

72

CHAPTER 5

DISCUSSION AND CONCLUSION

During the past few years several new beta-lactam antibiotics have been introduced with broader antibacterial spectra. Unfortunately, some of them do not uniformly inhibit Enterobacteriaceae and <u>P. aeruginosa</u> (18), while others are not stable to common plasmid-mediated β -lactamases found in gram negative bacteria (18).

Aztreonam, a total synthetic monocyclic beta-lactam, exhibits a unigue pattern of antimicrobial activity when compared to other beta-lactam and aminoglycoside antibiotics (18,50). It is inactive against gram positive bacteria as well as anaerobic bacteria, but extremely active against a broad range of aerobic gram negative organisms (18). Furthermore, it is not hydrolyzed to any appreciable degree by the common plasmid-mediated betalactamases found in Enterobacteriaceae and P. aeruginosa (18,50).

In This study, aztreonam showed good in vitro activity against a broad range of gram negative organisms. The MIC₉₀ values against Enterobacteriaceae was not more than 2 μ g/ml with the exception of <u>Enterobacter</u> spp. However, the majority of <u>Enterobacter</u> spp. were also highly susceptible with a MIC₅₀ value of <0.2 μ g/ml. For other gram negative organisms, the activity of aztreonam ranged from highly active against <u>Aeromonas</u> spp., to intermediate for <u>P. aeruginosa</u>, to poor against strains of <u>Acinetobacter</u> spp. The MIC₉₀ from this study were similar to the results obtained from the study by Sykes et al. (18) and Paradelis et al. (50). The comparisons of these MIC₉₀ are shown in table 13.

Organisms		MIC ₉₀ (no of strains) µg/ml								
	Sykes et al	Paradelis et al	This study							
Acinetobacter spp.	58.3(25)	-	86(22)							
Aeromonas spp.			0.13(30)							
Enterobacter spp.	12.5(29)	12.5(60)	10 (53)							
Escherichia coli	0.2(79)	0.2(1,000)	0.11(66)							
Klebsiella spp.	0.2(68)	0.3(100)	0.17(52)							
P. aeruginosa	12(61)	16(600)	11.9(29)							
Proteus spp.	< 0.1(25)	۲0 . 1(225)	0.05(19)							
Salmonella spp.	0.3(25)	0.4(100)	1.6(28)							
Shigella spp.		5.3(100)	1.5(32)							
Serratia spp.	1.6(113)	1.6(200)	0.77(20)							

Table 13 The comparison of the MIC₉₀ of aztreonam to gram negative bacteria.

In the clinical studies aztreonam was used in the treatment of 10 gram negative bacterial infections. Nine cases were children with other compromising underlying conditions, the other case suffered only from gram negative bacterial infection (case No.10). Dose of aztreonam varied from 53 mg/kg/day to 100 mg/kg/day due to patient's renal function and the nature of the infections processes treated.

Overall, the aztreonam treatment was considered to produce a clinical cure in one of 10 patients, improvement in 8 cases and failure in one case constituting a favorable response rate of 90% for the initial infections. Failure was found in case No. 4 whose initial causative organism was eradicated, but developed a subsequent superinfection with Streptococcus group D which required additional therapy. Signs and symptoms were improved when this patient received ceftazoline plus amikacin.

For bacteriological results, all of the initial causative organisms were eradicated, including <u>Klebsiella pneumoniae</u> which was proved to be resist to aztreonam (table 10). This was probably due to high concentration of aztreonam in urine (39), which maybe higher than MIC of this organism. Except superinfection in case No. 4, colonization also occurred in 5 other patients. Case No. 1 developed colonization with <u>C. albican</u> and Streptococcus group D, case No. 3 with <u>E. cloacae</u>, case No. 4 with Streptococcus group D, case No. 8 and 9 with <u>C. albican</u> (table 10). All of 6 patients who developed superinfection or colonization had other compromising underlying conditions (table 8). So, the high incidence of colonization and superinfection in this study probably due to these underlying conditions of the patients.

Streptococcus group D was also reported to be causative organism for superinfection and colonization in many other reports (51,52,53, 54,55). Most of the patients in these reports, like patients in this study, had other underlying conditions. From these date, special attention should be focused on the role of the underlying diseased and the occurrence of superinfection in subsequent clinical study.

However, colonization that occurred in this study may cause from the microflora which colonized on the skin surface around the wound or the sexual organs. These organisms could contaminate in the samples. Collected pus by swabbing at the wound or collecting urine by using urine bag would accidentally contact these areas. Contaminated by these organisms could easily caused false colonization.

The serum aztreonam concentrations from all of the patients, at $\frac{1}{2}$ - 1 h. after injection, which ranged from 40.8 µg/ml to 85.4 µg/ml exceeded the MIC for 90% of the aerobic gram negative bacteria, including <u>P. aeruginosa</u> (table 6). In addition, serum levels of aztreonam, at 6-8 h. after injection (table 9) were still sufficient to inhibit most of gram negative bacteria (table 6).

Aztreonam were well tolerated in the patients in this study. Only mild side effects (phlebitis, pain at the injection site) occurred in two patients who received aztreonam by i.v. bolus. The side effects were disappeared when the patients received drug by i.v. infusion.

In conclusion, aztreonam is safe and effective for the treatment of most of gram negative bacterial infections, especially urinary tract infections. In patients with compromising underlying diseases, however, superinfections with resistant bacteria should be carefully monitored.

75

Appendix I

Table 14 Interpretation of reactions on Triple Sugar Iron agar

Possible organisms	Escherichia Klebsiella or Enterobacter Proteus or Providence Intermediate coliforms	Salmonella <u>Proteus</u> <u>Arizona</u> (certain types) <u>Citrobacter</u> * (certain types)	Shigella*** Shigella Proteus Providence	Arizona Citrobacter*	Alcaligenes**** Pseudomonas Herellea
Carbohydrates fermented	Glucose with acid and gas Lactose and/or sucrose with acid and gas	Glucose with acid and gas Lactose and sucrose not fermented	Glucose with acid only Lactose and sucrose not fermented	Glucose with acid and gas Lactose and/or sucrose with acid and gas	None
Reaction	Acid butt Acid slant Gas in butt No H ₂ S	Acid butt Alkaline slant Gas in butt H ₂ S produced	Acid butt Alkaline slant No gas in butt No H ₂ S	Acid butt Acid slant Gas in butt H ₂ S produced	Alkaline or neutral butt Alkaline slant No H ₂ S

Formerly Escherichia freundii Formerly <u>Aerobacter</u>. Salmonella typhi produces a small amount of H₉S but seldom gas. ***

**

(Baily, W.R., and Scott, E.G. Diagnostic Microbiology, 1970, p. 142)

76

Appendix II.

Table 15 First-stage diagnostic table for gram-negative bacteria.

					c	1	d .						1			1	
	a1	a1	b	CI	G	di	ds	e1	e .	e,	**	Ti	Ja.	J.		h .	-
SHAPE	s	s	R	R	R	R	R	R	R	R	R	R	R	R	R	R	
MOTILITY	-	-	+	-	-	-	+	+	+	-	-	-	-	+	-	d	
GROWTH IN AIR	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	
CATALASE	-+	-	+	+	-	+	+	+	+	+	+	+	+	+	NT	d	
OXIDASE	+	-	-	-	-	+	+	+	-	+	-	-	+	+	d	-	
GLUCOSE (acid)	d	+	+	+	+	+	+	+	+	+	+	-	-	-	NT	d	
O-F test	0-	F	F	F	F	F	F	0	0	0	0	-	-	-	NT	NT	
			1		* :		2.	1	- 1			-		3. e			
NEISSERIA	V///			•	•	•	•	•						•		•	
GEMELLA	•			•		•			•		÷.,				•	•	
ENTEROBACTERIACEAE	•		V///	V ///	¥///		•								•		
ACTINOBACILLUS		•		V///	V///	X////											
PASTEURELLA		•	V///	V///		V///										•	
AEROMONAS					•	////	/////									•	
VIBRIO		•		•	•	•	////	•	•			•	• .	•	•		
PSEUDOMONAS	•		•	•		•			•	•	•	•	•			•	
CHROMOBACTERIUM	•	•	V///		•	•	•				• ,	•	. •	3	•	•	
FLAVOBACTERIUM	. •	•	•	•	•	•	•	•	•	////		•	•	•			
ACINETOBACTER			•	•	•				•		////	////	•				
BRUCELLA		•		•		•	•	•	•	•	•	(///)	TIT			•	
MORAXELLA	•				•	•	•	•	•	•		•	111				
ALCALIGENES		•								•			•	111			
BORDETELLA			•											•	7///		
HAEMOPHILUS		•			•		•								////	•	
BACTEROIDES				•			•								•	7777	
MISCELLANEOUS BACTERIA (see chapter 8.)			7 8 9	ю	-						12			13	5 14 15		4 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Ø	72 -	TY	PICA	L FO	RM					AT	YPIC	AL C	cocc	AL)	FOR	M	

Symbols common to all tables:

+ = 100-80% strains positive; d = 79-21% strains positive; - = 20-0% strains positive; F = fermentation; O = oxidation; (•) = delayed reaction; NT = not testable.

Symbols special to Table II:

S = sphere; R = rod.

(Cowan S.T., and Steel K.T. Mannual for the Identification of Medical Bacterie, 1965, p.76)

	Salmonella typhi	S. arizonae	Other Salmonella	Escherichia coli	Citrobacter freundii	Ballerup-Bethesda	Hafnia alvei	Enterobacter aerogenes	E. cloacae	E. liquefaciens	Serratia marcescens	Proteus vulgaris	P. mirabilis	P. morganii	P. rettgeri	Providence A	Providence B	Pasteurella pseudotuberculos	Chromobacterium violaceum	7. lividume
Citrate utilization†	-	+	+	-	+	+	+	+	+	+	+	d	d	-	+		-	-	d	-
KCN Celatia budeolusiat	-	-	-	-	+	+	+	+	+	+.	+	+	+	+	+	+	T	129	D L	+
Gelatin hydrolysis‡ Glucose (gas)		(+)	-	+	-	+	-	d	(+)	+	+	+	+	-		-	<u> </u>	20	T.	u
Arabinose (acid)	-	+	+	+	+	+	+	+	+	+	d	+	+	+	-	+	-	1	т. —	-
Lactose (acid)	-	+	d	+	+	+	+	÷	+.	+	-	-	-	-		-	- 1	+	-	
Sucrose (acid)	-	d	-	+	+	d	-	+	+	d	d	-	4	-	-	-	-		-	-
Adonitol (acid)		-	-	d	d	d	d	+	+	+	+	+	+	-	d	d	d	2	d	_
Dulcitol (acid)	d	-	-	50	71	17.	+	+	. d		d	-	-	- 1	+.	+	-	14	-1	-
Mannitol (acid)	D	-	+	d	d	d	-	d	d			-	-	-	-	-	-		-	-
Inositol (acid)	T	+	+	+	+/	+	+	+	+	+	+		-	-	+.	-	d	+	2	
Indole	12		a	1.	671		1	+	7	+	d	-	. .	'	+		+	-		-
V-P	12.1	T.	1	+	1.	1	7.		17	-	-	+	-	+	+	+	+		-	
H ₂ S (in TSI)	+	1	-	Test	27	-	d	+	+	d	+	-	d		-	-	-	-	-	-
Urease	-	T	T		đ	+ d	+	-	-	-	-	+	+	-	-	-	-	-	-	-
Lysine decarboxylase	+	1	+	d	u	D		-	d	d	-	+	+	+	+		-	+	-	-
Arginine dihydrolase	+	+	+	d	+	7	+	+	-	d	+		-	+	-	-	-	-	-	-
Ornithine decarboxylase	1	4	T	d	d	đ	+		+	-	-	100	-:-	-		- 1	-	-	+	d
Gluconate	-	-	-	-	u	u	T	+	+.	+	+	-	+	+	-	-	-	-	-	
Malonate	_	+	_	-	d	1200	T	+	+	+	+	-	d		-	-		-		d
Phenylalanine	-	-	1	2	-	2	T	+	d	-	d	-	-	-	-	-	-	-	d	-
Pigment		-	1	-1	_	_	-	-	d	5	-	+	+	+	+	+	+	-		-
ONPG	-	+	25	+	+	d	1	11.1	.u	1. 20	a		-	-	-		5	-	+	+

Included only for comparison; its attack on carbohydrates is oxidative.
† Citrate utilization in Koser's or Simmons' medium.
‡ Gelatin hydrolysis: + = positive within 7 days at 22° C; (+) = positive after 7 days.

(Cowan S.T., and Steel K.T. Mannual for the Identification of Medical Bacteria, 1965, p. 78)

Table 17 Second-stage table for Shigella, Klebsiella, Pasteurella and

Acinitobacillus.

	Shigella dysenteriae 1	S. dysenteriae 2 +	S. flexneri & S. boydii	S. sonnel	A-D group	Klebsiella aerogenes	K. pneumoniae	K. edwardsti v. edwardst	K. edwardsii v. atlantae	K. ozaenae	K. rhinoscleromatis	Salmonella gallinarum	S. pullorum	Pasteurella multocida	P. pestis	P. pseudotuberculosis	Actinobacillus lignieresii	A. equuli
Catalase		+	+	+	+	+	+	+	+	+	+	+ .	+	+	+	+	d	d
Citrate utilization*		-	-	-	-	+	+	d	+	d	-	-	d	-	-	-		S
Growth on MacConkey	+	+	+	+	+	+.	+	+	+	+	+	+	d	-	+	+	+	d
KCN		-	-	-	-	+	-	+	+	+	+	-	-	+	-	-	-	-
Gelatin hydrolysis	5 -	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	- '
Glucose (gas)	-	-	-		-	+	+ .	-	+	d	-	-	+	-	-	-	-	-
Lactose (acid)	-	-	-	(+)	¢	+	+	(+)	(+)	(+)	-	-	-	-	-	-	d	+
Sucrose (acid)	-	-		(+)	d.	+	+	+	+	d	+	-	-	(+)	-	-	+	+
Dulcitol (acid)	-	-	-	1-1	d	d	+	-	-		-	+	-	d	-	-	-	-
Mannitol (acid)	-	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+.	+
Indole		d	d	-/	d				-	-	-	-	-	+	-	-	-	-
MR	+	+	+	+	+	-	+	d	+	+	+	+	+	-	+	+	-	-
V-P	-	-	-	//	-	+	-	+	d	-		-	-	-	-		d	
H ₂ S (in TSI)	-	-	-	-	-	-	-	-	-	-	-	+	+	d	-	-	+	
Urease	-	-	-	-	-	+	+	+:	+	d	-	-	-	-	-	+	d	+
Lysine decarboxylase			-	100	d	+	+	+	+	d	-	+	+	-	-	-	-	-
Arginine dihydrolase	-	-	-	d	d	-	-	-)	-	-	-	d	+	-	-	-		
Ornithine decarboxylase	-		-	+	d				-	-	-		+	+	-		-	-
Gluconate	-		-		-	+	d	+	d		-	1 1		-	-		-	
Malonate		-	-	-	-	+	+.	d	-	-	+	-	-	-	-	· '	-	4
ONPG	+	d	d	d	d	+	+	+	+	+		-	-	-	+	+	+	+
Christensen's citrate				-	+						1.							

* Citrate utilization in Koser's or Simmons' medium.

(Cowan S.T., and Steel K.T. Mannual for the Identification of Medical Bacteria, 1965, p.79)

79

<u>Flavabacterium</u> a									3
		Pseudomonas aeruginosa	P. fluorescens	P. pseudomallei	Chromobacterium lividum	Flavobacterium meningosepticum	Actnetobacter mallei	A. antiratus	
Motility		+	+	+	+	-	-	-	2
Oxidase		+	+	+		+			
Growth at 42° C		+	-	+			-	d	
Growth at 37° C		+	d	+	-	+	+	+	
Growth at 5° C		-	+ .	-	+			+	1
Citrate utilization		+	+	+	+		d		
Growth on MacConkey	and a second	+	+	+ *	d d	d	ď	+	
KCN		+/	d	+	d	-	d	+	
Gelatin hydrolysis		+	d	+	-	+		d	
Starch hydrolysis		1		+ .			-	-	
Mannitol (acid)	STE	d	d	+	-	(+)	d	-	
Indole		-		-	-	. d	-		
Nitrate reduction	1. 11.	+	d	+	+		+-		
Urease		+	d	d		-	d	d	
Gluconate		+	d	-	d		-	-	
Pigment .		+	+	d	+	+	-		
Diffusion of pigment		+	+	-		1-	-	·	
Arginine dihydrolase		+	+	+	d	-	+.	-	1

Table 18 Second-stage table for <u>Pseudomonas</u>, <u>Chromobacterium</u>,

.......

Table 19 Second-stage for <u>Alkaligenes</u>, <u>Acinetobacter</u>, <u>Brucella</u>, and

Moraxella species.

	Alcaligenes faecalis	Alcaligenes bronchisepticus	Acinetobacter Iwoffii	Acinetobacter parapertussis	Brucella spp.	Moraxella spp.
Motility	+	+ :				
Oxidase	1	in the second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	- 10 - 1 - 1	
Growth on nutrient agar	T.	T I			d	+
	+	+ +	+ .	- +	+	b
Citrate utilization	d	d	+	d		
Growth on MacConkey	+	4	+			-
KCN	+	1 1 2		1	d	
Gelatin hydrolysis		and the second sec	1.1.1		-	-
Nitrate reduction					- 781	b
	d .	+	and the state of the state		+	and a second
H ₂ S	d	d	1 S.M.			u u
Urease	-	+	1997 - 1997	+ >	a +	

(Cowan S.T., and Steel K.T. Mannual for the Identification of Medical Bacteria, 1965, p.81)

Appendix III

Blood agar base

Ingredients per liter		•
Beef heart infusion	500	8
Bacto-Tryptose	10	g
Sodium chloride	5	8
Bacto-Agar	15	8

pH 6.8

Sterilize in the autoclave for 15 minutes at 15 pounds. Cool to 50° C and add 5% sterile defrinated blood.

MacConkey agar

Ingredients per liter		
Bacto-Peptone	17	g
Proteose peptone Difco	3	g
Bacto-Lactose	10	8
Bacto-Bile salt No.3	15	g
Sodium chloride	5	8
Bacto-Agar	13.5	8
Bacto-Neutral red	0.03	g
Bacto-Crystel violet	0.001	g

pH 7.1

R

Sterilize in autoclave for 15 minutes at 15 pounds pressure.

Malonate Broth

Ingredients per liter			
Ammonium Sulfate	2.0		
Disease	2.00	8	
Dipotassium Phosphate	0.6	8	5
Monopotassium Phosphate	0.4		
Sodium chloride		8	1
	2.0	8	
Sodium Malnoate	2.0		
	3.0	8	
Bacto-Brom thymol blue	0.025	8	
	Carlos and and		

pH. 6.7

Methyl Red-Voges Proskauer medium

Ingredients per liter	al a ra	
Buffered peptone	7	g.
Dipotassium phosphate	5	g
Bacto-Dextrose	5	g

pH 6.9

Motility test medium

Ingredients per	liter	and a start of the		
Bacto Tryptose			10	8
Sodium chloride			5	8
Bacto Agar			5	8

pH 7.2

Nutrient Agar

Ingredients per liter		
Bacto - Beef Extract	3 g	
Bacto - Peptone	5 g	
Bacto - Agar	15 g	
pH 6.8		

Sterilize in antoclave for 15 minutes at 15 pounds pressure

Nutrient Broth

Ingredients per liter		
Bacto - Beef Extract	3	g
Bacto - Peptone	5	8
pH 6.8		

Sterilize in antoclave for 15 minutes at 15 pounds pressure

Phenol red tartrate agar

Ingredients per liter		
Bacto-Peptone	10	g
Sodium potassium tartrate	10	8
Sodium chloride	5	8
Bacto-Agar	15	g
Bacto-Phenol red	0.024	g

рН 7.6

Phenylalanine broth

Ingredients per liter		
Ammonium sulfate	2.0	g
Dipotassium phosphate	0.6	g
Monopotassium phosphate	0.4	g
Sodium chloride	2.0	g
Sodium malonate	3.0	g
Bacto-Brom thymol blue	0.025	g
Phenylalanine	2.0	g
pH 6:7		

pH 6./

Potassium Cyanide broth base

Ingredients per liter		
Proteose peptone No.3 Difco	3	8
Disodium phosphate	5.64	8
Monopotassium phosphate	0.225	8
Sodium chloride	5	8

pH 7.6

Prepare a 0.5% solution of potassium cyanide in distilled water. Add 1.5 ml of solution of potassium cyanide to each 100 ml basal medium.

Simmons Citrate agar

Ingredients per liter		
Magnesium sulfate	0.2	ġ
Ammonium dihydrogen phosphate	. 1	g
Dipotassium phosphate	1	g
Sodium citrate	2	8
Bacto-Agar	15	g
Bacto-Brom thymol blue	0.068	g

pH 6.8

Triple Sugar Iron agar

Ingredients per liter	
Bacto-Beef extract 3	g
Bacto-Yeast extract 3	8
Bacto-peptone 15	g
Proteose peptone Difco 5	8
Bacto Dextrose	8
Bacto Lactose 10	8
Saccharose Difco 10	g
Ferrous sulfate 0.2	g
Sodium chloride 5	g
Sodium thiosulfate 0.3	g
Bacto Agar 12	8
Bacto-Phenol red 0.024	8

pH 7.4

Urease agar

Ingredients per liter		
Bacto - Peptone	1	8
Bacto - Dextrose	1	8
Sodium Chloride	5	g
Potassium Phosphate, Monobasic	2	g
Urea, Difco	20	g
Bacto Phenol Red	0.012	2 g

pH 6.8

Suspend 29 g of the medium in 100 ml distilled water and mix thoroughly to dissolve completely and filter sterilize (Urea agar Base Concentrate). Dissolve 1.5 g of Bacto - Agar in 90 ml distilled water and sterilize in the autoclave for 15 minutes at 15 pounds. Cool to $50 - 55^{\circ}$ C and add the contents of one tube of the concentrate (10 ml) under aseptic conditions. Mix thoroughly and distribute in sterile tubes. Slant the tubes so as to have a butt of about one inch in depth.