

ANALYSIS OF SECURITY VULNERABILITIES USING MISUSE PATTERN TESTING APPROACH

Mr. Yifan Yuan

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in Computer Science and Information

Technology
Department of Mathematics and Computer Science

Faculty of Science
Chulalongkorn University

Academic Year 2014
Copyright of Chulalongkorn University

การวิเคราะห์จุดอ่อนด้านความปลอดภัยโดยใช้วิธีการทดสอบแบบรูปที่ใช้ผิด

นายยี่ฟาน หยวน

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
สาขาวิชาวิทยาการคอมพิวเตอร์และเทคโนโลยีสารสนเทศ

ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์
คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2557
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

iii

Thesis Title ANALYSIS OF SECURITY VULNERABILITIES USING
MISUSE PATTERN TESTING APPROACH

By Mr. Yifan Yuan

Field of Study Computer Science and Information Technology

Thesis Advisor Somjai Boonsiri

 Accepted by the Faculty of Science, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Master's Degree

 Dean of the Faculty of Science

(Professor Supot Hannongbua, PhD)

THESIS COMMITTEE

 Chairman

(Associate Professor Peraphon Sophatsathit, PhD)

 Thesis Advisor

(Assistant Professor Somjai Boonsiri, PhD)

 External Examiner

(Assistant Professor Kriengkrai Porkaew, PhD)

 iv

ยี่ฟาน หยวน :
การวิเคราะห์จุดอ่อนด้านความปลอดภัยโดยใช้วิธีการทดสอบแบบรูปที่ใช้ผิด (ANALYSIS
OF SECURITY VULNERABILITIES USING MISUSE PATTERN TESTING APPROACH)
อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ผศ. ดร. สมใจ บุญศิริ.

วิธีการตรวจจับจุดอ่อนโดยส่วนใหญ่ในปัจจุบันนั้นมักจะกระท าในขั้นตอนการทดสอบของกา
รพัฒนาซอฟต์แวร์ ท าให้วิธีการเหล่านี้ไม่สามารถท่ีจะตรวจจับจุดอ่อนด้านความปลอดภัยของระบบ
หรือซอฟต์แวร์ ที่อาจเกิดจากการโจมตีในช่วงต้นของการพัฒนาซอฟต์แวร์ได้
การโจมตีนี้อาจเกิดข้ึนนอกเหนือจากความคาดหมายในข้ันตอนการออกแบบซอฟต์แวร์
ดังนั้นงานวิจัยนี้
จึงน าเสนอวิธีการตรวจจับจุดอ่อนด้านความปลอดภัยที่อาจเกิดข้ึนในขั้นตอนการออกแบบของการพั
ฒนาซอฟต์แวร์ วิธีการนี้ได้จ าลองการโจมตีที่มีพ้ืนฐานบนแบบรูปที่ใช้ผิดโดยใช้วิธีการทดสอบตัวแบบ
ซึ่งวิธีการนี้สามารถวิเคราะห์จุดอ่อนด้านความปลอดภัยในขั้นตอนการออกแบบของการพัฒนาซอฟต์
แวร์ได้ จากผลการทดลองได้แสดงให้เห็นว่า
วิธีการที่เสนอนี้มีประสิทธิภาพในการวิเคราะห์จุดอ่อนด้านความปลอดภัยได้อย่างเหมาะสม

ภาควิชา คณิตศาสตร์และวิทยาการคอมพิวเต
อร์

สาขาวิชา วิทยาการคอมพิวเตอร์และเทคโนโลยี
สารสนเทศ

ปีการศึกษา 2557

ลายมือชื่อนิสิต

ลายมือชื่อ อ.ที่ปรึกษาหลัก

 v

5672640423 : MAJOR COMPUTER SCIENCE AND INFORMATION TECHNOLOGY

KEYWORDS:

VULNERABILITY; SECURITY PATTERNS; MISUSE PATTERNS; UML; USE; MODEL
TESTING.

 Vulnerability detection is commonly been executed during the testing phase
of software development. Current methods are not able to detect system or software
security vulnerabilities of certain types of attacks during the early stages of software
development. These attacks include both the ones were anticipated as well as the
ones unknown during the design phase. This research proposes a method to detect
the security vulnerabilities during the design phase of software development. This
approach simulates attacks according to the misuse patterns using model testing
method. With this approach, one is able to analyze system security vulnerabilities
during the design stage of the system development. The practical examples provide
evidences to the feasibility of the proposed method.

Department: Mathematics and
Computer Science

Field of Study: Computer Science and
Information Technology

Academic Year: 2014

Student's Signature

Advisor's Signature

 vi

ACKNOWLEDGEMENTS

 Researching and discovering the new knowledge and methods in a specific field
are tough tasks. The power, knowledge and experiments from a single person seemed
to be insufficient to accomplish those tasks. I would not be able to finish this work
without the helps and supports from my advisor, friends and my family. Here I would
like to express the deepest appreciation to those who helped me on this research.

 I would like to thank my advisor Dr. Somjai Boonsiri, who directed my
researching field, offered great guidance and helped me not only on the technical
problems but also on every details in the process of researching and writing this thesis.

 Additionally, I would like to thank my committee members Dr. Peraphon
Sophatsathit and Dr. Kriengkrai Porkaew for participating and examining my dissertation.
And also thanks for their excellent and valuable suggestions.

 I also sincerely appreciate my friends for their enthusiastic assistances and my
parents’ positively support.

 I would never have been able to make this without any of your helps. Thanks
all again.

CONTENT

THAI ABSTRACT iv

ENGLISH ABSTRACT v

ACKNOWLEDGEMENTS vi

CONTENTS vii

CHAPTER 1 INTRODUCTION 1

1.1 Introduction 1

1.2 Problem formulation 2

1.3 Contributions 2

1.4 Scope of the work 3

1.5 Document organization 3

CHAPTER 2 LITERATURE REVIEW 4

2.1 Security pattern 4

2.2 Misuse pattern 6

2.3 Security requirements 8

2.4 Misuse requirements 10

2.5 UML-based specification environment 10

2.6 Principal spoofing 11

2.7 SQL injection 12

2.8 XML encryption 14

2.9 Input validation 16

 viii

2.10 Code review 17

2.11 Penetration test 17

CHAPTER 3 PROPOSED METHOD 19

CHAPTER 4 EXPERIMENTS 23

4.1 Example 1: 23

4.2 Example 2: 37

CHAPTER 5 CONCLUSION 47

5.1 Model-based test, code-based test and penetration test 47

5.2 Contributions of proposed method 49

5.3 Future works 50

REFERENCES 51

APPENDIX 54

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Most modern applications are distributed and connected by networks. Mostly
the Internet, and also LANs and other types of networks. A growing size of important
and secret information is stored on the networks since their platforms support web
interfaces, web services and web agents. The complexity of the distributed systems
brings vulnerabilities without doubt. To reduce the risk of the important information
disclosure, it is crucial to develop secure systems and applications. And this needs
security techniques.

There are several approaches to build secure systems such as Microsoft’s
Security Development Lifecycle (SDL) [1], QWASP’s CLASP [2] etc. However, in SDL and
CLASP, most of those traditional vulnerability detection methods are based on secure
coding. It must be admitted that Code-based security is valuable. However, analyzing
and patching security vulnerabilities in the code are usually high-cost tasks during the
testing phase of software development. Using a better design according to the security
requirements is able to reduce the chance of the occurrence on finding security
vulnerabilities in the late stage of software development. The traditional security
approaches cannot be implemented during the design stage of the software and
system development. They can be a good complement to model-based work.

One of the useful model-based method to make a secure design is using security
patterns. Security patterns are useful packages with the knowledge of security experts.
Software engineers can develop secure software or system by choosing and following
the guide of specific security patterns. Each security pattern guarantees that the
protected system has ability to resist a specific type of threat. However, security
patterns have some limitations [3]. One of the limitations of security patterns is that
they focus on threats instead of vulnerabilities. Usually a single vulnerabilities could
result in multiple attacks.

2

The misuse pattern has been proposed in order to help identifying which
security pattern should be used to stop or mitigate a specific type of attacks and
understand the underlying principle of attacks. Merely using the misuse pattern still
does not address the focus on vulnerabilities. Additionally, sometimes even the
identification of vulnerabilities in the existing design model of a software or a system
can be very difficult.

Therefore, this research proposes a systematic method to detect the system
security design vulnerabilities through the model testing of misuse patterns. This
method helps uncovering existing vulnerabilities that expose the system to potential
threats. This method also indicates what security countermeasures should be used to
mitigate such risks. Most importantly, drawing benefits from the contributions of model
testing on security patterns [4], this method is able to implement the analysis process
of analysis during the design stage of system development. From a cost-benefit
perspective, this is valuable because improving the design itself often has a much
lower cost than debugging and fixing the security vulnerabilities in the system during
runtime.

1.2 Problem formulation

This research focuses on the following problems:

1. What is the method to simulate an attack on a design model with misuse
pattern?

2. How can one find out the vulnerabilities and corresponding countermeasures
from the simulated attack during the design stage?

3. What is the process to validate the offered countermeasures?

1.3 Contributions

1. A method using modeling misuse patterns to simulate attacks.

2. Preliminarily identify the security vulnerabilities to a type of attacks during
design stage.

3

1.4 Scope of the work

1. The focus of this work is at the design stage of software development life
cycle.

2. The models and patterns in this research are described in UML.

3. The UML models and their OCL constraints are tested in USE.

4. In order to ensure the correctness of the attack models, the misuse patterns
used in this research are chosen from existing misuse patterns.

5. In principal spoofing, the way of stealing credential by social engineering is
not involved in this research since human behaviors cannot be controlled by
computers.

1.5 Document organization

This document is organized as follows. Chapter 2 contains the related prior work.
Chapter 3 concretely demonstrates the proposed method of vulnerability analysis
process. Chapter 4 shows two practical experiments in order to introduce the proposed
method with deeper understanding. The conclusion and future works are given in
Chapter 5.

4

CHAPTER 2

LITERATURE REVIEW

This chapter introduces the related background knowledge about this thesis.
The content includes basic introduction of security and misuse patterns, testing tool
as well as the attacks and countermeasures that will be used in the experiments.
Having this background knowledge gives a good assistance on understanding the
proposed method in this thesis.

2.1 Security pattern

 Security patterns, a term initially been introduced in 1998[5], are reusable
packages with the knowledge of security experts. Security pattern has certainly proved
its values in the industry. With these patterns, software engineers are able to build
secure programs and systems without prior expert security experiences. Many patterns
have been proposed. Some of the examples are shown in [6].

A security pattern describes a solution to the problem of stopping or mitigating
a set of specific threats through some security mechanism. Besides solving a set of
forces, the solution also need to be able to describe using UML class, sequence, state
and activity diagrams. The consequence indicates how well the forces were satisfied
and how well the threats were mitigated. Security pattern focuses on threat, the
vulnerability is not directly related to security pattern. A pattern may stop or mitigate
a set of threats caused by one vulnerability, but it does not intend to repair the
vulnerabilities.

Security pattern can be considered as any of the following ways. An architectural
pattern, a design pattern, an analysis pattern and a special type of pattern. Here in this
thesis, the pattern is only looked as a design pattern since the proposed the method
is focusing on the design stage of the software development.

Each security pattern consist of several sections as shown in Figure 2-1, and their
functions are shown as below:

5

Figure. 2-1 The structure of security pattern

Context: To define the context in which the pattern solution is applicable.

Problem: To demonstrate what happens if developers do not have a good solution
under the situation in context. Also indicate the forces that affect the possible solution.

Solution: To describe the idea of the pattern. This section includes the static view and
dynamics of the solution which are described in UML model.

Implementation: To describe what should be considered when implementing the
pattern.

Example Resolved: To tell the example results after implementing the solution.

Consequences: To indicate the benefits and liabilities of the solution in this pattern.

Known Uses: To accept this solution as a pattern, some examples of the use in real
systems are required.

See also: To relate this pattern to other known patterns.

6

Apparently, the solution section is the core section of a pattern. However, it
does not mean only the solution section matters. Patterns can be very valuable for
building security systems because they emphasize not only the solution but also the
problem.

2.2 Misuse pattern

As introduced in the previous section, security patterns focus on threats instead
of vulnerabilities. It is useful to guide the security design of systems but it does not
clearly tell the designer what pattern should be applied to stop a type of attacks
especially those who are not expert in security.

Figure. 2-2 Class model of misuse pattern [3]

The misuse patterns are proposed in order to complement security patterns.
The structure of misuse pattern is similar to security pattern. The difference is that

7

misuse pattern describe from the perspective of attacker. The main purpose of misuse
pattern is to describe and show how a type of attack is performed, what components
are utilized by the attack in the target model and also analyze the way to stop the
attack.

A misuse is an unauthenticated use of assets in a system or software. E. B.
Fernandez, et al., proposed the method of modeling misuse pattern in 2009 [3]. Figure
2-2 present the structure of misuse patterns. The structure of misuse patterns is similar
to security patterns however the misuse pattern describes from the perspective of
attacker. Most apparently, there is an attack model under the solution sections.

Some of the sections are different from their definition in security patterns as
shown in Figure 2-1:

Problem: Differ from the problem section in security patterns, the problem here
describes how to find a way to attack the system. The forces indicate what factors
may be required in order to accomplish the attack and in what way.

Solution: In security patterns, solution section tells how and what security
countermeasures should be applied to against the threat described in problem section.
However the solution section in misuse pattern describes how the misuse can be
accomplished and what is the expected results of the attack.

Additionally, the countermeasure section describes the security measures
necessary in order to stop, mitigate, or trace this type of attack.

The purpose of inventing misuse patterns is not to make it easier to implement
a misuse, but to understand a misuse. It is necessary to obtain an understanding of
the possible threats in order to design a secure system. A systematic approach to
identify the threats has been proposed in [7]. Many useful misuse patterns have been
proposed such as the denial of service attack in VoIP [8] and worm [9]. Misuse patterns
help us to learn how the components could be used by attackers to reach their misuse
objectives and how an attack is performed. Subsequently, the method helps to
analyze the security vulnerabilities and find means to counter the attack.

8

2.3 Security requirements

 Security requirements are a class of Non-Functional Requirements (NFRs) that
relate to system confidentiality, integrity and availability. Explicitly stating security
requirements during project inception is the perfect complement to security testing.
Clearly outlining potential security requirements at the project allows development
teams to make trade-offs about the cost of applying security mechanisms into a project.

Figure 2-3: Four ways to create security requirements [10]

There are four ways to create security requirements as shown in Figure 2-3.

The security requirements of withdrawing cash from ATM is quoted here as an
Example.

The functional requirements of withdrawing cash from ATM includes:

·Use a valid bank card.

·Require correct PIN code to login.

·Withdraw not exceed amount balance.

9

 Suppose there are already some countermeasures exist in the ATM to satisfy
these above security requirements. In order to test and judge whether these
countermeasures are applied appropriately in the ATM, they need to be transferred
into a more concrete and readily tested form such as the Table 2-1.

Table 2-1: Security requirements of withdraw cash from ATM

 1 2 3 4

Conditions Regular user Yes Yes No No

Valid transaction Yes No Yes No

Actions Execute “withdraw cash” process X

Not Execute “withdraw cash” process X X X

Table 2-2: Security design requirements of withdraw cash from ATM

 1 2 3 4 5 6 7 8

Conditions

Valid bank card Y Y Y Y N N N N

Correct PIN code Y Y N N Y Y N N

Enough Balance Y N Y N Y N Y N

Actions

Considered as regular user X X

Considered as irregular user X X X X X X

Considered as valid transaction X X X X

Considered as invalid transaction X X X X

Execute “withdraw cash” process X

Not Execute “withdraw cash” process X X X X X X X

This table shows what the expected results of testing the countermeasures
should be. However, it is still not practical enough for the tests. The problem is obvious.
As human beings, it is easy for us to understand that we have to satisfy all of the

10

conditions in order to execute the willing process. But for tests, it is necessary to tell
the computer what exactly is a “regular user” and a “valid transaction”. Therefore,
another table called the security design pattern are required as shown in Table 2-2.

All of the 8 cases have to be generated as test cases in the model testing
process. The countermeasures are considered applied appropriately if the results are
exactly fit the content in the Table 2-2.

2.4 Misuse requirements

The principle of misuse requirements is similar to the security requirements.
They just change from the perspective of defender to the perspective of attacker. The
method and process of testing are the same as security requirements. So a repeated
example is not shown here. One thing need to be learned about misuse requirements
is that it is not necessary to test all of the cases in misuse requirements since the
misuse test simulates an attack, the cases without attacking intentions are no need to
be concerned.

2.5 UML-based specification environment

Unified modelling language (UML) [11] is now a standard for software
development. UML-based models, with its sub-language object constraint language
(OCL) [12], have been widely used in the system and software development.

In order to check the quality of UML design models, there must be some
methods to validate the models. However, the UML tools do not offer much support
on the methods of validating UML models and their OCL.

The UML-based specification environment (USE) tool [13] runs tests to validate
models based on UML and OCL. It supports analysts, designers and developers in
executing UML models and checking OCL constraints, and thus, enables them to
employ model-driven techniques for software production. Figure 2-5 shows a sample
interface in USE tool.

This is the major tool used for implementing experiments in this thesis.

11

Figure 2-5: Example of USE tool interface

2.6 Principal spoofing

 Principal spoofing pattern is one of the misuse patterns that will be used in this
thesis. It is necessary to have some basic knowledge about this type of misuse. A
spoofing misuse is in a circumstance that a person tries to impersonate another.

Regardless of whether in the human world or the internet. There are always
some situations that need to prove one’s identity when doing something. For example
in the airport, the staffs compare passengers’ face with their passport pictures to
validate their identities. Identically, every user has a digital “face” in the internet, most
commonly the user’s ID. For a regular authentication method, users are also required
to provide something to be their digital “passport” such as a password. Unfortunately,
both the digital “face” and “passport” can be stolen. The principal spoofing happens
when a person uses the stolen “face” and “passport” to impersonate others. An
integrate introduction of spoofing attack is introduced in [14].

Many different systems and platforms can be the targets of spoofing. This thesis
scope the target in web services.

12

Figure 2-6: The misuse case of principal spoofing

Figure 2-6 shows principal spoofing misuse in use case diagram. It is easy to
understand that the key of the spoofing a web server is to obtain valid credentials and
masquerading as a regular user. An attacker can obtain credentials from regular users
by maliciously sniffing the network communication data. It can also get security policies
and methods of the web service from WSDL file. With valid credential and information
from WSDL file, the attacker can create web services according to their intention. The
attacker will pass the identification and the request will be authenticated as long as
the attacker has a valid credential.

2.7 SQL injection

The other misuse in this thesis is SQL injection. SQL injection attacks represent
a serious threat to any database-driven site and they are one of the most frequent
types of attacks. This attack is effective especially on the active server pages (ASP)
based sites.

A SQL injection misuse consists of insertion of arbitrary code into a SQL query
by the client in order to alter its intended function, allowing the attacker to retrieve
arbitrary amounts of unauthorized data from the database.

13

The SQL injection can be very flexible according to the website and the input
page. Several major SQL injection are introduced in [15]. In the design stage, it is not
vital to know what exactly the SQL injection code is since the webserver is not really
exist. However it is important to demonstrate the idea of this attack using a typical
example.

A simple example of the SQL injection is demonstrate here to help
understanding this attack.

Figure 2-7 A common login window of company website

The login interface in Figure 2-7 is very common in company websites. The users
enter the ID, password and the corporate as a credential to pass the identification and
authentication.

It could be very easy for attackers to guess that the SQL statement construction
of this login page is as below:

SELECT * From Table WHERE Name='XX' and Password='YY' and Corp='ZZ'

Since the SQL database just simply gets the command from the web and return
the results to the web. The input boxes could be utilized to generate some arbitrary
statement to the database.

Figure 2-8 A sample SQL injection

14

Figure 2-8 shows a very simple example of the SQL injection on this website.
Enter anything in the “user ID” and “Password” boxes and input the content as shown
in the Figure in the “corporate” box.

Then the SQL statement submitted to the database would be:

SELECT * From Table WHERE Name=‘SQL inject’ and Password=‘’ and Corp=‘’
or 1=1--’

This statement could be separated into:

SELECT * From Table WHERE Name=‘SQL inject’ and Password=‘’ and Corp=‘’

Or

1=1

The first statement must not get a valid return because the password and
corporate are missing. However, the “corporate” box is utilized to input “’or 1=1--”.
The “’” is considered as the closing single quotation mark of the box and the “--”
makes the embedded closing single quotation mark in the SQL statement as an
annotation which will not be executed by the computer.

Therefore, in the condition of judging the whole statement, the first part will be
returned a “false” while the second part “1=1” is always true. The attacker then skips
the system I&A and logins into the system without any valid credential.

Skipping I&A is not the only way of using SQL infection on a database-driven
system. Various more harmful SQL injections are truly exist. For the scope of this thesis,
the more examples about this attack are not demonstrated here.

2.8 XML encryption

XML encryption is a security countermeasure that will be used in this thesis. It
already has its pattern available in [16].

The idea of XML encryption is simple. It provides confidentiality by hiding
selected sensitive information in a message using cryptography. Although it is called
XML encryption, it actually can encrypt any kind of data.

15

XML encryption is very valuable for cyber communication. Especially nowadays
internet is not simply a tool for entertainment. People intend to do more and more
commercial things on internet like shopping, banking and so on.

Figure 2-9: The class diagram of XML encryption

Figure 2-9 shows the class diagram of the XML encryption pattern. A principle
as introduced in the principal misuse pattern, is commonly considered as a user. The
user sends and receives XMLMessages and EncryptedXMLMessages. The Principal may
has the roles of sender and receiver. The XMLEncryptor and the XMLDecryptor
encipher a message and decipher an encrypted message, respectively.

Figure 2-10: An example of XML encryption syntax [17]

16

Learning from the example in Figure 2-10, a user called John Smith is trying to
conduct an online payment. Obviously, Smith's credit card number is sensitive
information. If the application wishes to keep that information confidential, it can
encrypt the “CreditCard” element. By encrypting the entire CreditCard element from
its start to end tags, the identity of the element itself is hidden. The “CipherData”
element contains the encrypted serialization of the “CreditCard” element.

Although current research shows that XML encryption is not invincible [18], XML
encryption is still commonly considered as an efficient way to protect the cyber
communication.

2.9 Input validation

Input validation is the other countermeasure which is been used in this thesis
beside XML encryption.

It is always recommended to prevent attacks as early as possible during the
process of attackers’ request. Input validation is able to detect malicious or unwanted
inputs before they are passed to the system. The two main ways of input validation
are introduced here. However, they are specified concretely in the design model test
in thesis’s experiments.

The two ways are using black list and white list. These two strategies are like
the access control in network firewalls.

Developers often use black list validation to detect some obvious malicious
characters such as “’”, “=” or “<>”. The validation blocks the requests that contain
those characters.

The other way, white list validation tells what exactly is allowed to be a valid
input. It is useful especially for some types of data like dates, social security numbers,
zip codes, e-mail addresses, etc.

The input validation is not some kind of miracle drug to a specific misuse. But
it is valuable on preventing many of the common vulnerabilities being actively

17

exploited by malicious users if all of the data received and processed by your
application is sufficiently validated.

2.10 Code review

The code review, also known as “white box testing” is in the implementation
phase of a Security Development Lifecycle. SDL is a software development process
that helps developers build more secure software and address security compliance
requirements while reducing development cost [1].

As what have been introduced in Chapter 1. In the system and software
development field, it is undeniable that the code-based analysis is still the most
popular way on vulnerability digging. When this technique is used with automated
tools and manual penetration testing (introduced in the next section), code review can
significantly increase the cost effectiveness of an application security verification effort
[19].

Security code review is a process on scanning the source code of a software or
a system in order to verify the proper security controls are present. In the other word,
the code review tries to make sure that the target software is doing what developers
intended to. It is known that there are many types of vulnerabilities could be found in
a software, a system or a website. It could be an insecure design, code, system service.
It also could be caused by insecure internet protocols, transitions and so on. The duty
of code review is to guarantee that the code-based vulnerabilities can be dug out as
much as possible.

Latterly the proper relationship between this technique, penetration test and
the proposed method in this thesis will be demonstrated.

2.11 Penetration test

Penetration test is another extremely useful technique on finding system
vulnerabilities especially cyber systems and platforms. A penetration test can actually
be treated as an attack. Hackers and penetration testers have the same skills and
knowledge. The key differences between penetration test and hacking are that the first,

18

penetration test intends to find system vulnerabilities, potentially gaining access to it,
its functionality and data [20], while hacking has malicious purposes. The second is, in
the scope of the attack, penetration test is authorized by the owner of the target. The
last, the penetration testers are required to submit the report of the test.

The process of penetration test includes probing for vulnerabilities as well as
providing proof of concept attacks to demonstrate the vulnerabilities are real.

Identical as regular hacking, the penetration test also consist of four main phases
(the names and numbers of each step might be different from different introducers,
however the idea is the same).

Figure 2-11: Four phases of penetration test

The four phases are shown in Figure 2-11. Reconnaissance is the information
gathering phase. Subsequently the tester use tools or manually scan the system
vulnerabilities. Once the vulnerabilities are found, testers are able to conduct an
exploitation on the target system. The last thing is to leave a “back door” for
maintaining the access to the target system.

If there is any vulnerability that can be proved. The penetration tester then
need to report the result to the system owner.

19

CHAPTER 3

PROPOSED METHOD

The entire process of implementing the proposed method is introduced in this
chapter. Once the testers have their system model and attack model ready, they are
able to implement and accomplish the test by following the concrete process below.
The test will end with telling the tester either no vulnerability found or the appropriate
countermeasures to patch the vulnerabilities.

Figure 3-1: The process of the proposed method

20

Figure 3-1 shows the process of the proposed method, which is partitioned into
six steps:

1. Define misuse and security requirements

The purpose of this method is to test whether a simulated misuse can be
implemented successfully on the target system. However, one cannot assume the test
result subjectively. The results have to be judged by a strict standard.

To accomplish this task, the misuse requirements and security requirements are
needed.

Security requirement lists the tasks that a countermeasure must satisfied. If a
model does not satisfy the security requirement then the threats may still exist in the
system. Which means the applied security pattern does not solve the security problem.
In the other word, the security requirements are used to judge whether the security
pattern is applied and work appropriately in a system design model.

Similar to the security requirement, misuse requirement has the same function
that is to judge the result of applied misuse pattern. The chosen misuse pattern and
the security pattern have to focus on the same security issue but expecting the
opposite results. For example, if the security pattern is trying to protect an asset, then
the misuse pattern should intend to steal or make it disclosed. Therefore, it has to be
guaranteed that the security requirements and misuse requirements are not possible
to be satisfied simultaneously.

2. Test countermeasures (security patterns)

It is necessary to know what security countermeasures are implemented in the
target system model before validating the misuse pattern on it. Also, be ensured that
the security design pattern model of these countermeasures are applied appropriately
on the target system. The countermeasure models are tested in USE with their test
cases. The process goes through only if all of the existing countermeasure models are
operating adequately.

This task is divided into 5 substeps:

21

2.1 List the countermeasures and misuses that will be tested. The
countermeasures could be chosen from available security patterns so that the design
model of the countermeasure can be easily applied into the target system. Those
countermeasures will be considered as defending measures of the system. Therefore
ensuring that all of those applied countermeasures are working appropriately is a must.

2.2 Apply the countermeasure models into the system design model. By
combining the countermeasure models with the system design model, testers can get
the integrate target system model with its expected security defense measures.

2.3 Build the countermeasures model in USE. The testing process is
implemented in USE tool which has been introduced in the precious chapter. To do
this, the integrate target system model made in step 2.2 has to be built in the USE
tool. Both class diagram and object diagram are needed in USE testing. Additionally,
the countermeasure functions are described by OCL in classic diagram.

2.4 Set the test cases according to the security requirements. Test cases are
created using object diagrams. Each diagram refers one test case. The examples are
shown in the subsequent chapter. The security countermeasures are considered
applied appropriately only if all of the test results from possible cases satisfy the
security requirements.

2.5 Execute test of the countermeasure model in USE. The step 2.1-2.5 should
be done repeatedly until the test results satisfy the security requirements.

3. Test attacks (misuse patterns)

The accomplishment of step 2 indicates that the preparations are completed.
In this step, the selected misuse pattern is also applied and tested it in USE. This is
the core step in validating misuse pattern.

3.1 Apply misuse pattern in the model. Firstly, the class diagram from the
selected misuse pattern is needed. And combine this with the tested integrate target
system model which was built in the previous step.

22

3.2 Build the new model in USE. Similar to step 2.3, the new model also needs
to be built in USE tool in order to be tested.

3.3 Set test cases according to the misuse requirements. Different from step 2.4,
the test case of simulating the misuse on this model does not need to cover all the
possible cases since here what is being testing is not the operation of the misuse.
Therefore the test case should be set as near as possible to the ideal case to
accomplish the goal in the misuse requirement. However, it does not mean that the
test case can be created arbitrarily. It has to be under the control of the OCL
constraints from security countermeasures that were built in step 2. Otherwise the USE
outputs error for the constraint violations.

3.4 Execute test of the new model in USE. The whole test process should be
ended if the result does not satisfy the misuse requirements. This indicates the target
system is not vulnerable to the kind of chosen attack. Otherwise if the result satisfy
the misuse requirement then the process should go further to step 4.

4. Vulnerability analysis

The system is considered vulnerable to the misuse if the result of testing misuse
pattern in step 3 satisfies the misuse requirements in step 1. Therefore, this step is
executed for analyzing the model created in step 3 to understand how and what
components are utilized by the attacker to achieve this misuse, and also determine
the corresponding vulnerabilities.

5. Offer new countermeasures

New countermeasures against the applied misuse are offered according to the
vulnerabilities found in step 4.

6. Apply the new countermeasures and retest

Add this countermeasure into the model in step 2 and redo step 2 and 3. The
failure of step 3 indicates the new countermeasures offered by step 5 are able to stop
this attack. Otherwise redo step 4, 5 and 6 until effective countermeasures are found
to stop this attack.

23

CHAPTER 4

EXPERIMENTS

Two practical experiments are shown in this chapter in order to demonstrate
the integrated process of the proposed method in Figure 3-1.

4.1 Experiment 1:

For the first experiment, a Web server in the design stage is chosen as a victim
system, which is employing credential based identification and authentication (I&A) as
countermeasure. Typically, the combination of a username and a secret password is
considered as an appropriate credential. Different credentials are usually chosen
according to different security situations. For the explicit expression of the process in
this example, this test uses the combination of username and password as credentials
in this experiment.

For attacking model, this test uses the principal spoofing misuse pattern [21] to
simulate the attack on the victim system which have been mentioned above.

Step 1: Define Misuse and security requirements

Table 4-1 and Table 4-2 show a comparison of the security requirements and
misuse requirements. The security requirements of I&A only allow regular users to
access the protected assets. The situation is changed in the misuse requirements in
Table 4-3 where the spoofing attack requires the possibility of accessing protected
assets as an irregular user.

Table 4-1: Security requirements of I&A

 1 2

Conditions Regular user Yes No

Actions Allow to access assets that need I&A X

Reject to access assets that need I&A X

24

Table 4-2: Misuse requirements of principal spoofing in web services

 1 2

Conditions Regular user Yes No

Actions Allow to access assets that need I&A X X

Reject to access assets that need I&A

Step 2: Validate system current countermeasures

2.1: List the currently existing countermeasures.

According to the context of this case. There is only one countermeasures in the
victim system model that is the credential based identification and authentication. To
implement this countermeasure, the credential pattern is been used in this test.

Table 4-3: Security design requirements of credential pattern

 1 2

Conditions With valid credential Yes No

Action

Considered as regular user X

Considered as irregular user X

Allow to access assets that need I&A X

Reject to access assets that need I&A X

Table 4-3 shows the security design requirements of the credential pattern
which is implemented on the target system. A bit more explanations about the
differences between Table 4-1 and Table 4-3 seem to be necessary here. Table 4-1 is
the requirements of I&A. It is well known that there are many different strategies to
implement an I&A such as using voice recognition, facial recognition, finger print and
so on. Credential based I&A is obviously a number of this huge family. The common

25

requirements of any kind of I&A is in Table 4-1. Since here a credential based I&A is
chosen in this test, to test whether this countermeasure is working appropriately, a
specific security design requirements for this credential based I&A is needed.

2.2: Apply the chosen countermeasures in to the test model.

A credential based I&A as a countermeasure and a purely basic web server as
the victim system model are available now. The testing model can be generated by
applying the countermeasure model into the system model. See Figure 4-1.

Figure 4-1: The test model with credential based I&A

2.3: Build the test model in USE

Building a model in USE is not simply drawing the UML in it. Coding is required
for the tool to understand the model. The coding includes defining classes, their
constraints in OCL and associations.

A part of the constructing code is shown in Figure 4-2. The table and the OCL
statement indicate that a user is considered as a regular user only if it has a valid
credential in the system. A regular user is given some rights to access the protected
assets such as their personal information. The user could have more rights depending
on the role of the user.

26

Figure 4-2: The credential structure in USE and its constraints

The class diagram of the model in USE which is shown in Figure 4-2. This is like
the entire environment of a simulator is built up. The next step is to execute the tests
in different cases according to the requirements in Table 4-3.

2.4 and 2.5: Set test cases according to the security design requirements and
execute the tests.

In this environment, testers are able to create objects of the existing classes and
can also assign values to the attributes in the objects. However, the values assigned
to the objects have to satisfy the constraints in OCL, otherwise the OCL check will
output errors. A case with errors means this case is not possibly exist. For example a
case could be an irregular is rejected to login to the system or a regular user is allowed

27

to login to the system but the case that an irregular is allowed to login to the system
will result in errors because this case is not exist.

Figure 4-3: The example test results in USE interface

Figure 4-3 shows a test result of the case 1 in Table 4-3 as an example. All of
the values are shown in the object diagram. The constraint checks are passed and the
result in the command panel shows that the regular user is allowed to access the
assets. This is an example of the test result shown in USE interface. To make the data
and results more intuitional, the results will be performed in tables in the following
tests.

28

Table 4-4: The USE test results of credential pattern

user_1 user_1
name Regular_user name Irregular_user
regular_user TRUE regular_user FALSE
credential credential_1 credential credential_2
securityPolicies TRUE securityPolicies TRUE
message_1 message_1
credential credential_1 credential credential_2
credential_1 credetial_2
isEncrypted FALSE isEncrypted FALSE
validity TRUE validity FALSE
webserver_1 webserver_1
requester user_1 requester user_1
wsdlFile wsdlfile_1 wsdlFile wsdlfile_1
wsdlfle_1 wsdlfle_1
isPublished TRUE isPublished TRUE

Allow to
access
assets that
need I&A

case 1

Attributes

case 2

Yes No

Table 4-4 shows the USE test results of the two conditions shown in Table 4-3.
The USE test outputs true while the value of credential validity is “true”, and the test
outputs false if the credential validity is “false.” The results satisfy the security design
requirements in Table 4-3, hence, the pattern is applied appropriately. The satisfaction
of security requirements in Table 4-1 indicates that this input model of
countermeasure works appropriately and offers protection for sensitive assets. This
means that only the users holding valid credentials can access the protected assets

Step 3: Apply and validate misuse pattern

In this step, testers need to change their perspective from a defender into an
attacker. Table 4-2 has determined that the aim of principal spoofing is to illegally
access regular users’ personal data or other protected assets. Therefore, the approach
to successfully attain illegal access is to impersonate the identity of a regular user.

Table 4-5 shows the misuse design requirements of principal spoofing. The form
looks like similar to the security design requirements in Table 4-3. However the desired
result of this test is different from the countermeasure test. In countermeasure test,
the result of each of the case has to be guaranteed that it is identical with the cases

29

in security requirement. Use the previous test as an example. The results have to
satisfy both of the cases, “Regular user can access” and “Irregular use cannot access”
so that this countermeasure is considered working well. However, here the expected
result is that the attacker successfully sniffing the regular user’s credential and using it
to access assets as considered as a regular user. Not like in the security countermeasure
tests, it is not necessary to care about the results of all of the cases. But only the cases
which result in the success of accessing the assets that need I&A as shown in the red
line in the table. If this case is satisfied, no matter what are the results of other three
cases, the system assets is disclosed anyway.

Table 4-5: Misuse design requirements of principal spoofing

 1 2

Conditions Successfully sniffed regular user’s credential Yes No

 Considered as regular user X

Considered as irregular user X

Allow to access assets that need I&A X

Reject to access assets that need I&A X

3.1: Apply misuse pattern in the model

Similar to step 2.2, attacking model also need to be joined in to the test model.
As a result, the principal spoofing misuse model is applied in to the test model.

30

Figure 4-4: The test model with principal spoofing

Figure 4-4 shows the new test model which has been combined with principal
spoofing attack model. The strategy of authentication in this pattern is similar to the
credential pattern. The additional units in this misuser pattern are presented to support
the performance of principal spoofing. The WS-requester is normally a user. The WS-
Provider have some policies which are stored in the WSDL file. Another addition to this
pattern is the attacker class. The attacker and the user are both considered as principal
but the attacker has the “getCredential()” function. However, having this function does
not mean that the attacker can definitely steal the credentials from regular users.
There are some limitations will be explained them in the subsequent step.

3.2: Build the new model with attack model in USE

In order to validate whether this misuse pattern satisfies the requirements in
Table 4-2, testes need to build this new model into USE again. Some of the new
constraints have to be introduced here because these constraints have the duty on
judging the attributes of the new class – “Attacker”. They are directly related to the
test result.

31

Figure 4-5: The principal spoofing model in USE and its constraints

32

The constraints are shown in Figure 4-5. The invariant “getCredential” and
“getSecurityPolicies” are in the attacker class, while the variant “Authentication” is in
the WS_Provider class. Those constraints indicate that the attacker can get the
credential from a regular user if the credential is not encrypted in the communication
between the user and the web server. The attacker is also able to get the security
policies form WSDL file if the WSDL file has been published by the web server. A
principal (user/attacker) is considered as a regular user if it uses right security policy
and plus a valid credential.

3.3 and 3.4: Set the test case and execute the test in USE

The left part of table 4-6 contains a test case. This test case satisfies the misuse
requirements in Table 4-5. The case setting is for testing whether an attacker can
personate a regular user by holding a valid credential got from a regular user. However,
it is unknown that whether this ideal case satisfies the OCL described in Figure 4-5.
Therefore, this case is applied in USE to check all the constraints. The “access_assets()”
function then can be executed to see the result after the test case passed all the
constraint checks.

Table 4-6: The USE test result of principal spoofing

Assets
disclosure

user_1
name Regular_user
regular_user TRUE
credential credential_1
message_1
credential credential_1
credential_1
isEncrypted FALSE
validity TRUE
webserver_1
requester user_1
wsdlFile wsdlfile_1
wsdlfle_1
isPublished TRUE
attacker_1
name Irregular_user
regular_user TRUE
credential credential_1
victimUser user_1
aimServer webserver_1
securityPolicies TRUE

Case 1

Yes

33

Table 4-6 also shows the test result from USE. This test has passed all the
invariants check according to the constraint in Figure 4-5. The result of executing the
“access_assets()” function is true. This means that the attacker in this test case is
considered as a regular user and has the rights to access the protected assets. The
protected assets are disclosed. Therefore, the test case finally satisfies the misuse
requirements in Table 4-2. It indicates that the victim system in this example is
vulnerable to the principal spoofing attack. The next step is to analyze the
vulnerabilities.

Step 4: Analysis of the vulnerabilities

As observed from the model testing process, the success of this identity spoofing
is attributed to the achievement of stealing valid credential and getting security policies
from WSDL file. WSDL file is open for everyone since people need it to communicate
with the web server. Accessing WSDL file is not considered as a disclosure. The misuse
of credential is indeed the key of this misuse pattern. As mentioned in the previous
step, in the real world, stealing a credential from other user is not a simple work.
However, in this testing model, the lack of protection on the credentials offers the
attacker a possibility of stealing the credentials. This is the vulnerability of this example
system model.

Step 5: Countermeasures

In this case, the countermeasure is a combination of user ID and password. The
two main ways of getting credential are obtaining from the user personally and sniffing
the communication between a regular user and the server.

It is difficult to control the first one since it is not possible to control human
behavior with computers. So the countermeasures should mainly focus on reducing
the risks arising from the second approach. Encrypting the credential or
communications between the users and servers is an effective method of doing this,
an example is using the XML encryption pattern.

Step 6: Apply countermeasures and retest

XML encryption pattern has been introduced in Chapter 2.

34

To use the XML encryption pattern, firstly, the XML encryption pattern itself
needs to be tested before being applied in the model with misuse. The function of
XML encryption pattern is simple and clear. So the explicit test is not demonstrated
here. But be noticed that the countermeasure security pattern test is indeed necessary
and has been passed in this experiment. The security requirements of each
countermeasures have to be satisfied before applying them with misuse pattern.

The system model is as shown in Figure 4-6 after applying the new
countermeasure into the current system model.

Figure 4-6: Entire system model with XML encryption countermeasure

Same as the tasks have been done in step 3. The class diagram of the entire
system model with XML encryption and its constructing commands in USE tool are
shown in Figure 4-7.

35

Figure 4-7: The entire system model with XML encryption and its constraints

Figure 4-7 shows the new model where the XML encryption pattern has been
applied in the USE tool. The two new constraints in above take the responsibilities of
the new forces brought by the countermeasure. Identically, the aim of the attacker
here is still stealing the regular user’s credential. As mentioned in step 5, analyzing the
result does not consider the way of ordering the credential from the user personally.
Therefore, the way that is considered here is sniffing from the communication between
user and the system web server.

The new class message in the model carries the content and the sender’s
credential in order to communicate with the web server. And the encryptor encrypts
the message before sending it.

The misuse requirements are the same as in Table 4-3 and Table 4-5 since the
attacking method and pattern are not changed in this model. Now try to build the
same test case in Table 4-6, which had made the misuse successful in step 3.

36

Figure 4-8: Constraint check of principal spoofing test case 1

As seen in Figure 4-8, the test case has been set exactly the same as in Table
4-6 in step 3. However, the constraint check provides a different result. The constraint
“getCredential” reports a “Failed” since the credential that the attacker intends to
sniff is encrypted. This results indicates that the case 1 in Table 4-5 is no longer possible
to occur. The reason is the credential of user_1 is encrypted so that the attacker now
is not able to get it by sniffing. More accurately, the attacker still can sniff the message,
but he cannot read the encrypted content in the message.

Therefore only one of the two cases showed in the misuse requirements in
Table 4-3 is possible to be built and passed the constraint check. So then try the
second test case.

Figure 4-9: Constraint check of principal spoofing test case 2

As shown in Figure 4-9, the second case of misuse requirements in Table 4-3 is
successfully created and passed the constraint check. Which means this case may
really occurs in the system.

However, the attacker is not able to access the protected assets under this case.
Because it does not considered as a regular use to the system.

37

Hence, the misuse requirements cannot be satisfied under the protection from
the new countermeasure XML encryption. Then it could be announced that the new
model system is not vulnerable any more to the misuse “principal spoofing”. The risk
from the threat has been mitigated and the vulnerability has been patched.

4.2 Experiment 2:

A vulnerability has been detected, analyzed and patched by implementing the
entire processes of the proposed method in the previous experiment. The principal
spoofing does not work on that system anymore. However, what if the system is in the
circumstance of facing another kind of attack? Can those countermeasures handle the
new type of attack too? The answer would be found in the second experiment. The
patched system in the previous experiment is continually used as the victim system in
this step.

The misuse pattern used in the second experiment is SQL injection misuse
pattern [23].

Since the SQL injection misuse is intending to accomplish the same goal as the
principal spoofing though a different way. The misuse requirements are the same as in
Table 4-2. However the misuse design requirements are different which will be shown
in later step.

All of the countermeasures in the current system model have been tested in
the previous experiment so that the step 1 and 2 could be skipped. So this experiment
starts from step3.

38

Step 3: Apply and validate misuse pattern

Table 4-6: Misuse design requirements of SQL injection

 1 2

Conditions Enter and send malicious code to the web server Yes No

 Web server sends regular SQL statement to Database X

Web server sends injected SQL statement to
Database

X

Database returns regular outputs X

Database discloses assets X

As usual, the first task is to list the misuse requirements of SQL injection attack.
As what have been demonstrated in the previous experiment, the misuse model test
considers only the case which contains attacking behaviors. Therefore, in Table 4-6,
the only case need to be tested is case 1 since there is no attacking intention in case
2.

3.1 Apply misuse pattern in the model

The SQL injection has been concretely introduced in Chapter 2. Here is the
result of the victim system model after applying SQL injection misuse model on it.
Compare with the system model in Figure 4-6, since the encryption is not the key
function in this test, this model has a simplified encryptor class which keeps the
encryption function. The two new classes “Database” and “Query” are added in to
the model.

39

Figure 4-10: Entire system model with SQL injection

Similar to the first experiment, this step applies this misuse model to the victim
system model. The entire combined model is shown in Figure 4-10. The query class
could be generated by both the trust engine and the web-provider itself. This depends
on the type of the query. I&A queries, for example, are from the trust engine. A regular
search may be generated from the web-provider. The trust engine will be embedded
into the web-provider.

3.2: Build the new model with SQL injection attack model in USE

There are obviously some new constrains are required to simulate the new
situation of the SQL injection attack.

There are two new constraints need to be introduced.

The first is that if a request with malicious code is sent to the web server, then
the web server will send an injected query to the database.

The second is that a data disclosure will occur if the database receives an
injected query.

The constructing statements is not been shown here due to its length. However
it can be found in the appendix.

40

The credential based I&A pattern and XML encryption pattern work the same
as in the previous experiment. The request sent from attacker will be encrypted and
the web server will check the requester’s credential as normal. Since the web server
needs to check the credential’s validity by searching and matching it with its database.
The web server has to send a query which is generated according to the content in
request from requester (The requester is attacker here).

As a result, if the request contains malicious code, the query contains malicious
SQL statement. The malicious SQL command causes the disclosures in SQL database.
The operation “data_disclosure_check” is able to check the result of data disclosures.

Figure 4-11 shows the entire system model with SQL injection in USE.

Figure 4-11: The entire system model with SQL injection in USE.

3.3 and 3.4: Set the test case and execute the test in USE

The test case in Table 4-7 is according to the case 1 in table 4-5. Obviously, this
case contains attacking behaviors. This case has passed all the constraint checks in
USE. Which means this case can really happen in the victim system. On the other hand,

41

the test result in USE also shows that this case causes a data disclosure. Therefore,
the attack contained by this case successfully made a misuse in the system.

Moving the focus on the attributes of each class in the object diagram. It is
shown that the request from attacker is malicious so that the SQL query generated by
the web server is injected. As a result, this case causes a data disclosure in the database.
Therefore, this case satisfies the case 1 in Table 4-5.

This is the evidence to say that the SQL injection is implemented successfully
in the victim system. In the other word, this system is vulnerable to the SQL injection
misuse.

Table 4-7: SQL injection test case 1

attacker_2 database_1
name SQL_injector receivedQuery query_1
regular_user FALSE data Sample_data
credential Undefined dataDisclosure TRUE
wsRequest request_1 query_1
aimServer webserver_1 sqlStatement SQL_sample
securityPolicies TRUE injected TRUE
webserver_1 Encryptor_1
requester attacker_2 ecrMessage request_1
receivedRequest request_1 request_1
generatedQuery query_1 content malicious_code
wsdlFile wsdlfile_1 isMalicious TRUE
wsdlfile_1 isEncrypted TRUE
isPublished TRUE

data
disclosure

Case 1

Attributes

Yes

Step 4: Analysis of the vulnerabilities

It is impossible to prevent user entering and requesting SQL queries because
input is necessary in various cases in a web sites such as the ID, password, searching
key words and so on. The identification and authentication does not help on this
situation since the process of I&A also requires SQL queries to check the user’s
credential. These queries could also be utilized by the attacker. For the XML

42

encryption, it keeps the XML messages from sniffing and stealing but it does not
provide any detection measures on the message’s content.

Five classes are participated into the process of SQL injection. Attacker, Message,
Web server, Query and Database. The attacker is obviously cannot be controlled.
However, creating some strategy to control the requests sent from the attacker is
feasible.

Step 5: Countermeasures

The inputs to the requests should be constrained in order to prevent malicious
code in the requests which may cause injected SQL queries. All the input to your
applications should be validated for type, length, format, and range. By constraining
the input used in the data access queries [24]. For example, an input with an integer
as its type must have an integer value passed through it. For the string type of input
such as the name, address, need to be guaranteed that something like “’” should not
be allowed in the input.

This methodology is called input validation. The next step is to add this
countermeasure to the current model.

Step 6: Apply countermeasures and retest

The input validation countermeasure has been introduced in Chapter 2. This
countermeasure will be applied in the victim system to mitigate the SQL injection
attack.

Table 4-8: Security requirements of input validation

 1 2

Conditions Authorized input in the request Yes No

Actions Allow to generate query to the database X

Reject to generate query to the database X

43

Table 4-9: Security design requirements of input validation

 1 2

Conditions No banned character is found in the input Yes No

Actions

Consider as authorized input X

Consider as unauthorized input X

Allow to generate query to the database X

Reject to generate query to the database X

Table 4-8 and Table 4-9 illustrates the security requirements and security design
requirements of input validation. The input from the user will be checked in the web
server by the input validation model. Only the requests with authorized input are
allowed to be translated into SQL query and further sent to the database. Otherwise
the requests are rejected.

Figure 4-12: New system model with input validation

44

The input validation model is belong to a specific web server, which is
commonly considered as a function however, here it is represented by an individual
class in Figure 4-12 in order to make the structure clearer.

Figure 4-13: The entire system model with input validation in USE

Figure 4-13 shows the entire system model which has been built in USE. An
additional constraint in this model is belong to the input validator. And a new attribute
“isAuthorized” is added into the Message class. Only authorized messages will be
translated to SQL queries and be sent to the database. The input validator determines
the value of the attribute “isAuthorized” according to whether the requests contain
irregular characters. If the request is not authorized, the web server will not create
query and the database will not receive the query apparently. Also, the entire
statements of building this model in USE could be found in appendix.

Since the input validation is a patched countermeasure. The SQL injection
model is already exist in the testing system. Therefore the countermeasure and attack
can be tested together.

45

The next step is to create the test cases in the USE. The case in Table 4-7 which
successfully caused a data disclosure is no longer possible to generate here since it
cannot pass the new constraint check from input validator.

Table 4-10: The USE test cases and results of input validation

attacker_2 auser_2
name SQL-injector name Regular
regular_user FALSE regular_user TRUE
credential Undefined credential credential_1
wsRequest request_1 wsRequest request_1
aimServer webserver_1 aimServer webserver_1
securityPolicies TRUE securityPolicies TRUE
database_1 database_1
receivedQuery Undefined receivedQuery query_1
data Sample_data data Sample_data
dataDisclosure FALSE dataDisclosure FALSE
server webserver_1 server webserver_1
query_1 query_1
sqlStatement SQL_sample sqlStatement SQL_sample
isinjected TRUE isinjected FALSE
encrypter_1 encrypter_1
ecrMessage request_1 ecrMessage request_1
request_1 request_1
content Malicious_code content Malicious_code
isMalicious TRUE isMalicious FALSE
isEncrypted TRUE isEncrypted TRUE
isAuthorized FALSE isAuthorized TRUE
webserver_1 webserver_1
requester attacker_2 requester user_2
receivedRequest request_1 receivedRequest request_1
generatedQuery Undefined generatedQuery query_1
wsdlFile wsdlfile_1 wsdlFile wsdlfile_1
wsdlfile_1 wsdlfile_1
isPublished TRUE isPublished TRUE
validator_1 validator_1
server webserver_1 server webserver_1

Allow
generating
query to the
database
Data
disclosure

No

Case 1

Attributes

Case 2

No Yes

The two possible cases are shown in Table 4-10. These two cases passed all of
the constraint checks. The highlighted attributes in case 1 tells the differences from
the case in Table 4-7 and it. The input validator detected that the request_1 contains
malicious inputs. As a result, the web server did not generate a query, then apparently

46

the database received nothing. Hence, the data disclosure did not happen in this case.
This case satisfy the case 1 in the input validation requirements in Table 4-8.

The case 2 is completely a regular case. For the test on attacking purpose, the
case 2 is not necessary since the case 1 and the failure of the case in Table 4-7 have
shown that the system is no more vulnerable to SQL injection attack. However to fully
satisfy the security requirements, case 2 is still need to be tested in order to make
sure that the regular users can use this system normally under the protection of
existing countermeasures. The result shows that the countermeasure is working
appropriately in both of the cases. The security requirements are fully satisfied and
the treats from SQL injection is eliminated.

47

CHAPTER 5

CONCLUSION

This chapter gives an introduction on the relationship among the three
vulnerability detection techniques that have been mentioned in this thesis.
Additionally, a comparison on these three techniques are also provided. The thesis
ends up with the major contributions and future works about the proposed methods.

5.1 Model-based test, code-based test and penetration test

Before illustrating the relationship among those methods. Its better list the
duties of each step in a SDL. Rather than the traditional software development life
cycle (SDLC), it is more adequate to use SDL to describe the issues in this thesis. Using
SDL does not mean the development process will conflict with SDLC. Each of the
phase in SDL can be addressed in SDLC. It is just that SDL is more appropriate to
demonstrate security related developments.

Table 5-1: Security development lifecycle

Training
1.Core Security

Training

Requirements
2.Establish
Security

Requirements

3.Create
Quality

Gates/Bug Bars

4.Perform
Security and
Privacy Risk
Assessments

Design
5. Establish

Design
Requirements

6. Perform
Attack Surface

Analysis/
Reduction

7. Use Threat
Modeling

Implementatio
n

8. Use Approved
Tools

9. Deprecate
Unsafe

Functions

10. Perform
Static Analysis

Verification
11. Perform

Dynamic
Analysis

12. Perform
Fuzz Testing

13. Conduct
Attack Surface

Review

Release
14. Create an

Incident
Response Plan

15. Conduct
Final Security

Review

16. Certify
Release and

Archive

Response
17. Execute
Incident

Response Plan

48

It is much clearer to explain why it was mentioned in Chapter 1 that the code-
based vulnerability checks are good complement of the model-based work with the
detail of SDL in Table 5-1. It is because that the code review is located in the
implementation phase while the model testing is in the design phase. Each of the
phase has its own duty. It is inappropriate say one is more important than the other.
It is just the design stage goes first so the implemental methods are considered a
complement of model-based works. The penetration test is in the verification phase,
so similarly, it could regard to be a complement of code-based tests.

Although the vulnerability analysis in different phases focuses on different types
of vulnerabilities, they still have their own pros and cons that can be used to compare
the proposed method with the others.

It is actually not adequate to compare the model testing method with code-
based tests. Because they focus on different field. Quoting the example in Chapter 4,
the model testing method tells the developer that your design is not secure and you
should use input validation in your developing system. On the other hand, after maybe
few months, the developers implemented the system into a real one. Then now they
should use code-based test to test whether the input validation is working as they
expected in the design stage.

Model testing a misuse pattern is more like a simulated penetration test. They
both try to find the system vulnerabilities by attacking the system. The difference is
that the model testing a misuse pattern uses a simulated attack in design stage while
penetration test really implement real attacks on the target system. Theoretically,
penetration test is able to find any kind of vulnerabilities in design, code and
implementations while the proposed method is apparently only able to find design
problems. It seems like penetration test is a lot more valuable than the model-based
tests. But this is not the truth. A software or system development needs to go through
all the phases in SDL in order to make a secure system. The developers cannot skip
the design phase and leave all the vulnerability detections to the verification phase.
Because fixing a vulnerability that is found in verification phase is very expensive

49

especially the ones will cause a redesign. That is why both of those techniques are
vital for secure development.

Compare with the other two techniques, there are some limitations on the
proposed method. Since code review and penetration test are already widely used in
the software development industry, so there are a lot of automated tools that can be
used to implement those tests. Their databases are frequently updated so that they
are able to detect even very new type of vulnerabilities. For our method, the limitation
is that this method depends on the available misuse patterns. The category of misuse
pattern is still limited. And this effect the usability of our method.

5.2 Contributions of proposed method

This thesis has proposed a method to analyze system security vulnerabilities
using misuse pattern model testing approach in UML simulation environment. This
method is able to preliminarily detect the system vulnerabilities under specific attacks
during the design stage of the software development.

Apparently, it is impossible to uncover all of the vulnerabilities with this method
since code-based test and penetration test are not possibly implemented during the
design stage. However, the proposed method offers a new way of detecting the specific
security vulnerabilities which are corresponded to a certain attack.

The major advantage of our method is the ability to detect security
vulnerabilities in the design stage of software or system development. This allows for
reduced the cost of fixing the vulnerabilities in the design stage rather than in the
verification or maintenance stages in the development of a system.

The following questions that were given in Chapter 1 have been solved:

1. What is the method to simulate an attack on a design model with misuse
pattern?

2. How to find out the vulnerabilities and corresponding countermeasures from
the simulated attack during the design stage?

3. What is the process to validate the offered countermeasures?

50

The experiments concretely introduced the whole validating process. Which
includes simulating an attack in a design model by modeling and testing the misuse
pattern in USE tool. And also demonstrated the way of analyzing and patching the
system vulnerabilities by using the constraints checks. Hence, the proposed problems
are solved in this thesis. Subsequently, there are some tasks for us as the future works
of this research.

5.3 Future works

The case study in this thesis simulated a simple model of a web server with two
different types of misuses. It is sure that a lot more case studies are required to
evaluate the usability and performance of a method. And also, as illustrated in the
previous section, the number of available misuse patterns are limited. Therefore, In
the future, this research will continue on proposing a method that can create simplified
misuse patterns which only focus on the attacking model of real-life attacks. This will
help breaking the limitation from the number of available misuse patterns and makes
it possible to generate a lot more simulations according to the various attacking on
the internet.

Although the proposed model testing approach is scoped to be used only on
the vulnerability detection in this research. Model testing is also a common and
efficient way on other design phase testing. There are reasons to believe that this
testing method supported by USE could be also used in such as software bug detection,
design efficiency test and so on in the future.

At last, conducting an evaluation will be possible once the sample size of the
case study is enough.

51

REFERENCES

[1] Microsoft. “The security development lifecycle.” Available: www.microsoft.com/en-
us/sdl/, 2015.

[2] OWASP. “Comprehensive Lightweight Application Security Process.” Available:
https://www.owasp.org/index.php/Category:OWASP_CLASP_Project, 2015.

[3] E. B. Fernandez, N. Yoshioka and H. Washizaki. “Modeling misuse patterns.”
Availability, Reliability and Security (ARES), March 16-19, 2009, pp. 566-571.

[4] T. Kobashi, N. Yoshioka, T. Okubo, H. Kaiya, H. Washizaki and Y.Fukazawa. “Validating
Security Design Pattern Applications Using Model Testing.” Availability, Reliability and
Security (ARES), September 2-6, 2013, pp. 62-71.

[5] J. Yoder and J. Barcalow. “Architectural Patterns for Enabling Application Security.”
In N. Harrison, B. Foote and H. Rohnert, editors, Pattern Languages of Program Design
- 4. Addison Wesley, 1999.

[6] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Bushmann, and P.
Sommerlad. Security Patterns: Integrating Security and Systems Engineering. US: John
Wiley and Sons, 2006.

[7] S. Konrad, Betty H.C. Cheng, Laura A. Campbell, and Ronald Wassermann. “Using
patterns to understand and compare web services security products and standards.”
Telecommunications, AICT-ICIW, February 19-25, 2006, pp. 157.

[8] J. Peleaz, E. B. Fernandez and M. M. Larrondo-Petrie. “Misuse Patterns in VoIP.”
Security and communication Network Journal, vol. 2, pp. 635-653, 2009.

[9] E. B. Fernandez, N. Yoshioka and H. Washizaki. “A Worm Misuse Pattern.” Asian
Conference on Pattern Languages of Programs (Asian PLoP), March 16-17, 2010, Article
No.: 2.

[10] P. Hope and P. White. “Software security requirements.” Available:
http://sqgne.org/presentations/2007-08/, Sep. 12, 2007.

http://www.microsoft.com/en-us/sdl/
http://www.microsoft.com/en-us/sdl/
https://www.owasp.org/index.php/Category:OWASP_CLASP_Project
http://sqgne.org/presentations/2007-08/

52

[11] G. Booch, J. Rumbaugh and I. Jacobson. Unified Modeling Language User Guide.
US: Addison-Wesley, pp. 496, 2005.

[12] J. Rumbaugh, G. Booch and I. Jacobson. The Unified Modeling Language 2.0
Reference Manual, US: Addison-Wesley, 2003, pp. 367.

[13] M. Gogollaa, F. Buttner and M. Richtersb. “USE: A UML-based specification
environment for validating UML and OCL.” Science of Computer Programming, 2007,
vol. 69, pp. 27–34.

[14] Edward W. Felten, Dirk Balfanz, Drew Dean, and Dan S. Wallach. “Web Spoofing:
An Internet CON Game.” Software World, March, 1997, Vol. 28, pp.6.

[15] Chris A. “Advanced SQL Injection In SQL Server Applications.” NGS Software Insight
Security Research (NISR), 2002.

[16] Keiko K., Fernandez, E.B. “Symmetric encryption and XML encryption patterns.”
Conference on Pattern Languages of Programs (PLoP), August 28-30, 2009, Article No.:
3.

[17] W3C. “XML Encryption Syntax and Processing.” Available: www.w3.org/TR/2002/
REC-xmlenc-core-20021210/Overview.html, 2002.

[18] Tibor J., Juraj S. “How to break XML encryption.” ACM Conference on Computer
and Communications Security (CCS), October 17-21, 2011, pp. 413-422.

[19] OWASP. “Code Review Introduction.” Available: www.owasp.org/index.php/Code
_Review_Introduction, Sep. 9, 2010.

[20] Kevin M. Henry. Penetration Testing: Protecting Networks and Systems, UK: IT
Governance, 2012.

[21] J. Muñoz-Arteaga, H. Caudel-García and E. B. Fernandez. “Misuse Pattern: Spoofing
Web Services.” Asian Conference on Pattern Languages of Programs (Asian PLoP),
October 5-8, 2011, Article No.: 11.

http://www.informit.com/authors/bio/e5ffefd4-a4c1-4ea7-bddd-4b715f8ca1dc
http://www.informit.com/authors/bio/d3dd9437-09e2-448f-9ee3-6aad01752522
http://www.informit.com/authors/bio/648b9489-edfe-44c7-919f-524fbde2b4ea
http://www.w3.org/TR/2002/%20REC-xmlenc-core-20021210/Overview.html
http://www.w3.org/TR/2002/%20REC-xmlenc-core-20021210/Overview.html
http://www.owasp.org/index.php/Code

53

[22] Fernandez, E.B. Alder, R. Bagley, S. Paghdar. “A Misuse Pattern for Retrieving Data
from a Database Using SQL Injection.” BioMedical Computing (BioMedCom), December
14-16, 2012, pp 127-131.

[23] QWASP. “Input Validation Cheat Sheet.” Available: www.owasp.org/index.php/
Input_Validation_Cheat_Sheet, Apr. 7, 2014.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6515923
http://www.owasp.org/index.php/

54

APPENDIX

55

Construction statements of building system model with SQL injection in USE:

model PrincipalSpoofing

class Database

attributes

 receivedQuery:Query

 data:String

 dataDisclosure:Boolean

operations

 data_disclosure_check()

 pre isSuccessful: dataDisclosure

constraints

 inv disclosure:

 if receivedQuery.isInjected = true then

 dataDisclosure = true

 else

 dataDisclosure = false

 endif

end

class Query

attributes

 sqlStatement:String

 isInjected:Boolean

end

class Encryptor

attributes

 ecrMessage:Message

constraints

 inv encrypt:

 ecrMessage.isDefined implies

ecrMessage.isEncrypted=true

end

class Message

56

attributes

 content:String

 isMalicious:Boolean

 isEncrypted:Boolean

end

class Attacker

attributes

 name:String

 regular_user:Boolean

 credential:Credential

 wsRequest:Message

 aimServer:WS_Provider

 securityPolicies:Boolean

constraints

 inv getSecurityPolicies:

 if aimServer.wsdlFile.isPublished = true then

 securityPolicies = true

 else

 securityPolicies = false

 endif

end

class WS_Provider

attributes

 requester:Attacker

 receivedRequest:Message

 generatedQuery:Query

 wsdlFile:WSDL_File

constraints

 inv Authentication:

 if requester.credential.validity = true and

requester.securityPolicies = true then

 requester.regular_user = true

 else

 requester.regular_user = false

57

 endif

 inv CreateQuery:

 if receivedRequest.isMalicious = true then

 generatedQuery.isInjected = true

 else

 generatedQuery.isInjected = false

 endif

end

class WSDL_File

attributes

 isPublished:Boolean

end

class Credential

attributes

 validity:Boolean

end

association GenerateQuery

between

 WS_Provider[1] role generator

 Query[*] role query

end

association ReceiveQuery

between

 Query[*] role query

 Database[1] role receiver

end

association Publish

between

 WS_Provider[1] role webserver

 WSDL_File[1] role Policies

end

58

association SendMessage

between

 Attacker[1] role sender

 Message[*] role message

end

association ReceiveMessage

between

 Message[*] role message

 WS_Provider[1] role receiver

end

association Encrypt

between

 Encryptor[1] role encryptor

 Message[*] role message

End

Construction statements of building the system model with input validation in
USE:

model PrincipalSpoofing

class Input_Validation

attributes

 server:WS_Provider

constraints

 inv inputValidation:

 if server.receivedRequest.isMalicious = true then

 server.receivedRequest.isAuthorized = false

 else

 server.receivedRequest.isAuthorized = true

 endif

end

59

class Database

attributes

 receivedQuery:Query

 data:String

 dataDisclosure:Boolean

 server:WS_Provider

operations

 data_disclosure_check()

 pre isSuccessful: dataDisclosure

constraints

 inv receiveQuery:

 server.generatedQuery.isUndefined implies

 receivedQuery.isUndefined

 inv disclosure:

 if receivedQuery.isDefined and receivedQuery.isInjected

= true then

 dataDisclosure = true

 else

 dataDisclosure = false

 endif

end

class Query

attributes

 sqlStatement:String

 isInjected:Boolean

end

class Encryptor

attributes

 ecrMessage:Message

constraints

 inv encrypt:

 ecrMessage.isDefined implies

ecrMessage.isEncrypted=true

end

60

class Message

attributes

 content:String

 isMalicious:Boolean

 isEncrypted:Boolean

 isAuthorized:Boolean

end

class Attacker

attributes

 name:String

 regular_user:Boolean

 credential:Credential

 wsRequest:Message

 aimServer:WS_Provider

 securityPolicies:Boolean

constraints

 inv getSecurityPolicies:

 if aimServer.wsdlFile.isPublished = true then

 securityPolicies = true

 else

 securityPolicies = false

 endif

end

class WS_Provider

attributes

 requester:Attacker

 receivedRequest:Message

 generatedQuery:Query

 wsdlFile:WSDL_File

constraints

 inv Authentication:

 if requester.credential.validity = true and

requester.securityPolicies = true then

61

 requester.regular_user = true

 else

 requester.regular_user = false

 endif

 inv CreateQuery:

 if receivedRequest.isAuthorized = true then

 generatedQuery.isInjected = false

 else

 generatedQuery.isUndefined

 endif

end

class WSDL_File

attributes

 isPublished:Boolean

end

class Credential

attributes

 validity:Boolean

end

association GenerateQuery

between

 WS_Provider[1] role generator

 Query[*] role query

end

association ReceiveQuery

between

 Query[*] role query

 Database[1] role receiver

end

association Publish

between

62

 WS_Provider[1] role webserver

 WSDL_File[1] role Policies

end

association SendMessage

between

 Attacker[1] role sender

 Message[*] role message

end

association ReceiveMessage

between

 Message[*] role message

 WS_Provider[1] role receiver

end

association Encrypt

between

 Encryptor[1] role encryptor

 Message[*] role message

end

association Own

between

 WS_Provider[1] role webserver

 Input_Validation[1] role validator

end

63

Yuan Yifan: He received his bachelor’s degree in information
security from Beijing University of Technology and his second
bachelor’s degree in information technology from Mikkeli
University of Applied Science in Finland in 2009. He is currently a
graduate student in Chulalongkorn University, Bangkok, Thailand.

Publication:

“Analysis of security vulnerabilities using misuse pattern testing approach.”
International Conference on Information Technology, 2015.

Accepted and published in Journal of Software, ISSN: 1796-217X, vol. 10, pp. 650-658,
2015.

	CHAPTER 1 INTRODUCTION
	1.1 Introduction
	1.2 Problem formulation
	1.3 Contributions
	1.4 Scope of the work
	1.5 Document organization

	CHAPTER 2 LITERATURE REVIEW
	2.1 Security pattern
	2.2 Misuse pattern
	2.3 Security requirements
	2.4 Misuse requirements
	2.5 UML-based specification environment
	2.6 Principal spoofing
	2.7 SQL injection
	2.8 XML encryption
	2.9 Input validation
	2.10 Code review
	2.11 Penetration test

	CHAPTER 3 PROPOSED METHOD
	CHAPTER 4 EXPERIMENTS
	4.1 Experiment 1:
	4.2 Experiment 2:

	CHAPTER 5 CONCLUSION
	5.1 Model-based test, code-based test and penetration test
	5.2 Contributions of proposed method
	5.3 Future works

	REFERENCES
	APPENDIX

