
 

 

APPLICATION OF METAHEURISTIC APPROACH TO MODEL AN ASSEMBLY 
OF TRANSMEMBRANE HELICAL BUNDLE IN INTEGRAL MEMBRANE PROTEINS 

 

Mr. Kanon Sujaree 

A Dissertation Submitted in Partial Fulfillment of the Requirements 
for the Degree of Doctor of Philosophy Program in Nanoscience and Technology 

 (Interdisciplinary Program) 
Graduate School 

Chulalongkorn University 
Academic Year 2014 

Copyright of Chulalongkorn University 

 



 

 

 

การประยุกต์วิธีเมต้าฮิวริติกเพื่อจ าลองการรวมกลุ่มของทรานเมมเบรนเฮลิกซ์ในอินทิกรัลเมมเบรน
โปรตีน 

 

นายคณน สุจารี 

วิทยานิพนธ์นี้เป็นส่วนหนึง่ของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต 
สาขาวิชาวิทยาศาสตร์นาโนและเทคโนโลยี (สหสาขาวิชา) 

บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย 
ปีการศึกษา 2557 

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย 

 



 

 

Thesis Title APPLICATION OF METAHEURISTIC APPROACH TO 
MODEL AN ASSEMBLY OF TRANSMEMBRANE 
HELICAL BUNDLE IN INTEGRAL MEMBRANE 
PROTEINS 

By Mr. Kanon Sujaree 
Field of Study Nanoscience and Technology 
Thesis Advisor Associate Professor Pornthep Sompornpisut, 

Ph.D. 
  

 Accepted by the Graduate School, Chulalongkorn University in Partial 
Fulfillment of the Requirements for the Doctoral Degree 

 

 Dean of the Graduate School 

(Associate Professor Sunait Chutintaranond, Ph.D.) 

THESIS COMMITTEE 

 Chairman 

(Associate Professor Vudhichai Parasuk, Ph.D.) 

 Thesis Advisor 

(Associate Professor Pornthep Sompornpisut, Ph.D.) 

 Examiner 

(Assistant Professor Somsak Pianwanit, Ph.D.) 

 Examiner 

(Assistant Professor Nutthita Chuankrerkkul, Ph.D.) 

 External Examiner 

(Kwanniti Khammuang, Ph.D.) 

 

 



 iv 

 

 

THAI ABSTRACT 

คณน สุจารี : การประยุกต์วิธีเมต้าฮิวริติกเพื่อจ าลองการรวมกลุ่มของทรานเมมเบรนเฮ
ลิกซ์ในอินทิกรัลเมมเบรนโปรตีน (APPLICATION OF METAHEURISTIC APPROACH TO 
MODEL AN ASSEMBLY OF TRANSMEMBRANE HELICAL BUNDLE IN INTEGRAL 
MEMBRANE PROTEINS) อ.ท่ีปรึกษาวิทยานิพนธ์หลัก: รศ. ดร.พรเทพ สมพรพิสุทธิ์, 57 
หน้า. 

แม้ว่าจะมีการเติบโตอย่างรวดเร็วของจ านวนโครงสร้างสามมิติของโปรตีนท่ีวัดได้  แต่เมื่อ
เปรียบเทียบจ านวนทรานสเมมเบรนโปรตีนกับจ านวนโครงสร้างโปรตีนท้ังหมดท่ีมีอยู่ ใน
ฐานข้อมูล  Protein data bank พบว่าอัตราร้อยละอยู่ในระดับต่ า เนื่องจากความยากเชิงเทคนิค
ส าหรับการวัดโครงสร้างท่ีมีความละเอียดสูง การศึกษานี้จึงน าเสนอ อัลกอริท่ึมใหม่ช่ือ แม๊ก มิน 
แอนท์ ซิสเตม (Max-Min ant system) ท่ีถูกออกแบบเพื่อหาการรวมตัวของทรานสเมมเบรนโปรตีน 
ชนิดเกลียวอัลฟ่า โดยใช้การจัดวางของเฮลิกซ์ชนิดแข็งเกร็งท่ีบังคับโดยเงื่อนไขระยะทาง วิธีการท่ี
น าเสนอเรียกว่า ทาร์มมัส (THAMMAS : Transmembrane Helix Assembly by Max-Min Ant 
System) ผลิตการวางทิศทางของกลุ่มทรานสเมมเบรนเฮลิกซ์ท่ีหลากหลาย  และหาค าตอบท่ี
เหมาะสมกับเงื่อนไขของระยะทาง ตามพฤติกรรมการหาอาหารของมดในการค้นหาเส้นทางท่ีส้ันท่ีสุด
ระหว่างรังกับแหล่งอาหาร เพื่อแสดงให้เห็นถึงประสิทธิภาพของอัลกอริท่ึมชนิดใหม่นี้ THAMMAS 
ถูกน ามาวัดการแพคของทรานสเมมเบรนของไอออนแชนนัล KcsA และ MscL จากข้อมูลระยะทางท่ี
ได้มาจากโครงสร้างผลึกและการแพคของโดเมนรับรู้ศักย์ไฟฟ้า KvAP โดยใช้ชุดเงื่อนไขระยะทางท่ีวัด
จากการทดลอง เปรียบเทียบผลการทดลองกับ คอนเวนช่ันนอล ออฟติไมเซช่ัน อัลกอริท่ึม ซึ่งได้แก่ 
ซิมูเลคเตด อัลเนลล่ิง มอนติ คาร์โล และจีเนติกส์ อัลกอริท่ึม 

 

สาขาวิชา วิทยาศาสตร์นาโนและเทคโนโลยี 
ปีการศึกษา 2557 
 

ลายมือช่ือนิสิต   
 

ลายมือช่ือ อ.ท่ีปรึกษาหลัก      

 

 



 v 

 

 

ENGLISH ABSTRACT 

# # 5287757420 : MAJOR NANOSCIENCE AND TECHNOLOGY 
KEYWORDS: MAX-MIN ANT SYSTEM / GENETIC ALGORITHM / SIMULATED ANNEALING / 
MONTE CARLO 

KANON SUJAREE: APPLICATION OF METAHEURISTIC APPROACH TO MODEL AN 
ASSEMBLY OF TRANSMEMBRANE HELICAL BUNDLE IN INTEGRAL MEMBRANE 
PROTEINS. ADVISOR: ASSOC. PROF. PORNTHEP SOMPORNPISUT, Ph.D., 57 pp. 

Despite the rapid growth of solved 3D structures proteins, a relatively low 
percentage of all structures of the Protein Data Bank is transmembrane proteins due 
to technical difficulties for high-resolution structure determination. This study 

proposes a novel algorithm. Max-Min Ant System, designed to find an assembly of α-
helical transmembrane proteins using a rigid helix arrangement guided by distance 
constraints. The method called THAMMAS (Transmembrane Helix Assembly by Max-
Min Ant System) generates a variety of orientations of transmembrane helix bundle 
and finds the solution that is matched with the provided distance constraints based 
on the behavior of ants to search for the shortest possible path between their nest 
and the food source. To demonstrate the efficiency of the novel algorithm, 
THAMMAS are applied to determine the transmembrane packing of KcsA and MscL 
ion channels from distance information extracted from the crystal structures, and the 
packing of KvAP voltage sensor domain using a set of experimentally-determined 
constraints and the results are compared with those of conventional optimization 
algorithms, Simulated Annealing Monte Carlo method and Genetic Algorithm. 

 

Field of Study: Nanoscience and 
Technology 

Academic Year: 2014 
 

Student's Signature   
 

Advisor's Signature   
  

 

 

 



 vi 

 

 

 
ACKNOWLEDGEMENTS 
 

ACKNOWLEDGEMENTS 

 

I would like to express my deepest gratitude to Associate Professor 
Pornthep Sompornpisut, Ph.D.  for his kind advisor, his consultant and helpful in 
my work and dissertation. 

I would like to thank the thesis committee: Associate Professor  
Vudhichai Parasuk, Ph.D Assistant Professor Somsak Pianwanit, Ph.D. Assistant 
Professor Nutthita Chuankrerkkul, Ph.D and Kwanniti Khammuang, Ph.D.  for their 
comments to my dissertation. 

I would like to acknowledge the 90th Anniversary of Chulalongkorn 
University Fund (Ratchadaphiseksomphoj Endowment Fund), the Center for 
Innovative Nanoscience and Nanotechnology (CIN grant 2555), NSTDA through 
Nanotec grant: p-11-00990 and nanoscience and technology program for 
enhancing and providing financial support. 

I would like to thank my friends Mr. Chirayut Supunyabut, Mr. Panisak 
Boonamnaj and Miss Sunan Kitjaruwankul for their suggestion in chemistry and 
comments in thesis.  

Finally I would like to thanks my mother Mrs Patthanan Sujaree for great 
encouragement and her love to me all the time. This is an important force which 
supports me to success in this work. 

 



CONTENTS 
  Page 

THAI ABSTRACT ............................................................................................................................... iv 

ENGLISH ABSTRACT .........................................................................................................................v 

ACKNOWLEDGEMENTS ................................................................................................................... vi 

CONTENTS ....................................................................................................................................... vii 

LIST OF TABLES ................................................................................................................................ x 

LIST OF FIGURES ............................................................................................................................. xi 

LIST OF ABBREVIATIONS .............................................................................................................. xiii 

CHAPTER I ......................................................................................................................................... 1 

INTRODUCTION ................................................................................................................................ 1 

1.1 Integral membrane proteins ............................................................................................. 1 

1.2 Optimization Algorithm ...................................................................................................... 2 

1.2.1   Metaheuristics approach ...................................................................................... 3 

1.2.1.1 Max-Min ant system ................................................................................... 4 

1.2.1.2 Genetic algorithm ....................................................................................... 7 

1.2.1.3 Simulated Annealing Monte Carlo method .......................................... 8 

1.3 Experimental design and analytical data ........................................................................... 9 

1.3.1 2k Factorial designs ................................................................................................ 11 

1.3.2 3k Factorial designs ................................................................................................ 11 

1.3.3 Analysis of variance: ANOVA ................................................................................ 12 

1.3.4 Multiple comparisons ............................................................................................ 12 

1.4 Methods for prediction structure membrane protein .............................................. 13 

1.5 Problem statement .......................................................................................................... 15  

 



 viii 

  Page 

1.5.1 KcsA potassium channel: KcsA / TM2 ................................................................ 15 

1.5.2 KcsA potassium channel: TM1-TM2 ................................................................... 17 

1.5.3 KvAP / VSD ............................................................................................................... 18 

1.5.4 MscL / TM1-TM2 ..................................................................................................... 19 

1.6   Rationale and Objectives .............................................................................................. 20 

CHAPTER II ...................................................................................................................................... 23 

MATERIALS AND IMPLEMENTATION .......................................................................................... 23 

2.1 Materials .............................................................................................................................. 23 

2.1.1 Hardware .................................................................................................................. 23 

2.1.2 Software .................................................................................................................... 23 

2.1.2.1 The Visual molecular dynamics (VMD) ................................................ 23 

2.1.2.2 The visual basic (VB)................................................................................. 23 

2.1.2.3. The statistical package for social science (SPSS) .............................. 23 

2.1.2.4 The Origin program ................................................................................... 23 

2.1.2.4 Tool command language and Toolkit (Tcl/Tk) .................................. 23 

2.2 Penalty Functions and distance constraints ............................................................... 24 

2.3 Implementation ................................................................................................................. 24 

2.3.1 MMAS methods ....................................................................................................... 25 

2.3.2 Genetic algorithm ................................................................................................... 26 

2.2.3 Simulated annealing monte carlo ...................................................................... 27 

2.4 Testing models .................................................................................................................. 28 

2.5 Assembly search space: degrees of freedom ............................................................. 29 

2.6 Statistics methods ............................................................................................................. 29  

 



 ix 

  Page 

CHAPTER III ..................................................................................................................................... 35 

RESULTS AND DISCUSSION ......................................................................................................... 35 

3.1 MMAS parameters ............................................................................................................. 35 

3.2 GA parameters ................................................................................................................... 40 

3.3 Transmembrane Assembly Scenarios .......................................................................... 43 

3.4 Optimization performance .............................................................................................. 49 

CHAPTER IV..................................................................................................................................... 51 

CONCLUSION ................................................................................................................................. 51 

REFERENCES ................................................................................................................................... 52 

VITA .................................................................................................................................................. 57 

 

 



 

 

LIST OF TABLES 

Table 3. 1 The level and parameters of MMAS ................................................................... 36 

Table 3. 2 Results of ANOVA for predicting transmembrane arrangement of KcsA 
inner helices .................................................................................................................................. 39 

Table 3. 3 The level and parameters of GA ......................................................................... 40 

Table 3. 4 Results of ANOVA for predicting transmembrane arrangement of KcsA 
inner helices .................................................................................................................................. 43 

Table 3. 5 Total number of intra- and inter-subunit distance constraints used .......... 44 

Table 3. 6 Inter-subunit Cα-Cα distances of the selected residues on the TM2 
segment of KcsA. Distances were derived from the crystal structure with PDB 
code 1k4c. ...................................................................................................................................... 45 

Table 3. 7 Intra-subunit Cα-Cα distances of the selected residues on the TM1 
and TM2 segments of KcsA. Distances were derived from the crystal structure 
with PDB code 1k4c. .................................................................................................................... 45 

Table 3. 8 Ten experimentally-determined DEER distances between bi-functional 
spin labels on the S1, S2, S3 and S4 of KvAP voltage sensor domain. Experimental 
distances were taken from Q. Li et al.[45] ............................................................................. 46 

Table 3. 9 Inter- and Intra-subunit Cα-Cα distances of the selected residues on 
the TM1 and TM2 segments of MscL. Distances were derived from the crystal 
structure with PDB code (2oar). ................................................................................................ 46 



 

 

LIST OF FIGURES 

Figure 1. 1 Integral membrane protein is includes transmembrane protein and 
peripheral membrane protein. They are embedded in phospholipid bilayer ................. 2 

Figure 1. 2 Classification of Optimization Problem................................................................ 3 

Figure 1. 3 Finding the food of the ant’s behavior that they try to find the 
shortest path from nest to food. ................................................................................................ 5 

Figure 1. 4 The schematic of the experimental design ...................................................... 10 

Figure 1. 5 The inner transmembrane segments of the tetramer structure of KcsA 
potassium channel ....................................................................................................................... 15 

Figure 1. 6 A single transmembrane helix and the definition of configurational 
parameters. .................................................................................................................................... 16 

Figure 1. 7 The tetramer structure of the channel after fourfold symmetric 
transformation of the structure coordinates.......................................................................... 17 

Figure 1. 8 Degree of freedom of rotational parameters for KcsA / TM1-TM2 ............. 18 

Figure 1. 9 Degree of freedom of rotational parameters for KvAP / VSD....................... 19 

Figure 1. 10 The rotation of MscL ........................................................................................... 20 

 

Figure 2. 1 MMAS flow chart ..................................................................................................... 26 

Figure 2. 2 GA flow chart ........................................................................................................... 27 

Figure 2. 3 MCSA flow chart ...................................................................................................... 28 

 

Figure 3. 1 Residual plots of MMAS......................................................................................... 37 

Figure 3. 2 Main effect plots of MMAS ................................................................................... 37 



 
 

 

xii 

Figure 3. 3 Interaction plots for evaluating impact of MMAS parameters on the 
penalty function. The interaction plots were used to find the optimal set of 
parameters for obtaining the minimum penalty. From p-value,  is the most 
significant parameter, by considering the interaction plots associated with the  
parameter ....................................................................................................................................... 38 

Figure 3. 4 The Residual plots of GA ...................................................................................... 41 

Figure 3. 5 The Main effect plots of GA ................................................................................. 42 

Figure 3. 6 Interaction plots for evaluating impact of GA parameters on the 
penalty function. The interaction plots were used to find the optimal set of 
parameters for obtaining the minimum penalty. From p-value,  is the most 
significant parameter, by considering the interaction plots associated with the G/P 
parameter. ...................................................................................................................................... 42 

Figure 3. 7 Transmembrane assemblies of test proteins of known 3D structure. ....... 44 

Figure 3. 8 Scattered plots comparing the RMSD distribution as a function of 
penalty of 10000 experimental. ................................................................................................ 48 

Figure 3. 9 RMSD distributions clustered by average percentage of the frequency 
for given RMSD range ................................................................................................................... 49 

Figure 3. 10 Optimization profile comparing the performance of (A) MMAS (B) GA 
and (C) SAMC algorithms. RMSD profiles of 20 experimental runs are shown as 
light lines. Heavy lines in (A)-(C) and (D) are the curves fitted with Boltzmann’s 
function. .......................................................................................................................................... 50



 

 

 

 LIST OF ABBREVIATIONS 

  GA   Genetic Algorithm     
  ACO   Ant Colony Optimization   
  MMAS   Max-Min Ant System    
  SAMC   Simulated Annealing Monte Carlo   
  THAMMAS  Transmembrane for Max-Min ant system 
  TM   Transmembrane    
  PDB   Protein data bank    
  RMSD    Root Mean Square Deviation   
  KcsA   potassium Channel from Streptomyces lividans
  KvAP   voltage-gated potassium channel from  
     Aeropyrum pernix     
  MscL     mechanosensitive channel of large conductance  
             DE   Differential equation    
  SDSL   Site-directed spin labeling 
  EPR   Electron paramagnetic resonance   
  TMH   Transmembrane helix    
  TMP   Transmembrane protein   
  Cα   Alpha carbon     
  DOE    Design of experiment    
  VSD   Voltage sensor domain



 

 

CHAPTER I 

INTRODUCTION 

1.1 Integral membrane proteins 

  The cell membrane is a selectively permeable membrane that encircles the 
cytoplasm of organisms protecting the intracellular organelle from its extracellular 
surroundings. The cell membrane’s function is cell to cell communication by 
controlling the specific molecules that go in and out between the cells. Integral 
membrane proteins containing membrane-spanning domain are located within the 
cell membrane mediating communication between the external and the interior of 
the cell. Their structure shares a common property, by which parts of the protein 
interacts with a hydrophobic membrane environment whereas other parts are 
hydrated. Generally, integral membrane proteins can be divided into two distinct 
structural classes. Those classes are α-helical and β-barrel transmembrane (TM) 
segments. Transmembrane proteins play a variety of biologically significant roles such 
as neurotransmitter, transporter, receptor, signaling transduction and catalytic activity 
etc. Approximately around 20-30% of the proteins encoded by human genome are 
membrane proteins[1]. Knowledge of their three-dimensional (3D) structure could 
gain new understanding of diseases and illnesses, and lead to improved human 
health and disease treatment. Therefore, they are valuable for the pharmaceutical 
industry. Transmembrane proteins, for instance, the G-protein-coupled receptor 
covers ~50% of all drug targets [2-4]. Despite their biological and pharmacological 
importance, relatively few high-resolution structures are solved, corresponding to less 
than 1% of the known 3D protein structures available in protein data banks[4]. Such 
very little information is largely due to problems of protein expression, crystallization 
and stability under studied conditions, which hampers high-resolution structure 
determination with x-ray or nuclear magnetic resonance (NMR). In spite of the fact 
that crystal structures are obtained typically in detergent micelles which may alter 
their conformation to a non-native state[5-7]. Therefore, there is a need for 
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computational tools as an alternative approach for structure prediction of membrane 
proteins. 

 
 Figure 1. 1 Integral membrane protein is includes transmembrane protein and 
peripheral membrane protein. They are embedded in phospholipid bilayer 
 

1.2 Optimization Algorithm 

 The optimization problem can be classified into two categories that are 

conventional optimization and approximation optimization (Figure 1.2) Conventional 

optimization is based on mathematics and finding the best solution. However it takes 

a long time when solving a large scale problem such as linear programming, goal 

programming dynamic programming etc.  Approximation optimization is based on 

intelligent random searches applying large scale and complex problems. Both types 

are constructive approaches that use specific rules in approximating and stochastic 
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search approaches using bio-inspire theory for each method. They reduce calculating 

time and may not find the best solution but close to the best solution.  
  

 

Figure 1. 2 Classification of Optimization Problem 
 1.2.1   Metaheuristics approach 

 In the last decade, a variety of recently proposed meta-heuristic search 
methods have attracted considerable attention for solving large-scale optimization 
problems. These modern global optimization techniques such as genetic algorithm 
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simulated annealing (SA), evolutionary programming (EP), evolutionary strategy (ES), 
tabu search (TS), ant colony optimization (ACO), and particle swarm optimization 
(PSO) offer alternatives to address the difficulty in finding the global optimum 
solution[8-13]. Many of these algorithms are able to handle optimization problems 
with a good approximation to yield the global optimum in a large search space. 
Owing to the vast number of degree of freedom, membrane protein packing problem 
is considered to be one of the most significant and challenging problems for 
stochastic global optimization methods. Interestingly, these methods have the ability 
to identify a unique global minimum in a much smaller number of iterations 
compared to the computationally expensive Monte Carlo (MC) and molecular 
dynamics methods that are emphasized on the production of Boltzmann ensemble. 
Therefore, it is essential to develop a new efficient method combining 
experimentally-derived information to provide good initial guesses. 
  1.2.1.1 Max-Min ant system 

   Max-min ant system (MMAS) is an ACO algorithm, a nature-inspired 
meta-heuristic optimization approach[14]. The ACO algorithm imitates the behavior of 
ants to find the shortest routes from their colony to the food source by following 
and depositing a chemical substance, called pheromone on the paths that they 
travel[15-18]. MMAS is an improved ACO algorithm which is relied on the use of 
stochastic search methods for finding optimal solution based on the objective 
function. A notable advantage of MMAS over the standard ACO is that the 
pheromone intensity on all paths can be controlled within upper and lower limits to 
avoid premature convergence or stagnation to a local optimum [19]. As a novel 
algorithm with regard to computational molecular modeling in biological 
applications, ACO algorithms have received the considerable attention of several 
researchers in many fields. In computer-aided drug design, a novel docking algorithm 
PLANTS (Protein-Ligand Ant System) which is the ACO-based algorithm developed by 
Krob et al was used to predict the binding pose protein kinase A[16].  
 ACO algorithm was employed to identify important descriptors in QSAR 
(Quantitative structure-activity relationship) and to predict COX-2 inhibition activity 
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[20]. In both cases, the ACO has demonstrated considerable performance with 
satisfactory convergence rates. 

         
  
Figure 1. 3 Finding the food of the ant’s behavior that they try to find the shortest 
path from nest to food. 
  
Naturally, ants are likely to find their food by randomly seeking around their nest, 
then drop an amount of pheromone depending on the quality and quantity of foods 
to mark the trail on the path[14]. The pheromone trail will lead other ants to follow 
the track to the food source and deposit more pheromones which in turn increase a 
probability of selecting that route. The ants decide to choose the path according to 
the pheromone concentration, the higher the pheromone intensity on the path is, 
the more ants are likely to choose that path. A shorter path has a higher pheromone 
concentration whereas the probability of choosing a long path is lower because the 
pheromone on the long path evaporates faster in comparison to the shorter one. 
Through this mechanism, it enables ants to choose with higher probability paths that 
are indicated by stronger pheromone concentrations. MMAS can be described using 
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the Travelling Salesman Problem (TSP)[20]. Assuming that there are a set of N cities, 
distances between each pair of cities are known. The goal of TSP is to find the 
shortest tour around a set of cities. 
Generally, MMAS consists of two main iterative processes: tour construction and 
pheromone trail update [18, 21, 22]. Initially, m artificial ants (a parameter specified 
by the user) are placed in randomly chosen cities. An amount of pheromone (τ0) in 
the initialization stage is assigned according to Eq.1.1 

    mC

1
0 

      1.1 
where Cm is the possible range of the tour lengths, in which this study is set to 1. In 
order to construct a tour, the probability (p) of ant k moving from a current city i to a 
neighboring city j is determined according to Eq. 1.2 

   
 


k
iNj ijij

ijijk

ijp








][][

][][
  if k

iNj   1.2 

where τij is the amount of pheromone deposited from city i to city j;α and β are the 
weight of pheromone trail and of heuristic information, respectively; ηij is an available 
heuristic information between city i and city j; Ni

k is a set of cities which ant k has not 
visited yet.  
 Once all ants have completed their tour construction, an update of the 
pheromone trails is performed. The pheromone update process consists of the 
pheromone evaporation and the deposition of new pheromone. The update of 
pheromone level 𝜏𝑖𝑗

𝑛𝑒𝑤 is computed according to Eq. 1.3 

  Lj)(i,        ,)1(
1

  

m

k

k

ij

old

ij

new

ij     1.3 
Where ρ (with 0 <ρ< 1) is a fraction of pheromone evaporation and L is possible 
paths. Thus (1 - ρ) is a fraction of remaining trail. In the right hand side of Eq.1.3, the 
first term corresponds to the pheromone evaporation and the second term is the 
amount of pheromone deposition, which is defined according to Eq. 1.4 

   




          otherwise               ,0

T  tobelongs j)arc(i, if    ,/1 kk

k

ij

C


    1.4 
 Where Tk is the best so-far arc from the previous results and Ck is the distance 
of ants passed in the path. The Ck value is arbitrary for this study. We found that Ck 
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of 10 is an appropriate value for weighting pheromone concentration of the best 
solution of the current iteration used for the next iteration. For MMAS the upper 
(τmax) and lower (τmin) bound of the pheromone concentration is employed to ensure 
pheromone intensities lie within a given range. The upper bound and lower bound 
are defined according to Eq.1.5 and 1.6 

    
bsC


1

max 

      1.5 

                                          cn2

max
min


 

               1.6 
Where Cbs is the best-so-far distance and nc is number of cities. In this study, Cbs is 

set to 1 in order to avoid max approaching to zero or too small value. The nc 
corresponds to the total number of degrees of freedom defined for each TMH.  
  1.2.1.2 Genetic algorithm 

  Genetic algorithm (GA) is the method which depends on the concept 
of evolution and natural selection followed by Charles Darwin. This concept has 
been described as the stronger will survive for following generations, whereas the 
vulnerable creature will die and become extinct. It had three strategies for selection 
including crossover process, mutation process and cutoff offspring[8]. John Holland 
applied this concept to use for finding answers via optimization. The better answer is 
like the tribal strains which possess the strength to develop their tribe. However, the 
terrible answers are like the vulnerable races which will finally die and become 
extinct. Genetic algorithm is better than conventional AI because it is more robust. 
Conventional AI cannot be broken easily when the input is changed slightly. GA is 
based on analogy with the genetic structure and behavior of chromosomes within 
the population of individual followed by: first, individual in a population to complete 
a resource and mate. Second, those individuals will produce more offspring than the 
others that perform poorly. Third, genes from strong individuals increase their 
population and will become more suited to their environment. This GA process starts 
from a population of randomly generated individuals and is an iterative process with 
the population in each iteration called a generation. In each generation, the fitness of 
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every individual in the population is evaluated. The fitness is usually the value of the 
objective function in the optimization problem being solved. Then each generation is 
modified to form a new generation. The new generation of solutions is then used in 
the next iteration of the algorithm. Generally, the algorithm finished when either a 
maximum number of generations have been produced. This method is composed of 
an initial population of solutions. Then, it improves it through repetitive application 
of the mutation, crossover, inversion and selective operators. 
  1.2.1.3 Simulated Annealing Monte Carlo method 

  This algorithm uses the Monte Carlo method to apply with the 
simulated annealing method. During each cycle of this algorithm there  is a constant 
in temperature cycle, the legend’s position, orientation and conformation are 
randomly changed in case of flexibility The new position is compared to its 
predecessor, and new energy is less than the former. The new state is recognized. 
But if the new state possesses the energy more than the previous, it is also 
recognized probabilistically. This probability depends on the energy and cycle 
temperature. Mostly at high temperature, many states will be accepted. Oppositely 
at low temperatures, most of these probabilistic moves will be declined. The user 
can select the minimum energy state during a cycle and use this as the initial state 
for the next cycle or the last state. The best result is progressed by choosing the 
minimum energy state from the former cycle. The initial annealing temperature or rt0 
could be the order of the average DE presented during the first cycle. This could be 
confirmed that the ratio of accepted to rejected part is high at the beginning. An 
initial annealing temperature (rt0) of a typical automated docking job is 500 which is 
depending on the system’s average DE. The temperature reduction factor (rtrf) is 
shown at 0.85 per cycle. For avoiding simulated quenching a gradual cooling should 
be used leading to trap systems in local minima. Conditional to the degree of 
complexity of the problem, a good search is showed by 50 Monte Carlo “cycles” 
and a maximum of 30,000 steps rejected “rejs” or 30,000 steps accepted “accs”. 10 
“runs” may or may not give a range of possible binding modes and multiple runs will 
give relative energy. The condition of 100 runs, 50 cycles, 3000 steps accepted and 
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3000 rejected will show more populated clusters, hinting at the ‘density of states’ 
for a given conformation. A short test job is shown as 1 run, 50 cycles, 100 accepted, 
100 rejected steps. The user has to particularize the maximum step a state variable 
can do in one step. However, this condition can be changed in Monte Carlo 
simulating annealing, if a reduction factor (a fraction from 0 to less than 1) for 
translations and rotations is shown. At the start of each cycle, the range from the 
former cycle is multiplied by this constant value to give the new value for 
translational and angular displacements. If required, the states can be sampled 
during a docking and output to a trajectory file. This file has all the state variables 
required to assign each sampled conformation, position and orientation of the ligand. 
The user can determine the range of cycles as a sample. This enhances the selection 
of the last few cycles when the docking will be close to the final docked 
conformation, or the selection of the total run[23]. 
 

1.3 Experimental design and analytical data  

 Nowadays, there are several factors impacted on the system. This thesis’s 
purpose is to find factors that influence with to find objective function from the 
system. If this work wants to develop this experiment for the best efficiency, this 
thesis has to use science theory to design the experiment in terms of statistic or 
statistical design of experiment. This is used to find the suitable data and can then 
be taken to statistical analyst. Finally, It enhances to get the best result and direct to 
its objective.[24] 
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 Figure 1. 4 The schematic of the experimental design 
 
 The experiment is mean testing which can have adjusted parameters in the 
system making it easy to observe and specify the cause of result which differs from 
the previous. The experiment will be a success if it is planned and designed and the 
method outlined step by step before working [24] Experimental designs pass 
procedure planning for collecting the required data. This data is analyzed via statistic 
approach leading the result related to its objective. Experiment design should be 
easy to work with the efficiency process. Moreover, it should use resource efficiency 
such as experimental time and funding [25]. There are many strategies of 
experimental design including one factor at a time and Factorial designs [25]. One 
factor at a time design is to start with selecting a process from chosen factors and 
fixes a constant value in other factors. Then test each of the factors until the factor 
that impacted the system can be found [25]. However it can be observed that the 
result of one factor depends on other factors or coordinating factors. In this case it 
can be called interaction of each factor. This process contains some disadvantage 
that cannot consider this interaction between factors. Therefore, experimental results 
which have to analyze on this point should not use one factor at a time method. 
The Factorial design is an efficiency design because there is a replication process for 
decreasing in variable rate and consideration in the combination result. This factor 

   Input Process Output 

 X1  X2  X3 

   

 Y1  Y2  Y3 
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will indicate factors in term 2 or 3 factors for instance   X factor is composed of x 
level and Y factor including y level, so in a cycle it can be explained that there are 2 
impactions such as the main effect or interaction between factor. The main factor is 
the impaction of studied factors which is in transition when a factor is changed in 
level. Interaction between factors is the result of each factor which is not equilibrium 
when compared from level to level. It can be explained that the result of one 
experiment is dependent on the level of other related factors. Factorial design is 
popular in all fields of research. Researchers usually use this design because of 
decreasing time as most of the experiment is studying the impacted factor of more 
than 2 factors. Other than the studying of the main factor, one should also study 
about the interaction between related factors. Therefore factorial design is efficient 
and suitable for this experiment [24, 25] due to its having a variety design such as 
there are 2 factors and 2 levels in one experiment. So this sample can call this 
factorial design size 2 x 2 or 22 resulting in 4 times of testing. 
           1.3.1 2k Factorial designs 

 The important design of factorial design is 2k factorial design where k is the 
number of factors and 2 is the number of levels of factors. Full Factorial is 
composed of 2 x 2 x 2 x … x 2  = 2kdata, this design is given the lowest number of 
testing as it can study in impaction of factor all k factors perfectly. It is very useful in 
the beginning when there are many factors which have to be selected factorial 
design is popular for being used to find the influential factor. It can be said that there 
are several interesting factors in experiments for searching impacted factor to the 
system. The 2k factorial gives a lot of testing at once. So half of 2kfactorial have to 
test2k-1time leads to a decrease in the number of testing and so called the one-half 
fraction of the 2k design[24, 25]. 
 1.3.2 3k Factorial designs 

    This method is used when there are k factors to consider. Each of the 
factors consists of 3 levels including high, intermediate and low level. In one 
experiment composed of 3 x 3 x 3 x … x 3 = 3kdata which is called 3k Factorial 
design. It can be replaced with a number by the first number in the level of factor X, 
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the second number is the level of factor Y,……, and k number is the level of factor K. 
the design is suitable for researchers who are interested in the concave response. 
This process continues followed by its plan and the collected data as required. 
Finally, these data are statistically analyzed[24, 25]. 
 1.3.3 Analysis of variance: ANOVA 

 Analysis of variance or ANOVA is efficient to test the hypothesis related to the 
impaction from each level factor or coordination of the average value from each of 
the level factors. The process of this approach is shown as below. Analysis of 
variance is most commonly used and advantages for considering the impaction of 
many factors which can respond. Not only the main factor, but it can be used to 
analyze the interaction between factors. To study 2 factors factor X and Y and 2 
levels by denoting x as number level of factor X and y as number level of factor Y. 
Therefore one factorial experiment is composed of an xy test and n is the number of 
repeating.[25]Generally, the table of analysis of variance consists of the Source of 
variation, Degrees of freedom (DF),Sum of square (SS), Mean squares (MS)] and F-
value. 
 1.3.4 Multiple comparisons 

 Analyses of variance when hypothesis is rejected as a result, then the 
experiment need to know at least one different group. It can not specify this group, 
then it is necessary to work in the next step to observe which factor is differently 
impacted to each other. This comparing such as Student-Newman-Keul (SNK), Least 
Significant Difference (LSD), Un can’s new multiple range test, Turkey and Scheffe’ 
the experiment show each method contains different limitation. In 1965 Carmer and 
Swanson used Monte Carlo which is the process for forming data by using 
randomized numbers and probability[26]. The resulting data is similar to a fact which 
is not stable. It presents that LSD is more efficient to find the different of average 
exactly if this sample display these after analysis of variance by F test at 5% 
significance. Moreover, Duncan’s new multiple range tests are efficient and used in 
statistical programs. The LSD method by Fisheries is also efficient but it should be 
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analyzed of variance by using F-test which P-value is less than 0.05 before selecting 
this test.  
1.4 Methods for prediction structure membrane protein  

 Because of the difficulty in obtaining high-resolution structures, many 
different approaches for predicting membrane protein structures from amino acid 
sequences have become an important alternative approach. The methods may be 
classified into three general categories. First, comparative or homology model of 
membrane protein structure built based on sequence similarity is the most common 
strategy. However, this approach requires proteins with a known 3D structure serving 
as the structural template .A more challenging method is template-free prediction of 
membrane protein structure if the structure of the homologous proteins does not 
exist. The ab initio modeling such as ROSETTA de novo structure prediction utilizes 
Metropolis Monte Carlo sampling approach and knowledge-based empirical energy 
function to successfully predict helical transmembrane proteins with various sizes 
and topologies at considerable accuracy. Another approach is to incorporate 
biophysical and biochemical data as constraints into conformational search methods 
(i.e. molecular dynamics, simulated annealing Monte Carlo or distance geometry) to 
bias sampling toward conformations that are consistent with the experimental 
results. The latest strategy is remarkably promising because advances in protein 
engineering combined with many recent techniques such as site-directed spin 
labeling and electron paramagnetic resonance (SDSL/EPR), chemical cross-linking and 
mass spectroscopy, cryo-electron microscopy (CryoEM) and fluorescence resonance 
energy transfer (FRET) have become routinely accessible for elucidating the distance 
and distance changes at selected regions within a protein or between proteins. [5-7, 
27-30]. Although these approaches are limited by the low resolution and sparse 
distance data, incorporating the low-to-moderate resolution structural data into an 
efficient computational method has made it possible to calculate a 3D structure 
from partially unfolded structure as well as conformational changes of 
transmembrane proteins at moderate resolution. The obtained structure can serve as 
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a starting point for improving a higher accuracy of the structure using additional 
refinement methods.  
 Membrane proteins can be classified into three major categories of (i) integral, 
(ii) peripheral and (iii) lipid-anchored membrane proteins on the basis of the nature 
of their association with the lipid bilayer. Integral or transmembrane protein (TMP) is 
the major class of membrane proteins whose structural architecture is composed of 
single or a bundle of membrane-spanning segments, in which two basic secondary 
structures, α-helices and β-barrels, have been observed. Transmembrane α-helices 
(TMHs) are the most common structural motif of TMP [31]. The α-helical 
transmembrane proteins are an ideal model system for the method development. 
Unlike β-barrel transmembrane proteins which are mainly found in the outer 
membranes, α-helical proteins found in all cellular membranes. They are responsible 
for numerous and diverse cellular functions, but their structures remain largely 
unsolved due to the lack of structural homologues. Based on observations of known 
membrane protein structures, each transmembrane helix (TMH) was found to 
possess a tilt angle of less than 40º with respect to the bilayer normal[32, 33]. This is 
owing to structural constraints imposed on TMHs by the hydrophobic lipid bilayer. 
Because of the geometric restriction, the accessible conformation space is 
substantially reduced, hence, reduces the complexity for sampling a large variety of 
the assembly search space. A significant reduction of the degrees of freedom is 
considered to be the major advantage in the structure prediction of transmembrane 
proteins in this class [34]. 
 Comparative or homology modeling approaches is the most well-known 
structure prediction method. These methods require known 3D structure of 
homologous protein as a template. However, homology modeling is not generally 
used for structural modeling of membrane proteins because of the limited available 
number of atomic-resolution structures of transmembrane protein families. Assembly 
of TM helical bundle has an important role in stabilizing global-fold structure of 
membrane proteins. A number of experimental and computational methods have 
been reported to address the molecular mechanism of TM assembly[27]. One of the 
most well-known membrane prediction approaches is the helix-helix packing-based 
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approach [28-30]. In this approach, Monte Carlo algorithm was employed to 
randomly generate structure models, of which an assessment was subsequently 
carried out to choose the final model. This structural evaluation relies on the scoring 
or probability methods which have been derived from contact propensities between 
inter-helical contacting residue pairs (polar and non-polar groups) in membrane 
proteins. A hydrophobicity-based method has successfully been introduced to model 
a number of transmembrane proteins. The method is based on the statistical 
frequency analysis of amino acid sequence in membrane proteins. 
1.5 Problem statement   

 1.5.1 KcsA potassium channel: KcsA / TM2  

 Many transmembrane proteins contain two or more transmembrane 
segments. For instance, the bacterium Streptomyces lividans (KcsA) potassium 
channel, a homotetramer protein, comprises two transmembrane α-helices of each 
monomer. Each monomer contains 160 amino acid residues. The 2Å-resolution x-ray 
structure of KcsA potassium channel (a PDB accession code: 1k4c) is shown in Figure 
1.5  
 

 
 Figure 1. 5 The inner transmembrane segments of the tetramer structure of 
KcsA potassium channel 
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A possible arrangement of a single transmembrane helix with respect to the 
membrane normally consists of a total of five configurational parameters including a 
translational parameter () and four rotational parameters (1-4)   was employed 
in   a range from 0 to 20Å. 1 2 and 3 associated with the rotation along the x-, y- 
and z-axis, respectively, were subjected to rotate the helix in a range from 0º to 90º. 
The rotation about its helical axis defined as 4 was given in a range between 0º and 
360º (Figure 1.6, Figure 1.7). 

 
 Figure 1. 6 A single transmembrane helix and the definition of configurational 
parameters. 
 
 A given value of σ, 1, 2, 3 and 4, 3D structure of a transmembrane helix is 
generated as an initial segment. Subsequently, the tetramer structure of KcsA is 
obtained by performing a fourfold symmetric operation along the channel axis 
(Figure 1.7). After structure generation, root-mean-square-deviation (RMSD) of C 
atoms relative to the reference was used to measure the difference between the 
computed structure and the x-ray crystal structure. 
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 Figure 1. 7 The tetramer structure of the channel after fourfold symmetric 
transformation of the structure coordinates. 
 
 1.5.2 KcsA potassium channel: TM1-TM2  

 KcsA / TM1-TM2 contains two helixes (figure 1.8). This type has 10 values of 
parameters including  σ1 , σ2, θ1 , θ2 , θ3 , θ4 , θ5 , θ6 , θ7 and θ8. For  σ1 and σ2 were 
employed in   a range from 0 to 20 Å. θ1, θ2 , θ3 , θ5 , θ6  and θ7 associated with the 
rotation along the x-, y- and z-axis, respectively, were subjected to rotate the helix in 

a range from 0º to 90º. The rotation about its helical axis defined as θ4 and θ8 were 
given in a range between 0º and 360º. (Figure 1.8) 
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 Figure 1. 8 Degree of freedom of rotational parameters for KcsA / TM1-TM2 
 
 1.5.3 KvAP / VSD 

 The input of KvAP/VSD file has four helixes (figure 1.9). There are denoted as 
A,B,C,D segments, However this study considers  only on A,B,D which are associated 
with twelve parameters. The θ1 , θ2 and θ3 in helix A are allowed to change in range 
from 0º to 20º. θ4 ranges from 0º to 360º. The rotation of helix B is defined by 
θ5 , θ6 , θ7 and θ8. They are sampled in a range from 0º to 20º except for θ8 (0º to 
360º). The range of D helix rotation is from 0º to 40º in θ9 , θ10 , θ11 and θ12 range 0º 
to 360º (Figure 1.9). 
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 Figure 1. 9 Degree of freedom of rotational parameters for KvAP / VSD 
 
 1.5.4 MscL / TM1-TM2 

 MscL has two helixes: TM1 and TM2 (Figure 1.10) . The parameters of MscL 
are σ1 , σ2 θ1 , θ2 , θ3 , θ4 , θ5 , θ6 , θ7 and  θ8. σ1  , θ1 , θ2 , θ3  and θ4 are in helix one 
and σ2 , θ5 , θ6 , θ7 and θ8 are in helix two.  
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 Figure 1. 10 Degree of freedom of rotational parameters for MscL / TM1-TM2 
 

1.6   Rationale and Objectives 

The framework of this thesis is to develop a novel computational approach for 
modeling on assembly of transmembrane proteins. The approach is based on nature-
inspired metaheuristic that is Max-Min ant system algorithm. An efficiency of the 
purposes algorithm is compare with conventional methods such as genetic algorithm 
and simulated annealing monte carlo method. The testing models limit to α- helical 
membrane proteins 



 

 

CHAPTER II 

MATERIALS AND IMPLEMENTATION 

2.1 Materials  

  2.1.1 Hardware  

             The desktop computers with intel core i7 processor 3.7 GHz 3770 CPU RAM 
8.00 GB were used to operate the simulation in this work. 
           2.1.2 Software 

  2.1.2.1 The Visual molecular dynamics (VMD)  

                         VMD is the graphic program for molecular use to check input and 
output files. It represents a trajectory file. 
  2.1.2.2 The visual basic (VB) 

   VB is used to show how to base an object oriented program and 
graphic user interface by Microsoft. It is a tool for developing a program on a 
windows operation system. 
  2.1.2.3. The statistical package for social science (SPSS) 

  SPSS is a program for statistical and analytical data. It can be 
represented in charts, graphs and data tables.   
  2.1.2.4 The Origin program 

  Origin is the program for data analysis and scientific graphing. It 
supports graph 2D and 3D  
  2.1.2.4 Tool command language and Toolkit (Tcl/Tk) 

  Tcl/Tk is to develop for dynamic programming language and easy to 
graphic interface by user.  
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 2.2 Penalty Functions and distance constraints 

 THAMMAS is used to search for the conformational space by minimizing the 
objective penalty function (P) that satisfies a set of distance constraints[35]. The 
penalty value is determined by a sum of the square of the residual or violations 
(viol) which considers the differences between the distances calculated from the 
assembly model of TMHs (rcalc) and the distance constraints from the equivalent 
pairs. The penalty function is introduced as a harmonic function that is   
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Where 𝑟𝑖𝑗

𝑢𝑝𝑙 and 𝑟𝑖𝑗
𝑙𝑜𝑙 are the upper and lower distance constraints between ith and jth 

residues, respectively, 𝑟𝑖𝑗
𝑐𝑎𝑙𝑐is the distance of the model, k is an arbitrary value and 

use as a weighting factor. In this study, a set of inter-helical C-C distances was 
generated based on the crystal structure of the reference proteins [36, 37]. Then, 
𝑟𝑖𝑗

𝑢𝑝𝑙 and 𝑟𝑖𝑗
𝑙𝑜𝑙were computed by an addition or subtraction of 1Å to the generated 

distances in the set. 
 2.3 Implementation 

 In this study, the author has developed THAMMAS (Transmembrane Helix 
Assembly by Max-Min Ant System, the first MMAS was designed for an assembly 
prediction of α-helical transmembrane proteins using a sparse set of distance 
constraints. THAMMAS generates a large variety with finite number of orientations of 
transmembrane helix bundle and finds the solution that is matched with the 
provided distance constraints based on the MMAS algorithm. The author 
demonstrates the efficiency of THAMMAS in identifying the solution for helical 
arrangement of transmembrane proteins, KcsA, MscL and KvAP voltage sensor 
domain with considerably small sampling iterations. The efficiency of the proposed 
method has been compared with that of two conventional optimization approaches. 
These are the simulated annealing monte carlo (SAMC) and genetic algorithms, which 
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have widely been used in many applications in protein structure modeling and drug 
discovery such as protein-ligand docking, structure calculation, structure prediction 
and prediction of biological activity etc. 
 2.3.1 MMAS methods 

 The implementation of the MMAS algorithm used in the present work has 
been written in Visual Basic. Specifically, our algorithm, namely THAMMAS, generates 
a set of TMHs assembly models and the solution is based on the best distance 
constraint penalty. A random starting configuration of TMHs and THAMMAS 
parameters including the Number of iterations and ants (I/A), Evaporation rate of the 
pheromone (ρ), the exponent values of the pheromone trail (α) and of the heuristic 
measure in the random proportional rule (β) have been introduced in the process. 
The THAMMAS parameters were assigned to the values according to Dorigo and 
Stützle’s work[10], and subsequently optimized using a full factorial design with 
three levels of all factors and statistical analysis. The initial amount of pheromone is 
placed in every dimension of all of the search areas. By using a rigid-body 
transformation of TMHs, each helix consists of five degrees of freedom (, 1, 2, 3 
and 4) which parameters used are described later. The assembly search space is 
given by the degrees of freedom of TMHs. 
For constructing a tour, THAMMAS computes are used one at a time and uses the 
probability of the current node according to Eq. 1.2, and selects the next node using 
the proportional roulette wheel method and the available values within a specified 
range of translation and rotation. The ant will read these pheromone information 
and move according to the selected paths in the tour. After finishing the tour, 
THAMMAS computes an assembly model of TMHs. At this step, symmetry and 
coordinate transformations for generating structure coordinates are performed if the 
tested protein is homo-oligomer. Then, the penalty value of the obtained model is 
computed and stored in the array of ant k. In this stage, the other ant is released in 
order to repeat another random tour until the maximum number of ants is reached. 
Once all ants have completed all the tours, the penalty values are sorted. The best 
tour as shown by the lowest penalty of the current iteration is kept as the best-so-far 
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route and gets extra pheromone while the rest of the ants do not deposit the 
pheromone on their paths. The pheromone values are added to the best-so-far 
route depending on the quality of the calculated penalty value. After applying the 
pheromone evaporation to all search paths, the pheromone update is performed 
and controlled within the upper and lower bounds. The updated pheromone affects 
the decision of the ant to choose the solution in the next iteration. This iterative 
process is repeated until a given termination criterion is achieved. Figure 2.1 shows 
the corresponding flowchart of THAMMAS. The pseudo code of the basic THAMMAS 
algorithm is illustrated in this figure. 

 
Figure 2. 1 MMAS flow chart 

 
 2.3.2 Genetic algorithm  

 This algorithm begins to define value parameters including crossover percent 
rate, mutation percent rate, number of generation and number of population. 
Secondly, random degrees of freedom (, 1, 2, 3 and 4) into chromosome array. 



 
 

 

27 

Third, generation of systematic operation and calculation penalty function. Fourth, 
take condition for crossover and mutation by roulette wheel selection. Fifth, this 
step is to select and cutoff offspring to the next generation. Finally, when the 
stopping criteria is met the algorithm terminates. 

 
 

Figure 2. 2 GA flow chart 
 
 2.2.3 Simulated annealing monte carlo 

 The scope of this method is based on annealing of metals and sampling 
technique of monte carlo approach. The initial step of this algorithm is to define 
iteration cycles.. Next random value of , 1, 2, 3 and 4 are generated and store into 
array. Afterwards, structure model is generated and evaluated by calculating penalty 
function. The model with the lowest penalty is kept as the best so far penalty value. 
The process is repeated iteratively until the stopping criterion is obtained.     
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Figure 2. 3 MCSA flow chart 
 
2.4 Testing models 

 This thesis has tested our present method with three -helical 
transmembrane proteins of known structure including the pH-gate potassium 
channel from Streptomyces lividans (KcsA), the mechano sensitive channel from 
Mycobacterium tuberculosis (MscL) and the voltage sensor domain of the voltage-
dependent potassium channel from Aeropyrumpernix (KvAP). The structure 
coordinates of TMHs were taken from the crystal structures corresponding to PDB 
code 1K4C for KcsA[38] and 2OAR for MscL[38]. Since the experimental EPR data of 
the bi-functional spin label is employed in the case of KvAP, The TMHs structure of 
voltage sensor domain was taken from the work published previously[39]. Briefly, this 
KvAP structure was the crystal structure(1ors)[40] modified by attaching EPX-
pseudoatoms, which is covalently connected to the two-C of the corresponding 
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labeled residues[41]. This work used KcsA and MscL as model systems for the 
assembly prediction of symmetric multimer membrane proteins while the isolated 
voltage sensor domain of KvAP was used to demonstrate an example of multi-helical 
packing within the subunit. KcsA and MscL are the pore-forming ion channels 
composed of two TMHs arranged in four-fold and five-fold symmetry respectively. 
For KvAP, this thesis focused only on the isolated voltage sensor domain which is 
comprised of four TMHs. Detailed information on the transmembrane segments of 
the proteins that were used in the study are described in the Results and 
Supplementary Information.  
2.5 Assembly search space: degrees of freedom  

 The conformational search space of transmembrane helix bundles is 
performed aiming to optimize inter helical distance penalty over rigid-body helices 
[36, 42]. In addition, the structure of loops was not considered in this study. The 
arrangement of rigid-body helix with respect to the membrane normal is defined by 
five degrees of freedom including a translational parameter () and four rotational 
parameters (1-4). 1, 2 and 3 are associated with the rotation of TMH along the 
Cartesian x-, y- and z-axis, respectively, whereas 4 defines the rotation of its helical 
axis. The helix axis is defined as the vector connecting between the average CA 
coordinates of the first and last four residues of the N- and C-terminal ends of a 
helix. Unless otherwise specified, the translation  was employed in a range from -20 
to 20Å at intervals of 1Å, while the available range of the rotation is from 0º to 90º 
for 1-3 and 0º and 360º for 4 with the interval of 10º. Cartesian transformation 
matrices are applied to generate 3D structure coordinates. 
  
2.6 Statistics methods  

 The Design of Experiment (DOE) method was employed based on the 
factorial design with three levels: high, medium and low. Therefore, factorial 3k 
design of experiments (k=4 factors that are I/A, α, β, and ρ) were performed. To 
assign the values of I/A, First determined the sample size (n) which is the 
representative of the overall populations. To determine the appropriate sample size, 



 
 

 

30 

this thesis used Yamane’s random sampling principle[43]. For populations of a known 
size, the sample size is determined according to Yamane’s rule as below:  

          21 Ne

N
n




                         2.3 
Where N is the total number of population and e is the level of precision presented 
in terms of percent of accepted error.  
 For a given helix, there are 40 possible values for sampling the translation 
position over the range of -20 to +20Å in a 1Å step size. The number of the 
rotational values can be considered into two sets. The first set involves a helix tilting 
along the x-, y- and z-axis and the second set is defined by a helix twist. There are 10 
possible values for a tilting range of -0 to +90º and 36 possible values for the 360º 
helix rotation in a 10º step size. Therefore, the total number of population is 
40×10×10×10×36 = 1.44 × 106. The sample size for a 99% confidence level is:  
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 Thus, the sampling size used in the study is set to 10000. This number 
corresponds to the total numbers of tour generated by the algorithm, or in the other 
words the total conformational space to be generated for each THAMMAS run.  
In the algorithm, the sample size is given by the number of iterations multiplied by 
the number of ants (I/A). With a sample size of n=10000, three sets of I/A parameter 
were assigned to 50/200, 100/100 and 200/50 for the low, medium and high levels of 
the factors, respectively. Values of the α, β, and ρ parameters for the three levels are 
summarized in Table 3.1. The (dependent variable) penalty was computed based on 
the distance differences between those obtained in an assembly model and in the 
constraints. In this step, distance constraints generated from the distances between 
the C atoms of residue pairs belonging to the inner helical bundle of the KcsA x-ray 
structure were taken into consideration in THAMMAS runs to guide an arrangement of 
the four inner helices of TM2 of KcsA. The measured distances could potentially be 
derived from EPR through spin-spin dipolar coupling of the spin label sample. It 
should be emphasized that starting with only one subunit of TM2 of the crystal 
structure. THAMMAS generates the other three around the four-fold axis of symmetry 
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to obtain an assembly model. This model system represents the simplest assembly 
problem to be solved by the method. The dependent and independent variables 
are used for statistical hypothesis testing.  
This dissertation have investigated all possible combinations for all of the factors and 
levels of factors used in the THAMMAS algorithm to determine the most significant 
factors. This corresponds to a total of 34×3 =243 runs required to complete the DOE 
process. Each THAMMAS run was repeated 3 times with different random seeds for 
generating the initial structure. Analysis of variance (ANOVA) was performed to 
investigate which of the THAMMAS variables significantly affect the structure with low 
penalty which corresponds to a good assembly of TMHs. Optimal parameters were 
chosen on the basis of the statistical results that gave the minimum penalty value of 
predicted models. 



 

 

CHAPTER III 

RESULTS AND DISCUSSION 

 The framework of this thesis is to introduce a novel computational approach 
for modeling an assembly of transmembrane segments of membrane proteins. The 
approach is based on nature-based metaheuristics including genetic algorithms and 
the Max-Min ant system. The proposed approach will be compared with existing 
methods such as Simulated annealing monte carlo method. The testing models are 
limited to membrane proteins that contain transmembrane α-helical motifs. This 
research predicted membrane proteins called KcsA, KvAP and MscL which is in the 
protein data bank. A scoring function which is in direct change with the RMSD value 
was used to predict this KcsA. Three algorithms were presented including MMAS, GA 
and SAMC. It was demonstrated that the pattern of distribution due to the MMAS 
and GA algorithms have developed a result which led to a crowded result. As 
opposed to SAMC, it has a random basis.  Each of the methods showed a result of 
1000 points. These results were the statistical analysis for finding a parameter which 
was suitable for each algorithm. They use 10000 structures per running time which 
was the same in the three algorithms. It was presented that SAMC used the least 
calculating time, after which MMAS and GA were both slower in calculating time. The 
calculating time of GA, MMAS and MCSA was 1400-1600, 1800 and 1000 seconds 
respectively. However, for the number of received good answers which were less 
than 3 angstrom, MMAS gave the best answer followed by GA. SAMC gave the answer 
which was least  in cutoff. 
3.1 MMAS parameters  

 This research used 3k Factorial designs with 3 levels: high, medium and low 
which are composed of 4 parameters including calculating cycle per number of 
ant(A/I),Weight of pheromone (WOP), Weight of heuristic information (WOH) and 
Evaporation rate (ER) for finding parameters which suitable for this problem. This is 
explained by specifying the level factor of each parameter, hypothesis testing of 
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ANOVA, impaction to Main factor and conclusion and comparing the answer. Their 
detail is as shown below. 
Table 3. 1 The level and parameters of MMAS  

Factors 
 

Level 
 

 
Low Medium High 

Iterations/Ants 50/200 100/100 200/50 
Weight of pheromone 0.5 1.5 2.5 

Weight of Heuristic data 1 2.5 5 
Evaporation rate 0.1 0.5 0.9 

 
 This dissertation has investigated all possible combinations for all of the 
factors and levels of factors used in the THAMMAS algorithm to determine the most 
significant factors. This corresponds to a total of 34×3 =243 runs required to 
complete the DOE process. Each THAMMAS run was repeated 3 times with different 
random seeds for generating the initial structure. Analysis of variance (ANOVA) was 
performed to investigate which of the THAMMAS variables significantly affect the 
structure with low penalty which corresponds to a good assembly of TMHs. The 
results are shown in  
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 Figure 3. 1 Residual plots of MMAS 
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     Figure 3. 2 Main effect plots of MMAS 
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 Figure 3. 3 Interaction plots for evaluating impact of MMAS parameters on 
the penalty function. The interaction plots were used to find the optimal set of 
parameters for obtaining the minimum penalty. From p-value,  is the most 
significant parameter, by considering the interaction plots associated with the  
parameter.  
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Table 3. 2 Results of ANOVA for predicting transmembrane arrangement of KcsA 
inner helices 

Factors df SS MS F P 
IA 2 388159 194080 3.04 0.05 
 2 4755031 2377515 37.27 0.00* 
 2 42215 21107 0.33 0.719 
 2 210407 105203 1.65 0.195 

IA× 4 276349 69087 1.08 0.367 
IA× 4 151966 37992 0.6 0.666 
IA× 4 282004 70501 1.11 0.356 
× 4 348200 87050 1.36 0.248 
× 4 384508 96127 1.51 0.203 
× 4 315193 78798 1.24 0.398 

IA×× 8 391082 48885 0.77 0.633 
IA×× 8 274585 34323 0.54 0.827 
IA×× 8 241974 30247 0.47 0.873 

×× 8 521149 65144 1.02 0.422 
IA××× 16 494351 30897 0.48 0.952 

Error 162 10333379 63786   
Total 242 19410552    

    Df degree of freedom, SS sum of squares, MS mean square 
 
 From an analysis of the ANOVA table, it reveals the relative contribution of 
THAMMAS variables for constructing near native structure models with low penalty 
values. F-ratio, which is the ratio of MS to the error, was used to evaluate the 
significance of a variable on the correctness of the predicted model. In general, when 
F-ratio is much greater than the critical value for the F-distribution, this suggests that 
the variable is important for giving a good quality of model. Any terms with a P-value 
greater than 0.05 are not significant and can be discarded. From the ANOVA table, it 
appears that the weight of pheromone () was the most significant variable. The I/A 
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factor is the next influencing factor, but not as strong as the  factor. The ,  and 
interactions of the factors are neglected as being very small values to contribute a 
significant effect on the quality of the assembly model. Based on the main effects 
and interaction plots (Figure 3.3), the optimal set of parameters for obtaining the 
best penalty values corresponds to I/A= 200/50,  = 2.5,  = 3 and  = 0.1. 
3.2 GA parameters 

 The parameter optimization for the GA algorithm was also conducted using 
DOE 3k factorial designs with three levels; high, medium and low. The test protein 
was the same as DOE did for MMAS. The GA variable parameters including 
Generation/Population (G/P), Crossover Rate (CR) and Mutation Rate (MR) are 
summarized in Table 3.3 in the Supplementary Material. From an analysis of the 
ANOVA table (Table 3.4), the G/P factor is the most significant variable for calculating 
a good model. The interactions plots (Figure 3.6) indicated that the optimized 
parameters of GA correspond to 50/200 for G/P, 100% for CR and 10% for MR. As for 
SAMC, it is not necessary to perform DOE because the nature of the algorithm is 
based on random. The MC cycle is set to 10000 cycles per run, which is equivalent 
to the total number of sample size used in GA and MMAS. 
 
Table 3. 3 The level and parameters of GA 

Factors 
 

Level 
 

 
Low Medium High 

Generation/Population(G/P) 50/200 100/100 200/50 
Crossover Rate(CR in %) 80 90 100 
Mutation Rate (MR in %) 10 20 30 

 
 This thesis has investigated all possible combinations for all of the factors and 
levels of factors used in the GA algorithm to determine the most significant factors. 
This corresponds to a total of 33×3 = 81 runs required to complete the DOE process. 
Each GA run was repeated 3 times with different random seeds for generating the 
initial structure. Analysis of variance (ANOVA) was performed to investigate which of 
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the GA variables significantly affect the structure with low penalty which corresponds 
to a good assembly of TMHs. The results are shown in Table 3.4. Optimal parameters 
were chosen on the basis of the statistical results that gave the minimum penalty 
value of predicted models.  
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Figure 3. 4 The Residual plots of GA 
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Figure 3. 5 The Main effect plots of GA 
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 Figure 3. 6 Interaction plots for evaluating impact of GA parameters on the 
penalty function. The interaction plots were used to find the optimal set of 
parameters for obtaining the minimum penalty. From p-value,  is the most 
significant parameter, by considering the interaction plots associated with the G/P 
parameters. 
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Table 3. 4 Results of ANOVA for predicting transmembrane arrangement of KcsA 
inner helices 

 
3.3 Transmembrane Assembly Scenarios 

 To demonstrate the ability of the proposed algorithm, the prediction test of 
transmembrane assembly of the three protein models has been divided into four 
scenarios;  1) TM assembly of KcsA inner TM helices (denoted as KcsA/TM2), 2) TM 
assembly of KcsA inner and outer TM helices (denoted as KcsA/TM1-TM2), 3) TM 
assembly of the two TMHs of MscL (denoted as MscL/TM1-TM2) and 4) TM assembly 
of the isolated voltage sensor domain of KvAP (denoted as KvAP/VSD). The inter- or 
intra-subunit Cα-Cα distance constraints were extracted from the crystal structures of 
the proteins. Except for KvAP, the experimental distance constraints taken from the 
literature were used to fit with the distances between EPX-pseudo atoms of the 
previously built model (34).  
 
 
 
 
 

Factors df SS MS F P 
G/P 2 83173 41586 9.53 0 
CR 2 5016 2508 0.57 0.566 
MR 2 4894 2447 0.56 0.574 

G/P×CR 4 4318 1080 0.25 0.91 
G/P×MR 4 924 231 0.05 0.995 
CR×MR 4 12130 3032 0.69 0.599 

G/P×CR×MR 8 17527 2191 0.5 0.849 
Error 54 235670 4364 

  Total 80 
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Table 3. 5 Total number of intra- and inter-subunit distance constraints used  
Proteins Type Total number of constraints 

KcsA/TM2 Inter 41 
KcsA/TM1-TM2 Intra 11 

MscL/TM1-TM2 
Intra 
Inter 

3 
12 

KvAP/VSD Intra 10* 
Note:* Experimental distances were taken from[41]. 

 

Figure 3. 7 Transmembrane assemblies of test proteins of known 3D structure. 
 With the KvAP/VSD scenario, the available values to search for translation and 
rotation of TMHs have been reassigned. Due to a lack of experimental distance data 
available that can only be used to constraint between S1and S4, and S2 and S4, a 
limit of the search range for the 1, 2 and 3  values was specified within 20° for S1 
and S2, and 40°for S4, while S3 was kept fixed in its original position. Only for 4  

(rotation around its helix axis), the available values remain the same (360rotation).  
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Table 3. 6 Inter-subunit Cα-Cα distances of the selected residues on the TM2 
segment of KcsA. Distances were derived from the crystal structure with PDB code 
1k4c.  

Residue 
&chainID 

Distance 
(Å) 

Residue &chain 
ID 

Distance 
(Å) 

Residue 
&chain ID 

Distance 
(Å) 

Residue 
&chain ID 

Distance 
(Å) 

84A-84C 29.2 94A-94C 31.2 104A-104C 11.0 114A-114C 16.6 

85A-85C 36.5 95A-95C 27.1 105A-105C 16.3 115A-115C 10.9 
86A-86C 39.9 96A-96C 20.4 106A-106C 17.4 116A-116C 15.2 
87A-87C 41.9 97A-97C 22.9 107A-107C 10.6 117A-117C 21.0 

88A-88C 35.7 98A-98C 25.6 108A-108C 9.8 118A-118C 18.7 
89A-89C 31.7 99A-99C 20.0 109A-109C 16.2 119A-119C 14.5 
90A-90C 36.2 100A-100C 14.4 110A-110C 15.9 120A-120C 21.0 

91A-91C 35.3 101A-101C 18.7 111A-111C 9.6 121A-121C 25.4 
92A-92C 27.7 102A-102C 20.9 112A-112C 11.5 122A-122C 21.4 
93A-93C 27.7 103A-103C 15.3 113A-113C 18.0 123A-123C 21.0 

  
    124A-124C 

 
14.2 

 

 
Table 3. 7 Intra-subunit Cα-Cα distances of the selected residues on the TM1 and 
TM2 segments of KcsA. Distances were derived from the crystal structure with PDB 
code 1k4c.  

Residue 
ID 

Residue 
ID distance(Å) 

TM segments to be 
constrained 

22 124 20.6 TM1-TM2 
25 121 20.2 TM1-TM2 

28 118 21.5 TM1-TM2 

31 115 21.5 TM1-TM2 
34 112 20.5 TM1-TM2 

37 105 14.8 TM1-TM2 

40 102 12.0 TM1-TM2 
43 99 11.6 TM1-TM2 

46 96 14.3 TM1-TM2 

49 93 15.7 TM1-TM2 

52 
 

86 
 

12.2 
 

TM1-TM2 
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Table 3. 8 Ten experimentally-determined DEER distances between bi-functional 
spin labels on the S1, S2, S3 and S4 of KvAP voltage sensor domain. Experimental 
distances were taken from Q. Li et al.[44] 

Double cysteine Distance*(Å) 
TM segments to be 

constrained 

39/43 
1118/1211 21.7 S1-S4 
121/125 19.8 S1-S4 

40/44 
118/121 29.9 S1-S4 
121/125 29.9 S1-S4 

57/61 
118/121 26.7 S2-S4 
121/125 30.8 S2-S4 

72/75 
118/121 29.7 S2-S4 
121/125 29.7 S2-S4 

74/77 
118/121 21.8 S2-S4 
121/125 22.8 S2-S4 

 
Table 3. 9 Inter- and Intra-subunit Cα-Cα distances of the selected residues on the 
TM1 and TM2 segments of MscL. Distances were derived from the crystal structure 
with PDB code (2oar). 
 
a) Inter-subunit distances 

Residue 
ID Chain 

Residue 
ID 

 
Chain 

Distance 
(Å) 

Residue 
ID 

Chain Residue 
ID 

Chain Distance 
(Å) 

14 A 14 B 9.7 71 A 71 B 18.6 

14 A 14 C 15.9 71 A 71 C 30.0 

28 A 28 B 12.1 83 A 83 B 20.4 
28 A 28 C 19.0 83 A 83 C 33.6 
40 A 40 B 20.3 92 A 92 C 42.3 

40 A 40 C 32.8 92 A 92 B 25.4 

 
 
 



 
 

 

47 

b) Intra-subunit distances 
Residue 

ID Chain 
Residue 

ID 
Chain 

distance(Å) 
TM segments to be 

constrained 

14 A 92 A 26.5 TM1-TM2 

28 A 83 A 10.0 TM1-TM2 
40 A 71 A 7.4 TM1-TM2 

 
 The plots of the penalty value vs. RMSD to native for a representative case of 
10,000 experimental runs for each scenario by each method are shown in Figure 3.8. 
The general trend is that helical assemblies closer in RMSD to the native structure 
have lower penalty scores than those farther from the packing of the native 
structure. 10000 predicted models of the four assembly scenarios exhibit RMSD to 
native with the range between 2.0 Å and 5.0 Å for THAMMAS, revealing a quite 
acceptable performance in the prediction. The scattered plot produced by the GA 
algorithm shows a broader distribution graph with the RMSD ranging from 2.0 Å to 7Å. 
The experimental runs conducted by the SAMC algorithm exhibits a quite broad 
RMSD distribution ranging from 2 Å to more than 8 Å in the four assembly scenarios. 
One can observe that the scattered plots generated by the GA and SAMC algorithms 
have a lower density near native structure compared to THAMMAS. In addition, while 
THAMMAS has shown to be the superior performance for predicting the assembly of 
the transmembrane helix bundle, GA performs better than the SAMC algorithm. 
According to the results, THAMMAS shows noticeable consistency by finding native-
like or near native assembly with the narrowest range of RMSD to the native 
conformation compared to the GA and SAMC algorithms.  
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 Figure 3. 8 Scattered plots comparing the RMSD distribution as a function of 
penalty of 10000 experimental. 
 
 Figure 3.9 presents the average percentage of predicted structures clustered 
by each specified RMSD range by each method. If the RMSD cutoff of 3Å is chosen 
for discrimination between native-like and non-native assembly, the robustness and 
superiority of THAMMAS has achieved with a rate of correct prediction greater than 
GA and SAMC. At a RMSD range of 3-4Å, the THAMMAS predictions also give the 
majority containing significant transmembrane assemblies that were qualitatively 
correct. These outstanding results suggested that THAMMAS has a greater efficiency 
over a well-known Monte Carlo method and genetic algorithm. 
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 Figure 3. 9 RMSD distributions clustered by average percentage of the 
frequency for given RMSD range 
3.4 Optimization performance 

 In order to better understand the performance of the proposed algorithm, 
the history of the optimization profile of the three algorithms has been analyzed. For 
this evaluation, this work randomly chose five representative models for each 
assembly scenario. This gives rise to a total of 20 experimental runs per algorithm. 
The stopping criteria of 50 iterations, (generations or MC cycles) was employed. Note 
that the three algorithms designed for minimization of the penalty function update 
iteratively during the minimization process, and then store the resulting structures, 
which in turn are subjected to calculate RMSD values. Figures 3.10 show plots of 
RMSD as a function of iteration steps for 20 experimental runs of each method. It 
appears from the history of the optimization profiles that in most cases THAMMAS 
has the ability to quickly find better structures towards the native structure with 
faster RMSD convergence compared to GA and SAMC. This implies that THAMMAS has 
strong capability in terms of speed of structure convergence. According to the 
computational results, SAMC has a limitation in finding native-like or near native 
assembly under the presented protocols. It should, however, be noted that the GA 
algorithm also has the capability of finding the solutions with an acceptable 
convergence rate. The Boltzmann fitted curves shown in Figure 3.10 (D) compare the 
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average performance of the THAMMAS, GA and SAMC. It can be clearly seen that the 
convergence rate of THAMMAS is considerably better than the SAMC, but not much 
significantly different from GA for a long iteration. As observed in this figure, 
THAMMAS takes the least iterations for convergence compared with the other two 
algorithms. The presented results confirm the efficiency of THAMMAS in the 
optimization problem of transmembrane helix assembly. 

 
 Figure 3. 10 Optimization profile comparing the performance of (A) MMAS (B) 
GA and (C) SAMC algorithms. RMSD profiles of 20 experimental runs are shown as 
light lines. Heavy lines in (A)-(C) and (D) are the curves fitted with Boltzmann’s 
function. 



 

 

CHAPTER IV 

CONCLUSION 

 Metaheuristic methods have become popular tools in solving large scale 
optimization problems for a variety of systems. The goal of this thesis is to introduce 
a metaheuristic approach to predict transmembrane protein structure from an 
assembly of membrane spanning α-helices. The MMAS method is considered as a 
novel computational approach for its application to membrane protein structure 
prediction. In this paper, The author propose Max-Min Ant System algorithm, a new 
and efficient approach for solving the optimization problem of transmembrane helix 
assembly to satisfy the distance based penalty function. The MMAS algorithm, based 
on an ant colony optimization method, is capable of predicting the correct assembly 
of transmembrane proteins with a considerable rate of success. Benchmark studies 
show the performance and effectiveness of the proposed approach, compared with 
genetic algorithm and simulated annealing Monte Carlo methods. In terms of 
structure convergence, the proposed algorithm can outperform the well-known 
algorithms by comparing the rapid search for a good solution from iteration to 
iteration. This thesis anticipate that the MMAS algorithm gives a promising alternative 
that is useful in the structural bioinformatics and computational biophysical.
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