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CHAPTER I 

 
INTRODUCTION 

 
1.1 Motivation 
 

Due to the increasing of fuel cost, ethanol is used as an alternative to 

petroleum-derived fuels. Ethanol can be used either as a direct replacement for 

gasoline or in a blend with gasoline as an oxygenated compound. The advantage of 

using ethanol as an alternative fuel is to increase combustion efficiency, thus reducing 

carbon monoxide emission, and to reduce the petroleum-derived fuels demand. In the 

production of ethanol, ethanol can be obtained by chemical synthesis from petroleum 

product and by fermentation process from agricultural product. However, the 

production of ethanol by fermentation process has been interested because the raw 

materials of the ethanol fermentation process are derived from renewable resources. 

 

In the ethanol fermentation process, the operation of the ethanol fermentation 

can be generally classified into three modes, i.e., batch, fed-batch, and continuous 

mode. Among these operation modes, the fed-batch fermentation is preferable choice. 

Fed-batch fermentation is used to prevent or reduce substrate-associated growth 

inhibition by controlling the substrate supply. In a fed-batch fermentation process, it 

starts with some initial volume, microorganisms concentration and substrate 

concentration in a reactor which is also known as a fermentor. The feed of the 

substrate is continuously supplied into a reactor while the products remain in the 

reactor until the end of the operation. For such circumstances, it is found that 

changing feed rate of the substrate affects the productivity and yield of the desired 

product. Due to this fact, precise control of the substrate feed at its optimal profile is 

required for operating the fed-batch reactor efficiently, resulting in high productivity 

and yield of the desired product. 

 

To control a fed-batch reactor, an optimal control technique is usually 

employed to determine a feeding policy for the reactor, resulting in the maximum 
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amount of the desired product at the end of operational time. The optimal feeding 

profile can be determined by solving an optimal control problem which is formulated 

based on dynamic models of the system to be controlled. This problem is often 

referred to a dynamic optimization problem. It is known that achieving the optimal 

feeding profile of the fed-batch reactor is quite difficult and challenging problem due 

to the highly nonlinear and complicated dynamic behavior of the reactor. In addition, 

one of the most important issues to be considered for a model-based control strategy 

is the existence of unknown disturbances and model–plant mismatches. Under these 

conditions, the optimal feeding profile which is determined from the off-line 

calculation may not give the optimal performance when apply to the actual process; 

the final product may significantly differ from the desired value. To realize this fact, it 

is necessary to recalculate the optimal feeding profile as an on-line optimal control 

strategy whenever new feedback information is available. 

 

By performing the on-line optimal control strategy, feedback information 

obtained from process measurements is used to determine a new optimal feeding 

profile. However, some process variables such as substrate concentration cannot be 

directly measured. To cope with this problem, a state estimation from available 

information is involved with the on-line optimal control strategy. Neural network is 

found to be the one of various tools that can be used for the estimation of unmeasured 

process variables since it is considered as an universal approximator that can be used 

to approximate any arbitrary function. 

 

In this research, the approach based on the idea of an on-line optimal control 

strategy is developed to modify the optimal feeding profile of the substrate in a fed-

batch reactor for ethanol production. The proposed on-line optimal control technique 

is incorporated with an artificial neural network for the estimation of unmeasured 

process variables. Simulations are carried out to investigate the performance of the 

developed control technique under the presence of unknown disturbances and model–

plant mismatches. 
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1.2  Research Objective 

 

The objective of the present work is to develop an on-line optimal control 

strategy based on an artificial neural network estimator for controlling a fed-batch 

reactor in the ethanol fermentation process.  

 

1.3  Scope of Research 
 

1. Ethanol fermentation process in a fed-batch reactor is studied by 

simulations in this work. 

 

2. Off-line optimal control and on-line optimal control strategies are used to 

control a fed-batch reactor. 

 

3. Artificial neural network is applied to estimate the unmeasured process 

variables in a fed-batch process. 

 

4. Performance of the off-line optimal controller is compared with the on-line 

optimal controller. 

 

1.4  Procedure Plan 
 

1. Review a basic of optimal control, artificial neural network and ethanol 

fermentation process. 

 

2. Determine the optimal feeding profile of ethanol fermentation process in a 

fed-batch reactor with an off-line optimal control strategy. 

 

3. Design an artificial neural network based estimator to estimate the 

unmeasured process variables of ethanol fermentation process in a fed-

batch reactor. 
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4. Determine the optimal feeding profile of ethanol fermentation process in a 

fed-batch reactor with an on-line optimal control strategy by using 

artificial neural network as an estimator. 

 

5. Compare the simulation results between the off-line optimal control 

strategy and the on-line optimal control strategy by using artificial neural 

network as an estimator. 

 

6. Discuss the simulation results and make a conclusion. 

 

This thesis is divided into six chapters: 

 

Chapter I is an introduction of this research. This chapter consists of 

motivation, research objective, scope of research and procedure plan. 

 

Chapter II presents the literature reviews with an optimal control of a fed-

batch reactor, the implementation of an artificial neural network and the control of a 

fed-batch reactor for the ethanol production. 

  

  Chapter III describes the theoretical background of the optimal control,      

the artificial neural network and the biological processes. 

 

  Chapter IV presents the optimal control of ethanol production in a fed-batch 

reactor. 

 

Chapter V presents the application of an artificial neural network as a state 

estimator and the on-line optimal control strategy by using artificial neural network as 

a state estimator for the ethanol production in a fed-batch reactor. 

 

Chapter VI presents the conclusions of this research and makes the 

recommendations for future work. 



CHAPTER II  

 
LITERATURE REVIEWS 

 
In biological processes, a fed-batch reactor is widely used in a fermentation 

process for the production of many products such as pharmaceutical and agricultural 

products. During the fed-batch operation, an inlet feed of substrate is supplied to the 

reactor while product generated remains in the reactor until the end of the operation. 

The benefit of the fed-batch reactor is that changing the inlet feed can affect the 

productivity and yield of the desired product, and avoiding substrate overfeeding 

which can inhibit the growth of microorganisms. Then, precise control of the substrate 

feed rate at its optimal operation is required for operating the fed-batch reactor 

efficiently. However, it has been accepted that control of a fed-batch reactor is 

difficult and challenging problem due to their highly nonlinear and complicated 

dynamic behavior. A practical way for controlling the fed-batch reactor is to track a 

pre-determined trajectory of a controlled variable so as to optimize an objective 

function and also known as optimal control procedure. 

 

2.1     Optimal Control of a Fed-Batch Reactor 
 

Optimal control problems of a fed-batch reactor have been solved by using 

different approaches that can be classified into open-loop and closed-loop control 

strategies. The open-loop control involves the off-line calculation of the optimal 

feeding profile that attains the fed-batch targets whereas the closed-loop control 

involves the calculation that the feedback information of the system is used to 

recalculate the optimal control problem for new optimal feeding profile. 

 

2.1.1 Off-line Optimal Control Strategies 

 

Open-loop or off-line optimal control of a fed-batch reactor generally involves 

calculating the substrate feeding profile that provides an optimal state or controlled 

variable trajectory by using a process model of the system. In addition, the resulting 
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feeding profile is implemented in an open-loop manner and feedback information 

during the process operation is not used during process operation. In general, the goal 

of the control strategy is to drive the controlled or state variables towards a desired 

value and therefore, the solution involved determining the time-varying substrate 

feeding profile that maximizes an objective function subject to process dynamic 

models is obtained. 

  

In the past, optimal control problems can be solved by using the variational 

approach. In this approach, the optimal solution is obtained from the pontryagins’s 

maximum principle which leads to the two point boundary value problem. However, 

the presence of many state constraints makes the solution via this approach quite 

difficult. Therefore, alternative approaches considering the optimal control problem as 

an optimization problem have been proposed, which can be classified into a 

simultaneous approach and a sequential approach. In the simultaneous approach, state 

and control variables are parameterized and the model solution and optimization 

problem are solved simultaneously. Renfro et al. (1987) proposed simultaneous 

optimization and solution procedure for systems described by differential algebraic 

equation using piecewise constant functions for independent variables that combines 

technologies of Quasi-Newton optimization algorithms and global spline collocation, 

and applied these algorithms to batch reactor control problem. In addition, Cuthrell 

and Biegler (1989) applied this approach based on an orthogonal collocation method 

to parameterize the state and control variables for solving the optimal control of 

penicillin production in a fed-batch reactor. In contrast to the simultaneous approach, 

only control variables are parameterized and also known as sequential approach. 

Following this approach, the model solution and optimization problem are solved 

sequentially. Banga et al. (1997) proposed the stochastic dynamic optimization 

algorithm for batch and fed-batch processes. These algorithms are based on a 

sequential control parameterization strategy. The original dynamic optimization 

problem is transformed into a constrained nonlinear programming problem using 

parameterization of the control function. The constrained nonlinear programming 

problem is then solved using stochastic algorithms such as Integrated Controlled 

Random Search for Dynamic Systems (ICRS/DS) and Adaptive Randomly Directed 

Search for Dynamic Systems (ARDS/DS). Such these algorithms were implemented 

to the production of penicillin and protein in a fed-batch bioreactor. Moreover, 
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Pushpavanam et al. (1999) considered the optimization of a fed-batch process for 

alcohol fermentation by a fixed final volume using a Sequential Quadratic 

Programming (SQP) approach. The entire batch is divided into a series of equally 

spaced intervals and inlet feed is assumed to be introduced in discrete pulses at the 

beginning of each interval. The effect of a number of stages on the optimum 

performance for both free and fixed time cases was reported and the results were 

compared with that obtained from the minimum principle. In addition, the off-line 

optimal control is applied to the multiple control variables problem (Kapadi and Gudi, 

2004). They considered the problem of determining the optimal feeding profile of 

simultaneous saccharification and fermentation by using Differential Evolution (DE). 

The Differential Evolution with augmented Lagrangian including the dynamic penalty 

method was applied to fed-batch fermentation processes. They claimed that the 

performance of simultaneous saccharification and fermentation process in terms of the 

end lactic acid concentration and the productivity for single and multiple feed cases 

was improved substantially. 

 

2.1.2   On-line Optimal Control Strategies 

 

The limitation of an optimal control is the existence of unknown disturbances 

and model-plant mismatches which are particularly important in model-based control 

problems. Due to these conditions, the optimal feeding profile which obtained from 

the off-line optimal control may not give the optimal performance when applied to the 

actual process. To realize this fact, it is necessary to recalculate the optimal feeding 

profile as an on-line optimal control strategy. In the on-line optimal control strategy, 

the feedback information from the system is used to recalculate the new optimal 

feeding profile for the remaining batch stages.  

 

A variety of different techniques have been used to solve the on-line optimal 

control problem in a fed-batch reactor. In 1987, Modak and Lim (1987) analyzed the 

problem of feedback optimization for the singular control problem of a fed-batch 

reactor. They considered a general system composed of four differential equations 

that represent mass balances for the state variables such as substrate, biomass, 

product, and reactor volume and then formulated the control problem based on 

singular control theory. In addition, Palanki et al. (1993) considered the problem of 
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determining an optimal profile in feedback form. They analyzed the optimal control 

problem from a geometric perspective and introduced the concept of degree of 

singularity that allows a better characterization of the necessary conditions for 

optimality. Optimal feedback laws are derived for the singular region of the operation. 

Such these algorithms were implemented to the yeast fermentation process and 

simulation results are presented for time-invariant systems and extended to include 

time-varying systems as well. Moreover, Seki et al. (2002) formulated the nonlinear 

model predictive control based on a successively linearized nonlinear model and 

applied it to fed-batch reactor process. These algorithms can prevent thermal runaway 

of the reactor temperature control. Furthermore, Mahadevan and Doyle III (2003) 

applied the input elimination based approach to the multiple feed processes. Shrinking 

horizon is applied with an on-line optimization for maximizing the chloramphenicol 

cetyltransferase production by optimized the inducer and glucose feed rates.    

 

2.2    Artificial Neural Network 
 

Artificial neural network is a mathematical structure that emerges from the 

attempt to simulate and understand the working of the human brain. This network 

involves with the learning process of the interesting system. After artificial neural 

network has learned what it needs to know, the trained network can be used to 

perform certain tasks depending on the particular application.  

 

2.2.1  History of an Artificial Neural Network  

 

At the beginning of the chronological overview of an artificial neural network, 

the work by McCulloch and Pitts essentially featured in the modern age of neural 

networks. The McCulloch and Pitts’s neuron was very simple neuron which had a 

linear activation function with a threshold value to produce an output. The network 

was a two-layer network, and there were no training of these neurons. However, the 

McCulloch and Pitts’s neuron model laid the foundation for future developments in 

neural networks. In 1949, Hebb proposed a learning process which was postulated 

from neurobiological viewpoint. During the training of network, the information was 

stored in the connections of the neurons and postulated a learning strategy for 
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adjustment of the connection weights. This was the first time that a learning rule was 

presented and allowed for adjustment of the synaptic weights. Later, Rosenblatt 

developed the original concept of perceptron and demonstrated that perceptron can 

generalize and learn. The perceptron consisted of neuron-like processing units with 

linear thresholds, and were arranged in layers similar to biological system. Hebbian 

learning rule was used for training a network. This rule reinforces active connections 

only-weight were increased when the outputs are active, and decreased when the 

outputs are inactive. In 1962, Widrow and Hoff developed the Adaline (adaptive 

linear element) which was trained by the Least Mean Square (LMS) learning, closely 

resembles Rosenblatt’s perceptron. The Adaline used target value to calculate the 

prediction error and move the weight values in the direction of negative gradient of 

the error. Later, in 1974, Werbos proposed the backpropagation algorithm for training 

multilayer feedforward perceptron. In 1987, Carpenter and Grossberg developed self 

organizing neural networks based on Adaptive Resonance Theory (ART). 

 

2.2.2   Applications of an Artificial Neural Network 

 

Artificial neural networks are widely applied in modeling, identification and 

control of unknown nonlinear systems. The main advantage of the using of an 

artificial neural network is that a highly accurate mathematical model of the system is 

obtained without the detail of the system and artificial neural network can also deal 

with the multivariable systems. 

 

Many authors applied the artificial neural network in various systems. 

Thibault et al. (1990) introduced the use of artificial neural network computational 

algorithms for dynamic modeling of bioprocesses. The performance of the artificial 

neural network is compared with an Extended Kalman filter (EKF) and was shown to 

exhibit comparable performance in case of a continuous stirred tank reactor. In 1991, 

Breusegem et al. (1991) applied an artificial neural network for on-line prediction of 

fermentation variables when kinetic change appears during the course of 

fermentation. They proposed an adaptive algorithm in which sliding window learning 

schemes are used. In 1992, Massimo et al. (1992) investigated the construction of 

artificial neural network-based biomass and penicillin estimators for use in industrial 

fermentations. Their results demonstrated that an artificial neural network could 
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capture the complex dynamic bioprocess. In addition, Psichogios and Ungar (1992) 

developed a hybrid model for a fed-batch bioreactor. The hybrid model combined a 

partial first principles model, which incorporated the available prior knowledge about 

the process being model, with an artificial neural network which served as an 

estimator of unmeasured process parameters that are difficult to model from first 

principles. The training method for the artificial neural network was the error 

backpropagation algorithm. They found that the hybrid model had better properties 

than standard black-box neural network model in that it is able to interpolate and 

extrapolate much more accurately. Furthermore, it was easier to analyze and interpret 

and required significantly fewer training examples. In 1995, Boslovic and Narendra 

(1995) applied both the conventional multilayer neural networks and radial basis 

function networks in an adaptive control scheme, which updates the unknown 

parameters online, for production of baker's yeast in a fed-batch fermentation process. 

They considered the set point regulation of the system under no-noise. They found 

that the conventional multilayer networks gave superior performance over the radial 

basis function networks and other nonlinear techniques such as the nonlinear adaptive 

and inverse dynamics controller. Moreover, Lightbody and lrwin (1995) developed a 

novel nonlinear model control strategy which utilized the nonlinear neural network 

model of the plant to act as a medium for the estimation of the parameters of the 

linear discrete-time model. This linear model is then utilized in conjunction with 

Kalman's method to design the inverse controller, wherein the parameters of this 

controller are adapted at each sample instant. They used this approach for set point 

tracking of concentration in a CSTR system, which outperformed the conventional 

PID control system. In addition, Ramchandran and Rhinehart (1995) used an artificial 

neural network inverse model to estimate the reflux and the holdup rate, which was 

incorporated in the Generic Model Control (GMC) strategy to control the top and 

bottom composition in a distillation column. The GMC technique basically involves 

incorporating the nonlinear process model directly in the formulation of the control 

algorithm. This was done for set point tracking and disturbance-rejection cases and 

the technique was found to be better than the PI controller with feed-forward features. 

In 1996, Lou and Perez (1996) used the backpropagation algorithm in conjunction 

with Kalman filtering in order to establish a new self-learning technique of Multi- 

layers Feed-Forward Neural network (MFFN). They found that this new technique 

was faster and more stable than the classical backpropagation algorithm for training 
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MFFN and it was less sensitive to the initial weights and to the learning parameters. 

In 1999, Lanouette et al. (1999) improved the modeling of complex processes when 

only small experimental data sets were available. Feed-forward and radial basis 

function neural networks were used in this problem. In addition, the influence of 

activation functions, the number of levels in stacked neural networks and the 

composition of training data set were studied. The study showed that the use of an 

artificial neural network was a powerful tool for modeling complex processes even 

when only a small set of data was available for training. A higher number of stacks 

led only to increase of the confidence level. However, radial basis function presented 

some weakness for modeling properly a process when data landscape lacked 

smoothness. Moreover, Shene et al. (1999) designed two different artificial neural 

networks to predict the state variable such as biomass, substrate and ethanol 

concentration of Z. mobilis CP4 in batch fermentations. The designed networks were 

black-box neural networks and the combination of artificial neural network and a 

mathematical model. Experimental data recorded from batch fermentations carried out 

under different condition were used to train the network and test its prediction. From 

the results presented, the error for utilizing the combination of an artificial neural 

network and a mathematical model was higher than black box neural network. 

Anyhow, the prediction of using both cases could be carried out using artificial neural 

networks. In 2000, Aziz et al. (2000) investigated the performance of different types 

of controllers in tracking the optimal temperature profiles in batch reactor. An 

artificial neural network was used as an online estimator to estimate the amount of 

heat release by chemical reaction within the GMC algorithm. The GMC controller 

coupled with an artificial neural network based heat release estimator was found to be 

more effective and robust than PI and PID controllers in tracking the optimal 

temperature profiles. Moreover, Aziz et al. (2003) used an artificial neural network 

inverse model based control (NN-IMBC) to track the optimal temperature profiles in 

complex exothermic batch reactor. It was also evaluated through a few robustness 

tests. Furthermore, the neural network estimator was embedded to strategy as the 

online estimator to estimate the amount of heat release by the chemical reaction. The 

NN-IMBC was found to be well performed in the tracking both set point and 

accommodating changes within its range of training. It also promised robust controller 

if it is trained with a wide range of reactor temperature covering all possible 

condition. 
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2.3   Control of Fed-Batch Reactors for Ethanol Production Processes 
 

Ethanol is the one of important chemical substance which is utilized as a 

solvent in chemical process, main component in drinking alcohol and remedy and 

used either as a direct replacement for gasoline or blend with gasoline as an 

oxygenated compound. Moreover, ethanol is the important biological product which 

obtains from the fermentation process. Among the various modes of the ethanol 

fermentation such as continuous, batch and fed-batch modes, the fed-batch operation 

is the most preferable choice. 

 

The general purpose of an ethanol production process in a fed-batch reactor is 

to maximize the amount of the desired ethanol product. For the control study of this 

process, Hong (1986) developed a mathematical model, in which the effects of 

substrate and product inhibitions are included, for describing the ethanol production. 

The control problem of maximizing the ethanol concentration in a fed-batch reactor 

was considered. Kelley's transformations were used to reduce the number of system 

equations and an analytical expression for the conjunction point between the singular 

and non-singular arcs for the singular control problem was also presented. The 

analytical expression enables the feeding policy along the singular arc to be derived in 

terms of the concentrations of the call mass, substrate, product and liquid volume in 

the reactor. Moreover, the on-off control for the ethanol production in a fed-batch 

reactor is suggested by Chen and Hwang (1990). The differential algebraic equation 

(DAE) of this system which represents the process model is simplified using Kelley's 

transformations and the input is parametrized over the batch period. Sequential 

Quadratic Programming (SQP) is used to solve the resulting NLP problem. The 

advantage of this approach is that it can easily to implement by low cost actuators and 

easily to maintenance the actuators. In addition, Luus (1993) developed the 

optimization techniques for the optimal substrate feeding policy of a fed-batch reactor 

which considered by Chen and Hwang. He presented the Iterative Dynamic 

Programming (IDP) using a penalty function to provide an easy way of solving a 

rather difficult optimal control problem. The advantage of this approach is that no 

transformations and auxiliary variables are required. He claimed that the optimum 

value for the performance index is 4% better than reported by Chen and Hwang. 
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Furthermore, Wang and Shyu (1997) developed an optimal feed policy of a fed-batch 

reactor for ethanol production by introducing additional inequality constraints in the 

optimization problem to assure optimal solution in a reality region. An updating rule 

of augmented Lagrange multipliers was introduced to handle inequality constraints so 

that Iterative Dynamic Programming could be used. In 2004, Soni and Parker (2004) 

considered the closed-loop control for ethanol production in a fed-batch reactor. The 

process model is characterized on both a macroscopic reactor scale and a microscopic 

cellular scale. Nonlinear optimization techniques are used to generate an optimal 

substrate feed profile for the nominal problem that the ethanol concentration at the 

end of the batch is maximized. Shrinking-horizon nonlinear quadratic dynamic matrix 

control is used for closed-loop trajectory tracking and disturbance rejection. 

Moreover, Xiong and Zhang (2004) considered the modeling and optimal control of a 

fed-batch process by using a novel control affine feedforward neural network 

(CAFNN) for a constrained nonlinear optimal control problem. The control affine 

feedforward neural network offers an effective and simple optimal control strategy by 

using a sequential quadratic programming (SQP) where the gradient information is 

computed directly from CAFNN. In addition, Xiong and Zhang (2005) considered the 

on-line re-optimization of an ethanol production in fed-batch processes by using the 

neural network discrete-time models which are used to model the fed-batch processes. 

A modified iterative dynamic programming algorithm based on discrete-time 

nonlinear model is developed to solve the on-line optimization problem. They claimed 

that this approach is very effective in addressing the problem of model-plant 

mismatches. 



CHAPTER III 

 
THEORETICAL BACKGROUND 

 

In this chapter, the theoretical background of the optimal control, the on-line 

optimal control, the artificial neural network and the biological processes are 

described.    

 

3.1 Optimal Control 
 

Optimal control, also known as a dynamic optimization problem, involves 

determining a control profile for a dynamic system that optimizes a given 

performance index. The dynamic system is usually represented by sets of differential 

and algebraic equations (DAEs) derived from dynamic mass and energy balances, and 

physical and thermodynamic relations. 

 

A general dynamic optimization problem can be stated as follows: 

  

Find  u(t) over t ∈  [t0 , tf] maximizing or minimizing 

   
0

   [ ( )]    [ ( ), ( ), ]
ft

f
t

J x t x t u t t dtθ φ= + ∫                (3.1) 

subject to 

       [ ( ), ( ), ]dx f x t u t t
dt

=                    (3.2) 

0 0( )   x t x=                             (3.3) 

[ ( ), ( ), ]    0h x t u t t =                                                                                                             (3.4) 

[ ( ), ( ), ]   0g x t u t t ≤                            (3.5) 

 ( )  L Ux x t x≤ ≤                              (3.6) 

 ( )  L uu u t u≤ ≤                             (3.7) 
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where J is the performance index or desired objective function, x and u are the vector 

of state and control variables, respectively, Eq. (3.2) is the system of ordinary 

differential equations, Eq. (3.3) is the initial condition for Eq. (3.2), Eqs. (3.4) and 

(3.5) are the equality and inequality algebraic constraints, respectively, and Eqs. (3.6) 

and (3.7) are the upper and lower bounds on the state and control variables, 

respectively. 

 

The solution of optimal control problems have been a subject of research for 

many years. There are several different computational techniques available for 

solving the optimal control problems. The indirect methods focus on obtaining a 

solution to the classical necessary conditions for optimality. These methods are also 

known as variational methods. However, it has been found that these methods result 

to a two-point boundary value problem which is difficult to solve. Thus, the direct 

methods which transform the original optimal control problem into a finite-

dimensional nonlinear programming problem and solve it directly are proposed. 

Depending on the degree of discretization, the direct methods can be classified into 

two general strategies. In the simultaneous methods, the control and state variables are 

discretized (full discretization) whereas only the control variables are discretized 

(partial discretization) in the sequential methods. 

 

3.1.1 Variational Methods 

 

These methods are based on the solution of the first order necessary conditions 

for optimality that are obtained from Pontryagins’s Maximum Principle (PMP). 

According to PMP, the problems of minimizing the objective function J in Eq. (3.1) 

subject to dynamic constraints represented by Eqs. (3.2) - (3.5) can be reformulated as 

that of minimizing the Hamiltonian function. These procedures lead to a two-point 

boundary value problem (TPBVP) that can be solved with different approaches, 

including single shooting, multiple shooting, invariant embedding or some 

discretization methods such as collocation on finite elements or finite differences. The 

limitation of these methods is the complexity in the solution of differential-algebraic 

equations. 
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3.1.2 Simultaneous Methods 

 

In the simultaneous methods, both state and control variable profiles are 

discretized by approximating functions and treated as decision variables in the 

optimization problem. The process dynamic models and the optimization problems 

are solved at the same time. These avoid solving the model equations at each of 

iteration in the optimization algorithm as in the sequential methods. In this approach, 

the dynamic process model constraints in the optimal control problems are 

transformed to a set of algebraic equations which is treated as equality constraints in 

the NLP problem. As a result, the optimal control problems are reduced to a 

constrained nonlinear optimization problem. To solve this problem, Successive 

Quadratic Programming (SQP), reduced space SQP, the interior-point approach and 

the conjugate gradient methods can be used to solve efficiently.  

 

The general algorithm for the simultaneous methods is as follows: 

 

Problem: 

     
( ), ( )
Min  [ ( ), ( ), ]

x t u t
x t u t tΦ    Objective function 

s.t.   

           [ ( ), ( ), ]dx f x t u t t
dt

=              Process dynamic equations 

       0(0)   x x=      Initial conditions for states              (3.8) 

[ ( ), ( ), ]    0h x t u t t =                                Equality constraints 

[ ( ), ( ), ]   0g x t u t t ≤                            Inequality constraints 

 ( )  L Ux x t x≤ ≤     State profile bounds 

 ( )  L uu u t u≤ ≤     Control profile bounds 

 

 

Step 1: Discretize the process states and inputs using any standard collocation method 

(e.g. orthogonal collocation). 
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Step 2: Substitute the discrete states and inputs into process dynamic model and    

obtain the algebraic expression for residuals. 

 

       
.

0

R( ) = ( ) ( , , ) = 0
K

ji j i i i i
j

t x t f x u tφ
=

−∑  

         = 1,...,i K                 (3.10) 

       with 0(0)   x x=  

 

Step 3: Substitute the discretized dynamic model into the original optimal control    

problem. 

 

     
( ), ( )
Min  [ ( ), ( ), ]

x t u t
x t u t tΦ     

s.t.   

      
.

0
R( ) = ( ) ( , , ) = 0

K

ji j i i i i
j

t x t f x u tφ
=

−∑       when    = 1,...,i K              

       0(0)   x x=                              (3.11) 

[ ( ), ( ), ]    0h x t u t t =                                 

[ ( ), ( ), ]   0g x t u t t ≤                                            

 ( )  L Ux x t x≤ ≤      

 ( )  L uu u t u≤ ≤      

 

Step 4:   Choose  ti  by using orthogonal collocation method. 

Step 5:  Solve problem given in Step 3 at the ti chosen in Step 4 using any non-linear 

programming problem solver such as Successive Quadratic Programming 

(SQP).  
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The main advantage of the simultaneous approaches is a capability in handing 

constraints on state variables. This is because these constraints can be dealt with by 

including them directly in the optimization problem as additional constraints. 

However, owing to the discretization on both state and control variables, these lead 

the simultaneous methods to a large scale optimization problem consisting of a large 

set of algebraic constraints and decision variables.  

 

3.1.3 Sequential Methods 

 

In the sequential methods, only the control variables are discretized. These 

techniques are also known as control vector parameterization methods. Typically, a 

piecewise constant approximation over equally spaced time intervals is made for the 

inputs. Given the initial conditions and a given set of control parameters, the process 

model equations are solved with a differential-algebraic equation solver at each of 

iteration. This produces the value of the objective function, which is used by a 

nonlinear programming solver to find the optimal parameters in the control 

parameterization. 

 

The general algorithm of the sequential methods is as follows: 

 

Problem: 

     
( )

Min  [ ( ), ( ), ]
u t

x t u t tΦ    Objective function 

s.t.   

           [ ( ), ( ), ]dx f x t u t t
dt

=              Process dynamic equations 

       0(0)   x x=      Initial conditions for states            (3.12) 

[ ( ), ( ), ]    0h x t u t t =                                Equality constraints 

[ ( ), ( ), ]   0g x t u t t ≤                             Inequality constraints 

 ( )  L Ux x t x≤ ≤     State profile bounds 

 ( )  L uu u t u≤ ≤     Control profile bounds 
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Step 1: Discretize the process inputs using any standard collocation method (e.g.       

orthogonal collocation). 
 

        
1

( ) = ( )
k

K i i
i

u t u tψ
=
∏       where    

1,

( )( ) =  ,  ( ) = 
( )

k
k

i K i i
k i i k

t tt u t u
t t

ψ
=

−
−∏                     (3.13) 

 

Step 2:   Substitute the parameterized inputs into the process dynamic model  

 

             [ ( ), ( ), ]K
dx f x t u t t
dt

=  

         = 1,...,i K                 (3.14) 

       with 0(0)   x x=  

  

Step 3:  Substitute the modified process dynamic model given by Eq. (3.14) into the 

problem given by Eq. (3.12). The updated problem statement according to 

sequential methods is given by Eq. (3.15). 

 

( )
Min  [ ( ), ( ), ]

u t
x t u t tΦ     

s.t.   

           [ ( ), ( ), ]K
dx f x t u t t
dt

=       when    = 1,...,i K              

        
1

( ) = ( )
k

K i i
i

u t u tψ
=
∏       where    

1,

( )( ) =  ,  ( ) = 
( )

k
k

i K i i
k i i k

t tt u t u
t t

ψ
=

−
−∏  

       0(0)   x x=                              (3.15) 

[ ( ), ( ), ]    0h x t u t t =                                 

[ ( ), ( ), ]   0g x t u t t ≤                                            

 ( )  L Ux x t x≤ ≤      

 ( )  L uu u t u≤ ≤      

 

Step 4:  Choose  ti  using orthogonal collocation method and evaluate u as a function 

of time by using Eq. (3.13). 
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Step 5: Choose initial guess for decision variables and solve the dynamic process 

model given by Eq. (3.14) in Step 2 for the input obtained in step 4 using any 

ODE solver. 
 

Step 6: Evaluate the objective function given in Eq. (3.15) using state and control 

profiles obtained in step 5 and update the values of decision variables using 

any standard optimization routine such as steepest descent or Quasi- Newton 

methods. Repeat steps 4 through 6 until convergence. 

 

The main advantage of the sequential methods is that only the control profiles 

are discretized and considered as the decision variables. The optimization formulated 

by this approach is a small scale nonlinear programming problem. However, the 

limitation of these methods is a difficulty to handle a constraint on state variables 

(path constraints). This is because the state variables are not directly included in the 

nonlinear programming problem. 

 

3.2   On-line Optimal Control 
 

Due to the presence of unknown disturbances and model-plant mismatches, 

the off-line calculated optimal control profile may not be optimal when applied to the 

actual process. If this optimal control profile is still used for the remaining batch 

stages, the process output at end of the batch will be significantly different from the 

desired output. As a result, there is a need to re-optimize the control profile for the 

remaining batch stages. This issue can be overcome by on-line updating the optimal 

control profile; on-line feedback information obtained from the earlier stage is used to 

re-calculate the new control profile for the remaining batch stage.  

 

The basic concept of the on-line optimal control is illustrated in Figure 3.1. 

The batch length is divided into N stage and the control profile is assumed to be 

constant during each stage. At each current moment k, the process output y(k+j) is 

predicted over a finite time horizon j = 1,....,N. The predicted output values at time k 

are indicated by y(k+j|k) and the value N is called the prediction horizon. A reference 

trajectory is defined over the prediction horizon, describing how we want to guide the 
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process output so as to minimize the tracking error e(k+j|k) = yref(k+j|k) - y(k+j|k). 

The control profile is calculated on the basis of a measurement in order to minimize a 

specified objective function, depending on the predicted output errors. The first 

element u(k|k) of the optimal control profile is applied to the actual process. All other 

elements of the calculated control profiles can be forgotten, because at the next 

sampling instant all time-sequences are shifted, a new output measurement y(k+1) is 

obtained and the whole procedure is repeated. This leads to a new control input 

u(k+1|k+1), which is generally different from the previously calculated u(k+1|k).  

 

 
Figure 3.1   On-line optimal control scheme 

 

 

3.3     Artificial Neural Network 
 

Artificial neural networks are mathematical structures which built from the 

attempt to emulate the human brain or biological network. These networks involve 

with the learning process of interesting systems. After artificial neural networks have 

learned, the trained network can be used to perform certain tasks depending on the 

particular application. In addition, the artificial neural networks have the ability to 

learn from their environment and adapt it in an interactive manner similar to the 

biological counterparts. 
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3.3.1    Introduction of an Artificial Neural Network 

 

Since the artificial neural network paradigm emerged from the attempt to 

emulate and understand the working of the human brain or biological neural network. 

In the nervous system, the brain is the central element of the nervous system which is 

connected to receptors that shuttle sensory information to it, and delivers action 

commands to effectors. In addition, the brain is a huge and complicated neural 

network which consists of about 1011 neurons. Each neuron consists of three main 

components: dendrites, cell body and axon (as shown in Figure 3.2). Dendrites which 

are branchlike nerve fiber around the neural cell body receive signals from other 

neurons by the receiving zones, called synapse. The cell body or soma sums the 

incoming signals which are received from dendrites and sends them to an axon. Axon 

which is a long fiber-like extension from cell body is the transmit channel of impulses 

to the other neurons. 

 

 
Figure 3.2   Components of biological neural network 

 

The mentioned basic concept of biological neural network lead to research in 

the area of the mechanism and model of human brain including develop the model to 

solve complex problems in science and engineering. The first artificial neuron was 

created in 1943 by McCulloch and Pits. They proposed the model of a simple neuron 

which seemed appropriate for modeling symbolic logic and its behavior. The 

McCulloch-Pitts neuron is a simple unit having a linear activation function with 

threshold value to produce an output. In 1959, Rosenblatt began work on the 
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perceptron which consisted of neuron-like processing units with linear thresholds, and 

were arranged in layers similar to biological systems. The perceptron can learn and 

compute a weighted sum of the inputs, subtract a threshold, and pass one of two 

possible values out as the result. In addition, Widrow and Hoff developed the models 

which are called MADALINE (Multiple Adaptive Linear). MADALINE was the first 

artificial neural network to be applied to a real world problem. 

 

3.3.2 Components of an Artificial Neural Network 

 

The artificial neural network consists of many interconnected artificial 

neurons or nodes. In each node, there are many components that are used to build an 

artificial neural network. These components are described as the follow. 

 

3.3.2.1  Weighting Factors 

 

Weighting factors are adaptive coefficients within the artificial neural network 

that determine the intensity of the input signal as registered by the artificial neuron. 

An artificial neuron usually receives many inputs for create the network. Each input 

has its own relative weight which impacts the input on the summation function. Some 

inputs are made more important than others so that they have a greater effect on the 

processing element as they combine to produce a neural response. Thus, their 

weighting factors are greater than the others. These weighting factors can be modified 

in response to various training sets and according to a network's specific topology. 

 

3.3.2.2   Summation Function or Basis Function 

 

The first step in the operation is to compute the sum of all inputs. 

Mathematically, the inputs and the corresponding weights are vectors which can be 

represented as (x1, x2,…, xn) and (w1, w2,…, wn). The simplistic summation function is 

found by multiplying each component of the x vector by the corresponding 

component of the w vector and then adding up all the products. Moreover, the 

summation function can be more complex than the simplistic summation function. 

The inputs and the weighting factors can be combined in many different ways before 

passing to the transfer function. 
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The summation function can divided into two common forms: 

 

• Linear Basis Function (LBF) 

 

Linear basis function is a hyperplane-type function which is a first-

order basis function. The net value is a linear combination of the inputs and 

the weighting factors which is shown as the follow. 

 

∑
=

=
n

j
jij xwsum

1

             (3.16) 

 

• Radial Basis Function (RBF) 

 

Radial basis function is a hypersphere-type function which involves 

with the second-order (nonlinear) basis function. The net value which 

represents the distance to a reference pattern is shown as the follow. 

 

     ∑
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3.3.2.3   Transfer Function or Activation Function 

 

The results from the summation function, almost always the weighted sum, are 

transformed to a working output by the transfer function. In the transfer function, the 

total summation of the inputs and the weighting factors can be compared with some 

threshold to determine the neural network output. If the summation is greater than the 

threshold value, the processing element generates a signal. If the summation is less 

than the threshold, no signal is generated from the transfer function. 

 

The transfer function is generally non-linear function. Linear functions are not 

useful because the linear transfer functions are limited such as the output is simply 

proportional to the input. For example, the most common transfer functions which are 
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the Step function, Ramp function, Linear function, Log-Sigmoid function, Tangent-

Sigmoid function, Gaussian function and Arc tangent function are shown in Table 3.1. 

 

Table 3.1 Transfer functions of an artificial neural network 

 

Function Equation Characteristic 

Step function 
1 0

( )
0

if x
f x

otherwise

>⎧⎪= ⎨
⎪⎩  

Linear 

Ramp function 

1 1

( ) 1

1 1

if x

f x x if x

if x

⎧ ≥
⎪⎪= <⎨
⎪
− < −⎪⎩  

Linear 

Linear function ( )  f x x=  Linear 

Log-Sigmoid function 
1( )

1 xf x
e−=

+
 Non-linear 

Tangent-Sigmoid function ( ) = 
x x

x x

e ef x
e e

−

−

−
+

 Non-linear 

Gaussian function 2

( ) xf x ce−=  Non-linear 

Arc tangent function ( ) arctan( ) 0.5
3.1416

xf x = +
 

Non-linear 

 

3.3.2.4   Scaling 

 

In the neural networks training, the networks can be made more efficient if 

scaling processing steps are carried out on the input pattern and target. For example, 

the backpropagation algorithm is used to train a feed-forward perceptron, if a sigmoid 

function is used as a non-linear activation function, the saturation limit are 0 and 1. If 

the training patterns have large values compared to these limits, the non-linear 

activation functions could be operating almost exclusively in a saturated mode and not 

allow the network to train. Therefore, the training data should be range-scale to avoid 

this problem. 
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3.3.2.5   Output Function 

 

Each processing element or neuron allows one output signal which it may be a 

output to hundreds of inputs from other neurons. This is just like the biological 

neurons which there are many inputs and only one output action. Normally, the output 

is directly equivalent to the transfer function's result. 

 

3.3.2.6   Error Function 

 

In the training of supervised networks, the training procedure requires a 

measure of the difference between the neural network output values and the target 

(desired output) values. The difference between the target and output values is so 

called the error. This error is transformed by the error function to match particular 

network architecture. For example, the most common error functions are sum square 

error, mean square errors and mean absolute error. 

 

These error functions are described as the follow. 

 

• Sum Square Error 

                
2

1
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N

i i
i

SSE y p
=

= −∑
        (3.18) 

 

• Mean Square Error 

2

1

1 ( )
N

i i
i

MSE y p
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= −∑
      (3.19) 

 

• Mean Absolute Error 

1

1 N

i i
i

MAE y p
N =

= −∑
       (3.20) 

 

which      yi  is the network output 

    pi   is the network target 
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3.3.2.7   Learning Function 

 

The purpose of the learning function is to modify the variable connection 

weights on the inputs of each processing element according to some neural based 

algorithm to achieve a desired result. There are two types of learning algorithm; 

supervised and unsupervised learning. Supervised learning requires a teacher which 

may be a training set of data or an observer who grades the performance of the 

network results. For unsupervised learning, the system must organize itself by some 

internal criteria designed into the network. 

 

3.3.3 Architecture of an Artificial Neural Network 

 

3.3.3.1 Network Structures 

 

Artificial neural network structure can be divided into common types such as 

feed-forward networks and feed-back networks. 

 

• Feed-Forward Networks 

 

Feed-forward networks allow the signals travel from input to output 

one way only. There is no feedback in the network such as the output of any 

layer does not affect in the same layer. Feed-forward networks tend to be 

straight forward networks that associate inputs with outputs. 

 

• Feed-Back Networks 

 

Feed-back networks which allow the signals travel in both directions of 

the network are very powerful networks. These networks are dynamic which 

their states change continuously until they reach an equilibrium point. They 

remain at the equilibrium point until the inputs change and a new equilibrium 

need to be found. 
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3.3.3.2 Connection Structures 

 

An artificial neural network comprises the neuron and weight building blocks. 

The behavior of the network depends on the interaction between these building 

blocks. There are four common types of connections such as feed-forward, feed-back, 

lateral and time-delayed connections. 

 

• Feed-Forward Connections 

 

For all the neural network models, the data from neurons of a lower 

layer are propagated forward to neurons of an upper layer via feed-forward 

connection networks. 

 

• Feed-Back Connections 

 

For all the neural network models, the feed-back connections bring the 

data from neurons of an upper layer back to neurons of a lower layer. 

 

• Lateral Connections 

 

For all the neural network models, the lateral connections allow the 

neurons to interact in the same layer. 

 

• Time-Delayed Connections 

 

Delay elements may be incorporated into the connections to yield 

temporal dynamics models. They are more suitable for temporal pattern 

recognitions. 

 

3.3.3.3 Network Layers 

 

The layers of an artificial neural network are divided into three types such as 

input layer, hidden layer and output layer. The input layer represents the raw 
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information that is fed into the network. The hidden layer is between the input and 

output layer. The output layer is the last layer of the networks that depends on the 

activity of the hidden layers and the weights between the hidden and output layers. 

 

3.3.4 Learning Algorithm of an Artificial Neural Network 

 

Training or Learning means the modifying values of the weighting factor in 

the interconnections to achieve some target criteria for the output layer. Information is 

stored and distributed throughout the network via the interconnection weights. Many 

of learning algorithms are proposed and divided into two types which are shown in 

Table 3.2. 

 

Table 3.2 Learning algorithms of an artificial neural network 

  

Learning algorithm 

Supervised learning Unsupervised learning 

Perceptron Additive Grossberg (AG) 

Adaline Adaptive Resonance Theory (ART) 

Backpropagation Continuous Hopfield (CH) 

Boltzman Machine (BM) Learning Matrix (LM) 

Associate Reward Penalty (ARP) Learning Vector Quantizer (LVQ) 

 

3.3.4.1 Supervised Learning 

 

In the supervised learning, training process consists of the input and output 

data. This data is often referred to as the training set. During the training, the actual 

output of an artificial neural network is compared to the desired output. Weighting 

factors, which are usually randomly set to begin, are then adjusted by the network. 

Thus, the network will produce a closer match between the desired and the actual 

output in the next iteration. The learning algorithm tries to minimize the current errors 

of all processing elements. This global error reduction is created over time by 

continuously modifying the input weights until acceptable network accuracy is 

reached. 
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3.3.4.2 Unsupervised Learning 

 

Unsupervised learning which is sometimes called self-supervised learning is 

limited to networks known as self-organizing maps. These kinds of networks are not 

in widespread use. These networks use no external influences to adjust their weights. 

Instead, they internally monitor their performance. These networks look for 

regularities or trends in the input signals, and makes adaptations according to the 

function of the network. Even without being told whether it's right or wrong, the 

network still must have some information about how to organize itself. This 

information is built into the network topology and learning rules. 

 

3.3.5 Multilayer Feed-Forward Neural Network 

 

Multilayer feed-forward neural network is a one of the most popular artificial 

neural network architectures which is widely used in the function approximation or 

modeling any arbitrary system. This type of network is also sometimes called the 

multilayer perceptron because of its similarity to perceptron networks with more than 

one layer. Multilayer feed-forward neural network consists of an input layer, one or 

more internal layers and an output layer. The internal layers are called hidden layers 

because they only receive internal inputs (inputs from other processing units) and 

produce internal outputs (outputs to other processing units). The structure of 

multilayer feed-forward neural network is shown in Figure 3.3. 

 

 
Figure 3.3   The structure of multilayer feed-forward neural network 
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3.3.6 Design of Artificial Neural Network 

 

3.3.6.1 Structure and Size of Network 

 

No standard procedure has been known to determine the structure and the 

number of neurons or nodes in the network for any particular application. However, 

the general procedure for selecting the hidden nodes is to fix an initial size and then 

check the error tolerance of this structure. If this error satisfies, the training process is 

stopped. If not, the size and the structure are revised and the whole procedure repeats 

until it satisfies the tolerance. 

 

3.3.6.2 Data Collection 

 

In utilizing of an artificial neural network, the data set collection is normally 

split into various sets. One is the training set which is used to train the network 

weights and normally span the operating region of the model. Later is the testing data 

set which is used for final validation of the trained network. 

 

The selection of inputs data which is fed into the networks is an important 

consideration for any particular application. For steady state application, the selection 

of inputs to the networks basically depends on the relevant variables likely to have an 

effect on the predicted output variable. For modeling the dynamic behavior of a 

system, it would not only depend on these relevant variables but also the time history 

of these variables as well as the time history of the output variables. The knowledge 

of the system such as the model order is use as the initial guide to decide on the time 

history. 

 

3.3.6.3 Data Processing 

 

After the data collection, all data should be pre-processed using statistical 

procedure. Data in the training sets are pre-processed to have zero mean and unit 

variance. This is necessary to prevent input with large average values in certain 

dimension. 
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3.3.6.4 Weight Initialization 

 

The initial weight specification has an effect on the speed and quality of neural 

network training. The small random number is normally used to initialize the weights 

of the network so that each connection responds slightly differ during training. If the 

final prediction does not satisfy the error tolerance during training, the weights are 

also re-initialized and the identification process is repeated. 

 

3.3.6.5 Training the Network 

  

Training is a procedure to determine the optimal values of the connection 

weights and bias weights. Training begins by initially assigning arbitrary small 

random values to the weights. Training proceeds iteratively until a satisfactory model 

is obtained. In each of iteration, called an epoch, the actual outputs corresponding to 

all the sets of inputs in the training set are predicted and the weights are adjusted in 

the direction of the output prediction error is decreased. The weights are 

incrementally adjusted for every pattern in every of iteration and they gradually 

converge on the optimal values. 

 

Different network architectures require the different training or learning 

algorithms. The training times can be significantly reduced by the use of suitable 

training algorithms. However, backpropagation algorithm remains the mainstay of 

performing neural network learning. 

 

3.3.6.6 Model Validation 

 

Over-learning, which occurs when the network starts to learn the presented 

pattern in a point-wise fashion instead of learning the functionality, is a potential 

problem that can easily occur in process identification. During over-learning, the 

performance of the network training continues to improve on the learning data set but 

starts to degrade on the testing set. However, it can be dealt with by proper training 

and validation. 
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3.3.6.7 Basic Steps of an Artificial Neural Network Design 

 

There are many procedures of the artificial neural network design but the basic 

steps of the artificial neural design are summarized as the follow.  

 

 

 
Figure 3.4 Basic steps of an artificial neural network design 
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3.3.7 Application of Artificial Neural Network 

 

The artificial neural network is widely applied in modeling of the unknown 

nonlinear systems. The main advantage of the use of artificial neural network is 

obtaining a highly accurate mathematical model of the system without the detail of 

the system. The process modeling applications use the artificial neural network to 

approximate the relationship between the input and output variables. During the 

process modeling, a number of candidate models are considered and only one model, 

which is expected to the best prediction of the process outputs with the given process 

inputs, is selected. The selected model is the one that is expected to have the least 

prediction error in the future. In addition, artificial neural network is also the universal 

function approximator that typically works better than the traditional function 

approximation method for the application of any arbitrary system. 

 

3.4 Biological Processes 
 

In biological processes or bioprocesses, biological systems such as bacteria, 

yeast, fungi, algae or also animal cells, plant cells or isolated enzymes, are used to 

convert supplied substrates to desired products. These products can be the organism 

itself or chemical substances which are utilized in any application. 

 

3.4.1 Bioreactors 

 

For many applications, it is necessary to run the bioprocesses in the well 

controlled and closed reactors which are widely called fermentor or bioreactor. 

Several types of bioreactors exist to meet the different requirements of different 

organisms and products. Some of the most common types are the stirred tank, the 

bubble column, the airlift, and the packed bed reactor. 

 

The stirred tank reactor is usually a cylindrical vessel equipped with a 

mechanical impeller, baffles and aeration at the bottom of the vessel. Meanwhile, the 

bubble column reactor is cylindrical vessel which does not have a mechanical stirrer. 

Mixing occurs due to the gas flow coming from a sparger at the bottom of the column. 

The airlift reactor is a bioreactor which also uses the gas flow from a sparger at the 
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bottom of the reactor to introduce mixing, but has two interconnected parts instead of 

one cylinder. The supplied gas of the airlift reactor rises in one compartment, the 

riser, and due to the different density caused by the gas, the medium circulates going 

down in the other compartment, the downcomer, and rising in the riser. Finally, the 

packed bed reactor is a bioreactor which filled with solid particles containing the 

biocatalysts and medium flows past these particles. 

 

3.4.2 Modes of Operation 

 

The bioprocesses can be operated in various operations such as batch, fed-

batch, or continuous mode. 

 

In a batch mode, all substrates are available in the initial medium and none is 

supplied extra during the process operation. The process operation is stopped after the 

substrate is converted. 

  

In a fed-batch mode, substrates are fed into the reactor during the process 

operation until the end of the operation. This type of process operation is used very 

often since it allows relatively high biomass or product concentrations to be achieved. 

These may not be achievable in batch mode because the total amount of needed 

substrate would be so much that the initial substrate concentration would be strongly 

inhibiting the process. 

 

In a continuous mode, substrate is fed continuously and product is also 

achieved continuously. In the common type of continuous mode with growing cells, 

substrate is fed into the bioreactor at a constant rate and the suspension is removed at 

the same rate This way the culture will run into a steady state where the growth of the 

organism equals the dilution by the feeding. 

 

In the current work, the stirred tank reactor with the fed-batch operation mode 

is studied for the ethanol production process. 
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3.4.3 Model of Fed-Batch Processes 

 

3.4.3.1 Mass Balance 

 

The macroscopic models of bioprocesses are based on mass balances: 

 

            =  + Accumulation Conversion Transport                                                   (3.21) 

 

So, assuming ideal mixing, we can write for the bioreactor: 

 

   
.

( ) =  + f f
f

CV rV F C∑              (3.22) 

 

where dots above the symbols denote the time derivatives, r are the conversion rates 

per unit volume and F are fluxes of feeds into and out of the bioreactor, with 

concentrations Cf in these feeds. 

  

The total mass of the compounds in the fermentation suspension is balanced. 

Besides the concentration of the compounds, the volume of the suspension has to be 

regarded. This is especially important for fed-batch fermentations where the volume 

generally changes significantly during the process.  

 

    
. . .

( ) =  + CV CV V C               (3.23) 

 

Then, the balance in Eq. (3.22) can be rewritten as 

 

          
.

 =   +   f f f

f f

F C F C
C r

V V
−∑ ∑             (3.24) 

 

with 

 

          
.

 = f
f

V F∑               (3.25) 
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3.4.3.2 Kinetics 

 

The kinetic parameter of the above equation is the conversion rates r which is 

a function of the concentrations for all relevant substances: biomass, substrate and 

product. One common type of kinetic equations which is probably the most often used 

equation to describe biomass growth is the Monod kinetics. 

 

For the Monod kinetics, which is based on the Michaelis-Menten type enzyme 

kinetics (Michaelis and Menten, 1913) is described as the follow. 

 

                                max  = s c

m s

v C Cr
K C+

                                                                      (3.26) 

 

where Cs is the concentration of substrate, Cc is the catalyst concentration and Km is 

the Michaelis-Menten constant, which is a binding constant, equal to the 

concentration needed to achieve an enzyme specific conversion rate of half the 

maximal specific conversion rate vmax. For more detailed explanation of the 

theoretical background of this equation and similar enzyme kinetic models, see for 

instance Biselli (1992) and Roels (1983). 

 

For biomass growth on one limiting substrate, the Monod kinetics can be 

written analogously as: 

 

         max = s x
x

s s

C Cr
K C

μ
+

             (3.27) 

 

          =  x
s

xs

rr
Y

−               (3.28) 

 

where Cs is the substrate concentration, Cx is the biomass concentration, μmax is the 

maximal specific growth rate, Ks is the Monod-constant analogous to the Michaelis-

Menten constant and Yxs is the yield of biomass production on substrate, which is the 

amount of biomass which is produced from one unit of substrate. 
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The Monod equation is probably the most often used equation to describe 

biomass growth. Some alternative equations have also been proposed, amongst which 

the Blackman equation (Dabes et al., 1973), the equations by Konak (1974) and a 

logistic equation (Bona and Moser (1997). 

 

 



CHAPTER IV 

 
APPLICATION OF OPTIMAL CONTROL FOR 

ETHANOL PRODUCTION IN A FED-BATCH REACTOR 

 
In this chapter, the mathematical model of ethanol production process in a fed-

batch reactor is presented. Moreover, the implementation of the optimal control 

strategy for controlling the ethanol production process in a fed-batch reactor is 

studied. 

 

4.1 Mathematical Model of Ethanol Production Process in a Fed-

Batch Reactor 
 

Ethanol is the one of important chemical substance which obtains from the 

fermentation process. Among the various modes of the fermentation such as 

continuous, batch and fed-batch modes, the fed-batch mode is the most preferable 

alternative to implement. The general purpose of an ethanol production process in a 

fed-batch reactor is to maximize the amount of the desired ethanol product at the end 

of the operation. For the control study of this process, Hong (1986) is the first who 

developed a mathematical model, in which the effects of substrate and product 

inhibitions are included, for describing the ethanol production by Saccharomyces 

cerevisiae in the fed-batch culture. 

 

In the present study, the mathematical model developed by Hong (1986) for 

describing the ethanol fermentation in a fed-batch reactor is used in the simulation 

studies. The schematic diagram of the fed-batch reactor is illustrated in Figure 4.1. 

The mathematical model of the ethanol production which consists of differential and 

algebraic equations is given as follows. 
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Figure 4.1 Schematic diagram of the fed-batch reactor 

 

 

  dx xx u
dt v

μ= −                                                         (4.1) 

 

0(  )    s sds x u
dt Y v

μ −
= − +                 (4.2) 

 

    dp px u
dt v

η= −                  (4.3) 

 

  dv u
dt

=                   (4.4) 

 

0  
(1  )(   )s

p

s
p K s

K

μμ =
+ +

                (4.5) 

 

0

'
'

  
(1  )(   )s

p

s
p K s

K

ηη =
+ +

                (4.6) 



 41

where x, s and p are the concentration of cell mass, substrate, and product (ethanol), 

respectively, v is the liquid volume within the reactor, μ is the specific growth rate, η 

is the specific productivity, Y is the yield coefficient, s0 is the concentration of the 

substrate feed, and u is the feeding rate of the fed-batch reactor which is the only 

manipulated variable in this process. 

 

For the process model considered, the rate of substrate feed into the fed-batch 

reactor (u) is constrained by 0 ≤ u (L/h) ≤ 12, the volume of the reactor is limited by 

the 200 liters, the operating time of the fed-batch reactor is fixed to be 63 hr, and the 

yield coefficient is assumed to be constant of 0.1. In addition, the values of initial 

conditions and kinetic parameters of this process are described in Table 4.1. 

 

Table 4.1 Initial conditions and kinetic parameters of ethanol production process  

 

 

 

 

 

 

 

 

 

 

 

 

4.2   Optimal Control of Ethanol Production in a Fed-Batch Reactor 

 

 The aim of an optimal control is to determine a control profile minimizing (or 

maximizing) a given objective function subject to process constraints. With the 

optimal control policy, the controlled system is driven from an initial state to a final 

desired state in an optimal way. 

 

Initial conditions Kinetic parameters 

x(0) = 1      g/L Kp = 16.0   g/L 

s(0) = 150  g/L Ks = 0.22   g/L 

p(0) = 0      g/L Kp’ = 71.5   g/L 

v(0) = 10    L Ks’ = 0.44   g/L 

μ0 = 0.408  hr-1   

η0 = 1      hr-1   
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4.2.1 Problem Formulation 

 

In the current work, two major optimal control problems related to ethanol 

production in a fed-batch operation are studied. Maximum amount of desired ethanol 

product and Minimum operational time problems are studied to determine an optimal 

feed profile of the substrate. The obtained optimal feed profile has to satisfy the 

specified objective function and other desired process constraints. Such optimal 

control problems can be described as follows. 

 

4.2.1.1 Maximum Ethanol Production Problem 

 

In this type of the optimal control problem, the objective is to determine the 

optimal feed profile that maximize the amount of the desired ethanol product for a 

given fixed terminal time subject to bounds on the reactor volume and the substrate 

feed rate. This problem can be stated as follows. 

 

Find the substrate feed rate u (t) over t ∈ [t0, tf] for maximizing 

 

    ( )  ( )f fJ p t v t= ×                                          (4.7) 

 

subject to  

 

     [ ( ), ( ), ]dx x t u t t
dt

ψ=
                 (4.8) 

0 0( )   x t x=                              (4.9) 

0  ( ) (L)  200v t≤ ≤                                       (4.10) 

0  ( ) (L/h)  12u t≤ ≤                                      (4.11) 

 

where tf denotes the terminal time of the operation, p(tf) and v(tf) are the final ethanol 

concentration and the final liquid volume in the reactor respectively, and J is the 

performance index which is the amount of the final ethanol product. Eq. (4.8) is the 
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system of ordinary differential equations which are described by Eq. (4.1) through 

(4.4), Eq. (4.9) is the initial conditions for Eq. (4.8), Eqs. (4.10) and (4.11) are the 

upper and lower bounds on the liquid volume of the reactor and the substrate feed rate 

respectively. 

 

4.2.1.2 Minimum Operation Time Problem 

 

The purpose of this optimal control problem is to determine the optimal feed 

profiles which give the desired final ethanol product in minimum operation time, thus 

the performance index is the final time whereas the amount of desired final ethanol 

product is defined as a terminal constraint. The formulation of this problem can be 

shown as follows. 

 

Find the substrate feed rate u (t) over t ∈ [t0, tf] for minimizing 

 

    fJ t=                                                (4.12) 

 

subject to  

 

     [ ( ), ( ), ]dx x t u t t
dt

ψ=
                 (4.8) 

0 0( )   x t x=                              (4.9) 

0  ( ) (L)  200v t≤ ≤                                       (4.10) 

0  ( ) (L/h)  12u t≤ ≤                                      (4.11) 

( ) ( )  =  *f fp t v t pv×                 (4.13) 

 

where pv* is the amount of desired ethanol product at the end of the operation and tf is 

the final operation time. Eq. (4.13) is the terminal constraint of this minimum 

operation time problem.     
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4.2.2 Simulation Results 

 

In the current work, the sequential approach is applied for solving these 

optimal control problems. Typically, a piecewise constant approximation over equally 

spaced time intervals is made for the control variables in the sequential approach.     

To hold the inequality constraint, a penalty function method is applied in this work.  

 

4.2.2.1 Maximum Ethanol Production  

 

All simulation results given here are based on the optimal control problem in 

the case of maximum ethanol production. The objective is to find the optimal feed 

rate profile which maximizes the amount of final ethanol product in the fixed 

operation time problem. 

 

Nominal Case 

 

In the nominal case, the specified final batch time ( tf ) is fixed at 63 hr, the 

batch length is divided in to 10 equal stages and the control variable profiles are 

piecewise constant. The simulation results obtained from solving the optimal control 

problem by using the sequential approach are shown in Figures 4.2 and 4.3.               

In Figure 4.2, the optimal feed profile of substrate slowly increases and close to zero 

at the end of the operation, signifying the liquid volume in the reactor does not exceed 

the reactor volume. In Figure 4.3, the dotted line, dashed line and solid line represent 

the cell mass, substrate and product (ethanol) concentration respectively. At the end of 

the operation, the final liquid volume is 200 liters, the final ethanol concentration is 

103.73 g/L and the performance index is 20,747. 

 

Moreover, the performance index from the proposed method is compared with 

the performance index from the IDP method (Luus, 1993), ICRS/DS method (Banga 

et al., 1997) and CAFNN method (Xiong and Zhang, 2004) as shown in Table 4.2.    

It can be seen that the proposed method give a better control performance compared 

to the ICRS/DS and CAFFNN methods. It is noted that although the IDP method 

provides the best value of performance index, its computational time is longer than 

that used in the proposed method. 
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Table 4.2 The results of different solution methods of optimal control problem 

 

 

 

 

 

 

 

 

 

 

Effect of Time Interval 

 

In previous section, the optimal control problem is formulated as a fixed final 

time with equally spaced time interval of 6.3 hr. In this section, the effect of the time 

interval on the control performance is studied. Figure 4.5 shows the control response 

of the optimal feed rate profile computed using the time interval of 3.15 hr which 

shown in Figure 4.4. It is found that the performance index obtained from the 

decreasing time interval is 20,841 which greater than that obtained in the nominal 

case. In addition, the obtained performance index equals to that obtained from the IDP 

method (Luus, 1993) which is claimed for a global optimum of this process. This can 

be explained by that as the length of time intervals decreases, the approximated 

optimal profile with piecewise constant policy is closer to the actual optimal profile.  

 

Effect of Switching Time 

 

In this section, the effect of the switching time is studied. Non-uniform control 

vector parameterization (free switching time) is applied in order to improve the 

control performance of the optimal control in this process. In Figure 4.6, the optimal 

feeding profile obtained from the optimal control based on non-uniform control vector 

parameterization is illustrated. The control response of the obtained optimal feed 

profile is shown in Figure 4.7. With the non-uniform control vector parameterization, 

the optimal feed rate does not reach the upper limit and its control performance is 

Method Performance index 

IDP (Luus, 1993) 20,841 

ICRS/DS (Banga et al., 1997) 20,715 

CAFNN (Xiong and Zhang, 2004) 20,627 

Present study 20,747 
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20,798 which is slightly higher than that obtained from using the uniform control 

vector parameterization (fixed switching time) as shown in Figure 4.2. 

 

Finally, the simulation results based on the optimal control problem in the case 

of maximum ethanol production are summarized in Table 4.3. This points the 

effectiveness of the proposed method to improve the control performance of this 

ethanol production process. 

 

Table 4.3 Comparison of the simulation results obtained from optimal control in the 

case of maximum ethanol production 

 

 

 

4.2.2.2 Minimum Operation Time  

 

The simulation results presented here are based on the optimal control 

problem in the case of minimum operation time. The objective of this case is to find 

the optimal feed rate profile which minimize the batch time of the operation subject to 

a terminal constraint on the desired amount of final ethanol product. 

 

 In this case, the batch length is divided in to unequal stages and the control 

variable profiles are piecewise constant. The terminal constraint which is the desired 

amount of final ethanol product is defined as 20,750. The optimal feed rate profile and 

the switching time are optimized while minimizing the final batch operation time. The 

simulation results of this case are shown in Figures 4.8 and 4.9. In Figure 4.8, the 

optimal feed profile obtained in this case gives the desired amount of final ethanol 

product equal to that obtained in the nominal case (Figure 4.2) but the final operation 

time of this case is 58.86 min. It can be seen that the minimum operation time can 

Case studies Performance index 

Optimal control in the nominal case 20,747 

Optimal control in the case of decreased time interval 20,841 

Optimal control  in the case of free switching time 20,798 
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reduce the final batch time compared to the nominal case resulting to the reducing of 

the operation cost. 

 

  

4.2.3 Conclusions 

 

The optimal control of a fed-batch reactor for ethanol production has been 

studied in this work. The solution of the optimal control problem is computed using a 

sequential model solution and optimization method. Two types of the optimal control 

problem related to the ethanol production process in a fed-batch reactor (maximum 

ethanol production and minimum operation time) were considered. In the maximum 

ethanol production problem, the effects of a time interval and switching time are 

investigated in order to improve the control performance. From the simulation results, 

it can be seen that decreasing the time interval and using the non-uniform control 

vector parameterization (free switching time) provide a better control performance 

compared to the nominal case. In addition, the minimum operation time is also 

studied in order to improve the control performance of this process.   
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Figure 4.2 Optimal feed profile in the nominal case  
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Figure 4.3 Concentration profile in the nominal case 
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Figure 4.4 Optimal feed profile in the case of decreased time interval 
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Figure 4.5 Concentration profile in the case of decreased time interval 
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Figure 4.6 Optimal feed profile in the case of free switching time 
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 Figure 4.7 Concentration profile in the case of free switching time 
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Figure 4.8 Optimal feed profile in the case of minimum operation time 
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Figure 4.9 Concentration profile in the case of minimum operation time 

 

 



CHAPTER V 

 
ON-LINE OPTIMAL CONTROL WITH NEURAL 

NETWORK ESTIMATOR  

 
This chapter describes the implementation of an on-line optimal control with 

neural network estimator to a fed-batch reactor. The mathematical model of ethanol 

production in CHAPTER IV is used here to demonstrate the control performance of 

an on-line optimal control with neural network estimator. Furthermore, the application 

of an artificial neural network as a state estimator is presented. 

 

5.1    Neural Network Estimator 
 

In chemical industrial processes, some process variables cannot be directly 

measured or are difficult to measure. Due to this fact, a state estimator is proposed to 

cope with this problem. Artificial neural network is found to be the one of various 

tools that can be used to estimate the unmeasured process variables since it is 

considered as an universal approximator that can approximate any arbitrary function. 

 

5.1.1   Neural Network Training 

 

In the current work, a multilayer feed-forward neural network was applied as a 

state estimator to determine the unmeasured process variable which is the substrate 

concentration of the ethanol production process in a fed-batch reactor. For the design 

of neural network, the data sets for the network training are divided into three 

different sets; training sets, validation sets and testing sets which are generated by 

using a random sequence of the inlet feed rate u(t). The training sets, validation sets 

and testing sets are composed of 60, 30 and 10 percent of the data generated sets 

respectively. In addition, these data sets are normalized by Z-score Standardization 

for achieving a good performance of neural network model. Levenberg-Marquardt 
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Backpropagation algorithm (as shown in APPENDIX A) with the early stopping 

mechanism is used to train this multilayer feed-forward neural network. The Mean 

Square Error (MSE) is used as the criterion for the network selection and also for the 

stopping weights and biases adjustment.  

 

 The Mean Square Error for the various architectures of a neural network is 

presented in Table 5.1. The architecture which gives the minimum value of the Mean 

Square Error is considered for application as a neural network estimator. The 

optimum architecture of a neural network for the substrate concentration estimation is 

(8-5-5-1) which is shown in Figure 5.1. In this Figure, the input layer is composed of 

eight nodes which are the substrate feed rate (u), the cell mass concentration (x), the 

ethanol concentration (p) and the liquid volume in the reactor (v) at time t and t-1. The 

both hidden layers are composed of five nodes with the log-sigmoid transfer function 

and one output node with a linear transfer function in the output layer which is the 

estimating value of the substrate concentration at time t. 

 

 

 
 

Figure 5.1 Optimum architecture of neural network estimator  
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Table 5.1 The mean square error for the various architectures of the neural network 

 

Nodes in 1st hidden layer Nodes in 2st hidden layer Mean Square Error (MSE)

3 0 11.669 

3 3 9.299 

3 5 9.290 

3 7 10.231 

3 9 8.876 

5 0 12.042 

5 3 6.525 

5 5 3.479 

5 7 13.007 

5 9 7.954 

7 0 12.026 

7 3 9.519 

7 5 9.599 

7 7 5.446 

7 9 8.772 

9 0 8.208 

9 3 4.952 

9 5 11.520 

9 7 7.210 

9 9 12.278 
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5.1.2   Design of a Neural Network Estimator 

 

To design an estimator, the weights and biases of the optimum neural network 

architecture are used to design the neural network estimator. The input data which are 

the substrate feed rate (u), the cell mass concentration (x), the ethanol concentration 

(p) and the liquid volume in the reactor (v) at time t and t-1 are scaled up with mean 

and its standard deviation as described in Eq. (5.1). The neural network estimator 

output value which is the substrate concentration is rescaled to find the value in the 

original units as described in Eq. (5.2).  

 

actual
scaleup

Input   Mean of InputInput   =  
Std. of Input

−

                                      (5.1) 

 

 

actual scaleupOutput  =  Output  Std. of Output Mean of Output× +        (5.2) 

 

From the optimum neural network in Figure 5.1, the neural network estimator output 

is defined as 4
1a , which is an output value of the first node in the forth layer, and is 

described in Eq. (5.3) 

( )
544 4 3 4

1 1 11
1

          k k
k

fa w a b
=

⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑                           (5.3) 

where 3
ka  is an output value of the k node in the third layer and is defined in Eq. (5.4) 

( )
533 3 2 3

1
          k jk k jj

k
fa w a b

=

⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑                           (5.4) 

 

where j is the sequence of node in the layer and 2
ka  is an output value of the k node in 

the second layer which is defined in Eq. (5.5).  

( )
822 2 1 2

1
          k jk k jj

k
fa w a b

=

⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑                           (5.5) 
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From Eq. (5.5), the 1
ka  is the neural network input after scale up process. The f and b 

in Eqs. (5.3) to (5.5) are the transfer functions and biases of each node in each layer 

respectively. The scaled up parameters which are the mean and standard deviation of 

each variable are showed in Table 5.2. The transfer functions of the optimum neural 

network in each layer are showed in Table 5.3.  

 

 

 

Table 5.2 The scaled up parameters of the neural network estimator 

 

Scaled up Parameters 
Variables 

Mean Standard Deviation (Std.)

Input # 1 x(t) 11.306 5.106 

Input # 2 p(t) 55.955 29.439 

Input # 3 v(t) 199.440 111.920 

Input # 4 u(t) 5.999 3.508 

Input # 5 x(t-1) 11.302 5.109 

Input # 6 p(t-1) 55.932 29.450 

Input # 7 v(t-1) 199.340 111.930 

Input # 8 u(t-1) 5.998 3.509 

Output s(t) 37.978 52.093 

      

  

 

Table 5.3 The transfer functions in each layer of the neural network estimator 

    

Layer Variables Transfer Function Equation 

Layer # 2 2

jf  Log-sigmoid 2 1 ( )
1 xj x

e
f −=

+
 

Layer # 3 3

jf  Log-sigmoid 3 1 ( )
1 xj x

e
f −=

+
 

Layer # 4 4
jf  Linear 4 ( ) =  j x xf  



 57

Tables 5.4 to 5.6 show the weights and biases of the optimum neural network 

architecture for the second, third and fourth layer respectively. The  i
jkw  and i

jb  are 

defined for the weights of output from node k in layer i-1 to node j in layer i and the 

bias of node j in layer i respectively. From Eqs. (5.1) to (5.5), the scaled up 

parameters in Table 5.2, the transfer functions in Table 5.3 and the weights and biases 

in Tables 5.4 to 5.6, the neural network estimator is accomplish as described in 

APPENDIX B. 

 

To test the performance of the neural network estimator, the comparison of the 

actual and neural network estimated values of the substrate concentration is shown in 

Figure 5.2. In this figure, the solid lines represent the actual values which are 

simulated from the actual model, the dotted lines represent the estimated values which 

are obtained from the neural network estimator and the percentage relative error is 

only 6.64 %. 

 

 

Table 5.4 Weights and biases in the second layer of the optimum neural network 

 

Weighting Factors ( i
jkw  ) 

2
11w  =  1.4195 2

12w  = -0.0687 2
13w  = -0.0299 2

14w  = -0.0001 2
15w  = -0.0284 

2
21w  =  1.4177 2

22w  = -6.7633 2
23w  = -0.0510 2

24w  =  0.0004 2
25w  =  0.0008 

2
31w  = -2.1423 2

32w  = -0.5977 2
33w  =  3.3221 2

34w  =  0.0552 2
35w  = -5.5415 

2
41w  = -1.4638 2

42w  = -0.2673 2
43w  =  2.5690 2

44w  =  0.0278 2
45w  = -2.9306 

2
51w  = -2.7440 2

52w  = -0.4310 2
53w  = -0.4392 2

54w  = -0.0078 2
55w  =  0.1563 

Weighting Factors (Continued)  Bias ( i
jb ) 

2
16w  =  0.0794 2

17w  =  0.0265 2
18w  =  0.0004  2

1b  =  0.4113 

2
26w  =  0.0295 2

27w  =  0.0084 2
28w  =  0.0015  2

2b  = -10.969 

2
36w  = -2.2685 2

37w  = -1.6976 2
38w  = -0.0756  2

3b  = -0.7745 

2
46w  = -1.3661 2

47w  = -1.8356 2
48w  = -0.0501  2

4b  = -0.5188 

2
56w  =  1.0148 2

57w  = -0.2332 2
58w  = -0.0139  2

5b  = -1.6070 
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Table 5.5 Weights and biases in the third layer of the optimum neural network 

 

Weighting Factors ( i
jkw  ) 

3
11w  = -5.0598 3

12w  =  3.3669 3
13w  =  0.4493 3

14w  = -0.9277 3
15w  =  0.4949 

3
21w  = -3.0971 3

22w  = -6.3727 3
23w  =  0.3162 3

24w  =  1.5130 3
25w  = -5.0696 

3
31w  =  4.1235 3

32w  =  3.8922 3
33w  = -1.1180 3

34w  = -4.2215 3
35w  =  4.6330 

3
41w  =  6.5760 3

42w  =  0.6943 3
43w  = -1.1201 3

44w  = -1.1562 3
45w  =  0.9267 

3
51w  =  4.6893 3

52w  = -5.7701 3
53w  = -0.5034 3

54w  =  5.2684 3
55w  = -2.5007 

Bias (  i
jb )     

3
1b   =  5.2857     

3
2b   =  4.9311     

3
3b   = -4.2589     

3
4b   =  1.3860     

3
5b   =  4.2222     

 

 

 

 

Table 5.6 Weights and biases in the fourth layer of the optimum neural network 

 

Weighting Factors ( i
jkw  ) Bias ( i

jb ) 

4
11w  =  4.4528 4

1b  =  3.2266 

4
12w  = -1.3831  

4
13w  = -0.7837  

4
14w  = -3.1384  

5
15w  = -2.7548  

 



 59

 

 

0 10 20 30 40 50 60
0

50

100

150
 S

ub
st

ra
te

 c
on

ce
nt

ra
tio

n 
(g

/L
)

Time (hr)

Actual Value
Neural Network Estimated Value

 
Figure 5.2 The comparison of the actual and neural network estimated values of the  

  substrate concentration 

 

 

 

5.2 On-line Optimal Control with Neural Network Estimator for      

Ethanol Production in a Fed-Batch Reactor 
  

Due to the presence of unknown disturbances and model-plant mismatches, 

the off-line calculated optimal control profile may not give the optimal performance 

when applied to the actual process. If this optimal control profile is still used to 

control the process, the process output at the end of the operation will be significantly 

different from the desired output. Therefore, the on-line optimal control with neural 

network estimator that the unmeasured feedback information during the earlier stage 

is estimated by the neural network and is also used to re-calculate the control profile 

of the remaining batch stage is proposed in this work. 
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5.2.1   Formulation of On-line Optimal Control with Neural Network Estimator  

 

 In this section, the on-line optimal control with neural network estimator is 

proposed to deal with the limitation of the optimal control strategy. The mathematical 

model in section 4.1 is used to demonstrate the control performance of the proposed 

method. The control structure of the on-line optimal control with neural network 

estimator for a fed-batch reactor is illustrated in Figure 5.3. In this figure, it is 

assumed that the substrate concentration is an only unmeasured variable. The 

measured variables consist of the substrate feed rate (u), the cell mass concentration 

(x), the ethanol concentration (p) and the liquid volume in the reactor (v). Artificial 

neural network is employed as a state estimator to estimate the substrate concentration 

with the measured variable. The feedback information which consists of the cell mass 

concentration, the ethanol concentration, the liquid volume in the reactor and the 

estimated substrate concentration are used to update the information from the system. 

The optimal control computes the new control profile for the remaining batch stage by 

solving the optimal control problem. This procedure is repeated for the next sampling 

time until the end of the operation. 

 

 The basic algorithm of an on-line optimal control with neural network 

estimator is summarized as the follows. 

 

Step 1: Specify the objective function and the initial states of the system. 

 

Step 2: Calculate the control profile that maximizing the objective function over the 

batch stage. 

 

Step 3: Implement the initial value of the controls. 

 

Step 4: Measure the measured outputs and estimate the unmeasured outputs and go 

back to Step 2 in order to calculate the new control profile for the next 

sampling time based on the new feedback information. 
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Optimal Control

Initial 
condition u(t) Fed-batch 

Reactor

Neural Network

x(t), s(t), p(t), v(t)

u(t)
u(t-1) 
x(t-1) 
p(t-1)
v(t-1)

x(t), spredicted(t), p(t), v(t)

x(t)
p(t)
v(t)

 

Figure 5.3 Structure of an on-line optimal control with neural network estimator 

 

 

5.2.2 Simulation Results 

 

This section demonstrates the implementation of the on-line optimal control 

with neural network estimator for the ethanol production process in a fed-batch 

reactor. The control performance of the on-line optimal control with neural network 

estimator is compared with that of the optimal control strategy which is described in 

CHAPTER 4. In these simulation studies, the specified final batch time (tf) is fixed at 

63 hr and the frequency of updated control action is chosen to be 6.3 hr. Therefore, 

the number of the future controls is equal to 10. 

 

 To test the control performances, the on-line optimal control with neural 

network estimator and the optimal control strategy are then tested in the cases of the 

disturbance rejection and the model-plant mismatch. 

 

5.2.2.1  Disturbance Rejection Case 

  

To test the control performances in the disturbance rejection case, a 20% 

change in the substrate feed concentration (s0) are applied to the system. 
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For the case of a 20% increase in the substrate feed concentration, the results 

show that the on-line optimal control with neural network estimator (Figure 5.4) gives 

the better control performance compared with the optimal control strategy (Figure 

5.5). In these figures, the optimal feed profile (Figure 5.5) gives the control 

performance equal to 18,528 but equal to 14,536 when applied to the actual process 

because of the effect of disturbance. To realize this fact, the optimal feed profile 

(Figure 5.4) is also applied to improve the control performance of this system. 

 

For the case of a 20% decrease in the substrate feed concentration, it can be 

seen that the on-line optimal control with neural network estimator also gives the 

better control performance compared with the optimal control strategy as illustrated in 

Figures 5.6 and 5.7. 

 

Table 5.7 summarizes the control results of the on-line optimal control with 

neural network estimator and the optimal control strategy in term of the performance 

index which is an amount of the desired ethanol product. They clearly indicate that 

the control performances of the on-line optimal control with neural network estimator 

are greater than that of the optimal control strategy in all case studies. 

 

 

5.2.2.2 Model-Plant Mismatch Case 

 

To test the control performances in the model-plant mismatch case, a change 

in the yield coefficient (Y), maximum production rate (η0), maximum growth rate (μ0) 

and kinetic constant (K) are applied to the system. 

 

Figures 5.8 to 5.11 show the results of the model-plant mismatches in the yield 

coefficient (Y) with the 20% increase and 20% decrease respectively. In the both 

cases, the on-line optimal control with neural network estimator gives the better 

control performances compared with the optimal control strategy. This is because the 

effect of the model-mismatch is compensated by the feedback information in the     

on-line optimal control with neural network estimator. 
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 For the model-plant mismatches of the maximum production rate (η0) and 

maximum growth rate (μ0), the 20% increase and decrease of the maximum 

production rate and maximum growth rate are applied to this system. The control 

responses of these cases are illustrated in Figures 5.12 to 5.19. The control 

performances of the on-line optimal control with neural network estimator and the 

optimal control strategy are shown in Table 5.8. From this table, it clearly shows that 

the control performances of the on-line optimal control with neural network estimator 

are greater than that of the optimal control strategy in all case studies.  

 

 Moreover, the effects of model-plant mismatches of the kinetic constant (K) in 

this process are also studied. The on-line optimal control with neural network 

estimator also gives the better control performance compared with the optimal control 

strategy as shown in Table 5.8. 

 

 

 

 

Table 5.7 Comparison of the control performance of the on-line optimal control with 

neural network estimator and optimal control strategy in the disturbance rejection case 

 

Performance Index 
Case studies 

On-line optimal control with NN Optimal Control 

+ 20% s0 19,403 14,536 

- 20% s0 18,388 16,335 
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Table 5.8 Comparison of the control performance of the on-line optimal control with 

neural network estimator and optimal control strategy in the model-plant mismatch 

case 

 

Performance Index 
Case studies 

On-line optimal control with NN Optimal Control 

+ 20% Y 19,767 15,959 

- 20% Y 18,363 14,706 

+ 20% η0 20,242 15,170 

- 20% η0 18,194 16,442 

+ 20% μ0 18,453 14,730 

- 20% μ0 18,846 13,831 

+ 20% Ks 19,082 17,866 

- 20% Ks 18,274 17,917 

+ 20% Ks’ 18,278 17,179 

- 20% Ks’ 19,066 17,765 

+ 20% Kp 17,286 14,796 

- 20% Kp 18,158 15,272 

+ 20% Kp’ 19,394 18,192 

- 20% Kp’ 18,295 17,914 
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Figure 5.4 Control response of an on-line optimal control with neural network 

estimator for disturbance rejection with 20% increase of the substrate feed 

concentration 
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Figure 5.5 Control response of an optimal control for disturbance rejection with 20% 

increase of the substrate feed concentration 
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Figure 5.6 Control response of an on-line optimal control with neural network 

estimator for disturbance rejection with 20% decrease of the substrate feed 

concentration 
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Figure 5.7 Control response of an optimal control for disturbance rejection with 20% 

decrease of the substrate feed concentration 
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Figure 5.8 Control response of an on-line optimal control with neural network 

estimator for the case of model-plant mismatch with 20% increase of the yield 

coefficient 
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Figure 5.9 Control response of an optimal control for the case of model-plant 

mismatch with 20% increase of the yield coefficient 
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Figure 5.10 Control response of an on-line optimal control with neural network 

estimator for the case of model-plant mismatch with 20% decrease of the yield 

coefficient 
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Figure 5.11 Control response of an optimal control for the case of model-plant 

mismatch with 20% decrease of the yield coefficient 
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Figure 5.12 Control response of an on-line optimal control with neural network 

estimator for the case of model-plant mismatch with 20% increase of the maximum 

production rate 
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Figure 5.13 Control response of an optimal control for the case of model-plant 

mismatch with 20% increase of the maximum production rate 
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Figure 5.14 Control response of an on-line optimal control with neural network 

estimator for the case of model-plant mismatch with 20% decrease of the maximum 

production rate 
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Figure 5.15 Control response of an optimal control for the case of model-plant 

mismatch with 20% decrease of the maximum production rate 
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Figure 5.16 Control response of an on-line optimal control with neural network 

estimator for the case of model-plant mismatch with 20% increase of the maximum 

growth rate 
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Figure 5.17 Control response of an optimal control for the case of model-plant 

mismatch with 20% increase of the maximum growth rate 
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Figure 5.18 Control response of an on-line optimal control with neural network 

estimator for the case of model-plant mismatch with 20% decrease of the maximum 

growth rate 
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Figure 5.19 Control response of an optimal control for the case of model-plant 

mismatch with 20% decrease of the maximum growth rate 

 



CHAPTER VI 

 
CONCLUSIONS AND RECOMMENDATIONS 

 
6.1    Conclusions 
 

In this research, the control of the ethanol production process in a fed-batch 

reactor has been studied. The optimal control strategy is applied to obtain the 

maximum amount of the desired ethanol product at the end of the operation. Due to 

the existence of unknown disturbances and model-plant mismatches, the off-line 

calculated optimal profile may not give the optimal performance when applied to the 

actual process. To realize this fact, the on-line optimal control with neural network 

estimator is proposed to modify the substrate feed rate profile for improving the 

control performance. 

 

In the optimal control strategy, the solution of the optimal control problem is 

computed using a sequential model solution and optimization method. The effects of a 

time interval and switching time are investigated in order to improve the control 

performance in term of the amount of the desired product. From the simulation 

results, it can be seen that decreasing the time interval and using the non-uniform 

control vector parameterization (free switching time) provide a better control 

performance compared to the nominal case. Furthermore, the minimum operation 

time is also studied in order to improve the operation in this process. 

 

Artificial neural network is applied to estimate the substrate concentration 

which is assumed to be an unmeasured variable of this process. A multilayer feed-

forward neural network is trained by Levenberg-Marquardt Backpropagation 

algorithm. The optimum topology of an artificial neural network (8-5-5-1) is 

employed as a neural network estimator. 
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  The on-line optimal control with neural network estimator is proposed for 

deal with the unknown disturbance and the model-plant mismatch which are 

particularly important in the model-based control problem. The simulation results 

demonstrate that the on-line optimal control with neural network estimator can 

improve the control performance compared with the optimal control strategy in the 

case of disturbance rejection and the model-plant mismatch. 

 

 

6.2    Recommendations 
  

For the future direction, the proposed on-line optimal control with neural 

network estimator will be applied to the complicated system such as the complex 

fermentation and polymerization process. Furthermore, the neural network based 

estimator for multiple-input and multiple-output (MIMO) is also considered in the 

future research. 
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APPENDICES 
 



APPENDIX A 

 
LEVENBERG-MARQUARDT BACKPROPAGATION 

ALGORITHM 

 
A.1   Backpropagation Learning Algorithm 
 

Backpropagation is the most widely used learning algorithm in an artificial 

neural network. In this algorithm, the error between neural network predicted output 

and the actual target is propagated backward from the output layer to the hidden 

layers and finally to the input layer. The weights and biases are changed in the 

direction of minimizing the prediction error. 

 

For the multilayer feed-forward neural networks, the output of the first layer 

becomes the input of the following layer. The equations that describe of this operation 

are showed as the follows. 

 a m+1 f= m+1(W m+1 a m + b  m+1)        for 0, 1,…, 1m M= −  (A.1) 

where M is the number of layers of the network. The neurons in the first layer receive 

external inputs: 

  0a p=  (A.2)

The outputs of the neurons in the last layer of the network are considered as the 

network outputs: 

a a= M (A.3)
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A.1.1   Performance Index 

 

The backpropagation algorithm for multilayer feed-forward neural networks 

use the mean square error as a criterion which is shown in Eq. (A.4) 

F(x)  = ][ 2eE = ])[( 2atE −   

       = )]()[( atatE T −−  
(A.4)

where x is the vector of network weights and biases, t and a are the corresponding 

target output and actual output respectively. The steepest descent algorithm for the 

approximate mean square error is shown as the follows:  
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where α is the learning rate.  

 

From Eqs. (A.5) and (A.6), the error is an indirect function of the weights in 

the hidden layers. Therefore, the chain rule is used to determine the error gradient as 

the following 
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The second term in each of these equations can be easily computed, since the 

net input to layer m is an explicit function of the weights and biases in that layer: 

 
( 1)

1
,

1

mS
m m m m
i i j j i

j
n w a b

−

−

=
= +∑  (A.9)



 92

Therefore, 
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Define  
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=  (A.11)

which is the sensitivity of F  to changes in the ith element of the net input at layer m, 

then Eqs. (A.7) and (A.8) can be simplified to 
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Therefore, the approximate steepest descent algorithm is expressed as the follows.   
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A.2   Training Function 
 

A.2.1   Conjugate Gradient Method 

 

The basic backpropagation method adjusts the weights in the steepest descent 

direction which the performance function rapidly decreases in the direction of 

negative of the gradient. It turns out that, although the function decreases most rapidly 

along the negative of the gradient, this does not necessarily produce the fastest 

convergence.  
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In the conjugate gradient method, a search is performed along the conjugate 

direction that produces generally faster convergence than steepest descent directions. 

All of the conjugate gradient methods begin with searching in the steepest descent 

direction (negative of the gradient) on the first iteration. 

0 0( )s f x= −∇  (A.16)

 

A line search is then performed to determine the optimal distance along the current 

search direction as the follow. 

1 0 0 0 + x x sα=  (A.17)

 

Then, the next search direction is determined so that it is conjugate to various search 

directions. The general procedure for determining the new search direction is to 

combine the new steepest descent direction with the previous search directions. 

' 1 1
1 1 0

' 0 0
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∇ ∇
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∇ ∇
 (A.18)

 

For the kth iteration, the relation in Eq. A.18 is shown as the follow.   
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 (A.19)

 

A.2.2   Newton’s Method 

 

  Newton’s method is an alternative to the conjugate gradient method for fast 

optimization. The basic step of Newton’s method is 

11     H ( ) ( ) k k k kx x x f x
−+ ⎡ ⎤− = − ∇⎣ ⎦  (A.20)

 

where H(xk) is the Hessian matrix (second derivatives) of the performance index at 

the current values of the weights and biases. Newton’s method often converges faster 
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than the conjugate gradient method. Unfortunately, it is complex to compute the 

Hessian matrix for the feedforward neural networks. 

 

A.2.3   Levenberg-Marquardt Method  

 

The Levenberg-Marquardt method was designed to approach second order 

training speed without having the computing of the Hessian matrix. When the 

performance function has the form of a sum of squares which is typical in training 

feedforward networks, then the Hessian matrix can be approximated as 

H  = J  J′  (A.21)

 

and the gradient can be computed as: 

 = J  ef ′∇  (A.22)

  

where J is the Jacobian matrix, which contain the first derivatives of the network 

errors with respect to the weights and biases, and e is a vector of network errors. The 

Jacobian matrix can be computed through a standard backpropagation technique that 

is much less complex than the computing of the Hessian matrix. 

 

The Levenberg-Marquardt method uses this approximation to the Hessian 

matrix in the following Newton like update. 

[ ] 11   J  J + I J e k kx x μ −+ ′ ′= −  (A.23)

 

When the scalar μ is zero, this is just a Newton’s method using the approximate 

Hessian matrix. When μ is large, this becomes gradient descent with a small step size. 

Newton’s method is faster and more accurate near an error minimum, so the aim is to 

shift towards Newton’s method as quickly as possible. Thus, μ is decreased after each 

successful step (reduction in performance function) and is increased only when a 

tentative step would increase the performance function. In this way, the performance 

function will always be reduced at each of iteration in the algorithm. 



APPENDIX B 

 
NEURAL NETWORK ESTIMATOR 

 
Inputs of Neural Network Estimator 

 

1
1

( )  11.306   =  
5.106

x ta −  

1
2

( )  55.955   =  
29.439

p ta −  

1
3

( )  199.440   =  
111.920

v ta −  

1
4

( )  5.999   =  
3.508

u ta −  

1
5

( 1)  11.302   =  
5.109

x ta − −  

1
6

( 1)  55.932   =  
29.450

p ta − −  

1
7

( 1)  199.340   =  
111.930

v ta − −  

1
8

( 1)  5.998   =  
3.509

u ta − −  

 

Outputs from the 1st Hidden layer  

  
2
1a   =  1 / (1+exp (-(+1.4195* 1

1a -0.0687* 1
2a -0.0299* 1

3a  

                                                        -0.0001* 1
4a -0.0284* 1

5a +0.0794* 1
6a                  

                                                       +0.0265* 1
7a +0.0004* 1

8a +0.4113))) 

2
2a   = 1 / (1+exp (-(+1.4177* 1

1a -6.7633* 1
2a - 0.0510* 1

3a  

                                           +0.0004* 1
4a +0.0008* 1

5a +0.0295* 1
6a  

                                                       +0.0084* 1
7a +0.0015* 1

8a -10.9690))) 
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2
3a   = 1 / (1+exp (-(-2.1423* 1

1a -0.5977* 1
2a +3.3221* 1

3a  

                                                      +0.0552* 1
4a -5.5415* 1

5a -2.2685* 1
6a  

                                                      -1.6976* 1
7a -0.0756* 1

8a -0.7745))) 

2
4a   = 1 / (1+exp (-(-1.4638* 1

1a -0.2673* 1
2a +2.5690* 1

3a  

                                          +0.0278* 1
4a -2.9306* 1

5a -1.3661* 1
6a  

                                            -1.8356* 1
7a -0.0501* 1

8a -0.5188))) 

2
5a   = 1 / (1+exp (-(-2.7440* 1

1a -0.4310* 1
2a -0.4392* 1

3a  

                                          -0.0078* 1
4a +0.1563* 1

5a +1.0148* 1
6a  

                                          -0.2332* 1
7a -0.0139* 1

8a -1.6070))) 

                    

Outputs from the 2nd Hidden layer  

      
3
1a   = 1 / (1+exp (-(-5.0598* 2

1a +3.3669* 2
2a +0.4493* 2

3a  

                                                       -0.9277* 2
4a +0.4949* 2

5a +5.2857))) 

3
2a   = 1 / (1+exp (-(-3.0971* 2

1a -6.3727* 2
2a +0.3162* 2

3a  

                                                      +1.5130* 2
4a -5.0696* 2

5a +4.9311))) 

3
3a   = 1 / (1+exp (-(+4.1235* 2

1a +3.8922* 2
2a -1.1180* 2

3a  

                                                       -4.2215* 2
4a +4.6330* 2

5a -4.2589))) 

3
4a   = 1 / (1+exp (-(+6.5760* 2

1a +0.6943* 2
2a -1.1201* 2

3a  

                                                       -1.1562* 2
4a +0.9267* 2

5a +1.3860))) 

3
5a   = 1 / (1+exp (-(+4.6893* 2

1a -5.7701* 2
2a -0.5034* 2

3a  

                                           +5.2684* 2
4a -2.5007* 2

5a +4.2222))) 

  

Output of Neural Network Estimator 

   
4
1a  = +4.4528* 3

1a -1.3831* 3
2a -0.7837* 3

3a -3.1384* 3
4a -2.7548* 3

5a  

         +3.2266  
4
1 ( ) =  (   52.093 ) + 37.978predicteds t a ×  
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