in Figure 4-13K were 

expected to originate from a non-uniform thickness and surface roughness aragonite 

plates.  

The uniform blue and green colors of aragonite flake with rough surfaces 

(Figures 4-14A and 4-14B) suggest that the number aragonite layers did not alter the 

color expression. We employed spectral simulation to verify this experimentally 

observed phenomenon. The thicknesses of aragonite plates were assigned to 256 nm 

for the blue pearlescent flakes and 310 nm for the green pearlescent flakes. As the 

number of bilayers was increased from 1 to 120 bilayers, the reflected intensity was 

increased with a concomitant blue-shift of peak position. The color-selective 

reflection of the transparent aragonite layers was noticeable at 5-bilayer with ~50% 

reflectivity of the incident light (Figures 4-14C and 4-14D). Interestingly, the total 

reflection was achieved when the number of the aragonite layer was greater than 30 

layers (Figure 4-14E). As a result, a thick pearlescent flake composes of aragonite 

plates of narrow thickness distribution expresses its unique color. As shown in Figure 

4-14, aragonite flake with 256 nm thick plates selectively reflect blue color (max=439 

nm) while that with 310 nm plates selectively reflect green color (max=519 nm) 

across their rough surfaces. 
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Figure 4-14. OM images of pearlescent flake selectively reflect (A) blue and (B) 

green colors. The flakes show thickness variation across the surfaces 

but expressing uniform colors. Calculated reflection spectra of 

stratified bilayers of (C) the blue pearlescent flakes (dA=256 nm) and 

(D) the green pearlescent flake (dA=310 nm). The thickness of the air 

gap was assumed 20 nm. (E) The reflectivity-number of bilayer plot for 

blue and green flakes. The total reflection (color saturation) was 

achieved after a 30-bilayer.  
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Figure 4-15. Calculated reflection spectrum of a 50-bilayer flake with different ratio 

of 256-nm aragonite layer (expressing blue color) and 310-nm aragonite 

layer (expressing green color). The inset OM image shows an 

experimentally observed pearlescent flake expressing both blue and 

green colors.  

 

According to the spectra in Figure 4-13K, a flake with a certain thickness of 

aragonite layer selectively reflect a particular color. The pearlescent flake shows red-

shifted reflecting color as the thickness of aragonite layer increases. In the 

experimental observation, flakes with multicolor were frequently observed (Figures 4-

9 and 4-15). To gain an insight understanding of the phenomenon, we performed 

spectral simulation on pearlescent flake containing aragonite layers with two different 

thicknesses (i.e., 256 nm and 310 nm). We calculate spectra of a flake containing 50-

bilayer with various combinations on the number of layers from each aragonite. 

Although the thin 256-nm layer was covered by a thick 310-nm layer, the blue 

reflection could be observed since the green reflection spectrum is transparent in the 

blue reflection. The blue reflection became more intense as the number of the 310-nm 

layer decreased. The results from Figure 4-15 suggest that the multicolor expression 

of a pearlescent flake is due to the thickness variation of the aragonite layers within 

the flake. 

50:0

40:10

30:20

20:30

10:40

0:50

400 500 600 700

R
e

fl
e
c
te

d
 in

te
n

s
it
y

Wavelength (nm)

Green
region

Blue
region



 

 

35 

4.3 Individual aragonite plates from nacre of shells 

The brick-and-mortar like structure of nacre of AGM shells including abalone 

and pearl oyster shells could be disintegrated to individual CaCO3 microplates while 

preserving original plate-shape structure. Figure 4-16 shows disintegration of AGM 

nacre to CaCO3 microplates. After treatment, CaCO3 microplates showed vivid 

glittering reflection in water under laboratory lighting condition (photographic image 

in Figure 4-16). SEM images of nacre and CaCO3 microplates after treatment are 

shown in Figure 4-17. The glittering reflection indicated micron size CaCO3 plates 

with flat surfaces. Since the selected sea shells comprised nacre with stratified layer of 

aragonite plates and organic matrices, we hypothesized that the disintegrated CaCO3 

microplates were aragonite polymorph [11, 17-22]. 

 

 

 

Figure 4-16.  A schematic illustration shows a fragmentation of nacre into individual 

aragonite plates. The plates dispersed very well in water while 

expressing vivid glittering reflection. 
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Figure 4-17. SEM images of nacre and aragonite plates from (A, D) abalone, (B, E) 

oyster, and (C, F) AGM shells, respectively. 

 

The OM images under bright-field and dark-field illuminations of CaCO3 

microplates from nacre of abalone, pearl oyster, and AGM shells are shown in Figures 

4-18A-4-18C. The plates under the bright-field illumination show colorful reflection 

while those of individual plates under dark-field illumination show transparent 

appearance. The size and size distribution of CaCO3 microplates were investigated by 

SEM. The significant difference in average bisector-length of CaCO3 microplates 

from abalone, pearl oyster, and, AGM shells, respectively, were 7.31.2, 5.21.0, and 

3.10.5 μm (as indicated by the histograms) while the average thickness of CaCO3 

microplates from abalone, pearl oyster, and AGM shells were 45473, 36033, and 

34485 nm, respectively, as determined from cross-sectioned SEM images (data does 

not show). The microplates showed flat surface with minor defect indicated as small 

holes. The small holes on the surface of microplates might be due to the 

disengagement of nanoparticles [20-22] during treatment process. The holes were 

observable in both SEM and AFM images. The slightly difference of average 

roughness ( aR ) of aragonite plates acquired from different sea shells over 1x1 μm
2
 

were also observed by AFM technique. 
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Figure 4-18. OM images under bright-field and dark-field illuminations, histogram of 

size distribution, SEM micrograph, and AFM images of aragonite plates 

from (A) abalone, (B) pearl oyster, and (C) AGM shells.  

 

The thermogravimetric (TG) and the corresponding differential 

thermogravimetric (DTG) curves of CaCO3 microplates in Figure 4-19 show two 

major weight losses. The first weight loss at 200-300 
o
C was due to the organic 

matrices decomposition. An insignificant difference of organic contents remaining in 

the CaCO3 microplates from abalone, pearl oyster, and AGM shells were observed. 

The second decomposition with 42 % weight loss at 600-800 
o
C was due to the 

liberation of carbon dioxide as CaCO3 was thermally decomposed. The residual 

organic contents in CaCO3 microplates were expected to be the organic matrices 

within the CaCO3 microplates. 

 

 

 

 

 

 

 

 

0 5 10 15
0

10

20

30

Size (μm 

(A) Abalone shells

7.31.2 m

Ra=8.3 nm

%
 C

o
u

n
ts

20 m Dark-fieldBright-field

(B) Pearl oyster shells

0

10

20

30

0 5 10
Size (μm 

5.21.0 m

Ra=6.7 nm

%
 C

o
u

n
ts

15

20 m Dark-fieldBright-field

(C) AGM shells

%
 C

o
u

n
ts

0 5 10
0

10

20

30

Size (μm 
15

3.10.5 m

Ra=5.6 nm

20 m Dark-fieldBright-field



 

 

38 

 

 

Figure 4-19. TG curves and the corresponding DTG curves of CaCO3 microplates 

from (A) abalone, (B) pearl oyster, and (C) AGM shells. 

 

Figure 4-20 shows Raman spectrum of nacre from abalone, pearl oyster, and 

AGM aragonite plates. The characteristic vibrations including out-of-plane bending 

(2) at 856 cm
-1

, symmetric stretching (1) at 1089 cm
-1

, and asymmetric stretching 

(3) at 1465 cm
-1

 indicated carbonate compound. The unique external lattice vibration 

at 147, 156, 183, 209 cm
-1

, and a doublet at 703 and 706 cm
-1 

indicated carbonate 

specie of aragonite polymorph [1,17,23-25]. The results from SEM, AFM, TGA, and 

Raman spectroscopy suggested that the treatment process could efficiently remove 

organic matrices from the nacre without destroying aragonite plates.  
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Figure 4-20. Raman spectra of aragonite prepared from (A) abalone, (B) pearl oyster, 

and (C) AGM aragonite plates.  

 

The OM images in Figure 4-18 and enlarged OM images in Figure 4-21A 

show aragonite plates in various colors as the plates selectively reflected certain range 

of white light. This phenomenon could be distinctively observed from aragonite plates 

of abalone shells (OM images in Figure 4-21A) due to a larger size of the microplate. 

As the OM images under dark-field illumination (Figure 4-18) showed transparent 

appearance, the observable colors were due to the interference of light with the 

transparent aragonite plate bounded by air (air/aragonite plate/air). The interference 

colors were attributed to reflective index of matters, angle of incidence, and thickness 

of stratified layers. In this experiment, the influence of aragonite thickness, air gap 

(space between aragonite plate and substrate) thickness, and angle of incidence on the 

colors expression were verified using the transfer matrix method. In the simulation 

algorithm, an incident radiation of wavelength   at the range of 400-700 nm 

impinged on the aragonite plate under air/aragonite plate/air/glass configuration as 

illustrated in Figure 4-21A. An air layer over aragonite plate was assigned as an 

indecent medium while the substrate was glass slide (n=1.5). All layers were assumed 
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transparent. (i.e., the aragonite calcium carbonate does not absorb visible light). The 

contour plot of reflectance as a function of aragonite thickness are shown in Figure 4-

21B. In the calculation, the incident white light was irradiated at a normal angle
 
and 

the air-gap thickness 50 nm was assumed. The aragonite plate in the thickness range 

of 350-550 nm which was the natural range of aragonite plates within nacre was 

assumed. The contour plot showed red-shift when the thickness of the aragonite plate 

was increased, Figure 4-21B. According to the assigned thickness range of aragonite 

plates (i.e., 350-550 nm), the reflected color cover the entire visible region. These 

results indicate that the thickness of aragonite plate played the major role on the color 

expression. Figure 4-21C shows contour plot of reflectance as a function of air-gap 

thickness. The incident radiation impinged on the aragonite plate with a thickness of 

450 nm at the normal angle. When the thickness of air gap was increased, the 

reflectivity increased with a slight red-shift of reflection spectra. These results 

indicated that the air gap between an aragonite plate and a substrate dictated the 

reflectivity of the reflected color. A contour plot of reflectance as a function of angle 

of incidence is shown in Figure 4-21D. The blue-shift with slight increment of 

reflectivity was observed when an angle of incidence was increased. According to the 

simulation results, the observed reflection color from aragonite plate in Figure 4-18 

and enlarged OM images in Figure 4-21A (i.e., blue, green, yellow, red) were 

originated from selective reflection of aragonite plates with the existing air gap under 

the plates. Moreover, the variation colors from an aragonite plate were due to the non-

uniform surface roughness of the plate. As the calculation results from the color 

expression as a function of aragonite plate thickness (Figures 4-21B) showed a 

reflection maxima shift for 1.2 nm when the thickness of an aragonite plate was 

change for 1 nm, the average surface roughness of an abalone aragonite plate with the 

surface roughness of 8.3 nm ( aR from AFM image of Figure 4-18A) induced 

reflection maxima shift for 10 nm.  
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Figure 4-21. (A) OM images of abalone aragonite plates on glass substrate and a 

schematic representation of the reflection of light on the aragonite 

plate. The color-selective selection is governed by the aragonite 

thickness, air-gap thickness, and the angle of incidence. Contour plots 

of reflectance from an aragonite plate on a glass substrate as a function 

of (B) aragonite thickness, (C) air-gap thickness, and (D) an angle of 

incidence.  

 

To further verify the effect air gap on the reflectivity of aragonite plate, the 

air-gap layer was replaced by ethylene glycol (EG, n=1.45). The OM images in 

Figures 4-22 shows more vivid color of aragonite plates with air gap (Figure 4-22B) 

compared with aragonite plate with EG (Figure 4-22A). The calculation results 

confirmed that the reflectivity of aragonite plate with air gap (open circles) was 

stronger than that of aragonite plate with EG-filled gap (filled squares), Figure 4-22C. 

The calculation results corroborated visual observation as the reflectivity of aragonite 

plate was governed by the air gap between aragonite plate and a substrate. 
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Figure 4-22. (A) OM images of abalone aragonite plates on a glass substrate with 

EG-filled gap between an aragonite plate and glass substrate. (B) OM 

images of abalone aragonite plates on a glass substrate after the 

evaporation of EG. (C) Reflectivity plots  = 550 nm) as a function of 

the thickness of the medium between the aragonite plate and the glass 

substrate: air (open circles) and ethylene glycol (filled squares). 
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Figure 4-23. Photographic images and the corresponding bright-field and dark-field 

illuminated images of (A) aragonite plates, (B) precipitated calcite 

CaCO3, and (C) pearl. 

 

As the micro size with flat surface of aragonite plates provided strong reflection, 

the aragonite plates could be used as a surface coating pigment. The appearance of 

aragonite-plate-coated surface showed color and luster like pearl (Figure 23A) while 

that of precipitated calcite CaCO3 showed white color reflection surface (Figure 23B). 

However, the reflection intensity and the colors variety from the aragonite plates were 

smaller than those of synthetic pearlescent pigment (Timiron starlight red; metal-

oxide-coated mica) (data does not show) as surface roughness of mica shows highly 

flat surface compared with that of aragonite plate. Moreover, this natural coating 

pigment was produced from the eco-friendly process which the raw materials from 

seafood industry were abandoned. 
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CHAPTER V 

CONCLUSIONS 

This works have provided the insight understanding of pearlescent effect 

expressed from AGM shell and exploited the benefit of its structure and optical 

properties in several applications that have not been reported before. As the research 

topics in this work were mainly derived into 3 parts, this work could be concluded 

that: 

1. The pearlescent effect of Asian green mussel shells can be enhanced by the 

replacement of organic binding layers with air gaps. A consecutive 

alkaline/thermal treatment could efficiently remove the organic binding 

layers without altering the structure of the aragonite layers assemble. The 

theoretical simulation corroborated the enhanced pearlescent effect by the air 

gaps as greater reflectance and a broader spectral coverage were achieved 

after organic matrix removal 

 2. The pearlescent flakes prepared from AGM shells express vivid color when 

viewing under an optical microscope. The unique structural architecture of 

this material containing transparent aragonite layers and air gaps enabled a 

color selective reflection under a bright-field illumination. The results from 

spectral simulation confirm the governing function of the structural 

architecture (i.e., aragonite thickness and number of aragonite layer) over the 

expressed colors. The flakes with thin aragonite layers selectively reflected 

short wavelength (i.e., blue color) while those with thicker layers reflected 

longer wavelengths (i.e., red-shifted colors). The AGM shells reflect multiple 

colors as they contain aragonite layers with various thicknesses.  

3. We successfully developed simple technique to disintegrate nacre of sea 

shells (i.e. abalone, pearl oyster and AGM shells) into aragonite plates while 

retaining the structure and the polymorphism. The aragonite plates express 

unique pearlescent colors as it selectively reflect certain range of white light. 

The different reflected colors of aragonite plates were depended on their 

thickness while the reflected intensity was depended on the air gap between 
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aragonite plate and a substrate. The unique optical expression from the 

aragonite-plate-coated surface showed color and luster like those of natural 

pearl. The aragonite plates could be employed as a surface coating pigment. 
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ACHIEVEMENT 

 

We successfully developed the method to produce pearlescent flakes and also 

individual aragonite plates and succeed in explanation of optical effects. Our works 

were accepted in peer-reviewed journals and obtain many awards from nation and 

international scientific and engineering societies. The following information shows 

awards to represent our research achievements. 

1. Gold Medals Awards, Title: High quality calcium carboante from green mussel 

shells, 40
th

 Internation Exhibition of Inventions of Gaeneva, 18-22 April 2012, 

World intellectual property organization (WIPO).   

 

 

 

2. Spectial Prize, Title: Pearlescent flake from green mussel shells having unique 

optical properties and its application in security printing, 5
th

 Fajr Internation 

Inventions and Innovation Exhibitio in Tehran, Islamic Republic of Iran, 4 -7 

Fedruary 2013, Korea Invention Promotion Association (KIPA) 
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3. Sci&Tech Initiative and Sustainability Awards 2014 (Grand Prize), Title: Natural 

calcium carbonate and its innovative applications, The Thai Institute of Chemical 

Engineering and Applied Chemistry.  

 

 

 

4. FIRST PRIZE Oral Presentation Award, Title: Color expression associate of 

pearlescent plates from green mussel shell, The 30th Annual Conference of the 

Microscopy Society of Thailand (MST30), 23-25 January 2013, The Microscope 

Society of Thailand.  
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5. FIRST PRIZE Oral Presentation Award, Title: Security markers based on dye-

loaded stacked aragonite microcrystals, The 31st Annual Conference of the 

Microscopy Society of Thailand (MST31), 27-28 January 2014, The Microscope 

Society of Thailand. 

 

 

 

 

Besides our research achievement on academic area, we have strong partners to 

develop innovative works on art and education. The following information shows 

prototype materials and awards to represent achievements of our corroboration works. 
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Figure 1. Prototype jewelry made from Chula Clay (left), cover page of ‘THE 

GAZETTE OF CHULALONGKORN UNIVERSITY’ show prototype 

jewelry made from our developed calcium carbonate (center) and 

pearlescent colors painting (right). 

 

6. Gold Medals Awards, Title: CHULAClay4SustainableDesign-Development of 

prototye of jewelry ecologique, 42
th

 Internation Exhibition of Inventions of 

Gaeneva, 2-6 April 2014, World intellectual property organization (WIPO).  The 

owners of this Award are Dr. Intira Phrompan and Dr. Soamshirne Boonyananta 

from Facultry of Education, Chulalongkorn University. 

 

7. Gold Medals Awards, Title: CHULA Argile Perlée-Twinkling Clay frabicated from 

mussel shells, 42
th

 Internation Exhibition of Inventions of Gaeneva, 2-6 April 

2014, World intellectual property organization (WIPO).  The owners of this Award 

are Dr. Intira Phrompan and Dr. Soamshirne Boonyananta from Facultry of 

Education, Chulalongkorn University. 

 

8. Gold Medals Awards, Title: CHULA Argile Perlée-Twinkling Clay frabicated from 

mussel shells, 42
th

 Internation Exhibition of Inventions of Gaeneva, 2-6 April 

2014, World intellectual property organization (WIPO).  The owners of this Award 

are Associate Professor Dr. Poonarat Pichayapaiboon and Mr. Puchong 

Rojsangrat from Facultry of Education, Chulalongkorn University. 
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Recently, A team of Facultry of Education got ‘The Best Practice Award’ from 

Asia-Pacific Centre of Education for International Understanding (APCEIU) under 

the auspices of UNESCO. Director Mr. CHUNG Utak and Dr. KIM Kwang-Hyun 

presented EIU Best Practice 2014 Award to Facultry of education research team who 

successfully well-done in the project of “Enhancing Student Environmental 

Sustainability Awareness with Innovative Art Materials: Multidisciplinary of art and 

Science Activities”. 

 

 

 

Figure 2. A photographic image of a team of faculty of education, Chulalongkorn 

University got “the best practice award from Asia-Pacific Centre of 

Education for International Understanding (APCEIU) under the auspices of 

UNESCO on 7 September 2014. 

 

References 
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3. http://www.chula.ac.th/th/archive/cover/periodicals/cugazette 

4. http://www.chula.ac.th/en/archive/3402 
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Supporting information 

 

Air-gap-enhanced pearlescent effect in periodic stratified 

bilayers of Perna viridis shell 
Chutiparn Lertvachirapaiboon, Thiluksakorn Jirapisitkul, Prompong Pienpinijtham,  

Kanet Wongravee, Chuchaat Thammacharoen, and Sanong Ekgasit* 

Sensor Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn 

University, 254 Phayathai Road, Patumwan, Bangkok 10330, THAILAND. 

E-mail: *sanong.e@chula.ac.th 

 

Fig. S1 (A) Raman and (B) Diffuse reflectance FT-IR spectra of virgin and treated 

shells. 
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Table S1 Raman and FT-IR spectrum peaks assignment of virgin and treated shells 

[1-6].  
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Fig. S2 (A) Calculated reflectivity reflection spectra of the treated shell with an 

increasing number of bilayer j and (B) the reflectivity at 583 nm. The simulation 

parameters are: nA=1.6, nB=1.0 (air), dA=350 nm, dB=20 nm, and  = 0
o
. The selective 

reflection of red color (  = 583 nm) is obtained under configuration. The total 

reflection is reached with the number of bilayer j = 25.  
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Fig. S3 The OM images of (A) virgin shell and (B) virgin shell immersed with R6G 

dye. The images were recorded under the bright field and dark field illuminations. 
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Fig. S4 Calculated reflection spectrum of (A) aragonite/organic matrix and (B) 

aragonite/air stratified bilayers (1,000 bilayers) at several incident angles. 

 

 

 

 

R
e

fl
e

c
te

d
 in

te
n

s
it
y

400 500 600 700
Wavelength (nm)

0o

10o

20o

30o

40o

50o

60o

70o

80o

400 500 600 700
Wavelength (nm)

0o

10o

20o

30o

40o

50o

60o

70o

80o

R
e

fl
e

c
te

d
 in

te
n

s
it
y

A. aragonite/organic matrix B. aragonite/air 



 

 

62 

  

Fig. S5 Calculated reflectivity of (A) aragonite/organic matrix, (B) aragonite/air 

stratified layers of various thicknesses, and (C) the reflectivity as a function of 

number of bilayer: (square) aragonite/air, (circle) aragonite/organic matrix. The 

reflectivity was measured at the reflection maxima. The simulation parameters are: 

nA=1.6, nB=1.5 (organic matrix) or 1.0 (air), dA=350 nm, dB=20 nm, and  = 40
o
. 
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Selective colors reflection from stratified aragonite calcium 

carbonate plates of mollusk shells  

Chutiparn Lertvachirapaiboon, Tewarak Parnklang, Prompong Pienpinijtham, Kanet 

Wongravee, Chuchaat Thammacharoen, and Sanong Ekgasit* 

Sensor Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn 

University, Bangkok 10330, THAILAND. 

E-mail: *sanong.e@chula.ac.th 

 

ABSTRACT  

An interaction between the incident light and the structural architecture within the 

shell of Asian green mussel (Perna viridis) induces visually observable pearlescent 

colors. In this paper, we investigate the influence of the structural architecture on the 

expressed colors and explore its potential application as a color-shifting pigment. 

After a removal of the organic binder, small flakes from crushed shells appear white 

as normal calcium carbonate powder. However, they show rainbow reflection when 

viewing at an oblique angle. Under an optical microscope, they express multiple vivid 

colors under a bright-field illumination while become transparent under a dark-field 

illumination. The expressed colors of the flake building up from transparent aragonite 

layers are directly associated with its structural architecture. The flakes with aragonite 

thickness of 256, 310, and 353 nm, respectively, appear vividly blue, green, and red 

under an optical microscope. The spectral simulation corroborates the experimentally 

observed optical effects as the flakes with thicker aragonite layers selectively 

reflected color with longer wavelengths. A thick flake totally reflects a selected color 

mailto:sanong.e@chula.ac.th
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in the incident radiation while a thin flake partially reflected the same color. The 

flakes with different aragonite layer thicknesses expressed multi-color as the upper 

transparent aragonite layers allow reflected colors from the lower layers to be 

observed. 

 

KEYWORDS aragonite calcium carbonate, pearlescent flake, color-selective 

reflection, structural color, color-shifting pigment 

 

1. INTRODUCTION 

The structural colors in nature mainly originate from interference of light with 

periodic structure of some living organism such as butterflies, beetles, birds, shells, 

fishes, plants [1-11]. The structural colors function as attractants to conspecifics, 

warning signs, and camouflage. The expressed colors were attributed to refractive 

index of materials, angle of incidence, and thickness of stratified layers within 

periodic structure [8-10]. A well-known example of structural colors in the nature was 

butterflies of the genus Morpho which selectively reflect brilliant blue color due to a 

multiple reflection of white light within an alternating multilayers of chitin and air 

[3,10]. The elytra of many beetles can express the fascinating colors. Yoshioka et al. 

found that the jewel beetle (C. fulgidissima) exhibited a green color at the normal 

angle and the blue color under an oblique angle due to an optical interference within 

stacked layers of chitin [2]. The mollusk shell also express colors originated by an 

interference of light with periodic stratified layers of aragonite and organic matrix. 

The unique structure of mollusk shells that provide the pearlescent colors is a 

stratified assembly of alternated 200-500 nm-thick aragonite calcium carbonate layers 
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bound by 20-30 nm-thick organic binding layers [11-16]. Tan et al. corroborate that 

the uniform stacking of nacre induces the interference effects. The high groove 

density on the surface strongly contributes to the vivid pink and blue-green 

pearlescent colors in abalone (Haliotis Glabra) shell [1]. Recently, the pearlescent 

colors from Asian green mussel (Perna viridis) shell and pearlescent enhancement by 

replacing of organic binding layers with air gaps were reported by our group [11]. 

Most case of the structural colors related to color-shift from one color to another 

due to a change in viewing angle. The structural colors from the nacre layer of sea 

shells provide extraordinary reflections as several colors are visible at the same time. 

Our developed treatment technique enabled us to characterize the origin of rainbow 

colors reflected from stratified layer of aragonite calcium carbonate as only the 

organic binder was disintegrated without destroying the structural assembly of nacre 

of shells. After organic binder was eliminated, the shells were disintegrated to small 

fragments called ‘pearlescent flakes’. In this current investigation, the relationship 

between structure of pearlescent flakes and the color expressions were characterized 

to gain insight understanding of rainbow-colors reflection of nacre. Moreover, a 

theoretical calculation based on the transfer matrix method provided was used to 

confirm this structure-color relationship. 

 

2. MATERIAL AND METHODS 

The pearlescent flakes from Asian green mussel (AGM), abalone, and oyster 

shells were prepared by our previously developed methodology with a minor 

modification [11]. Briefly, the shells were thoroughly cleaned to remove residual 

tissues and other contaminants before drying under an ambient air. The dried shells 
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were baked at 300 
o
C for 2 h. The shells were then immersed in 30 % wt. hydrogen 

peroxide (H2O2, Merck, Thailand) for 24 h to dissolve the brownish-degraded organic 

binder. The H2O2-whiten shells showed observable rainbow colors. The shells were 

brittle and easily broken-down into small flakes. The flakes were cleaned with tap 

water several times to remove dust particles. The flakes showed vivid rainbow colors 

observable by naked eyes when they were dispersed in water. The flakes were air 

dried before keeping in a desiccator for further investigation.  

Scanning electron microscope (SEM, JSM-6510A, JEOL) and atomic force 

microscope (AFM, SPA 400, SII NanoTechnology Inc.) were employed to investigate 

the structural architecture of the flakes. To acquire SEM images, a flake was wrapped 

with aluminum foil before mounting on a modified stub with the cross-section surface 

normal to the electron beam. SEM images were acquired under low acceleration 

voltage of 5 kV. The average thickness of aragonite plates was calculated from 100 

aragonite plates selected from unique SEM images [15]. AFM images were recorded 

with a scan rate of 1 Hz in a non-contact mode using silicon tips with a rounding size 

of 20 nm, force constant of 17 N/m, and a resonance frequency of 139 KHz. 

 The expressed colors of pearlescent flakes were recorded by a CCD camera 

(Carl Zeiss, AxioCam HRc) attached on an optical microscope (OM, Carl Zeiss Axio 

Scope.A1). The reflection spectra of pearlescent flakes were collected by a fiber optic 

spectrometer (OceanOptics USB4000 portable UV-visible spectrometer) coupled to 

the OM. Figure 1 shows instrumental setup with CCD camera and fiber optic 

spectrometer capable of recording OM images and spectroscopic data simultaneously. 
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3. RESULTS AND DISCUSSION  

Calcium carbonate flakes of AGM shells, abalone shells, and oyster shells 

prepared by a consecutive thermal/chemical treatment appeared white powder. When 

viewing under an OM (10X objective), they showed vivid color (Figure S1) not 

observed in regularly crushing technique (Figure S2) and precipitated calcium 

carbonate (Figure S3). The vivid reflected colors also indicated the structural integrity 

as the flakes did not break down into an individual aragonite plate. The flakes from 

AGM shells showed the most vivid colors covering the entire visible region. 

Therefore, it was selected as a model material for our study on color expression of the 

nacre structure. The pearlescent effect of a virgin AGM shell originated by an 

interaction between light with nacre is well-known, Figure 2A. To acquire the 

structural information of the shell, we recorded SEM images across the thickness of 

the AGM shell. The cross-section SEM images in Figure 2C show a gradual 

increment of the thickness of aragonite plates as they aged (i.e., the thickness 

increases toward the outside layers). 

After the removal of organic matrix, the treated shells showed stronger 

reflection with more vivid colors compared to the virgin shells. The shells became 

brittle and easily broken into small fragments (i.e., the pearlescent flakes). Due to 

scattering effect, the pearlescent flakes appeared white to the naked eyes (Figure 3A) 

but expressing vivid colors at normal angle of OM (Figure 3B) ** the bulk white 

powder **. The SEM images suggest that the pearlescent flake is in fact an alternated 

stack of aragonite layers and air gaps [11]. The removal of organic binder with a 

consecutive development of air gaps was confirmed by TGA analyses (Figure S4). 

The 200-to-500-nm-thick aragonite layer is a single ply assembly of 3-5 μm bisector 
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length pseudo-hexagonal aragonite plates, Figures 2 and S5. The Raman spectra 

corroborate that the AGM shells are aragonite calcium carbonate (Figure S6) [17-19]. 

Figure 3B shows OM image of pearlescent flakes while Figure 3C shows the 

corresponding reflection spectra of selected pearlescent flakes. Although, the flakes 

were white powder when observed by the naked eyes, the vivid colors appeared under 

an OM. The strong and narrow reflection spectra corresponded to the expressed colors 

under OM. The purple-blue, blue, green and red pearlescent flakes show spectra with 

reflection maxima at 457, 485, 553, and 654 nm, respectively. We hypothesized that 

the expressed color was directly associated with the structural architecture of the 

individual flake. The relatively flat surface also contributed to the strong reflection 

colors (Figure S5). In Figure 3B, the aragonite flake ‘f’ appears dark while its 

corresponding reflection spectrum in Figure 3C was rough across the visible region as 

the flake does not reflect any incident radiation. The corresponding SEM images 

(Figure S7) suggest that the flake was fragmented from the outer part of the shell 

where the aragonite plates are irregularly thick with highly rough surface. 

The pearlescent flakes with blue, green, and red were selected for further 

detailed investigation (Figure 4). As indicated by the OM images and the 

corresponding SEM and AFM images (Figures 4A-4I), the aragonite plates of the 

flakes expressing blue, green, and red colors with reflection maxima at 441, 523, and 

577 nm have thickness of 25610, 31012, and 35310 nm, respectively. The 

histogram in Figure 4J suggests that the pearlescent flakes expressing single vivid 

color composed of aragonite layers having narrow thickness distribution. When the 

thicknesses were employed for spectral simulations, the calculated spectra agreed 

very well with the experimentally measured spectra (Figure 4K). The results in Figure 
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4 confirm that the thickness of transparent aragonite layers govern the expressed 

colors of the pearlescent flakes. 

To verify the influence of the structural architecture on the color expression of 

pearlescent flakes, the modified transfer matrix method for stratified bilayers was 

employed [11,20]. The pearlescent flake consists of N aragonite/air gap bilayers. The 

aragonite layer is represented by layer A while the air gap is represented by layer B. 

The j
th
 bilayers consists of layer A and layer B with a thickness of dA and dB and 

reflective indices of nA and nB. All stratified layers are assumed transparent. (i.e., the 

aragonite calcium carbonate does not absorb visible light). In the simulation 

algorithm, the stratified bilayer was bounded by air (i.e., air function as both incident 

medium and substrate). When an incident radiation of wavelength  impinges on the 

stratified bilayer with an angle of incident , the reflectance is given in terms of the 

Fresnel reflection coefficients as [11,20] 

( ) / 2R R R  ; for non-polarization,     (Eq. 1) 

2
R r  ;  for perpendicular polarization,   (Eq. 2) 

2

R r ;  for parallel polarization,    (Eq. 3) 

11 12 air air 21 22 air
.

11 12 air air 21 22 air

( ) ( )

( ) ( )

M M q q M M q
r

M M q q M M q


  


  
.    (Eq. 4) 

 

Where  indicates parallel-polarized radiation and   indicates perpendicular-

polarized radiation. Mmn is an element of the characteristic matrix M(22) of stratified 

bilayers. This matrix M is given in terms of reflective index and experimental 

condition as 
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  (Eq. 5) 

 

where 
1/ 2( 1)i   , 

2/j j jq k n  for parallel-polarized ( ) radiation, and 
j jq k  for 

perpendicular-polarized ( ) radiation. 
jk (

2 2 2 1/ 2

air[(2 / ) ]j jk n k   ) is the 

wavevector in each layer while airk ( 2 2 1/ 2

air air(2 / )[ sin ]k n   ) is the wavevector in 

air. 

 

To calculate the reflection spectra of pearlescent flakes expressing blue, green, 

and red colors, the thickness of the aragonite layers were assigned according to the 

experimental results shown in Figure 4 with a refractive index of 1.6 (nA=1.6). The air 

gaps (nB=1.0) with 20 nm thick assumed [11]. At an incident angle perpendicular to 

the stratified layers, the calculated reflection spectrum with aragonite thicknesses of 

256, 310, and 353 nm showed reflection peaks centered at 439, 519 and 583 nm, 

respectively (Figures 4K and S8A). The calculated spectra agreed very well with the 

experimentally measured spectra (Figure 4K). Since the flake was constructed from 

transparent aragonite layers and air gaps, the interaction between incident light and 

structural architecture of the flake (i.e., aragonite thickness, air gap thickness, and 

number of layer) induced color selective reflection spectrum. The noticeable broader 

reflection peaks in the experimentally measured spectra in Figure 4K were expected 

to originate from a non-uniform thickness and surface roughness aragonite plates 

(Figure S5). The simulated results shown in Figures S8 and S9 confirm that the 

aragonite layers with thickness of 250-450 nm (i.e., a common thickness range of 
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naturally occur aragonite calcium carbonate) are capable of selectively reflected 

visible light across the visible region [11-15]. The pearlescent flakes with thicker 

aragonite layer selectively reflected colors with longer wavelength (Figure S8B). 

However, an increment of the thickness of the air gap (i.e., 5-40 nm) insignificantly 

shifts the reflected colors (Figure S9).  

The uniform blue and green colors of aragonite flake with rough surfaces 

(Figures 5A and 5B) suggest that the number aragonite layers did not alter the color 

expression. We employed spectral simulation to verify this experimentally observed 

phenomenon. The thicknesses of aragonite plates were assigned to 256 nm for the 

blue pearlescent flakes and 310 nm for the green pearlescent flakes. As the number of 

bilayers was increased from 1 to 120 bilayers, the reflected intensity was increased 

with a concomitant blue-shift of peak position. The color-selective reflection of the 

transparent aragonite layers was noticeable at 5-bilayer with ~50% reflectivity of the 

incident light (Figures 5C and 5D). Interestingly, the total reflection was achieved 

when the number of the aragonite layer was greater than 30 layers (Figure 5E). As a 

result, a thick pearlescent flake composes of aragonite plates of narrow thickness 

distribution expresses its unique color. As shown in Figure 5, aragonite flake with 256 

nm thick plates selectively reflect blue color (max=439 nm) while that with 310 nm 

plates selectively reflect green color (max=519 nm) across their rough surfaces. 

According to the spectra in Figure 4K, a flake with a certain thickness of 

aragonite layer selectively reflect a particular color. The pearlescent flake shows red-

shifted reflecting color as the thickness of aragonite layer increases. In the 

experimental observation, flakes with multicolor were frequently observed (Figures 2 

and 6). To gain an insight understanding of the phenomenon, we performed spectral 
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simulation on pearlescent flake containing aragonite layers with two different 

thicknesses (i.e., 256 nm and 310 nm). We calculate spectra of a flake containing 50-

bilayer with various combinations on the number of layers from each aragonite. 

Although the thin 256-nm layer was covered by a thick 310-nm layer, the blue 

reflection could be observed since the green reflection spectrum is transparent in the 

blue reflection. The blue reflection became more intense as the number of the 310-nm 

layer decreased. The results from Figure 6 suggest that the multicolor expression of a 

pearlescent flake is due to the thickness variation of the aragonite layers within the 

flake. 

 

4. CONCLUSIONS 

The white aragonite calcium carbonate flakes express vivid color when viewing 

under an optical microscope. The unique structural architecture of this bio-material 

containing transparent aragonite layers and air gaps enabled a color selective 

reflection under a bright-field illumination while optically transparent under a dark-

field illumination. The results from spectral simulation confirm the governing 

function of the structural architecture (i.e., aragonite thickness and number of 

aragonite layer) over the expressed colors. The flakes with thin aragonite layers 

selectively reflected short wavelength (i.e., blue color) while those with thicker layers 

reflected longer wavelengths (i.e., red-shifted colors). A thick flake totally reflects the 

incident radiation without interfering the reflected color while a thin flake partially 

reflected the color. Unlike the metal oxide-coated mica pearlescent flakes that express 

single color change, the AGM pearlescent flakes reflect multiple colors as they 

contain aragonite layers with various thicknesses. 
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List of figure captions 

Figure. 1.  Experimental setup capable of simultaneously acquires a visible spectrum 

and the corresponding OM image of a pearlescent flake. 

Figure 2.  (A) Pearlescent colors of AGM shell. (B) Thickness of AGM shell. (C) A 

cross-section SEM images of AGM shell. The detailed SEM images across 

the thickness (C1-C4) show a gradual thickness increment of the aragonite 

plates from the inner layers towards the outside layers. The scale bars 

indicate 1 μm. 

Figure 3. (A) SEM images of pearlescent flakes. The flakes are stratified bilayers of 

aragonite layers and air gaps. The flakes appear white to the naked eyes. 

(B) OM image of pearlescent flakes under a bright-field illumination (10X 

objective). The inset shows the corresponding dark-field illumination 

image. (C) Reflection spectra of selected pearlescent flakes acquired by 

coupling the reflected light into a fiber optic spectrometer via a 50X 

objective. 

Figure 4.  OM, cross-section SEM and AFM images of pearlescent flakes expressing 

colors: (A, D, G) blue, (B, E, H) green, and (C, F, I) red. Histogram (J) 

show thickness distribution of aragonite layers within the colored 

pearlescent flakes. (K) Comparisons of experimental (solid line) and 

calculated (dash line) reflection spectra of pearlescent flakes. The 

experimentally measured thicknesses were employed for the calculations.  
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Figure 5.  OM images of pearlescent flake selectively reflect (A) blue and (B) green 

colors. The flakes show thickness variation across the surfaces but 

expressing uniform colors. Calculated reflection spectra of stratified 

bilayers of (C) the blue pearlescent flakes (dA=256 nm) and (D) the green 

pearlescent flake (dA=310 nm). The thickness of the air gap was assumed 

20 nm. (E) The reflectivity-number of bilayer plot for blue and green 

flakes. The total reflection (color saturation) was achieved after a 30-

bilayer.  

Figure 6.  Calculated reflection spectrum of a 50-bilayer flake with different ratio of 

256-nm aragonite layer (expressing blue color) and 310-nm aragonite 

layer (expressing green color). The inset OM image shows an 

experimentally observed pearlescent flake expressing both blue and green 

colors.  
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Figure 1. Experimental setup capable of simultaneously acquires a visible spectrum 

and the corresponding OM image of a pearlescent flake. 
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Figure 2. (A) Pearlescent colors of AGM shell. (B) Thickness of AGM shell. (C) A 

cross-section SEM images of AGM shell. The detailed SEM images across the 

thickness (C1-C4) show a gradual thickness increment of the aragonite plates from the 

inner layers towards the outside layers. The scale bars indicate 1 μm. 
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Figure 3. (A) SEM images of pearlescent flakes. The flakes are stratified bilayers of 

aragonite layers and air gaps. The flakes appear white to the naked eyes. (B) OM 

image of pearlescent flakes under a bright-field illumination (10X objective). The 

inset shows the corresponding dark-field illumination image. (C) Reflection spectra of 

selected pearlescent flakes acquired by coupling the reflected light into a fiber optic 

spectrometer via a 50X objective. 
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Figure 4. OM , cross-section SEM and AFM images of pearlescent flakes expressing 

colors: (A, D, G) blue, (B, E, H) green, and (C, F, I) red. Histogram (J) show 

thickness distribution of aragonite layers within the colored pearlescent flakes. (K) 

Comparisons of experimental (solid line) and calculated (dash line) reflection spectra 

of pearlescent flakes. The experimentally measured thicknesses were employed for 

the calculations.  
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Figure 5. OM images of pearlescent flake selectively reflect (A) blue and (B) green 

colors. The flakes show thickness variation across the surfaces but expressing uniform 

colors. Calculated reflection spectra of stratified bilayers of (C) the blue pearlescent 

flakes (dA=256 nm) and (D) the green pearlescent flake (dA=310 nm). The thickness 

of the air gap was assumed 20 nm. (E) The reflectivity-number of bilayer plot for blue 

and green flakes. The total reflection (color saturation) was achieved after a 30-

bilayer.  
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Figure 6. Calculated reflection spectrum of a 50-bilayer flake with different ratio of 

256-nm aragonite layer (expressing blue color) and 310-nm aragonite layer 

(expressing green color). The inset OM image shows an experimentally observed 

pearlescent flake expressing both blue and green colors.  
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Figure S1. Optical microscope images, SEM images, and aragonite thickness 

distribution of (A) AGM shells, (B) abalone shells, and (C) oyster shells. The 

aragonite powder from shells appeared white to the naked eyes as normal calcium 

carbonate powder. Under an optical microscope (10X objective), the aragonite flakes 

selectively reflected certain frequency of visible light and appeared colorful. The SEM 

images indicated that all shells composed of aragonite layers bounded by organic 

binder [1-6]. The thickness distribution of AGM shells, abalone shells, and oyster 

shells are 34485, 45473, and 36033 μm, respectively. The unique reflective colors 

seem to be associated with the structural architecture of the shells.  

 

 

 

100 μm 

0 250 500 750 1000
0

10

20

30

40

%
 C

o
u

n
ts

Thickness (nm)

34485nm

A. AGM shells

100 μm 

0 250 500 750 1000
0

10

20

30

40

%
 C

o
u

n
ts

Thickness (nm)

45473 nm

B. Abalone shells

100 μm 

0 250 500 750 1000
0

10

20

30

40

%
 C

o
u

n
ts

Thickness (nm)

36033 nm

C. Oyster shells

100 μm 100 μm 100 μm



 

 

87 

References 

(1) Jackson AP, Vincent JFV, Turner RM. The mechanical design of nacre. Proc. R. 

Soc. B 1988; 234: 415–440. 

(2) Leung HM, Sinha SK. Scratch and indentation tests on seashells. Tribol. Int. 

2002; 42: 40–49. 

(3) Lin A, Meyers MA. Growth and structure in abalone shell. Mat. Sci. Eng. A-

Struct. 2005; 390: 27–41. 

(4) Meyers MA, Chen PY, Lin AYM, Seki Y. Biological materials: structure and 

mechanical properties. Prog. Mater. Sci. 2008; 53: 1–206. 

(5) Lopez MI, Martinez PEM, Meyers MA. Organic interlamellar layers, mesolayers 

and mineral nanobridge: contribution to strength in abalone (Haliotis rufescence) 

nacre. Acta Biomater. 2014; 10: 2056–2064. 

(6) Lertvachirapaiboon C, Jirapisitkul T, Pienpinijtham P, Wongravee K, 

Thammacharoen C, Ekgasit S. Air-gap-enhanced pearlescent effect in periodic 

stratified bilayers of Perna viridis shell. J. Mater. Sci. 2014; 49: 6282-6289. 

  



 

 

88 

 

 

Figure S2. Optical microscope (10X objective) and SEM images of crushed virgin 

and thermal treated shells.  
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Figure S3. Optical microscope images of precipitated calcium carbonate (PCC) 

powder (Merck, Thailand) under (A) 10X and (B) 50X objectives. The cubic calcite 

PCC (average particle size of 10 μm) appeared colorless under optical microscope 

when viewing with both bright-field and dark-field illuminations.  
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Figure S4. TG and DTG curves of (A) AGM shell and (B) pearlescent flakes and 

their corresponding cross-section SEM images. The thermal analyses results indicated 

a removal of organic binding layers between aragonite layers. The remaining organic 

binder (1.6 %wt.) is expected to be those within the aragonite plates [1]. The SEM 

images confirm the removal of the organic binder layers. Air gaps could be noticed in 

Figure S4B. The significant reduction of the electron charge up in SEM image in 

Figure S4B compare to that in Figure S4A corroborate the removal of the organic 

binding layer [2]. 
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Figure S5. Top view SEM images of (A) AGM shell and (B) pearlescent plate and the 

corresponding AFM images. The AFM images suggest that the aragonite calcium 

carbonate layer has a relatively smooth surface with average roughness (Ra) 1.3 nm. 
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Figure S6. Raman spectra of (A) AGM shell, (B) pearlescent flake, and (C) 

commercial calcite calcium carbonate. The Raman spectra confirm that A and B are 

aragonite CaCO3 while C is a calcite CaCO3 [1-3].  
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Summary of results shown in Figures S4-S6  

The decrease of organic content in AGM shell after the treatment was 

confirmed by TGA technique. The TG curves in Figure S4 shows two major weight 

losses. The first weight loss at 200-300 
o
C was due to the organic matrix 

decomposition. The TG curve indicated the organic content in the virgin AGM shell 

was 6.9 % while that of the treated shell was 1.6 %. A 5.3 % reduction was due the 

degradation and dissolution by the treatment process. The cross-section SEM image 

of pearlescent flake shows stratified aragonite structure assembly with observable air 

gaps indicating the decreasing of organic matrix in the shell structure (Figure S4B). 

The second thermal decomposition with ~42% weight loss at 600-800 
o
C was due to 

the liberation of carbon dioxide as calcium carbonate was thermally decomposed to 

calcium oxide. The aragonite plate showed pseudo-hexagonal aragonite tiles with 3-5 

micrometer bisector length and the average roughness (Ra) of 1.3 nm, Figure S5. The 
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Raman spectra of virgin AGM shell and pearlescent flake (Figure S6) show unique 

external lattice vibration at 147, 156, 183, and 209 cm
-1

, and doublet at 703 and 706 

cm
-1 

of carbonate specie of the aragonite crystal [1-3]. These results suggested that the 

treatment process did not alter the original structure and crystallographic form of the 

AGM structural assembly. The structure stability was due to the presence of mineral 

bridges connecting between aragonite layers [4-5].  
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Figure S7. OM images of pearlescent flakes with vivid color (the same as shown in 

Figure 3B). The flake ‘f’ does not express any color due to its structure architecture. 

The SEM images in Figure S7B and S7C suggest that flake ‘f’ is a fragment of aged 

aragonite layers at the outer surface of AGM shell. The aragonite plates are irregularly 

thick with rough surfaces. It does not systematically interact with an incident white 

light. As a result, the flake ‘f’ does not show a selective reflection capability as the 

flakes with uniform aragonite layers.  
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Figure S8. (A) Calculated reflection spectrum of aragonite/organic matrix (solid lines) 

and aragonite/air gaps (dash lines) stratified bilayers. The thicknesses of aragonite (dA) 

were assigned to 256 (blue line), 310 (green line), and 353 (red line) nm. The 

following parameters were employed: nA=1.6, nB=1.5 for organic matrix (solid lines) 

and 1.0 for air gaps (dash lines), dB
 
=20 nm, N=50 bilayers, =0

o
 and =400-700 nm. 

(B) The reflectivity plots as a function of thicknesses of aragonite layer. 
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Figure S9. Calculated reflection spectrum of aragonite/organic matrix and 

aragonite/air gaps stratified bilayers; the thicknesses of aragonite (dA) were assigned to 

256 (blue line), 310 (green line), and 353 (red line) nm. The following parameters 

were employed: nA=1.6, nB=1.5 for organic matrix (solid line) and 1.0 for air gaps 

(dash line), dB
 
=20 nm, N=50 bilayers, =0

o
 and =400-700 nm. (B) The reflectivity 

plots as a function of thicknesses of aragonite layer. 
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