เมตาจีโนมจากดินป่าชายเลน: แหล่งของจีนชนิดใหม่ที่เกี่ยวข้องกับกระบวนการ ชีวสังเคราะห์ของสารออกฤทธิ์ทางชีวภาพ และความหลากหลายทางชีวภาพของจุลินทรีย์

นายอนิรุทธิ์ ลิ้มตระกูล

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรคุษฎีบัณฑิต สาขาวิชาจุลชีววิทยาทางการแพทย์ (สหสาขาวิชา) บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2554 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ที่ส่งผ่านทางบัณฑิตวิทยาลัย 7 8 9 1 5 8 0 2 0 The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.

MANGROVE MUD METAGENOME: THE SOURCE OF NEW GENE INVOLVING IN BIOACTIVE COMPOUND BIOSYNTHESIS AND MICROBIAL DIVERSITY ACCESS

Mr.Anirut Limtrakul

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Program in Medical Microbiology (Interdisciplinary Program) Graduate School Chulalongkorn University Academic Year 2011 Copyright of Chulalongkorn University

Thesis Title	MANGROVE MUD METAGENOME: THE SOURCE OF NEW
	GENE INVOLVING IN BIOACTIVE COMPOUND
	BIOSYNTHESIS AND MICROBIAL DIVERSITY ACCESS
Ву	Mr. Anirut Limtrakul
Field of Study	Medical Microbiology
Thesis Advisor	Associate Professor Nongluksna Sriubolmas, Ph.D.
Thesis Co-advisor	Associate Professor Pintip Pongpech, Ph.D.
Thesis Co-advisor	Associate Professor Benjamas Wongsatayanon, Ph.D.
Thesis Co-advisor	Lily Eurwilaichitr, Ph.D.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctoral Degree

......Dean of the Graduate School (Associate Professor Pornpote Piumsomboon, Ph.D.) THESIS COMMITTEEChairman (Assistant Professor Anan Chongthaleong, M.D., MBA) (Associate Professor Nongluksna Sriubolmas, Ph.D.) (Associate Professor Pintip Pongpech, Ph.D.) (Associate Professor Benjamas Wongsatayanon, Ph.D.) (Lily Eurwilaichitr, Ph.D.)Examiner (Tanittha Chatsuwan, Ph.D.)External Examiner (Assistant Professor Suthep Wiyakrutta, Ph.D)

อนิรุทธิ์ ลิ้มตระกูล: เมตาจีโนมจากดินป่าชายเลน: แหล่งของจีนชนิดใหม่ที่เกี่ยวข้องกับ กระบวนการชีวสังเคราะห์ของสารออกฤทธิ์ทางชีวภาพ และความหลากหลายทางชีวภาพ ของจุลินทรีย์ MANGROVE MUD METAGENOME: THE SOURCE OF NEW GENE INVOLVING IN BIOACTIVE COMPOUND BIOSYNTHESIS AND MICROBIAL DIVERSITY ACCESS อ. ที่ปรึกษาวิทยานิพนธ์หลัก: รศ.คร. นงลักษณ์ ศรีอุบลมาศ, อ. ที่ปรึกษาวิทยานิพนธ์ร่วม: รศ. คร. พิณทิพย์ พงษ์เพีชร, รศ.คร. เบญจมาส วงศ์สัตยานนท์, คร.ลิลี่ เอื้อวิไลจิตร, 159 หน้า

ในการศึกษานี้ ได้ทำการสืบค้นยืนที่เกี่ยวข้องกับกระบวนการชีวสังเคราะห์ของสารโพลีคีไทด์ ซึ่งเป็นสารที่มีความหลากหลายทั้งค้านโครงสร้างและการออกฤทธิ์ ในเมตาจีโนมของชมชนจลินทรีย์จาก ดินป่าชายเลน (ป่าโกงกาง) จากตำบลกลองโคน จังหวัดสมุทรสงกราม การตรวจหายืนของ KS domain ของ type I PKS ในเมตาจีโนมจากคินป่าชายเลนด้วยการทำปฏิกริยาลูก โซ่พอลิเมอเรส (polymerase chain reaction, PCR) ซึ่งใช้ degenerate primers ที่จำเพาะกับ conserved motif VDPQQR และ histidine active site motif HGTGT พบยืนของ KS domain ที่หลากหลาย 12 ยืน ลำคับกรคอะมิโนที่ถอครหัสของ domain ใหม่เหล่านี้ มีความเหมือนกัน 34-70% ส่วนใหญ่ มีความสัมพันธ์ทางวิวัฒนาการใกล้ชิดกับกลุ่มของ เอนไซม์ cis-AT type I PKS ที่มาจากแบคทีเรียหลายชนิด ที่เหลือพบมีความสัมพันธ์ใกล้ชิดกับกลุ่ม ลูกผสมระหว่างเอนไซม์สังเคราะห์สารโพลีคีไทด์ และสารเพปไทด์โดยไม่อาศัยไรโบโซม (NRPS) ซึ่งมี สองกลุ่มใหม่ที่เสนอขึ้นจากการศึกษาครั้งนี้คือ hybrid PKS/NRPS I-II และ hybrid PKS/NRPS III การวิเคราะห์ลำดับเบสของยืน 16S rRNA ในโคลนที่สร้างจากผลิตผลของ PCR พบว่าแต่ละไรโบไทป์มี ้ความแตกต่างกัน และมีความ สัมพันธ์ทางวิวัฒนาการที่ใกล้ชิดกับกลุ่มของแบคทีเรียที่ต่างกันไปของ ใฟลัม Proteobacteria, Acidobacteria, Deferribacteres, Chloroflexi, Verrucomicrobia, Lentisphaerae และมีหนึ่งไฟโลไทป์มีความสัมพันธ์ทางวิวัฒนาการใกล้ชิดกับแบคทีเรียที่ยังไม่ได้จัดจำแนกกล่ม ในการ สืบหายืน PKS จากคลังเมตาจีโนมของคินป่าชายเลนที่ได้สร้างขึ้นโดยใช้ fosmid vector พบว่าโคลน KKFOS KSI pool37 088 ซึ่งมีชิ้น insert DNA ขนาคประมาณ 29 กิโลเบส มียืนของ PKS และ NRPS ชนิดใหม่อย่ในบริเวณใกล้เกียงกัน แสดงให้เห็นว่าดินป่าชายเลนกลองโคนประกอบด้วยยืนของ PKS ้ชนิดใหม่และแบคทีเรียชนิดใหม่ที่มีความหลากหลาย ซึ่งสามารถเข้าถึงได้โดยการศึกษาเมตาจิโนม

สาขาวิชา <u>จุลชีววิทยาทางการแพทย์</u>	ลายมือชื่อนิสิต
ปีการศึกษา <u>2554</u>	ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก
	ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์ร่วม
	ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์ร่วม
	ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์ร่วม

4789158020: MAJOR MEDICAL MICROBIOLOGY

KEYWORDS: MANGROVE SOIL/ METAGENOME/ METAGENOMIC LIBRARY/ POLYKETIDE SYNTHASE/ PKS/ KETOSYNTHASE/ KS DOMAIN/ POLYKETIDE SYNTHASE-NONRIBOSOMAL PEPTIDE SYNTHASE HYBRID/ HYBRID PKS/NRPS.

ANIRUT LIMTRAKUL: MANGROVE MUD METAGENOME: THE SOURCE OF NEW GENE INVOLVING IN BIOACTIVE COMPOUND BIOSYNTHESIS AND MICROBIAL DIVERSITY ACCESS. ADVISOR: ASSOC. PROF. NONGLUKSNA SRIUBOLMAS, Ph.D., CO-ADVISOR: ASSOC. PROF. PINTIP PONGPECH, Ph.D., ASSOC. PROF. BENJAMAS WONGSATAYANON, Ph.D., LILY EURWILAICHITR, Ph.D., 159 pp.

In this study, the polyketide synthases (PKS) genes involving in biosynthesis of polyketides, the groups of prolific and various structural and functional bioactive compounds were searched on metagenome of soil microbial community from Klongkone mangrove forest, Samut Songkhram Province, Thailand. Detection of ketosynthase (KS) domain gene of type I polyketide synthase (PKS) in the mangrove mud metagenome by polymerase chain reaction (PCR) using degenerate primers specific for the conserved motif VDPQQR and the histidine active site motif HGTGT resulted in 12 diverse KS domain genes. Deduced amino acid sequences of these novel domains were 34-70% homology. Most of the discovered KSs were phylogenetically related to cis-AT type I PKS, one was related to trans-AT and the others were related to NRPS preceding hybrid PKS/NRPS, which groups of hybrid PKS/NRPS I-II and III were newly proposed in this study. A variety of novel 16S rRNA gene phylotypes were also found by analysis of PCR-product clones. They were phylogenetically related to bacteria in phyla Proteobacteria, Acidobacteria, Deferribacteres, Chloroflexi, Verrucomicrobia, and Lentisphaerae. One phylotype was related to unclassified bacteria. In searching for PKS gene in the mangrove soil metagenomic library constructed with fosmid vector, novel PKS and NRPS modules were found in clone KKFOS KSI pool37 088 with the 29 kb DNA insert. These revealed that Klongkone mangrove soil harbored various novel diverse PKS genes and bacteria which could be accessed through metagenomics.

Field of Study: Medical Microbiology	Student's Signature
Academic Year: 2011	Advisor's Signature
	Co-advisor's Signature
	Co-advisor's Signature

ACKNOWLEDGEMENTS

This study was financially supported by "The 90th Anniversary of Chulalongkorn University Ratchadaphiseksomphot Endowment Fund" and faculty of Pharmaceutical sciences, CU fund.

I am deeply grateful to my advisor, Associate Professor Dr. Nongluksna Sriubolmas for her valuable advices, kind assistance and support throughout my study and research project, and her guidance on my dissertation and manuscript.

I would like to express my deep appreciation to my thesis co-advisor, Associate Professor Dr. Pintip Pongpech for her guidance, suggestions and consultation, Associate Professor Dr. Benjamas Wongsatayanon for her support and persistent help throughout my study, and Dr. Lily Eurwilaichitr for her advice and guidance on constructing metagenomics library. I would like to thank chairman of thesis committee, Assistant Professor Anan Chongthaleong, M.D., Dr. Tanittha Chatsuwan, and Assistant Professor Dr. Suthep Wiyakrutta, an external examiner, for their valuable advices and valuable suggestions to write a dissertation

I gratefully acknowledge Professor Dr. Vithaya Meevootisom for his kind and generous supporting on next generation sequencing of the metagenomic clones, and.Associate Professor Dr. Nittharatana Paphavasit for her advice and kind guidance on suitable source for mangrove soil samples

Many thanks also go to the staffs and graduate students at Enzyme Technology Laboratory, Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC) for providing facilities and technical assistance on metagenomic library construction, at B600 laboratory, Microbiology department, Faculty of Sciences, Mahidol University for providing facilities and technical assistance on metagenomic library analysis,

Most of all, I would like to thank my parents who love me and encourage me endlessly, without them the success in my life could not have come.

TABLE OF CONTENTS

	Page	
ABSTRACT (THAI)	iv	
ABSTRACT (ENGLISH)		
ACKNOWLEDGEMENTS	vi	
CONTENT	vii	
LIST OF TABLES	x	
LIST OF FIGURES	xi	
LIST OF ABBREVIATIONS	xv	
CHAPTER I INTRODUCTION		
1.1 Introduction	1	
1.2. Hypothesis	4	
1.3. Objectives	4	
CHAPTER II LITERATURE REVIEW		
2.1 Metagenomics	5	
2.1.1 Metagenome extraction	8	
2.1.2 Metagenomic construction	10	
2.1.3 Metagenomic library screening	10	
2.2 Metagenomic and natural product discovery	12	
2.3 Polyketides	12	
2.4 Nonribosomally synthesized peptides	19	
2.5 Hybrid PKS/NRPS	21	
2.6 Mangrove soil microbial community	24	
CHAPTER III MATERIALS AND METHOD		
3.1 Materials	26	
3.1.1 Culture media and antibiotics	26	
3.1.2 Chemicals	26	
3.1.3 Disposable lab wares	27	
3.1.4 Microorganisms, and growth condition	27	
3.1.5 Vectors, primers, DNA marker, and molecular kits	27	

-	3.2	Instruments	28
-	3.3	Mangrove mud samples	29
-	3.4	Klongkone mangrove metagenome preparation	30
		3.4.1 Metagenomic DNA extraction	30
		3.4.2 DNA purification	31
		3.4.3 DNA isolation from agarose gel using real time electroelution .	31
	3.5	Assessing of potential novel PKS and bacterial diversity.	33
		3.5.1 Type I-PKS KS gene specific PCR	33
		3.5.2 Amplification of 16S rDNA from Klongkone mangrove mud	
		metagenome	34
		3.5.3 Preparation of electrocompetent <i>E. coli</i> DH5α	35
		3.5.4 Amplicon libraries construction	35
		3.5.5 Clones selection for sequencing	36
		3.5.6 Bioinformatic analyses	37
	3.6	Fosmid libray construction	38
-	3.7	Screening of the metagenomic library	38
		3.7.1 Functional-based screening	38
		3.7.1.1 Pigment production and Hemolysis activity	39
		3.7.1.2 Preparation of test microorganisms	39
		3.7.1.3 Antibacterial and antifungal activity Screening	39
		3.7.2 Sequence-based analysis	40
,	3.8	Sequencing and further analysis of the recombinant clones with	
		putative bioactive compound genes	41
		3.8.1 Primer walking	41
		3.8.2 Next generation sequencing	42
CHA	PTI	ER IV RESULTS AND DISCUSSION	
2	4.1	Mangrove mud samples and metagenomic DNA preparation	43
2	4.2	Type I-PKS KS gene diversity and Bacterial diversity holded within	
		Klongkone mangrove metagenome	46

		Page
	4.2.1 PCR amplification of type I-PKS KS domain from Klongkone	
	mangrove mud metagenome	46
	4.2.2 Sequence analyses type I-PKS KS domain from Klongkone	
	mangrove mud metagenome	48
	4.2.3 Klongkone type I-PKS KS phylogenetic analysis	67
	4.2.4 PCR amplification of 16S rRNA from Klongkone mangrove	
	mud metagenome	72
	4.2.5 Sequence analyses of 16S rRNA gene from Klongkone	
	mangrove mud metagenome	73
	4.2.6 Klongkone 16S phylogenetic analysis	76
4.3	Mangrove mud metagenomic fosmid library construction	81
4.4	Screening of metagenomic fosmid library	81
	4.4.1 Functional based screening	81
	4.4.2 Sequence based screening	84
	4.4.2.1 Identification of type I PKS KS domain gene from	
	Klongkone mangrove mud metagenomic library using PCR	84
	4.4.2.2 Identification of novel PKS module by primer walking	
	sequencing	86
	4.4.2.3 Identification of novel gene involving in bioactive	
	compound biosynthesis within the recombinant fosmid insert	
	by Next Generation Sequencing	92
CHAPTE	ER V CONCLUSION	102
REFERE	NCES	104
APPEND	DICES	119
APF	PENDIX A	120
APF	PENDIX B	126
APF	PENDIX C	157
BIOGRA	PHY	159

LIST OF TABLES

Table		Page
2.1	Bacterial abundance observed by fluorescence microscopy, bacterial	
	community complexity, and equivalent genomic numbers in relative	
	to Escherichia coli genome	6
2.2	Culturability of bacteria in different habitats	6
3.1	Summary of primers used in this study	28
4.1	Identity percentage among deduced amino acid Type I-PKS KS	
	partial sequences from Klongkone mangrove metagenomic DNA	
	calculated by ClustalW2	63
4.2	Summary of Blast results, using partial type I PKS KS sequences	
	from Klongkone mangrove mud metagenome as queries	66
4.3	Summary data of partial Type I PKS KS amplicon insert DNA from	
	Klongkone mangrove mud metagenome	67
4.4	Identity percentage among 16S rDNA sequences from Klongkone	
	mangrove metagenomic DNA calculated by ClustalW2	74
4.5	Summary of Blast results, using 16S rDNA sequences from	
	Klongkone mangrove mud metagenome as queries	76
4.6	Number of clone with suspicious inhibition zone against specific test	
	organisms	83
4.7	Primers used in primer walking sequencing of	
	pKKFOS_KSI_pool37_088 insert DNA	87
A1	Accession number and Domain organization of sequences included in	
	KS phylogenetic tree (Fig. 4.21) (sorted by accession number)	120
A2	Accession number and Domain organization of sequences included in	
	KS phylogenetic tree (Fig. 4.21) (sorted by position on the tree)	123

LIST OF FIGURE

Figure

2.1	Samples of polyketides showing their highly structural and	
	functional diversity	14
2.2	The diagrams depicting the basic mechanism comparison between	
	fatty acid synthases and PKSs	15
2.3	The diagrams depicting the structural organization of modules,	
	domains, and their products show the similarity between type I PKS	
	and NRPS	16
2.4	Essential PKS domains and PKS optional domains	17
2.5	Reactions catalyzed by NRPS essential domains	19
2.6	Examples for the organization of NRPS and PKS/NRPS hybrid	
	gene clusters.	21
2.7	The PKS KS compressed tree	22
2.8	Sequence alignments showing the signature motif of PKS in	
	PKS/NRPS hybrid	23
3.1	Tide prediction diagram at Tahjeen tide station obtained from	
	"Mobile Geographic"	30
3.2	Real time electroelution in dialysis tubing.	33
3.3	A typical module organization of type I-polyketide synthase (PKS)	
	megapeptide indicating conserved motifs location	34
4.1	A mangrove mud core and its extracted metagenomic DNA solution	44
4.2	Mangrove mud metagenomic DNA separated in 0.8% agarose gel	
	using Pulse field Gel Electrophoresis	45
4.3	Agarose electrophoresis gel showing purified DNA from real-time	
	electroelution	45
4.4	Agarose electrophoresis gel showing PCR products obtained from	
	amplification of the partial type I-PKS KS domain gene in	
	mangrove mud metagenome	47

Figure

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

PCR products (about 700 bp) obtained from amplification of the	
partial type I-PKS KS domain gene in the 20 remained white	
recombinant clones	48
The clustalW2 alignment of partial sequence Type I-PKS KSs from	
mangrove mud metagenome	49
Nucleotide sequence and its deduced amino acid sequence of partial	
type I-PKS KS gene from KK_KSI_002	50
Nucleotide sequence and its deduced amino acid sequence of partial	
type I-PKS KS gene from KK_KSI_003	51
Nucleotide sequence and its deduced amino acid sequence of partial	
type I-PKS KS gene from KK_KSI_010	52
Nucleotide sequence and its deduced amino acid sequence of partial	
type I PKS KS gene from KK_KSI_013	53
Nucleotide sequence and its deduced amino acid sequence of partial	
type I-PKS KS gene from KK_KSI_017	54
Nucleotide sequence and its deduced amino acid sequence of partial	
type I-PKS KS gene from KK_KSI_019	55
Nucleotide sequence and its deduced amino acid sequence of partial	
type I-PKS KS gene from KK_KSI_021	56
Nucleotide sequence and its deduced amino acid sequence of partial	
type I-PKS KS gene from KK_KSI_023	57
Nucleotide sequence and its deduced amino acid sequence of partial	
type I-PKS KS gene from KK_KSI_026	58
Nucleotide sequence and its deduced amino acid sequence of partial	
type I-PKS KS gene from KK_KSI_027	59
Nucleotide sequence and its deduced amino acid sequence of partial	
type I PKS KS gene from KK_KSI_029	60
Nucleatide sequence and its deduced amine said sequence of norticl	

Figure

4.19	Nucleotide sequence and its deduced amino acid sequence of partial
	type I-PKS KS gene from KK_KSI_035
4.20	The conserved domain database (CDD) searching services provided
	alongside with new blast results
4.21	Phylogenetic analysis of type I-PKS KS domains from Klongkone
	mangrove forest soil
4.22	Amino acid alignment showing signature sequences around
	cysteine active site motif
4.23	Agarose electrophoresis gel showing PCR products obtained from
	amplification of the 16S rRNA gene in mangrove mud metagenome
4.24_A	Phylogenetic analysis of 16S rRNA gene from Klongkone
	mangrove forest soil
4.24_B	Phylogenetic analysis of 16S rRNA gene from Klongkone
	mangrove forest soil
4.25	Type I PKS KS gene specific colony PCR pool matrix diagram
4.26	Insert nucleotide sequence obtained from primer walking
	sequencing
4.27	The diagram showing the open reading frame for protein encoding
	and the enzymatic domains within the pKKFOS_KSI_pool37_088
	insert DNA sequence
4.28	A contiguous consensus fragment of the insert DNA from fosmid
	clone
4.29	Predicted ORFs and their putative function identified according to
	their Blast results
4.30	Domain organization of predicted ORF 5 and ORF 7
4.31	The putative functional domains of ORF 5 predicted by conserved
	domain database (CDD)
4.32	Gene cluster responsible for chondramide biosynthesis
4.33	Curacin A biosynthetic gene cluster

Figure

B1	Nucleotide sequence of 16S rDNA from KK_16S_018	126
B2	Nucleotide sequence of 16S rDNA from KK_16S_019	127
B3	Nucleotide sequence of 16S rDNA from KK_16S_023	128
B4	Nucleotide sequence of 16S rDNA from KK_16S_034	129
B5	Nucleotide sequence of 16S rDNA from KK_16S_036	130
B6	Nucleotide sequence of 16S rDNA from KK_16S_037	131
B7	Nucleotide sequence of 16S rDNA from KK_16S_038	132
B8	Nucleotide sequence of 16S rDNA from KK_16S_039	133
B9	Nucleotide sequence of 16S rDNA from KK_16S_040	134
B10	Nucleotide sequence of 16S rDNA from KK_16S_041	135
B11	Nucleotide sequence of 16S rDNA from KK_16S_042	136
B12	Nucleotide sequence of 16S rDNA from KK_16S_043	137
B13	Nucleotide sequence of 16S rDNA from KK_16S_044	138
B14	Nucleotide sequence of 16S rDNA from KK_16S_045	139
B15	Nucleotide sequence of KKFOS_KSI_pool37_088	140
B16	Enlargement of figure 2.6	155
B17	Enlargement of figure 4.6	156

LIST OF ABBREVIATIONS

А	=	Adenylation domain
ACP	=	Acyl carrier protein domain
AMP	=	Adenosine monophosphate
AT	=	Acyl transferase domain
ATCC	=	American Type Culture Collection
ATP	=	Adenosine triphosphate
BAC	=	Bacterial Artificial Chromosome
bp	=	Base pair
°C	=	Degree Celsius
С	=	Condensation domain
CDD	=	Conserved Domain Database
Cm ^R	=	Chloramphenicol resistant
CTAB	=	Cetyl trimethylammonium bromide
DH	=	Dehydratase domain
DMSO	=	Dimethyl sulfoxide
DNA	=	Deoxyribonucleic acid
cm	=	Centimeter
E	=	Epimerization domain
e.g.	=	For example
ER	=	Enoyl reductase domain
et al.	=	And other
EDTA	=	Ethylenediaminetetraacetic acid
g	=	Gravitational force
HEPES	=	4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
HIV	=	Human immunodeficiency virus
i.e.	=	That is (id est)
IPTG	=	Isopropyl-beta-D-thiogalactopyranoside
kb	=	Kilo base pairs
KR	=	Ketoreductase domain
KS	=	Ketosynthase, Ketoacyl synthase

LB	=	Luria Bertani
LB_{Amp}	=	Luria Bertani with ampicillin supplement
$LB_{AmpXGI} \\$	=	Luria Bertani with ampicillin, IPTG and X-Gal supplement
LB _{Cm}	=	Luria Bertani with chloramphenicol supplement
LB _{CmAr}	=	Luria Bertani with chloramphenicol and arabinose supplement
LB _{CmXGI}	=	Luria Bertani with chloramphenicol, IPTG and X-Gal supplement
μl	=	Microliter
М	=	Methytransferase domain (MT)
ml	=	Milliliter
MH	=	Muller-Hinton
min	=	Minute
mm	=	Millimeter
mM	=	Millimolar
MT	=	Methytransferase domain (M)
ng	=	Nanogram
nm	=	Nanometer
NRPS	=	Nonribosomal peptide synthase, Nonribosomal peptide synthetase
OD	=	Optical density
ORF	=	Open reading frame
РСР	=	Peptidyl carrier protein (T)
PCR	=	Polymerase chain reaction
PFGE	=	Pulsed field gel electrophoresis
pН	=	Power of hydrogen
PKS	=	Polyketide synthase
rRNA	=	Ribosomal ribonucleic acid
rpm	=	Round per minute
SDA	=	Sabouraud's Dextrose Agar
SDS	=	Sodium dodecyl sulfate
sp.	=	Species
Т	=	Thiolation domain (PCP)
%T	=	Transmittance (percentage)

- TBE = Tris, Boric acid and EDTA
- Te = Thioesterase domain
- UV = Ultraviolet
- X-Gal = 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside

CHAPTER I INTRODUCTION

1.1 Introduction

Antibiotics have been discovered and put on used for more than 70 years, which was the beginning of the curable infectious disease era. Those antibiotics usually are or derive from low-molecular-weight bioactive compounds produced by microbes, plants, or animals (Newman et al., 2000; Newman et al., 2003; Butler, 2004; Butler, 2005; Koehn & Carter, 2005; Davies, 2006). About 60 to 80% of the drugs used for treating cancer and infectious diseases today are derived from natural products (Newman et al., 2003; Gullo et al., 2006). However, with the beginning introduction of antibiotics for therapy, drug resistant pathogens have also been evolutionally selected. With this selective pressure of antibiotic usages, the bacterial strains capable of resisting to the currently in use antibiotics will be selected soon in hospital or community setting (Stubbings & Labischinski, 2009; Maillard et al., 2010). Many reviews and surveys have been reported that in the past two decades the discover and development of antibiotics by the major pharmaceutical companies are in decline and few new antibiotic drugs have reached the market, while the drug resistant and multiple drug resistant pathogens have been emerged with an increasing rate. These are the sign for urgent need of new antibiotic drugs (Barrett & Barrett, 2003; Boggs & Miller, 2004; Bush, 2004; Livermore, 2004; Clardy et al., 2006; Jones et al., 2008; Dent et al., 2010; Ray et al., 2010).

To be prepared for these drug-resistant pathogens, and those that will come, the urge of need for new antibiotics is agreed by many studies (Schito, 2006; Spizek *et al.*, 2010). Despite to the fact concerning the decline of antibiotic production in pharmaceutical industry for over 25 years, and the discovering of only two new developed antibiotic classes, natural products are still believed to be the main sources of lead compounds for drug development and production (Conly & Johnston, 2005; Newman & Cragg, 2007; Butler & Cooper, 2011)

For long, microorganisms have been recognized as major sources of the biologically active molecules (Lorenz & Eck, 2005). These microorganisms, especially from soil, have been cultivated and screened for natural products with antibiotic activity (Handelsman et al., 1998). Bacteria in genus Streptomyces isolated from soil seem to be the largest antibiotic-producer in microbial world discovered so far (Watve et al., 2001). Up until 2002, more than 7000 antibiotics are made by this genus alone, while the total of about 9000 bioactive compounds made by all actinomycetes (Demain, 2006). Besides antimicrobial antibiotics, soil microorganisms also produce a large number of bioactive compounds, such as, immunosuppressive agents (cyclosporins from Trichoderma and Tolypocladium sp., rapamycin from Streptomyces sp.), cholesterol-lowering agents (mevastatin from Penicillium sp., lovastatin from Aspergillus sp.), antihelmintics and antiparasitic drugs (ivermeetins from Streptomyces sp.), and a potential antidiabetic agent from Pseudomassaria sp. The unique unclassified bioactive compound with antifungal activity has been isolated from Actinomadura sp. (Badji et al., 2006). Among these bioactive compounds, polyketides also contributed to many groups and represented a large portion of them.

As most of the readily culturable soil microorganisms had been exhausted, the rate of discovering of new compounds decreased. Some researchers have turned to look for rare actinomycetes from different or exotic ecosystems (Lazzarini *et al.*, 2000), and many have turned to marine environment with over 15,000 structurally diverse natural products discovered (Wang, 2006).

However, most of microbial bioactive molecules (both terrestrial and marine origin) found today are mainly from microorganisms which could be cultivated in the laboratories. These cultivable microorganisms accounting for only a fraction of existing microorganisms in a given environmental habitats. By monitoring cellular carbon content of microorganism in a given habitat, the estimated amount of microbial cells are about 10^{29} and 10^{30} cells in terrestrial and oceanic habitat, respectively (Whitman *et al.*, 1998). While using the reassociation kinetics of soil bacterial DNA (Torsvik *et al.*, 1990; Torsvik *et al.*, 1998) and molecular genetics techniques (Torsvik *et al.*, 1998; Torsvik & Ovreas, 2002), soil and sediment were estimated to harbor a very high bacterial number (10^{10} bacterial cells per gram soil) and diversity (might be as high as 10,000 different bacterial species). These

estimations make the cultivable bacteria from these soil and sediment samples accounting for only 0.1-1% of the total bacterial numbers. For the other environments, only 0.001-0.1% of microorganisms in seawater, 0.25% in fresh water, and 0.25% of sediment microorganisms were found to be cultivable (Amann *et al.*, 1995). Conversely, over 99% of microbial diversity in any given habitat is not accessible by cultivation (Langer *et al.*, 2006). Therefore, natural bioactive compounds discovered from cultivable microbes mentioned above are accounted for those from lesser than 1% of the producers. Even though there are low rate and chances in discovery of a new bioactive compound from those 1% pool, the 99% non-cultivable microorganisms is the promising reservoir for finding a new compound. In addition, today, the technology used for accessing genetic and function of non-cultivable microorganisms is also available. This technology is the metagenomics.

The metagenomics is a technique or technology used for studying or analyzing genomes of the entire microbial community or population within environmental samples without the need of cultivation of the microorganisms of interest. These collective genomes are called metagenomic DNA or metagenome which is different from clonal genome obtained from pure-culture. Metagenomics also includes all applications of the entire genomics technology that suites for metagenomic DNA. The basic procedures of metagenomics imitate the genomic library construction of the clonal genome. In metagenomic analysis, the processes involve isolation of DNA from the environmental sample, inserting the isolated DNA into a suitable vector, transforming the recombinant DNA into a host bacterium, and screening for the resulting transformants. By isolating the DNA from the environmental sample makes metagenomics possible for capturing DNA or genes of the majority non-cultivable microorganisms within the environmental sample. Furthermore, transforming of the clone into cultivable host provides the accessibility for manipulation and analysis of the DNA or genes of uncultivable microbes in the environmental sample.

Mangrove forest mud or soil is the area with high organic clay which is submerged under the salt water during high tide and exposed to ambient atmospheric air and dryness during low tide. In addition, it is the place with the combination of terrestrial and oceanic environment; thus, it possesses a very specific and unique ecological niche which could also support highly unique life forms. As mention above, both soil and sea water are environmental sites that are rich with microbial diversity and its bioactive compound. Then, the mangrove forest seems to be the promising environmental habitat with the specifically uniquely diverse microbial community (Ghosh *et al.*, 2010; Liang *et al.*, 2006). Consequently, this environment is one of the most probable places which the unique and potentially novel genetic distinction and the production of bioactive compound could be found.

1.2. Hypothesis

Mangrove mudflat is the reservoir of novel genes involving in bioactive compound biosynthesis, and the source of microbial diversity.

1.3. Objectives

1.3.1 To construct the mangrove mudflat derived metagenomic libraries.

1.3.2 To analyze and describe genes in mangrove mudflat derived metagenomic libraries involving in biosynthesis of bioactive compounds.

1.3.3 To sample microbial diversity of mangrove mudflat by analyzing its metagenome.

CHAPTER II

LITERATURE REVIEW

2.1 Metagenomics

Microorganisms have been widely known to present everywhere, but only fraction of them is known through the conventional cultivation processes. The studies using genomic DNA reassociation, and some other molecular techniques developed thereafter. Soil bacterial community was found to sustain a vast variety of bacterial diversity than it appeared by cultivating isolation methods (Table 2.1) (Torsvik et al., 1990; Torsvik et al., 1998; Torsvik & Ovreas, 2002). The majority of the existing bacterial population about 99% could not be cultivated using conventional cultivating technology (Table 2.2) (Amann et al., 1995; Torsvik & Ovreas, 2002). Even more efficient cultivating techniques have been developed, those cultures still be the small portion comparing to the uncultured ones (Zengler et al., 2002; Keller & Zengler, 2004; Stevenson et al., 2004; Zengler et al., 2005; Alain & Querellou, 2009; Kenters et al., 2011). Consequently, any studies requiring clones of pure cultures, e.g. microbial metabolic capabilities or functionalities within their community, could not be fulfilled by those majorities of the uncultured microorganisms. Including, the conventionally tapping of the expected wealthy genomic information of the secondary metabolites and natural products or the actual secondary metabolites and natural products themselves from those uncultured would be limited (Handelsman et al., 1998; Lefevre et al., 2008). Isolation of the microbial natural product, conventionally, begins with the extraction of the natural compound from microorganisms themselves or from the culture broth supernatant thereof (Sarker et al., 2006). This way the microorganisms have to be cultivated prior to undergo the extraction processes, which is not applicable for the majority of the microorganisms in the natural population. This is where the metagenomics comes into the view.

Table 2.1 Bacterial abundance observed by fluorescence microscopy, bacterial community complexity, and equivalent genomic numbers in relative to *Escherichia coli* genome $(4.1 \times 10^6 \text{ bp})$ (Torsvik & Ovreas, 2002)

DNA source	Abundance	Community genome	Genome
	(cells cm^{-3})	complexity (bp)	equivalents
Forest soil	4.8×10 ⁹	2.5×10 ¹⁰	6000
Forest soil, cultivated prokaryotes	1.4×10 ⁷	1.4×10^{10}	35
Pasture soil	1.8×10 ¹⁰	$(1.5-3.5) \times 10^{10}$	3500-8800
Arable soil	2.1×10 ¹⁰	(5.7-14)×10 ⁹	140-350
Pristine marine sediment	3.1×10 ⁹	4.8×10^{10}	11,400
Marine fish-farm sediment	7.7×10 ⁹	2.0×10 ⁸	50
Salt-crytallizing pond, 22% salinity	6.0×10 ⁹	2.9×10 ⁷	7

Table 2.2 Culturability of bacteria in different habitats (Amann *et al.*, 1995; Torsvik & Ovreas, 2002).

Habitat	Culturability (%)		
Seawater	0.001-0.1		
Fresh water	0.25		
Mesotrophic lake	0.1-1.0		
Unpolluted estuarine water	0.1-3.0		
Activated slugde	1.0-15.0		
Sediments	0.25		
Soil	0.3		
Forest soil	0.3		

In opposed to genome, the clonal genome, the term metagenome or metagenomic DNA, representing the collective of the genomic DNAs of the whole microbial community in a given natural environment was coiled by Handelsman and colleagues in 1998 (Handelsman et al., 1998). Hence, the molecular technology involving in the investigation of the metagenome in a given interest environment by means of functional or sequencing analyses is called metagenomics (Handelsman, 2004a, 2004b). There are other less commonly used terms to describe the same technology such as environmental DNA libraries, zoolibraries, soil DNA libraries, eDNA libraries, community genome, and others (Riesenfeld et al., 2004). As the metagenomics using the metagenome from the natural microbial community dwelling within the environmental sample, it is not limited by cultivability of the subjective microorganisms, but the wealthy genetic and its deduced functional information of those 99% uncultured microorganisms could be accessed. The technology originally and usually involves cloning and the genomic library construction which is not necessarily obligated since the advancement of the sequencing technology, e.g. next generation sequencing, and computational methods for metagenome analyses have developed (Hoff et al., 2009). This additional direct sequencing of the metagenome has compensated the missing genomic information in the metagenomic library caused by toxic expression of the inserted DNA. The clones carrying the host toxic encoding insert would not survive after the transformation, and the genetic information held in the insert would be lost (Forns et al., 1997).

The idea of cloning the metagenome for the molecular studies to gain the genomic information from the uncultured microorganisms was developed before the term was created (Schmidt *et al.*, 1991; Riesenfeld *et al.*, 2004). The field of metagenomics has expanded rapidly in this past decade; today it has covered the studying of many natural microbial communities, e.g. marine water (Venter *et al.*, 2004; Leitao *et al.*, 2009), marine sediment (Bhuiyan *et al.* 2011), acid mine drain (Tyson *et al.*, 2004), mangrove soil (Jiang *et al.*, 2011), terrestrial soil (Rondon *et al.*, 2000; Chung *et al.*, 2008), termite gut (Warnecke *et al.*, 2007), hot spring (Tirawongsaroj *et al.*, 2008), and human oral flora (Willner *et al.*, 2011). Although, with the advancement of the current sequencing technology and bioinformatics tools, some studies would omit the cloning step or some would use the metagenome

sequencing to compensate the lost information by cloning biases (Hoff *et al.*, 2008; Hoff, 2009; Hoff *et al.*, 2009; Park *et al.*, 2011), its common processes would comprise environmental extraction for the metagenome, the metagenomic library construction, and the analysis of the metagenomic library clones.

Although metagenomics have been developed to circumvent the cultivation problems, they still have many limitations (Committee on Metagenomics, 2007; Dupre and O'Malley, 2007). First of all, high microbial diversity in the environmental samples, especially from soil, requires a large metagenomic library to cover the entire metagenomic DNA, even with BAC vector. Second, the current technologies, e.g. sequencing technology, bioinformatic tools and metagenomic databases, cannot efficiently support large amount of complex data derived from metagenomes. There are also many technical biases within the metagenomics processes and procedures, e.g. environmental sampling, cell disruption for DNA extraction, the extraction processes, and cloning and expression systems. Furthermore, most of the metagenomes are usually obtained from the genome of major population within the environmental community. The information on the minor members of communities with an important role is obscured, and required the development of new technology to sort out those that still be hidden. Another problem in metagenomic research is an inadequate of reference genomic data, as the genomic data generated by metagenomics is too large and accumulate too fast to be annotated. Some sequences in database do not have functional data which lead to inadequate number of reference genome to identify microbial functions. Finally, the expression system in functional screening mostly relies on E. coli. Those genes that cannot be expressed in E.coli, their genomic information will be lost and new gene-expression systems are needed.

2.1.1 Metagenome extraction

There are many methods for extracting the metagenome from the environmental samples which may largely be categorized into direct extraction and indirect extraction methods. These subcategories mainly are applied to soil and dirt samples; as, for those air, fresh, or sea water, the microbial cells are most readily separated from the environmental body where the microorganisms harbore. The indirect extraction means that the environmental sample is not directly subjected to the DNA extraction procedure. Instead, the microbial cells dwelling within the sample are separated from their habitat prior to subject for DNA extraction. This method is preferred in the study aimed for the very high molecular weight DNA, and very large pieces of metagenome. Therefore, cell lyses and the following DNA extraction procedures are performed on the obtained cells embedded in agarose gel to preserve the microbial genome from any shearing forces. This procedure would allow high molecular weight DNA from phylogenetically diverse groups to be obtained, but the obtained DNA would rather low (Gabor *et al.*, 2003).

For the direct extraction methods, the environmental sample is directly subjected to the DNA extraction buffer; and, the microbial cells are directly lysed within the environmental sample. There are many lysis methods with different extent of shearing effects that apply to the sample. The chemical (e.g. detergents, and cell integrity disrupting enzymes) lyses would be gentler than mechanical shearing force of shaking, bead beating or ultrasonic vibrating cell disruption. The more forceful method the more likely higher diversity but smaller of DNA fragments are obtained. For example, in the extraction of mangrove soil from China, the chemical or mechanical lysis procedure alone could not extract the genome of all taxonomic groups of microorganisms within the mangrove soil. Only certain groups of them were obtained. Combinations of all chemical and mechanical methods together might extract the DNA from most various microbial life forms, the archaeal, eubacterial, and fungal cells (Jiang et al., 2010). During the extraction processes the impurity from the environmental body prone to co-extracted with the obtained metagenome is another factor to be regarded. Moreover, different environmental samples coherently have different in impurity extent. The example of one with most profound effect on the metagenome purity and its downstream applications is humic acid in soil samples. Each type of soil has different level of humic acid contamination, and its concentration level at 0.8-51.7 μ g/ml, and 0.2-0.48 μ g/ml could inhibit restriction endonucleases, and Taq polymerases, respectively. Transformation efficiency is also affected by this humic acid in the concentration of 100 µg/ml (Tebbe & Vahjen, 1993). The extra steps to purify the co-extracted impurity, would normally add more shearing effect to the DNA. To choose the extraction methods, the balance between the size and the diversity of the extracted DNA must suit the research question and the

final analysis step. For instant, if the functional-based screening of the product encoded by a large gene (covering large portion of DNA), the gentle procedures are more likely preferable. After obtaining the metagenomic DNA, generally, it will be used in cloning step to construct the metagenomic library.

2.1.2 Metagenomic construction

In this cloning step, the metagenomic DNA fragment is ligated into the suitable vector and transformed into the host of choice. There are many vectors used in metagenomics, plasmid, cosmid, fosmid, or bacterial artificial chromosome (BAC). Plasmid has the smallest cloning capacity (i.e. <10 kb) while cosmid and fosmid has the cloning capacity ranging about 30-45 kb, and the BAC has the biggest cloning capacity of 50-300 kb (Watson et al., 2007). In this step, the vector and the host chosen are indicated by the metagenome insert size which ultimately depends on the final analysis step. For penicillin amidase gene with average size of 2.7 kb, the metagenomic libraries constructed with plasmid pZErO-2 (insert size of 4-6 kb) resulted in the discovery of the novel penicillin amidase (Gabor et al., 2004). An antifungal positive clone carrying 40 kb insert DNA was successfully cloned with fosmid vector (Chung et al., 2008). BAC metagenomic library constructed from marine microbe with insert size over 160 kb was demonstrated (Beja et al., 2000). For the full potential of BAC vector, the 316 kb insert was successfully cloned with this vector; however it was a tea tree plant library, not a metagenomic library (Lin et al., 2011).

2.1.3 Metagenomic library screening

There are two main approaches, the functional-based and the sequencebased, are available for metagenomic analyses. The functional-based is the biological activity screening strategy that relies on the phenotypic expression of the traits of interest by the analyzed library clones. There is no need of prior knowledge about the gene to be discovered this way, only the functional trait to be monitored, which is the most advantage of this approach. Thus, genes or biological information discovered by this strategy have the real novelty potential, and have never been discovered before. Many antibiotics, and 15 catalytic enzymes from agarolytic consortium cosmid (Voget et al., 2003), were discovered by this functional based analysis. Limitation of this approach can be contributed by many factors that cause lacking of trait expression. Host-expression compatibility is of the most importance for this approach if the foreign genes come with their own promoter. As the metagenomic DNA fragments are most likely compose of ones from a wide variety of microorganisms. Many of them may be evolutionary distance from host organisms used for the library construction, mostly E. coli, the one proved with high heterologous expression capability (Daniel, 2004; de Lorenzo, 2005). The expression machinery, codon usages, protein folding and protein secretion system were different and the inherent trait carried within their DNA insert may not be able to express in E. coli (Streit & Schmitz, 2004). The size of the genes of interest and insert DNA fragments used to construct the library was another factor contributing to the challenge. If the size differences were too narrow (assuming the inserts were bigger than the gene with function of interest), most of the random shearing generated DNA fragments would rarely have the intact gene, with promoter on the same single insert fragment. Chance of being expressed and detected would be scarce. Therefore, the high-throughput screening would be needed to search for one positive clone in 20,000 to over 100,000 clones (Brady, 2007; Chung et al., 2008) of this functional-based strategy (Parsley et al., 2010).

For sequence-based, the analysis is relied on the similarity comparison of the metagenomic sequences to those sequences on public database. At least in part, the sequences of the gene or homologous gene of interest must be known and used for comparison, and be referred to by (de novo) sequences from metagenomic insert DNA. The analysis of metagenomic library for gene of interest could be done by gene specific degenerate primers, or hybridization probes, for specific gene function or groups. Sequentially, the positive clone with the insert DNA carrying gene of interest would be detected and analyzed. Alternatively, the whole insert fragment of the entire library are sequenced and traced back to the clone from which sequence of the interesting gene come. Although, this strategy would unlikely obtain the new gene with new function, new variant of the targeting trait have been discovered (Park *et al.*,

2008; Gontang *et al.*, 2010; Parsley *et al.*, 2010a; Parsley *et al.*, 2010b; Parsley *et al.*, 2011).

2.2 Metagenomic and natural product discovery

In general, natural products are organic compound obtained from living organisms, which are divided into two groups, the primary and secondary metabolites. The former groups are usually high molecular weight and fundamentally could be found in every organisms and mostly tend to be used within the producer, the later ones are the low molecular weight compounds (<3,000) found in specific groups of organism (Lefevre et al., 2008; Dewick, 2009). As most of secondary metabolites usually exert some biological effects to others being around them, these bioactive compounds are targeted to be used in drug discovery and development. Bioactive compounds from cultured microorganisms have played the important role in modern drug discovery for many decades. (Handelsman et al., 1998; Gillespie et al., 2002; Bérdy, 2005; Bode & Muller, 2005; Newman & Cragg, 2007; Lefevre et al., 2008). Despite their being prolific resources, they represent only about 1% of the existing microbial community in the nature. The wealthy reservoir of those bioactive compounds of the 99% uncultured microorganisms have been proved accessible by technology of metagenomics (Handelsman et al., 1998; Rondon et al., 2000; Gillespie et al., 2002; Courtois et al., 2003; Streit & Schmitz, 2004; van Elsas et al., 2008a, 2008b). Although they cannot yet be cultivated, their genetic material and information involving in the biosyntheses of their bioactive compounds have been captured and stored in metagenomic libraries. New class of acyl-amino acid antibiotic was the early example of the power of the technology to search for novel bioactive compound biosynthetic gene from as-yet uncultured (Brady & Clardy, 2005, 2003; Brady et al., 2004).

2.3 Polyketides

Polyketides are a class of natural products, which have also been placed as a member under the lipid classification system. Linear polyketides, polyenes, polyether, macrolides and lactone polyketides, aromatic polyketides, and flavonoids are examples of their sub-categories, representing each structurally different groups of molecular carbon backbone of the polyketides (Fahy *et al.*, 2005). Up to 2006, they comprise about 7,000 known structures of all natural products discovered. They are very diverse in term of their function which could be antibiotics, immunosuppressants, antiparasitics, cholesterol-lowering, or antitumoral agents (Fig 2.1) (Weissman & Leadlay, 2005; Hertweck, 2009).

These highly complex substances and amazingly diverse in functionality are biosynthesized by polyketides synthases (PKSs). These enzymes are evolutionary closely related to fatty acid synthases (Jenke-Kodama et al., 2005). Their biosynthetic pathways are very alike, both in substrates and mechanisms of chain assembly. They both synthesize their products from simple building blogs, e.g. acetate and propionate, by repeating the decarboxylative condensation reaction of the activated carboxylic acid starter or extender units in orderly repeated until reaching the defined molecular chain length of their unique core complex molecular products. However, the fatty acid synthases are more rigid in their biological pathway. Their intermediate products have to undergo all the reduction processes to become fatty acid. On the other hand, the PKSs are more creative and use all possible combinations of those reduction steps to construct varieties of structurally end products and so function (Hertweck, 2009). In part, this might be due to the fatty acid synthases are responsible for producing primary metabolites, while another are making secondary metabolites (Fig. 2.2). There are three main types of these enzymes, type I PKSs (modular types of multifunctional megapeptide enzyme), type II PKSs (complex of bacterial iteratively monofunctional enzymes), and type III PKSs (lacking of acyl carrier protein (ACP), chalcone synthase type).

For modular type I PKSs, these enzymes are multifunctional enzymes with series of active domains for each functional group covalently link together into sets or modules on a single peptide molecule. The typical minimal domains for a simple module comprise ketosynthase (KS), acyl transferase (AT), and ACP (Fig. 2.2, 2.3, 2.4a). In type I PKSs, the series of modules catalyze the incorporation of the acylated monomers into the polyketide backbone chain in order one to one, one module for one monomer incorporation in respect to their physical order on the PKS megapeptide. As

each module operates only one, and relay its product to the next neighboring module until it reaches the last module of the enzyme. This orderly repeated reaction may also be called assembly-line fashion (Fischbach & Walsh, 2006).

Figure 2.1 Samples of polyketides showing their highly structural and functional diversity. The varieties of polyketides are shown and grouped according to their mode of biosynthesis, (a) reduced polyketides, (b) aromatic polyketides, and (c) unclassified. (Weissman & Leadlay, 2005)

Figure 2.2 The diagrams depicting the basic mechanism comparison between fatty acid synthases (A) and PKSs. (B). For fatty acid synthases (a), there is only one loop for their intermediate core structural products to go through to become fatty acid. Polyketides have a lot more options (B); their intermediate products can avoid all reducing processes via route "a", or could be partially or completely reduced via route "b". Enzyme domains shown in the diagrams are ketosynthase (KS), acyl transferase (AT), acyl-carrier protein (ACP), ketoreductase (KR), dehydratase (DH), and enoyl reductase (ER). The first three are considered minimal core enzyme for PKSs, and another three are may considered optional. (From Hertweck 2001)

Figure 2.3 The diagrams depicting the structural organization of modules, domains, and their products show the similarity between type I PKS and NRPS. They are multimodular megapetide, within each module resides the functional domains orderly organized and operated in assembly-line manner to generate precisely predictable product. [NRPS, nonribosomal pepetide synthetase: (A) adenylation, (C) condensation, (M) methyltransferase, methylation, (PCP) peptidyl carrier protein; (PKS) polyketide synthase: (ACP) acyl carrier protein, (AT) acyl transferase, (KS) ketosynthase, (DH) dehydratase, (ER) enoyl reductase, (KR) dehydratase, and (Te) thioesterase] (From Schwarzer and Marahiel, 2001)

The additional modification may occur with the present of additional reducing domains like ketoreductase (KR), dehydratase (DH), or enoyl reductase (ER), in a module (Fig. 2.2B and 2.4b). This typical organization of the type I PKS functional groups may sometimes called archetypal erythromycin which may frequently find in *Actinobacteria*, *Myxobacteria*, *Pseudomonades*, and *Cyanobacteria* (Jenke-Kodama *et al.*, 2005). The variety combination organization of these functional groups fruits into the diverse structural polyketide products.

a) PKS: Reactions catalyzed by essential domains

Figure 2.4 Essential PKS domains (a), PKS optional domains (b). (Schwarzer, and Marahiel, 2001)

The modular type I PKSs are divided into multimodular or iterative types. While the iterative type I PKSs use an enzyme module repeatedly to synthesize their products, the multimodular type I PKSs use each of their enzymatic modules once for their product assembly. In addition, sub-typing of the multimodular type I PKSs can be further grouped according to their domain organization. The cis- or trans- AT groups, are categorized based on the possessing of the integrated AT domains on their enzymatic modular proteins (cis-AT), or lacking of the AT domain on their enzymatic modular proteins (trans-AT). The required AT activity is then provided by the free AT enzyme encoded from the different open reading frame from which the rest of the modular domains encoded. Although, PKS enzymes catalyze the construction of the extraordinarily structurally and functionally diverse compounds, the KS catalytic domains are recognizable as an enzyme superfamily found across the living domains, prokaryotes, fungi, and plants. All sub-types of both type I multi-modular and iterative PKSs mentioned above can be distinguished on the phylogenetic trees reconstructed based on their KS domains amino acid sequences, as each of them would clustered into each unique clade of their own groups. Additionally, for the cis-AT type I multimodular, the clustering among KS of the same taxonomic groups is frequently observed (Moffitt & Neilan, 2003). Another phylogenetic unique groups on the KS phylogenetic tree is the special KS domain of the nonribosomal peptide synthetases (NRPSs) associated PKSs, the hybrid PKS/NRPS, they responsible for the production of the compound with amino acid on the polyketides moiety or vice versa. This special KS domain locates in the PKS module lies adjacent downstreamed from NRPS module.

As the phylogenetic analyses of KS domain amino acid sequence could distinguish and group the subtypes of type I PKSs, they have been used for detection and identification the evolutionary related of the newly discovered KS domains (Jenke-Kodama *et al.*, 2005; Kim & Fuerst, 2006; Zhao *et al.*, 2008). More conveniently, despite their low statistical support, the truncated sequences of KS domains generated from KS specific gene polymerase chain reaction (PCR) are powerful enough to distinguish these type I PKS subgroups, especially between cisand trans-AT (Piel *et al.*, 2004).

2.4 Nonribosomally synthesized peptides

Nonribosomally synthesized peptides are other secondary metabolites with highly bioactivity, and similar to polyketides in the aspects of their biosyntheses through the similar assembly-line fashion by large multifunctional domains megapeptide enzymes, nonribosomal peptide synthetases (NRPSs). As with the PKSs, NRPSs compose of functional domains organizing into set of modules, each module respond for each activated amino acid incorporated into the final core structural peptide. The functional domains in NRPSs are also named the similar way, and function in similar manner as with the minimal core domains in PKSs (Fig. 2.5).

a) NRPS: Reactions catalyzed by essential domains

Figure 2.5 Reactions catalyzed by essential NRPS domains: A domain; PCP, T domain; C-domain; and, Te-domain. (From Schwarzer, and Marahiel 2001)
The adenylation (A) domain (analogous to AT) catalyzes amino acid adenylation; it selectively activates the carboxylate with ATP to form aminoacyl-AMP intermediate, and incorporates the aminoacyl group of the activated amino acid monomer onto thiolation (T) domain, (similar to ACP) which is responsible for phosphopentetheine thioester formation and acting as the attachment site for the growing peptide chain molecule, the peptidyl carrier protein (PCP) domain. For NRPSs, their substrate can be either proteinogenic or nonproteinogenic amino acid. The condensation (C) domain (analogous to KS) forms the peptide bond and binds substrates together. At the C-terminus of the NRPSs, there would be thioesterase (Te) domain to release the peptide chain from the NRPSs. A set of these domains form a minimal NRPS module in the form of A-T-[C-A]_n-Te (Schwarzer & Marahiel, 2001; Fischbach & Walsh, 2006).

There are three types of these NRPSs according to their domain architecture and assembly mechanism, the linear NRPS (type A), the iterative NRPS (type B), and the non-linear (type C). Type A, the classical arrangement, the modules and domains arrange corresponding to their peptide product (one module one amino acid), and the DNA sequence of the gene. Type B is also the modular type similar to type A, but the modules are reusable during peptide syntheses; thus there are more amino acid incorporated in the peptide than the module present on the enzyme. Type C is an unorthodox module arrangement; or, it could be monomodular, multiple duplicate of single module.

Besides those domains of the minimal set, NRPSs also have the optional domains as in PKSs. For example, the epimerization (E) domain is often found in NRPSs in gram-positive bacteria where D-amino acid is required in the peptide stricture, but is scarce or absent in cell of the producer. The E domain would epimerize L-amino acid to D-amino acid before the condensation. Therefore, the domain with an -E-C- organization is expected to incorporate the D-amino in the nonribosomal peptide. The C domain in the module function in that selecting and activating L-amino acid but condensing D-amino acid into the product are assigned as ${}^{\rm D}C_{\rm L}$ domain.

2.5 Hybrid PKS/NRPS

The hybrid PKS/NRPS is the enzymatic system responsible for biosynthesis of natural product with the mixed structural backbone of amino acid and short carboxylic acids. Many bioactive compounds are synthesized by this hybrid system. Some are shown with their domain organization in Fig 2.6f-j. Earlier, this system had been recognized from the bioactive compounds produced by myxobacteria. Their bioactive compound, myxovirescin, epothilone (Fig 2.6g), myxothiazols (Fig. 2.6f), and myxolamid showed the polyketides backbone with the amino acid incorporated (Silakowski *et al.*, 2001). Later, two hypothesized scenarios of hybrid were considered by Shen 2002 using bleomycin biosynthetic gene cluster as a model (Shen *et al.*, 2002). One was the PKS module positioning in front of the NRPS module, and

Figure 2.6 Examples for the organization of NRPS and PKS/NRPS hybrid gene clusters. The cluster for the: (a) surfactin from *Bacillus subtilis* ATCC21332, (b) tyrocidine from *Bacillus brevis* ATCC 8185, (c) cyclosporine from *Tolypocladium inflatum*, (d) chlorocremomycin from *Amycolatopsis orientalis*, (e) actinomycin from *Streptomyces chrysomallus*; PKS/NRPS hybrid (f) myxothiazol from *Stigmatella aurantiaca*, (g) epothilone from *Sorangrium cellulosum* So ce90, (h) yersiniabactin from *Yersinia pestis*, (i) mycobactin from *Mycobacterium tuberculosis*, (j) antibiotic TA from *Myxococcus xanthus*. (Schwarzer, and Marahiel, 2001) [larger at Fig. B17]

another was the vice versa. They found and hypothesized that the KS of the later combination, where the NRPS module positions in front of the PKS module, was unique because this KS domain had to act on and condense peptide onto the polyketide unit. This unique KS exhibited the phylogenetic well define and evolutionary apart from other KS (Fig. 2.7) by many studies. It carried the distinct characteristic conserved motifs (Fig. 2.8a) "N(D/E)KD" and "VQTACSTS" (distinct amino acid is shown with underline, the active site is shown with double underline) around the cysteine active site (Moffitt & Neilan, 2003; Ginolhac *et al.*, 2004; Ginolhac *et al.*, 2005; Zhao *et al.*, 2008). Variant of this hybrid signature sequence was found and sub-groups were proposed (Fig 2.8b) (Zhao *et al.*, 2008).

Figure 2.7 The PKS KS compressed tree showing the well defined and evolutionary distinctive from both actinomycetales and non-actinomycetales clade of hybrid NRPS/PKS (Ginolhac *et al.*, 2004)

Figure 2.8 Sequence alignments showing the signature motif of PKS in PKS/NRPS hybrid (the NRPS module locating in front of PKS module). (a) Distinct characteristic conserved motifs "N(D/E)KD" locating at 22 amino acids upstream from the active site cysteine in "VQTACSTS" (distinct amino acid is shown with underline, the active site is shown with double underline) (Moffitt, and Neilan, 2003). (b) Hybrid PKS/NRPS I with the signature N(D/E)KD" and Hybrid PKS/NRPS II with variant at the signature sequence (Zhao *et al.*, 2008).

One of the factors contributing to the vast diverse structure of polyketides and nonribosomal peptides is believed to be the variety of possible combination and organization of their enzymatic functional domains and modules. The mixed of these two major microbial bioactive compound biosynthesis systems results in even greater diversity of the combination of bioactive compound, and opportunity for those who investigate the way to engineer the combinatorial biosynthesis.

2.6 Mangrove soil microbial community

Mangrove forest is an intertidal and unique ecosystem that could be found along 60-75 % of the tropical and subtropical coastlines around the world. It has been known for high productivity that nurtures and supports life beyond its own system (Nabeel et al., 2010). Most information on those productivity were based on chemical based measuring, e.g. total carbon mass, gas production, or mass shifted by microbial growth (Barrera-Alba et al., 2007; Kristensen et al., 2008). Little studies have been observed the microbial community and diversity in mangrove system. Microorganisms in mangrove sediment have been found that they contribute greatly to the nutrient distribution along the food web within mangrove forest and off shore. The bacteria discovered by cultured based 70% was Gammaproteobacteria, 20% was Firmicutes, and the rest was Actinobacteria. (Nabeel et al., 2010). This was similar to other microbial investigation that most discovered by cultivation; only bacteria in phylum Firmicutes and Proteobacteria were found. Some of them found to function as nitrogen fixer and help promote plant (mangrove) growth (Kathiresan & Selvam, 2006); some expressed valuable lytic enzymes which could degrade the plastic waste (Kumar et al., 2007). In the study of Sudha (2009), the Proteobacteria capable of producing L-asparaginase, the enzyme used in lymphoblastic leukemia treatment, was isolated. Using culture-independent methods, the diversity of those cultured microbe were included. 16S rDNA clones from Futien mangrove forest was study and found that the majority (67%) of bacterial phylotypes were fall among five classes of phylum Proteobacteria. Gammaproteobacteria were the most abundant among them. Over ten phyla were also found in minor portion, including Cytophaga, Flexibacter, Bacteroides, Actinobacteria, Chloroflexi, Firmicutes, Fusobacteria, Clamydiae, Verrucomicrobia, Fibrobacteres, Acidobacteria, and Planctomycetes. Detected over ten bacteria phyla, the mangrove soil microbial community was considerably harboring high diversity of bacteria (Liang et al., 2006). Using the same approach, mangrove sediment in India, was found to harbor at least 8 bacterial phyla. Four classes of Proteobacteria, Flexibacter, Actinobacteria, Chloroflexi, Firmicutes, Acidobacteria, Gemmatimonadetes, and Planctomycetes were found (Ghosh et al., 2010). As human polluting all other environment, mangrove ecosystem is not excluded, it was found that pollution could shift the microbial community (Ghosh et

al., 2010; Taketani *et al.*, 2010), and in some cases could reduce the population diversity (Kristensen *et al.*, 2008; Sjoling *et al.*, 2005). For the Klongkone mangrove itself, Sakami (2008) found that the number of bacteria in the microbial community at mangrove forest might be lower than shrimp culture pond; however the population complexity were higher and quite stable all around the forest area to mudflat.

To search for new natural products, there are many approaches available (Demain and Sanchez, 2009). Screening from unexplored environment dwelling new microbial taxa by mining microbial genomes would be the most promising approach (Donadio *et al.*, 2010). The mangrove forests are one of the richest environments promising for unique microorganisms.

CHAPTER III

MATERIALS AND METHODS

3.1 Materials

3.1.1 Culture media and antibiotics

Luria Bertani (LB) culture medium was used as general all purpose for bacterial culture medium. LB with 1.5% (w/v) agar (Difco) supplemented with ampicillin (T.P. Drug laboratories) (100 μ g/ml) (LB_{Amp}) or chloramphenicol (Sigma) (12.5 μ g /ml) (LB_{Cm}) were used for the cultivation of appropriate recombinant clones. LB agar with appropriate antibiotic supplement with the addition of 5-bromo-4chloro-3-indolyl-beta-D-galactopyranoside (X-Gal) (Sigma) (40 μ g/ml) and isopropyl-beta-D-thiogalactopyranoside (IPTG) (Sigma) (40 μ g/ml) (LB_{AmpXGI} or LB_{CmXGI}) was used in blue white selection process. LB agar containing chloramphenicol (12.5 μ g /ml) and arabinose (Sigma) (0.01%w/v) (LB_{CmAr}) was used in fosmid high copy number inducing experiment. Sabouraud's dextrose agar (SDA) (Merck) or SDA supplemented with Ketoconazole (USP24; Karingo, Italy) was used for cultivation of *Candida albicans* ATCC 90028 in the antifungal assay. Muller-Hinton (MH) agar (Merck) was used for cultivation of test strains in the antibacterial assay. 7% sheep Blood agar was used for hemolytic functional screening.

3.1.2 Chemicals

Chemicals used for preparing buffers and solutions needed in this study were as listed: agarose (Vivantis), boric acid (BioScience Inc), cetyl trimethylammonium bromide (CTAB) (BioScience Inc), chloroform (Merck), absolute ethanol (Merck), ethidium bromide, ethylenediaminetetraacetic acid (EDTA) (BioScience Inc), glycerol (Fisher Scientific), glycogen (Thermo Fisher Scientific), glacial Acetic acid (Merck), hydrochloric acid (Merck), isopropanol (Merck), sodium chloride (Merck), sodium acetate (Merck), SYBR[®] Gold (invitrogen), and tris (hydroxymethyl) aminomethane (Tris) (BioScience Inc).

3.1.3 Disposable lab wares

Plastic wares used in this study were as the following: 50 ml and 15 ml centrifuge tubes (Corning), 30 ml centrifuge tubes (Nalgene[®]), microfuge tubes 0.2, 0.5 and 1.5 ml (Axygen), pipette tips for volume 20, 200, and 1000 ml (Axygen), disposable plastic Petri dish (Hycon). For DNA isolation from agarose gel by electroelution into dialysis tube, SnakeSkin[®] pleated dialysis tubing (Thermo Scientific) was used. Glass beads (undrilled, 3 mm; Ajax Finechem Pty Ltd) were used to spread bacteria suspension on agar plate.

3.1.4 Microorganisms, and growth condition

Escherichia coli DH5α was used as a host cell for PCR amplicons library construction. *E.coli* EPI300TM-T1R (Epicentre® Biotechnologies), the host for fosmid library construction, was supplied as part of The CopyControlTM Fosmid Library Production Kits. pSuperBAC1 carrying *E. coli*, DH10B JW366 (obtained from Department of Plant Pathology, University of Wisconsin, Madison, USA.) was used for the construction of chloramphenicol-resistant *Bacillus subtilis*. *Candida albicans* ATCC 90028, *Serratia marcescens* ATCC 27117, and chloramphenicolresistant *Bacillus subtilis* (*B. subtilis* Cm^R) were used as test strains. *B. subtilis* Cm^R was constructed earlier in the laboratory by electrotransformation of pSuperBAC1 into *B. subtilis* ATCC 6633 cell. *Streptomyces peucetius* var. *caesius* TISTR1253 purchased from Thailand Institute of Scientific and Technological Research (TISTR) Culture Collection was used as a source of type I PKS KS gene, a positive control for its gene specific PCR.

Otherwise indicated, all bacteria used in the study normally were grown at 37 °C overnight, with 200 rpm shaking for broth culture. *Candida albicans* ATCC 90028 was normally cultivated at 30 °C on SDA.

3.1.5 Vectors, primers, DNA marker, and molecular kits

pCC2FOSTM vector (Epicenter) provided within CopyControlTM Fosmid Library Production Kit was the vector used for fosmid library construction. pGEM[®]-T Easy vector (Promega) was a T-A cloning vector used for PCR amplicon library construction. Primers used in this study were listed in Table 3.1. Lambda DNA *Hin*dIII digest marker (Fermentas), GeneRuler DNA marker mix (Fermentas), VC 1kb DNA Ladder (Vivantis), VC100bp Plus DNA Ladder (Vivantis), Low Range PFG Marker (New England BioLab) were DNA marker used in this study. The Taq enzyme and buffer for PCR reaction throughout the study were prepared using GoTaq[®] Colorless Master Mix (Promega).

High-Speed Plasmid Minikit (Geneaid) and Gel/PCR DNA Fragments Extraction Kit (Geneaid) were used for general plasmid extraction and PCR purification, respectively. FosmidMax[®] (Epicenter) was used for high yield fosmid extraction.

Name	Sequences	used for	References
MDPQQRf	5' RTRGAY <u>CCNCAGCAICG 3'</u>	KS specific PCR	Kim et al., 2006
HGTGTr	5' V <u>GTNCCNGTG</u> CCRTG 3'	KS specific PCR	
27f	5' AGAGTTTGATCMTGGCTCAG 3'	16S rDNA specific PCR	Lane. 1991
1492r	5' TACGGYTACCTTGTTACGACTT 3'	16S rDNA specific PCR	
рСС1 ^{тм} /рЕріFОS ^{тм}	5' GGATGTGCTGCAAGGCGATTAAGTTGG 3'	fosmid end sequencing	Epicenter
рСС1 ^{тм} /рЕріFОS ^{тм}	5' CTCGTATGTTGTGTGGGAATTGTGAGC 3'	fosmid end sequencing	

 Table 3.1
 Summary of primers used in this study

3.2 Instruments

For centrifugation of DNA, 15 ml and 50 ml centrifuge tubes were centrifuged in Heraeus Megafuge 1.0R with refrigeration (DJB Labcare, England) and 30 ml centrifuge tubes were used with refrigerated centrifuge (Sigma 2K 15, B. Braun Biotech International, Pennsylvania, USA). The agarose gel electrophoresis was performed using i-MyRun.NC Electrophoresis system (Cosmo Bio Co., LTD., Japan). UV visible spectrophotometer (UV-160A UV-Visible recording spectrophotometer, SHIMADZU, Kyuto, Japan) was used for optical density (OD) and % transmittance measurement. Automated thermal cycler (Mastercycler gradient, Eppendorf, Hamburg, Germany) was used for PCR. MicroPulserTM (Bio-Rad, California, USA) was used for electroporation. CHEF-DR[®]III (Bio-Rad, California, USA) was used for pulsed field gel electrophoresis (PFGE).

3.3 Mangrove mud samples

Mangrove mud at the depth of 0-10 centimeters from surface was collected from Klongkone mangrove forest, Samut Songkhram Province, Thailand during July to August. The sample collection was planned ahead for the low tide period occurring in the day time as we did not equipped with any special tools for collecting the sample under the water. The tide forecast information from Tahjeen (Tachin) tide station, Thailand, was accessed through web site of "Mobile Geographic" (http://tides.mobile geogra phics.com/locations/6300.html). The website provided information regarding tide forecast from tide station around the world. For Klongkone mangrove forest, the Tahjeen tide station was the closest one. Date and month during rainy season was searched for ones with low tide during the daytime. Sequentially, the tide prediction diagram for that particular date was examined. For example, the tide diagram for July, 13th 2007 (Fig. 3.1), the diagram provided the information telling that the sun rise at about 6:00 a.m., while the low tide started sometime before midnight (12:00 p.m.) and would reach the lowest point below sea level at 9:42 am., the tide would rise and reach the highest 3 meters above sea level at sunset (around 6:48 p.m.) of that day. The tide stays below sea level from around 8:00a.m. to around 12:00 p.m. which mean four hours period for sample collection in that day.

Nine mangrove soil cores from within two square meters were collected using soil core sampler, a PVC pipe, with about 1 inch diameter, and kept on ice until it reached the laboratory. The DNA extraction of the soil sample was performed immediately upon the arrival as described below; the rest was kept at -20 °C for long term storage. The pH was monitored at the sampling time and before DNA extraction, measured by pH test strips (Merck).

Time (O' clock; 12 hours format)

Figure 3.1 Tide prediction diagram at Tahjeen tide station obtained from "Mobile Geographic" (http://tides.mobilegeographics.com/locations/ 6300.html). The cartoon for tide level at specific time of a particular day is useful for planning the sampling time. The Y axis is relative height of water comparing to standard sea level. X axis is point of time in a day displayed in 12 hour format. The plotting areas in green with declining slope are the time for low tide. The blue plotting areas with inclining slope are representing high tide. The alternative dark and light shade above the potting area is represent night and day time, respectively

3.4 Klongkone mangrove metagenome preparation

3.4.1 Metagenomic DNA extraction

Upon arrival to the laboratory, 10 cm of the top layer of mangrove soil cores were pooled into one Klongkone mangrove soil sample. After thoroughly mixed, the sample was sieved through 4 mm and 2 mm meshes, serially, to remove animal or plant parts. The metagenome or the DNA from the soil sample was extracted directly using chemical and heat as microorganism cell disrupting means (Brady, 2007). A total of 12.5 grams of sieved soil sample was weighed into each 50 ml conical centrifuge tubes. Preheated (70 °C) lysis buffer containing 2% (w/v) SDS was added into the soil containing tubes. The tubes were, then, gently inverted and well mixed prior to incubate for 2 hours in 70 °C water bath. The tubes were inverted to evenly resuspend the bottom settled soil every 30 min during the incubation. Next, the soil lysates were left to cool down before they were centrifuged at 3500×g for 10

min at 4 °C. The obtained supernatants were transferred by poured to new clean centrifuge tube and repeated the centrifugation process. In every supernatant transferring, the waxy white material should be avoided. Sequentially, the supernatants were centrifuged again for 20 min before equally aliquot were distributed into new clean centrifuge tubes for DNA precipitation with 0.7 volume of isopropanol. After the mixtures of crude DNA solution and isopropanol were gently well mixed and incubated at room temperature for 30 min, the DNA was pelleted by centrifugation at $3500 \times g$ for 30 min at 4 °C. The DNA pellets were washed with 70% (v/v) ethanol, and left air dried at room temperature for few hours to get rid all the alcohol. The pellets were dissolved in sterile deionized (DI) water. At this point, a brownish crude mangrove soil DNA was obtained. The further purification and size selection of the DNA was done by agarose gel electrophoresis.

3.4.2 DNA purification

The compressed gel electrophoresis was used for DNA purification with CHEF-DR[®] III Pulsed Field Electrophoresis (Bio-Rad Laboratories). The crude DNA was loaded on combined well in 0.8% (W/V) agarose gel in 0.5X TBE, and was subjected to pulsed field gel electrophoresis (PFGE) with the 2 to 3 hours running condition 9.0 Volt/cm, 0.2 second initial switching time, 5 second final switching time, 120° angle, 14 °C. The low range PFG ladder (New England Biolabs) was used as DNA molecular marker. The DNA in agarose gel portion that cleared of brown substance was stained with SYBR Gold (invitrogen), and observed on the in-house blue light box with amber filter. Agarose noodle embedded with high molecular weight DNA fragments about 48 kb and above was collected for isolation of the DNA by electroelution with dialysis tubing.

3.4.3 DNA isolation from agarose gel using real time electroelution

To perform electroelution using dialysis tubing (Sambrook, 1989), high molecular weight DNA embedded agarose noodle was placed in, pre-soaked and 0.5x TBE filled, one-end sealed dialysis tube. Then the open end was carefully and securely sealed to prevent any air bubble to be present inside the tube. After the tube

32

was immerged under 0.5x TBE in the transparent electrophoresis chamber, the gel noodle was positioned to the tube wall near the negative polar of the chamber. The complete migration of the DNA was observed real time on blue light box while electromotive force (EMF) was supplied to the DNA (Fig. 3.2). The EMF polarity was reversed for 10 second to loose the DNA from the dialysis tube wall, and emptied agarose noodle was discarded. The DNA solution in the dialysis tube was collected into 15 ml conical tube and centrifuge at 4000xg for 15 minutes to clear out the possible carried over small pieces of agarose. To be more cautious and avoid the invisible small agarose pieces, only 90-95% of the supernatant was carefully transferred to new tubes without disturbing the bottom of the tubes where the pellet might possibly located. The obtained DNA solution, then, was undergone the DNA precipitation with the aid of glycogen (Fermentas), according to the manufacturer's manual, to ensure the recovery of the DNA. Briefly, 1/10 volume of 3M sodium acetate, 1/400 volume of 20 mg/ml glycogen, and 2.5 volume of ethanol was serially added one by one to the DNA solution, respectively. Most importantly, the DNA solution must be gently mixed thoroughly after and before each addition of each reagent. The mix solution was aliquot into microfuge tubes and spun down at top speed for 10 minutes before the supernatant was discarded. The pellet was washed twice with 70% (v/v) ethanol before it was air dried and resuspended in sterile DI water. Quality and quantity of the purified mangrove soil DNA was assessed by PFGE and spectrophotometry at $OD_{\lambda 230nm}$, $OD_{\lambda 260nm}$, and $OD_{\lambda 280nm}$. The ratio of $OD_{\lambda 260 nm}/OD_{\lambda 230 nm}$ was used for estimating impurity from polysaccharides, phenolate ion, thiocyanates, and other organic compounds including humic acid, while $OD_{\lambda 260 nm}$ / $OD_{\lambda 280 nm}$ was used for the evaluation of the impurity from proteins. The acceptable ratio for OD\260nm/ OD\230nm and OD\260nm/ OD\280nm for DNA was \geq 1.5 and \geq 1.8, respectively (Wilfinger *et al.*, 1997; LaMontagne *et al.*, 2002).

Figure 3.2 Real time electroelution in dialysis tubing. (a) The illuminated SYBR gold stained DNA embedding agarose gel inside a sealed dialysis tube was observed under blue light through amber filter before the electroelution. (b) After the electroelution was finished, the illuminated DNA was migrated to the opposite inner wall of the dialysis tube leaving the agarose gel noodle dimmed.

3.5 Assessing of potential novel PKS and bacterial diversity.

3.5.1 Type I-PKS KS gene specific PCR

The amplification of specific type I-PKS KS domain gene was performed using the gene specific degenerated primers, MDPQQRf/HGTGTr (Kim *et al.*, 2006) designed for amplification of type I-PKS KS gene between MDPQQR conserved motif and HGTGT histidine active site motif (Fig. 3.3 and Table 3.1) from wide host range. The purified mangrove mud metagenome was used as template in down scaled 20 μ l reaction of touchdown PCR with GoTaq® Colorless Master Mix (Promega) and 10 μ M of each primer. The PCR cycles were started with the denaturation step at 96 °C for 5 min, followed by 7 cycles of 96 °C for 1 min, 65 °C annealing, which would decreasing 1 °C per cycle for 1 min. the polymerization step was carried out at 72 °C for 1 min, followed by 40 cycle of 96 °C for 1 min, 58 °C for 1 min, and 72 °C for 1 min, and finished up with the final extension at 72 °C for 7 min. The PCR product was observed on agarose gel electrophoresis. The DNA in the agarose gel with correct size amplicon was isolated using the Gel/PCR DNA Fragments Extraction Kit (Geneaid).

Figure 3.3 A typical module organization of type I-polyketide synthase (PKS) megapeptide. (a) The minimal set comprising ketosynthase domain (KS), acyl transferase domain (AT), and acyl carrier protein (ACP). The addition functional domain may present in many modules of PKS, and are shown in dashed boxes. (b) The alignment of type I-PKS KS domain. The active sites are marked with arrow heads and the conserved motifs are underlined and labeled with their conserved amino acid sequences. The motifs "MDPQQR" and "HGTGT" are used for PCR primer design (Ginolhac *et al.*, 2004). (c) The 700 bp PCR product.

3.5.2 Amplification of 168 rDNA from Klongkone mangrove mud metagenome

The almost complete 16S rRNA gene was amplified using 16S rRNA universal primers, 27f and 1492r, as described by Lane (1991). The PCR reaction was set up using GoTaq[®] Colorless Master Mix (Promega) and 10 μ M of each primer. The purified Klongkone mangrove mud metagenome no more than 100 ng was used as template. The amplification condition after the initial heating at 95 °C for 5 min was 30 cycles of 95°C for 1 min, 55°C for 1 min, and 72°C for 1.5 min followed by a final

extension step of 5 min at 72°C. PCR products were monitored by agarose gel electrophoresis. The DNA in the agarose gel with correct size amplicon was isolated using the Gel/PCR DNA Fragments Extraction Kit (Geneaid).

3.5.3 Preparation of electrocompetent E. coli DH5a

Electrocompetent E. coli DH5a cells were prepared by glycerol washing adapted from the instruction in Biorad's *E. coli* Pulser[™] operating manual. The overnight culture of *E. coli* DH5a in a volume of 1 ml was used to inoculate into 200 ml of LB broth in 1,000 ml Erlenmeyer flask, which was incubated at 37 °C with 220 rpm shaking, until the freshly grown E. coli DH5a reached the cell density of approximately 0.3 but not exceeded the 0.6 $OD_{\lambda 600}$. Every step onward, every solutions and lab-wares had been pre-chilled and kept cold throughout the procedure. The cells were transferred into pre-chilled centrifuge bottle and spun down at $4000 \times g$ and 4 °C for 10 min. Supernatant was discarded. Cell pellet was gently resuspended to the original volume with ice-cold sterile DI water. Cell suspension was spun down to collect the bacterial cells. The washing process was repeated three more times using 10% (v/v) glycerol with the volume stepped down to 0.5, 0.1 and 0.05 volume of the original, respectively. Then, the competent cells were finally suspended in $0.001 \times$ of the original volume by 10% glycerol and divided into 50 µl aliquot for each electroporation reaction. The competent cells were immediately used and the left over aliquots were kept at -80 °C.

The electrotransformation was operated using MicroPulserTM (Bio-Rad) with pre-programmed Ec2 operating mode automatically setting. *E. coli* cells in 0.2 cm gap electroporation cuvette were electroporated with voltage of 2.5 kV and field strength (E) of 12.5 kV/cm.

3.5.4 Amplicon libraries construction

As the amplicon products, both partial type I-PKS KS and 16S rRNA gene generated from the metagenomic DNA were mixed products. The generated amplicons were ligated into T-A type cloning vector, i.e. pGEM[®]-T Easy Vector (Promega), and electrotransformed into electrocompetent *E. coli* DH5a, as described

in section 3.5.3, to sort out the individual PCR products. Circular pGEM[®]-T Easy vector (extracted from blue colonies from prior experiments) was used as positive control. One hundred white transformant colonies from 18-24 hours at 37 °C incubation on 100 μ g/ml ampicillin, 40 μ g/ml IPTG, and 40 μ g/ml X-Gal supplemented LB (Luria Bertani) agar plate (blue/white selection) were randomly collected.

3.5.5 Clones selection for sequencing

The streak plate for single colony isolation of those randomly selected white clones were done on LB agar plate with 100 µg/ml ampicillin, 40 µg/ml IPTG, and 40 µg/ml X-Gal supplementation to test for late and low expression of β galactosidase activity by keeping the plate at 4 °C for another 24 hours after 18 hours of 37 °C incubation. The remained white clones, then, were used for colony PCR and determination of the expected size of recombinant plasmid. The colony PCR for the partial type I-PKS KS amplicon was performed as described in section 3.5.1, but using only toothpick tip picked part of colony as source of DNA template. For 16S rRNA gene transformant clones, the colony PCR was performed using the vector specific primers for the insert flanking region, M13f and M13r to avoid the problem which may cause by host 16S rDNA. The results were visualized by agarose gel electrophoresis.

To observe the size of the recombinant plasmid, for each of the selected clones, the used toothpick for picking the recombinant clone for colony PCR was used for inoculating the LB broth supplemented with 100 µg/ml ampicillin. After overnight incubation, cells from 1 ml of each clones were collected, washed with sterile DI, and extracted for its recombinant plasmid using High-Speed Plasmid Minikit (Geneaid). Each extracted plasmid was digested with *Eco*RI and observed on agarose gel electrophoresis. The sizes of the pGEM[®]-T Easy vector, the partial type I-PKS KS insert and the 16S rDNA were about 3 kb, 700 bp and 1.5 kb, respectively. The positive recombinant plasmids, from the clones having both correct colony PCR product and correct size of the recombinant insert, were sequenced at Biodesign Co., Ltd. (Thailand) and 1st BASE Pte Ltd (Singapore) sequencing services.

3.5.6 Bioinformatic analyses

Bioinformatic tool packages available online, the NCBI Entrez, blastn, blastp, and pblastx (Altschul et al., 1990; Altschul & Lipman, 1990; Zhang & Madden, 1997; Camacho et al., 2009) were used for searching and downloading homologous sequences; CDD searching service (Marchler-Bauer et al., 2002; Marchler-Bauer et al., 2003; Marchler-Bauer et al., 2005; Marchler-Bauer et al., 2007; Marchler-Bauer et al., 2009; Marchler-Bauer et al., 2011) was used for identification guiding for conserved domains and domains organization with in deduced amino acid sequences (http://www.ncbi.nlm.nih.gov/); and, ClustalW2 (Larkin et al., 2007) and MAFFT multiple alignment services at EBI (http://www.ebi.ac.uk/Tools/msa/) were used in multiple alignment and % homology analysis. PKS and NRPS domains and module detection and organization were done at PKS/NRPS Analysis Web-site (Bachmann & Ravel, 2009), and at Structure Based Sequence Analysis of Polyketide Synthases (SBSPKS) web services (Yadav et al., 2003a, 2003b; Ansari et al., 2004; Yadav et al., 2009; Anand et al., 2010). For analyses performing on local PC, the bioinformatic tools and package software, the freeware ,BioEdit (V.7.0.9) (http://www.mbio.ncsu.edu/bioedit/page2.html), and the commercial one, Geneious (V. 5.4.6) (Drummond et al., 2010) purchased from Biomatters Ltd, were also used in this study. For DNA sequences which were not encoding for protein such as 16S rRNA gene sequences, blastn was the main tool for searching and collecting the homologous sequences. For protein encoding sequences, for example, type I PKS KS domain gene, the correct open reading frame needed to be assessed and the expected deduced amino acid sequences were generated with BioEdit and Geneious software. blastx and blastp were used for the homology assessment and for retrieving those homologous sequences on the public databases, and also for collecting them for later study and analyses. Online ClustalW2 from EBI was frequently used for the multiple alignment and the similarity assessment of the homologous sequences. For local PC, multiple alignments and phylogeny of the obtained homologous sequences were calculate and analyzed by Bio Edit and Geneious.

3.6 Fosmid library construction.

Purified Klongkone mangrove mud metagenome was used as a source of genomic DNA for fosmid library construction in pCC2FOSTM vector by CopyControlTM Fosmid Library Production Kit (Epicentre technologies). The construction was made as recommended by manufacturer's manual protocol with some modification. As the purified DNA situated with the size readily for fosmid cloning system, the shearing step was omitted. After the end-repairing processes, the metagenome fragments were ligated into pCC2FOSTM vectors. The ligated DNAs then were packed into phage packaging proteins (MaxPlax Lambda Packaging Extracts); subsequently, they were adsorbed and transferred into EPI300-T1R cloning host cells. The fosmid clones were plated on LB agar containing chloramphenicol (12.5 μ g/ml). After overnight incubation at 37°C, each plate of transformants were washed by 20% glycerol and stored in 1.5-ml microfuge tube. Pooled transformants were labeled and kept at -80°C for further studies.

3.7 Screening of the metagenomic library

Metagenomic library was screened for clone(s) carrying gene involving in biosynthesis of bioactive compounds.

3.7.1 Functional-based screening

For functional-based approaches, pigment production, hemolytic activity, and antimicrobial activity were observed. Many pigments were reported to be compound with biological activities, e.g. red pigment-antibiotic from Egyptian soil sample (Hussein & El-Gammal, 1976), yellow pigment with antibiotic activity (Selvameenal *et al.*, 2009), or the red aminoglycoside antibiotic "violamycin" (Fleck *et al.*, 1974), while the hemolytic activity may indicate the present of eukaryotic cell disrupting agents. The activities against microorganisms were tested on *C. albicans* ATCC 90028, *Serratia marcescens* ATCC 27117, and *B. subtilis* Cm^R. These test strains were the representative of fungal, gram negative, and positive bacterial cells, respectively. All test strains were chloramphenicol resistant strain.

3.7.1.1 Pigment production and hemolytic activity

The fosmid library clones at about 10^3 CFU/ml were plated on LB_{Cm} and LB_{CmAr} for observation of pigment production every day up to 6 days after incubation at 37 °C. In the same way, the fosmid library clones at about 10^3 CFU/ml were plated on 7% sheep blood agar plate supplemented with 12.5 µg/ml chloramphenicol and 0.01% (w/v) arabinose to be observed for hemolytic zone every day up to 6 days after incubation at 37 °C.

3.7.1.2 Preparation of test microorganisms

B. subtilis Cm^R was cultivated on LB agar plate containing 12.5 µg/ml of chloramphenicol at 37°C overnight. Then, one colony was inoculated into tryptic soy broth and incubated at 37°C and shaking at 200 rpm for 2-3 h. In the same way, *S. marcescens* fresh cell suspension was prepared from an overnight single colony inoculum incubated at 37°C and shaking at 200 rpm for 2-3 h. *C. albicans* ATCC 90028 was grown on SDA at 30 °C for 24 h and suspended in 0.85% sodium chloride solution.

The turbidity of microbial cell suspension was adjusted to 50% T at 580 nm. Sequentially, the soft agar seed media of each microbial inocula were prepared. Each bacterial inoculum was inoculated in a final concentration of 1% (v/v) into molten Mueller Hinton agar (0.5% agar). Yeast inoculum was added into two flasks of molten SDA (0.5% agar) containing subinhibitory concentration of ketoconazole (0.125 μ g/ml) and equivalent amount of dimethylsulphoxide used to dissolve ketoconazole. These seed media were used for antimicrobial activity screening. Seed medium containing ketoconazole was used to screen for compound which had synergistic activity with ketoconazole against *C. albicans*.

3.7.1.3 Antibacterial and antifungal activity Screening

Each pool of metagenomic library was serially diluted in 0.85% sodium chloride solution to about 10^3 CFU/ml. A 100 µl of diluted pool was spread on LB_{CmAr} agar plate using sterile glass beads. This was done in 20 replicas per pool. After incubation for 5 days at 25°C, the fosmid clones were tested for

antibacterial and antifungal activities, 5 replicas of each test strains. Five milliliters of prepared seed media (as described in section 3.7.1.2) were gently spread on each library plate. The overlaid plates were incubated at 37°C for overnight. Inhibition zone was observed under colony counter magnifying glass. Clones with inhibition zone were selected and streak for isolation on LB_{Cm} . Finally, they were cross tested with all of test organisms for the confirmation of antimicrobial activities (Gillespie *et al.*, 2002).

3.7.2 Sequence-based analysis

Sequence-based analysis is the analysis of metagenomic library clones mostly based on the similarity of their DNA sequences captured in the library to the sequences on public database. This type of analysis, the gene of interest usually must be, at least in part, submitted on the database to be used as reference for DNA probe or primer design.

To locate the type I-PKS KS gene fragment from metagenomic library using PCR, degenerate primers for KS gene fragments were used to screen them from the library pools. The recombinant fosmids from each fosmid Klongkone metagenomic pools were extracted using FosmidMax[®] according to the manufacturer's instruction. The extracted recombinant fosmid was then used as DNA template for type I-PKS KS gene PCR amplification using MDPQQRf/HGTGTr primers as described in section 3.5.1. Type I-PKS KS positive pool with the PCR product size about 700 bp were serially diluted to about 10³ CFU/ml and plated on LB_{Cm} plates. After overnight incubation, at least 500 library clones per pool were replicated on LB_{Cm}, and LB_{CmAr} plates, 50 clones per sub-pool plate (in 5×10 matrix). After overnight incubation, sub-pool replicas on LB_{Cm} plates were kept refigerated, and those on LB_{CmAr} plates were used for colony PCR. Colonies on a sub-pool plate were collected and resuspended together in sterile water, and then they were boiled for 5 min. Their cell lysate was used as PCR template. After the type I-PKS KS gene specific PCR, the refrigerated sub-pool plate corresponding to the sub-pool with positive PCR reaction was further replicated on one LB_{Cm}, and two LB_{CmAr} plates. Next morning, sub-pool on the LB_{Cm} plate was kept as template in the refrigerator,

and ones on LB_{CmAr} plates were used for another round PCR screening. On one LB_{CmAr} replica plate, the clones were collected by their 10 columns sub-pools. Another LB_{CmAr} replica plate, the clones were collected by their 5 rows sub-pools. Each sub-pool was resuspended in sterile water and boiled for 5 min. Supernatants of each cell lysate were screened for type I-PKS KS gene by PCR again. The matrix of the PCR results from row and column sub-pools was drawn to pick out the positive clone carrying type I-PKS KS gene. The PCR of the positive recombinant fosmid clone was repeated to confirm the result. The extracted recombinant fosmid was sequenced using the MDPQQRf and HGTGTr as sequencing primers.

3.8 Sequencing and further analysis of the recombinant clones with putative bioactive compound genes

The recombinant clones which had been found to carry metagenomic fragments and give at least one positive result from the tests above, are subjected to the complete sequencing of the insert fragment.

3.8.1 Primer walking

As the conventional capillary base sequencing, at best, it could generate about 700 good quality base pair reads at a run. To sequence the whole insert DNA fragment of fosmid cloning system capable of holding up to about 40 kb, many round of sequencing would be needed. The sequencing result of the recombinant clone using type I-PKS KS gene specific as primers was used as core sequence for designed the outward primers, i.e. 5' out primer and 3' out primer, for sequencing further DNA sequences beyond the PCR targeting sequence. Each of the returned sequencing results were used for designing other new outward sequencing primers. In the same time, the end-sequencing from both end of the insert site started with the vector primers, pCC1TM/pEpiFOSTMf and pCC1TM/pEpiFOSTMr, was parallel performed. The new primers designed from these sequencing results were named 5' in or 3' in, as they were designed for sequencing from the vector ends inward the insert DNA sequence. Supposedly, these processes were repeated until the whole insert DNA was completely sequenced. Sequentially, the insert sequence was analyzed and annotated using the bioinformatics tools described above.

3.8.2 Next generation sequencing

As mentioned above the limitation of conventional capillary base sequencing, at best, it could generate about 700 good quality base pair reads at a run. Many round of sequencing were needed to sequence the whole insert DNA fragment of fosmid cloning system capable of holding up to about 40 kb. These processes were laborious and time consuming without the guaranteed results. Next generation was one of the best alternative routes. There are many platforms for next generation sequencing; one that available at hand was GS Junior 454 sequencing from Roche. The technologies were based on emulsion PCR and pyrosequencing based reaction. The sequencing procedure was done as instructed by manufacturer guideline. In brief, the DNA sample, the recombinant fosmid, was shear into about 500-1000 bp pieces by high speed nitrogen shearing force in the nebulization step. The sheared DNA fragments were end-repaired and ligated with binding and sequencing adapters. After each DNA fragments was bound to sequencing beads in one to one ratio, the water in oil emulsion PCR was proceeded. The beads filled with DNA fragment PCR products, the template, were loaded into pico-titer plate one bead per well. After the pyrosequencing enzyme mixes was filled into the wells, the sequencing was performed and the results were recorded on the GS-Junior sequencing system. The obtained sequencing raw data was assembled into a contiguous sequence using Geneious (v 5.4.6) (Drummond et al., 2010). Consequencely, the consensus sequence, was searched for type I-PKS KS conserved motifs. As the results, the boundary of the ORF containing all of the conserved motifs was searched and annotated. The ORFs within the insert DNA was detected using bioinformatic software Geneious (v.5.4.6). The predicted ORFs were used as query sequences for blastx. Each ORF was putatively annotated for their gene function as obtained from its top hit blast results. For those that were putatively annotated as genes related to PKS were further investigated for their novelty.

CHAPTER IV

RESULTS AND DISCUSSION

4.1 Mangrove mud samples and metagenomic DNA preparation

The environmental sample using as the source of metagenomic DNA in this study was mangrove forest mud at the depth of 0-10 centimeters from surface collected from Klongkone mangrove forest, Samut Songkhram, Thailand. This mangrove forest was part of the "mangrove reforestation scheme", and was well studied and documented under the "Ecological Assessment of Mangrove Reforestation/Afforestation in Samut Songkhram Province on Zooplankton and Benthic communities" research project during 1994-2002. As indicated in the report, the reforestation successfully reintroduced the stable mangrove ecosystem and brought up its highest food web complexity and diversity richness. In addition, it also reported that the most of soil organic level was found on the top surface and was higher during the rainy season when, also, the highest primary production was observed (Paphavasit *et al.*, 2002). These were the reasons for collecting the sample during the rainy season, besides the convenient access to the mud/soil during the day-time and low-tide with the simplest means and tools required.

After the sample was collected, the collected mangrove mud/soil cores were observed and shown to be a neutral pH by pH test strips (Merck), both at the sampling site and at the laboratory. The 10 centimeters portion from surface-end of the cores (Fig. 4.1 a) were gathered and mixed before sieved to remove any parts (or whole) of animal or plant that might be in the soil, and used for the DNA extraction as described in Material and Methods.

In this study, high molecular weight DNA was obligated; however, the most diverse DNA types were also desired. Thus, the direct DNA extraction and electroelution purification according to Brady (2007) was adopted with some modification as described in Material and Methods. As the soil sample was rich with soil organic matters, the obtained crude DNA was in dark brown color (Fig. 4.1 b-d). After the PFGE and electroelution, purified DNA was obtained, however, with the unexpected smaller size than what had been anticipated. The obtained purify DNA

Figure 4.1 A mangrove mud core and its extracted metagenomic DNA solution. (a) Mangrove mud/soil core collected from Klongkone mangrove forest, Samut Songkhram, Thailand. The length-bar displayed the depth of the core to be used for DNA extraction. (b and c) The brownish supernatant containing the DNA obtained after extraction. (d) A dark brown crude DNA obtained after a series of alcohol precipitation and concentration.

from 36 to 50 kb DNA embedding gel noodle (Fig. 4.2 b dashed box with **) showed only the size between 10 kb up to 23 kb (Fig. 4.3 a). In the same way, majority of 30 to 50 kb purified DNA (Fig. 4.3 b) was obtained from agarose gel noodle embedded DNA of the size from 50 to over 95 kb (Fig 4.2b dashed box with **). This size reducing of the DNA could have been due to the shearing from isolation of DNA from gel processes. Pipetting transfer of DNA solution is well known cause for high molecular weight DNA shearing (Sambrook, 2001). Another possibility, the crude DNA might be bound or intercalated by the cationic soil organic substances causing the reduction of the effective charge and slow migration through agarose gel by electromotive force of the electrophoresis (Sigmon & Larcom, 1996; Webb & Ebeler, 2004; Wanunu *et al.*, 2009). The purified DNA, on the other hand, supposedly was free of impurity; thus, this DNA migrated through the gel on its own charge and mass, which apparently shifted to the right position for the correct size.

Figure 4.2 Mangrove mud metagenomic DNA separated in 0.8% agarose gel using Pulse field Gel Electrophoresis. (a) The brown substance separated from the high molecular weight DNA above the blue stain band of xylene cyanol dye. (b) The gel portion without the brown substance stained with SYBR Gold and observed under blue-light through amber filter. Gel embedded with DNA in the size of 50 kb to over 97 kb, and the one with DNA about 36-50 kb (dash box with *, and **, respectively) were excised from the gel; and, DNA was extracted from the gel by electroelution.

Figure 4.3 Agarose electrophoresis gel showing purified DNA from real-time electroelution. (a) Purified DNA** with the majority sized range between 9 to 23 kb was obtained from agarose gel noodle embedded DNA in the expected size range of 36 to 50 kb. (b) Purified DNA* with the majority sized range between 30 and 50 kb was obtained from agarose gel noodle embedded DNA in the expected size range of over 50 kb.

Nevertheless, the obtained 30-50 kb DNA was the perfect size for fosmid library construction without the need for the shearing step (Epicentre® Biotechnologies). This purified Klongkone mangrove mud metagenomic DNA was dissolved in 50 µl sterile DI water, with concentration about 400 ng/ µl. According to UV spectrophotometry measurement, the $OD_{\lambda 260nm}/OD_{\lambda 280nm}$ of the purified DNA was 1.89 which was acceptable purity with low protein contamination. This purified DNA also exhibited an acceptable $OD_{\lambda 260nm}/OD_{\lambda 230nm}$ ratio, which was 1.48. Although, it was lower than 1.5 that had been reported by LaMontagne (2002), this purified DNA could be successfully used for PCR reaction (in section 4.2), indicating less contamination of humic acid that could impair the downstream processes for fosmid library construction (Wilfinger *et al.*, 1997; LaMontagne *et al.*, 2002). Moreover, the recent study had shown that DNA template with $OD_{\lambda 260nm}/OD_{\lambda 230nm}$ as low as 1.24 could still be used for successful PCR reaction (Fatima *et al.*, 2011). The purified mangrove mud metagenome was kept at 4 °C until further uses.

4.2 Type I-PKS KS gene diversity and Bacterial diversity held within Klongkone mangrove metagenome

To observed whether Klongkone mangrove mud metagenome was potentially bearing novel gene involving in bioactive compound biosynthesis, and a variety of bacterial taxa, the PCR investigations on the representative genes, type I-PKS KS gene and 16S rRNA gene, were performed.

4.2.1 PCR amplification of type I-PKS KS domain from Klongkone mangrove mud metagenome

Mangrove mud metagenome was sought for type I-PKS KS domain gene with their gene specific primers, MDPQQRf/HGTGTr (Kim and Fuerst, 2006). The forward primer MDPQQRf priming at the conserved motif about 270 bp (90 amino acids) upstream of its cysteine active site, and the reverse primer HGTGTr priming the histidine active site about 430 bp (140 amino acids) downstream from cysteine active site. Genomic DNA of *Streptomyces peucetius* var. *caesius* TISTR1253 was used as positive control. As shown in Fig. 4.4, the PCR products were 700 bp as expected.

Figure 4.4 Agarose electrophoresis gel showing PCR products obtained from amplification of the partial type I-PKS KS domain gene in mangrove mud metagenome.

The purified mixed amplicons of corresponding size (700 bp) were ligated into pGEM[®]-T Easy Vector (Promega), and transformed into *E. coli* DH5 α , as described in section 3.5.4. One hundred white colonies grown for 18-24 hours on LB_{AmpXGI} agar plate were randomly picked. Slow and uneven color development of blue/ white selection was found, partly due to its instability, light sensitive, and water insoluble of X-Gal, made it difficult to distinguish at the early colony formation (Heuermann and Cosgrove, 2001). After re-streaking the picked colony on LB_{AmpXGI} and keeping them cold after incubation, 45 clones remained white. Only twenty clones were found to yield positive PCR amplification products (700 bp) of partial type I-PKS KS domain, as shown in Fig. 4.5.

M 1 2 3 4 5 6 7 8 9 10 11 M 12 13 14 15 16 17 18 19 20 +ve M

Figure 4.5 PCR products (about 700 bp) obtained from amplification of the partial type I-PKS KS domain gene in the 20 remained white recombinant clones. M: 1 kb ladder; +ve: positive control (*S. peucetius* var. *caesius* TISTR1253).

4.2.2 Sequence analyses type I-PKS KS domain from Klongkone mangrove mud metagenome

The AB1 sequencing files from both directions (forward and reverse) of each clone were contig and their vector portions were trimmed. The insert DNA sequences were then detected for their open reading frames and deduced amino acid sequences. As all these amplicons were partial Type I PKS KS domain protein sequences; thus, at least, one open reading frame of their sequences must be read through in a single frame without any stop codon to encode for the correct partial protein. Additionally, the deduced amino acid sequences were created using the standard genetic code (http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi). Thirteen clones, KK KSI 002, 003, 010, 013, 017, 019, 021, 023, 026, 027, 029, 033, and 035, were obtained with the insert sequences exhibiting, at least one, intact open reading frame without stop codon for the entire DNA insert length. Their deduced amino acid sequences were monitored for the characterizing amino acid conserved motifs for KSs, MDPQQRL, VDTACSSS, and HGTGT. As mentioned in previous chapter, MDPQQR is conserved motif used as the forward primer site; the VDTA<u>C</u>SSS is the conserved motif around the cysteine active site (underlined), and <u>H</u>GTGT, the site for reverse primer, is the amino conserved motif at histidine active site (underlined). These conserved motif features of the type I-PKS KS gene were all present in every deduced amino acid sequences of all inserts of the thirteen clones, some, with few variations (Fig. 4.6 to 4.19).

Figure 4.6 The clustalW2 alignment of partial sequence Type I-PKS KSs from mangrove mud metagenome showing the important characteristics of the conserved motifs for Type I-PKS KS proteins, the <u>cysteine</u> (*) active site motif, VDTA<u>C</u>SSS. (The enlarged figure can be seen on Fig. B18)

....|....||....||....||....||....||....| 10 20 30 40 50 60 gtagaccete ageagegeat eetgatggaa agegtatggg aageeatega ggaegeegga V D P Q Q R I L M E S V W E A I E DAG ttgacggcgg atcacctgtc gggccagcgc gtcggggtgt ttatcgggct gtctcacaat T. ΤА DHLS GQR VGV FIGL S H N gattacggcc gcatgcagat gaatccggcc ttctgcgacc cgcacatgct cactggcaac R M O M N P A F C D P H M L DYG TGN gcgggggagca tcgccgcgaa ccgcatctcg taccgcttta acttccgcgg gcccagcctg I A A N R I S Y R F N F R G P S L AGS acqqtqqaca cggcctgctc gtcttccctg gccgccaccc atgtagcctg ccggagcatg T A C S Т V D S S L ААТ H V A C R S M tggaacggcg aggcctcgat ggccattgtc gggggcgcct gcctgatgct gtcacccacc W N G EASM A I V G G A CLML S P T atccccatta acttctcgaa ggcgggcatg ctcgcacctg acggccggtg caaaaccttc ΙΡΙ N F S K A G M LAP DGRC КТГ tcggccgcgg cggacggctt tgcgcgcgga gagggggtcg gcgtcgtcat cctgaagccg S A A A D G F A R G E G V G V V I T' K P ttggccaagg ccgtcgaaga cgacgatccc gtgtacgcgg tcatccgcgg aacagccgtc A K A V E D D D P V Y A VTRG Т A V T, aacagcgacg gtcgcacaaa cgggatgacg gcgccgagcc ggcaagctca ggaggaggtc N S D G R T N G М Т A P S R O A O ΕΕV attetegagg cetgegegeg ggegaatgte gegeegagtg acatttegta categaaget ACAR A N V A P S DISYIEA Т LΕ cacggcacag gcacc н G T G T

Figure 4.7 Nucleotide sequence and its deduced amino acid sequence of partial type I-PKS KS gene from KK_KSI_002. This sequence contained 675 base pairs with 124 a, 219 c, 219 g, and 113 t. The type I-PKS KS important amino acid conserved motifs are highlighted.

····|····| ····| ····| ····| ····| ····| ····| ····| ····| ····| 10 2.0 30 40 50 60 gtggatccac agcagcgact gcttttggag gtaacctggg aagcgctgga acgatcggga LLE VTW EALE RSG V D P Q Q R L cagaacccgt ctgccttggc gggcagcgcc accggcgtct tcatcggcat cagcagttcc O N P SALA GSA TGV FIGI SSS gattattcgc ggctgcagtt cagacatccc ggcttgattg atgcttatgc cgggacagga D Y S R L Q F R H P G L I DAYA G ΤG aacqcqcaca qtqtqqccqc caaccqqctt tcatacctqc ttqatctaca aqqqcccaqc SVAA N R L S Y L LDLO N A H G P S atggccatcg acaccgcctg ctcgtcctcg ctggtggctg cacacctggg cgtggacagc D T A C S S S L V A A H L G ΜА I VDS ttgcgcagtg gtgaggtcga tctggcactg gtcggcggcg tgaacctgct cctggcacct L R S G E V D LAL V G G VNT, T T, A P gatttaacca tcactttttc ccaggcacag atgatggccc ctgacggccg ctgcaaaact D L T I T F S QAQ ММА PDGRCKT ttcgacgcgc gggctgacgg ttatgtccgc ggcgaaggct gtggcgtgat tgttttgaag r a d G Y V R G E G CGVI V L K FDA cgcctctccg atgcgcagcg cgacggcgac ccgattctgg ccttgctgcg aggttccgct R L S DAQR DGD ΡΙL ALLR G S A gtgaaccaga acggccgttc caatggtctc accgccccca acggtctggc ccagcaggca N G R S N G L ТАР V N O NGLA 0 0 A gtcattcgcc gtgccctggc taatgccggg gtaacccctg ccgatatcgg ctacgtcgag VIR RALA NAG V T P A D I G Y V E gcccatggca ccggtacc A H G T G T

Figure 4.8 Nucleotide sequence and its deduced amino acid sequence of partial type I-PKS KS gene from KK_KSI_003. This sequence contained 678 base pairs with 117 a, 215 c, 207 g, and 139 t. The type I PKS KS important amino acid conserved motifs are highlighted.

···· | ···· | ···· | ···· | ···· | ···· | ···· | ···· | ···· | ···· | ···· | ···· | 10 20 30 40 50 60 atggatcctc agcagcgtct cgtgctcgaa gtcagctggg aggcgctcga gcgggcaggg V S W M D P Q Q R L V L E EALE R A G atctccgccc ggaccctcga tgggagccct acaggtgtct acctcggcat cacctacacc S A R T L D G S P Т GV ΥL G Ι Т Ι Y Т gactaccaga agetgeegeg gtteggggag gateteegee geateaceee ceacacettg K L P R FGE DLR R I T P H T L D ΥO acgggtaacg cgataaacat cgcttcgggg cggctatcct accccctcgg gctcaaggga Т G N А I N I A S G R L S Y P L G LKG ccgagcatct cgatcgacac cgcctgctcg tcatcggcgg tcgcagtcca cctggcttgt I D T A C S Ρ S I S S S A V A V H L A C cagageetac gggcagaega gteegaaett geeetegeeg ggggtgtgaa eetgateete Ο S L R A D E S E L A L A G G V Ν L I Τ. tcgcccgagg tgatgatctg cctgagcagc acccaggccc tctctccggg agatcgttgc V M I C L S S т д А L S P G ΡE DRC cgggttttcg acgcgggagc agacgggttc gtgcgcggtg aaggctgcgg cgtactggtg R V F DΑ G Α D G F V R G ΕG С G V L ctcaageget tegeegaege ggteegtgat ggegategtg teetegettt gattegetea K R FADA V R D G D R V L A L Ι R S L acggcggtca accaagacgg caggagcagc cggctgaccg cccccaacgg gcgtgcccag Т A V NQDG R S S R L T A P Ν G R A 0 gaggeggtga tagegeggge getegaggae geeggeetga geeeaaegga etateaetae I A R A L E D AGL SPTD Υ E A V н ү ctggaggcgc acggcaccgg gact HGTG Т LEA

Figure 4.9 Nucleotide sequence and its deduced amino acid sequence of partial type I-PKS KS gene from KK_KSI_010. This sequence contained 684 base pairs with 116 a, 231 c, 222 g, and 115 t. The type I PKS KS important amino acid conserved motifs are highlighted.

···· | ···· | ···· | ···· | ···· | ···· | ···· | ···· | ···· | ···· | ···· | ···· | 10 20 30 40 50 60 atggatcctc agcagcgact actgttggag accgcttggg aggccctaga gtcagctgcc M D P Q Q R L LLE TAW EALE S A A ttatccccgc aagggttgca cggttcgcgg accggcgtct ttgtggggat taccaaaacg O G L H G S R Т GV F V G I Т S P Κ Т L gattacgccc agttggcgat gttggactac gagcagatcg acgtctacgc tggaaccggc O L A M L D Y ΕQΙ D V Y A D ΥA G T G aatggcgcgt cgttcgctgc tgggaggctg gctttcaccc tcggactgca agggccggcc GΑ SFAA GRL A F Т LGL 0 G Ν ΡA gagtcgattg acacggcttg tagctcctcg ctggtggctc tgcaccaggc ctgccacgct I D T A C S S S E S L V A LHQA С Н А gtccgcgacg gccagtgcga gacggccttg gtcggcggcg ttcatctgat gttgacgccg V R D G Q C E T A L V G G V H L М L Т Ρ gccagcacca tatttctttc tcgtgcgaag gcccttgcgc ccgatggacg ctgcaagaca R A K А S T IFLS A L A PDGR СКТ ttcgacgcca gcgcggacgg gttcgcgcgg gcggaaggtt gtggcgtctt ggtcttgaaa F DA S A D G FAR ΑE G C G V L V L K aaactggctg acgccgagcg tcacggcgat cggattctgg ctgtgattcg cgggacggcc L A DAER H G D R I L A V I R G T A Κ gtcaaccacg atgggccgag cagcggcctt accgtaccca acggtccggc gcagcaacaa V N H DGPS S G L Т V P N G P Α Q Q 0 gtgattcggg acgcgttggc tcgagcgggc ctccagcctc acgaagtcga ctacttagaa DALA R A G H E V D YLE V T R LQP gcccacggca ccggtacc Т G Т H G Α

Figure 4.10 Nucleotide sequence and its deduced amino acid sequence of partial type I PKS KS gene from KK_KSI_013. This sequence contained 678 base pairs with 118 a, 205 c, 223 g, and 132 t. The type I PKS KS important amino acid conserved motifs are highlighted.

....|....||....||....||....|| 10 20 30 40 50 60 atgqacccac agcagcggct catgcttgag atcgcctggg aggcgctcga agatgcggga M L E M D P Q Q R L I A W EALE D A G tacccgcccg acgcgatcga ggggctggtc ggggtcttcg ccgggatggg caacaacgcc Ε G L V G V F A G M G Ρ Ρ DAI Ν N A Y tacttccccg cgaacctgcg gagccgcccc gatgtcgttc gctctgccgg cgaactgcag D V V SRP FΡ ANLR R S A G ELO Y acqatgttqg qgaacqagaa ggactatgtg gcgtcccgca tctcctatca cctgaacctc G N E K D Y V A S R I S Y Н LNL Т ΜL acgggcccca gcgtcagcat caacactgcg tgctcgacgt cattggtcgc ggtatgccac G P S V S I <u>N</u> T A C S <u>T</u> S L V A V C H Т ggcttcgaca gtcttctcaa ctaccagtgc gaccttgcgt tggcaggagg gctcacggtt FD SLL Ν Y Q C DLA LAGG L T G caccttcctc agaggtcggg ctacctctgg cgggaggtca tgatcttctc gaaggacggt Y L W r e v L P Q R S G M I F S KDG Н cactgccggc cgttcgatgc ggcggcgagt ggaaccgtcg ccagcaacgg cggtggcctc C R ΡF DΑ A A S G T V A S Ν G GGL gttgtcctga agcgcctcga ggacgcggtt gccgacggcg accgcatcta tggggtgatt V V L KRLE D A V А D G D R I Y G V I cgcggaacgg gcgtcaacaa cgacggttcc aacaagatga gcttcatggc ccccagcgtg S F M R GΤ G V N N D G S Ν КМ Α P S V gagggtcaga cggccgccat cgccacggcg ctggccgaag cgggagtcga tcccgcagag GΟ ΤΑΑΙ АТА L A E A G V D P A E Ε gtcgatttca tcgagaccca cggcaccggc acc Н G T G VDF ΙΕΤ Т

Figure 4.11 Nucleotide sequence and its deduced amino acid sequence of partial type I-PKS KS gene from KK_KSI_017. This sequence contained 678 base pairs with 125 a, 221 c, 227 g, and 120 t. The type I PKS KS important amino acid conserved motifs are highlighted. Signature motifs for hybrid PKS/NRPS were highlighted and underlined.

10 20 30 40 50 60 gtggatcctc agcagcgcat caccctcgag accgtttatc atgctctgga agatgctgct V D P Q Q R Ι ТУҮ HALE DAA ctcgcgccgc agtccatcaa aggcagcgac accggcatct tcataggtgt gtccacctgg G S D ΤGΙ G V Т Q S I Κ F I S M L А Ρ gactategta atetggttea tetgeaceeg gaacaaaaca geeaggeeea ggtteeeace ΥR N L V H L H P ΕQΝ SQAQ V Р Т D ggttcggcct attccatttt ggcgaaccgc atttcttacc tgctggacct ccacggaccc SIL A N R Ι S Y L L D L ΗG G S А Y Ρ agtgageeca tegataegge etgetettet teeetggteg eegteeaeeg egeeggaa SE<u>P</u>IDTACSSSLV A V H R AAE cagatecgge teggeaattg ttegatggeg ategttggeg gggteaatge eetgettace I R LGNC SMA I V G G V N А т. т. т Ο cccgaactga gtcgctcctt ccaccaggca ggcatgttga gtgaggacgg ccgctgcaaa Ρ E L SRSF H Q A G M L S E D G RCK acctttgatc aaagcgccaa cggttacgtg cgtggtgaag gtgtaggcat ccttatcctc F D Q S Α Ν G Y V R G Ε G V G Т T. Т aagccgctca gccgggccga agccgacggc gaccgaatct acggactcat tctgggtacg ΡL S R A Ε A D G DRI Y G L Ι LG Т Κ gctgaaaacc acggcggccg ggccaatacc ctgacctcgc ccaacccgca ggcacaaaaa E N h g g r ΑΝΤ L T S P N P Q А 0 Κ А gaactgctcc tcaaagccta ccgccaggcg ggtgtagatc cccgccgggt cacctacatc L К А Ү R O A G V D PRRV т ү і E L L gaagcccatg gcaccggcac c G T G T E A H

Figure 4.12 Nucleotide sequence and its deduced amino acid sequence of partial type I-PKS KS gene from KK_KSI_019. This sequence contained 681 base pairs with 140 a, 232 c, 179 g, and 130 t. The type I PKS KS important amino acid conserved motifs are highlighted. Proline residue at the cysteine active site motif was in red and underlined. This residue appeared only on trans-AT hybrid PKS/NRPS clade (Fig.4.22).
10 20 30 40 50 60 atggatecte ageagegaae ggtgetggaa etgtegegeg atetgetega geeeetggee M D P Q Q R T VLE LSR DLLE P T, A ggcgagcgcg acatcggcgt gttcgtgggc gccggaaacc acgcctacag cgaggcgatc DIGV F V G A G N НА Ү E R S E A T G tccgcgcacc tcggtgagcc gctgcatccc aacgccatgg cgggcaacct gctcaacatg LGEP L H P N L L N S АН N A M A G М atcgcggcgc gggtggcgca ccactacgac ctgcagggcc ccgcgttggc cgtggacacc Α r v a Η Н Ү D L O G Ρ A L Α D Т Α gcgtgcaget cgggcetggt egeeetgeae etegeggeee agageetgge eaeeggegag A C S S<u>G</u>LV A L H L A A Q S L Α Т GΕ tgccgctacg ccatcgccgg cggcgtgcac ctcaacctca cgcccgccca acaccagctg С R Y A I A G G V H L Ν L Т ΡA 0 Η 0 L ttcgacaacg caggagecet gtcgccgace ggccagtgee gecegtteea tecegatgee S P T G Q C R P F H F D N A G A L Ρ DA gacggcatgg tccccggtga aggcaccgtg ctgttcctgc tccagccagc agacgccgcc G М V P G Ε G T V L F L L QΡ А D А cgggccgagg gaagagcccc catcggcatc ctccgggcgt cggccatcaa caacgacggc Ε G R A P I G I L R A S A I N Ν G R A D accageeteg gggtgatgge geecaaceee geggggeagg aggeggteat eegeegeee Т S L G V M Α Ρ Ν Ρ A G Q ΕΑV Ι R R Α ctgcgccagg cggaggtgga gcccaccgag gtctgctacg tcgaggccca cggcaccgga A E V E ΡΤΕ V C Y VEA Н G T. RQ ТG acc Т

Figure 4.13 Nucleotide sequence and its deduced amino acid sequence of partial type I-PKS KS gene from KK_KSI_021. This sequence contained 663 base pairs with 105 a, 259 c, 217 g, and 82 t. The type I PKS KS important amino acid conserved motifs are highlighted.

....|....||....||....||....||| 60 10 20 30 40 50 gtggatcctc agcagcgcct cttgctggag ctcacctggg acgccctggg tcaggcagga V D P Q Q R L LLE L T W DALG O A G attgtaccta cgtcgctcgg gggcagtccg actggcgtct acatcggcat ggcctcgggc T G V Ι V P T S L G G S P Y I G M А S G gactatggca aactggcgtc ggcgtcagcg cctgctaacg cctatacagg gacgggcctg D ΥG KLAS A S A P A N A Y T G Т G L gcggcgagcg ccagcgccgg tcggttgtcg tacgtgtttg acctatgggg cccggctcag A S A G R L S Y V F D L W G Ρ Α A A S 0 tcgattgaca cggcttgctc gtcgtccttg gtggctctgc atcaggcggc catgagttta I D T A C S S S L S VAL HQAA М S L cgctacggcg agaccgatct cgcgctcgtc gccggtgtga acgcgatgct gttagccgac L V A G V ΥG Е TDL А N A M L L A D R acaaccgtgg cgttttcgca ggctcgcatg ctgagcgggg atggttgctg caagaccttt Т тV A F S Q AR M L S G DGC С Κ Т F gacgcacggg ctgatggcta tgtgcgaagc gagggttgcg gcgtcatggt cttgcagcgt E G C A D G Y V R S G V M V L O R DA R ggcagggatg cgcggcgcga tggcaaccgg ccgttagccc tcgtcgtagg aacggcggtc G N R P L A L V V G Т G R D A R R D A V aatcaggacg gtcgaagcca agggctgacg gcgcccaacg ggctgagcca gcaggcggtc D G R S Q G L T A P Ν G L S Q Q A V Ν 0 gtggggcaag cattggcgaa cgggagggta gcggcgaacc gtatcgatat ggtcgaggcg V G 0 A L A N G R V A A N R I D M V Ε А cacggcaccg gtacc H G T G T

Figure 4.14 Nucleotide sequence and its deduced amino acid sequence of partial type I-PKS KS gene from KK_KSI_023. This sequence contained 675 base pairs with 110 a, 192 c, 247 g, and 126 t. The type I PKS KS important amino acid conserved motifs are highlighted.

....|....||....||....|||| 60 10 20 30 40 50 atggaccctc agcagcgcct aatccttcaa gtggcgtggg aggcgttggg gcatgcgggc М D P Q Q R L ILQ V A W EAL G H A G ctgccgcctt cttcgctgcc gaaggatcgc accggcgtct atatcggcgc ctccagctcc P P S S L P K D R T G V Y I G Α S S S Τ. gattactcga accgtttcta tctcgacccg gcgtccatcg acagccagtt catgaccggc N R F Y D S Q D Y S L D P A S I F М тG aatteeetga gtettatete caacegaett teetaegtge ttgatetgea taggeegage S Ι S N R L S Y V L D L Η R Ρ S Ν S L L cagacggttg acacagcatg ctcctccggc ctttacgccc tccactacgc ggtggaggcg V D T A C S S <u>G</u> L Y A L Н Ү А Т VEA 0 ttgaagteeg gaeggatega caeegecata gteggegegg teaacatget getetegeee GRID т а і V G A V N Κ S М L L S P L tttcctttcg tcggtttttc ccgcgcctcg atgctgtcga agaagggcct ctgccgcgct F Ρ F VGF S R A S M L S K K G L С R A ttcgacgccg acggcgacgg gtatgtgcgc tcggagggcg ccgccgtctt cgtgcttcgc D DG D G Υ V R S Ε G A A V F V F Α T, R gccgagcatg tggcgatcgc cgagggcgac cggatccgcg gctacgtggc ggcgaccggc Ε Η V A I A Е G D R Ι R GΥ V Α Α Т G Α gtcaacaccg acggccgcac gcccggggtc tcgcagccga gcgccgaccg gcaggcggcg Т Ν Т DGR PG V S Q Ρ S A D R Q A A ctgctgcgct cgatctaccg cgaggacggc gtcgatccga acgacctcgt ctacgtcgag S I Y R E D G V D P N D L V Y R VE gcccacggca ccggaact H G T G T Α

Figure 4.15 Nucleotide sequence and its deduced amino acid sequence of partial type I-PKS KS gene from KK_KSI_026. This sequence contained 678 base pairs with 103 a, 238 c, 207 g, and 130 t. The type I PKS KS important amino acid conserved motifs are highlighted.

20 60 30 40 50 10 atggatecte ageagegtat etteettgaa ettgeetggg aageaettga gteageegga FLE L A W EAL М DP Q Q R I E SAG tacaaccctg atacgtatga tggcctcatt ggggtttttg caggtaccag tggcaatgat D T Y D G L Ι G V F A G T S G Y Ν Ρ N D tatcgtaaaa actttgccgc aaatcagtta agcatctcat caggaatgga atcatttgag S I S S G S Y R K NFAA N Q L M E ਤ ਤ atgatgatag gcaatgatgc agattttctg acaacgcgca tttcatacaa gttaaacttt D G Ν А D F L Т Т R Ι S Y Κ L Ν F М Ι М aaaggaccaa gccttaatat acagactgca tgttccactt cacttgtggc agtacacatg G P S L N I Q T A C S Т S L V A V Κ н м gcgtgtcaga gcctgctgac gtatcaaagc gacatggcca tggccggagg tatatgtatc Т Y Q S D M A M A G С Q S L L G Ι С Τ А aggtttccgc agggccacgg ttacatgtac caggaaggca tgatctggtc gccggatgga Q G H G R F Ρ Ү М Ү Q E G ΜI W S Ρ DG cattgccggc cgtttgatgc aaaggcacag ggaacgctcc tggggcaggg tggcgggatc Ρ F D Α K A G Т L L Н С R Q G Q G G G Т gttgttctca agagacttgc tgatgcattg caagatggtg acacagttct tgcaatcata V L K R L Α D A L Q D G D ΤV L Α Т V Т aaagggtcag caataaacaa tgacggctca atgaaagtag gctttacagc tccaagtgtt Ν D G S K V Κ G S A I N М G F Т Α Ρ S V gacggccagt ctgaagccat ttccatggcc ctggcactgg gcgatgtttc agctgaaaca S E A I S M A L A L G D V S А D G 0 Ε gtcagctatg ttgaaaccca cggcacaggc acg V S Y VETH GΤ G

Figure 4.16 Nucleotide sequence and its deduced amino acid sequence of partial type I-PKS KS gene from KK_KSI_027. This sequence contained 693 base pairs with 185 a, 155 c, 183 g, and 170 t. The type I PKS KS important amino acid conserved motifs are highlighted. Signature motifs for hybrid PKS/NRPS were highlighted and underlined.

....|....||....||....|||| 20 60 10 30 40 50 gtagaccctc agcagcgcct aatccttcaa gtggcgtggg aggcgttgga gcatgcgggc V A W EAL V D P QQRL ILQ Ε HAG ctgccgcctt cttcgctgcc gaaggatcgc accggcgtct atatcggcgc ctccagctcc Y P P S S L P K D R T G V I G Α S S S T. gattactcga accgtttcta tctcgacccg gcgtccatcg acagccagtt catgaccggc Υ N R F Y L D P A S I D S Q D S F М ТG aatteeetga gtettatete caacegaett teetaegtge ttgatetgea tgggeegage S L Ι S N R L S Y V L D L Η G Ρ S Ν S L cagacggttg acacagcatg ctcctccggc ctttacgccc tccactacgc ggtggaggcg V D T A C S S G L Y A L Н Ү А Т VEA 0 ttgaagteeg geeggatega caeegecata gteggegegg teaacatget getetegeee GRID т а і V G A V N Κ S М L L S Ρ L tttcctttcg tcggtttttc ccgcgcctcg atgctgtcga agaagggcct ctgccgcgct M L S F Ρ F VGFS R A S K K G L С R A ttcgacgccg acggcgacgg gtatgtgcgc tcggagggcg ccgccgtctt cgtgcttcgc D DG D G Y V R S Ε G A A V F V F Α T. R gccgagcatg tggcgatcgc cgagggcgac cggatccgcg gctacgtggc ggcgaccggc Ε Η V A I A Ε G D R Ι R G Y V Α Α Т G А gtcaacaccg acggccgcac gcccggggtc tcgcagccga gcgccgaccg gcaggcggcg DGRT PG V Ν Т S Q Ρ S A D R Q A A ctgctgcgct cgatctaccg cgaggacggc gtcgatccga acgacctcgt ctacgtcgag S Ι Y R E D G V D P N D L V Y L R VE gcccacggca ccggaact A H G T G T

Figure 4.17 Nucleotide sequence and its deduced amino acid sequence of partial type I PKS KS gene from KK_KSI_029. This sequence contained 678 base pairs with 102 a, 239 c, 207 g, and 130 t. The type I PKS KS important amino acid conserved motifs are highlighted.

20 60 10 30 40 50 gtqgacccqc agcagcqgct gctgttggag accagccacg aggccctgga agacgccggc т ѕ н EAL V D P QQRL LLE E DAG atggcgcccg accgcgtttc cggccggccg ggcggtgtgt tcgtggggat ctgcgggatc A P D R V S G R P G G V F V G I C G М Т gactactcga agcggatcac ccgcgcgac ccgcgcttga tcgacgccta catcggctcg Y KRI Т R R D PRL I D A D S Y Т G S ggcaacggac acagegtage ggeegggegg etetegtate aetteggget eggegggeeg R А G E С D F A L Α G G V Ν L L S L T. D tgtgtggcca tcgacaccgc ctgttcgtcc tcgctggtcg gcgcgcactg ggcctgccag I D T A C S S SLV G A H W Α С V A С Q tcgcttcggg ccggcgagtg cgacttcgcc ctggccggcg gcgtgaacct cctgctcgac AGE С DFA L A G GΥ L R Ν L L L D S cccgaactga gcatcaactt ctcgaaggcc aacatgctgg ctcccgacgg gcgctgcaag S I N Ρ Ε L F S K A N M L A P D G R СК acgttcgaca cccgggccga tggctacgtc cgcggcgagg gtgcgggcat ggtcgtgctc F D Т R А D G Y V R G Ε GΑ G М V т V Τ. aageggetet eegacgeeeg ggeegaegge gategeatee tggeggtgat tegeggeteg R L S D A R Α D G D R Ι L A V Ι R G S Κ gccgtcaacc aggacggccc cagcagcgga ctaaccgtgc ccaacggtcc ggcccagcag Т V N Q D G P S S G L V P N G Ρ А 0 0 Α gacgtgatcc gccgggccct cagcgcagcc aacctggaac ccgacgacat cgactacctc R R A L S A A N L E P D D I D D V I Y gaagcccacg gcactggcac t EAHGTGT

Figure 4.18 Nucleotide sequence and its deduced amino acid sequence of partial type I-PKS KS gene from KK_KSI_033. This sequence contained 681 base pairs with 103 a, 246 c, 232 g, and 100 t. The type I-PKS KS important amino acid conserved motifs are highlighted.

•••••|•••••| •••••|•••••| •••••| •••••| •••••| •••••| •••••| •••••| 10 20 30 40 50 60 gtggatcctc agcagcggct gcttttagag gtgacctggg aggcgctgga atatgccggc V D P QQRL LLE V T W E A L E Y A G ataccgccgg acagcctgtc cggcagccag accggagttt ttattgggat tagcagccac I P P D S L S G S Q Т G V FIG I S S H gattatattc aattacagac aacacccacc ccatttagcg gcacgggtaa cgccttgagt D ΥI Q L Q T Т Р Т P F S G T G N ALS attgctgcca atcgactgtc ttataccctc aacctgcacg gccccagttg ggccgtcgat ΙΑΑ N R L S Y T L N L H G P S W A V D acggcctgtt cctcgtcact ggtagctgtt catcaggcca taataagctt gcagcagggg S S S L V A V ΗQΑ т а с IISL Q O G gagtgccatc tggccctggc gggcggggtc aatctcattc taacgccgga gctgaccgac Е С Н LALA G G V N L I LTPE т, т р atcttttttc aggccggcat gttagcgccc gacggccggt gtaaaacatt tgatgccaaa Q A G M L A P DGR СКТГ DAK न न T gctgatggtt atgtgcgggg tgaaggggcc ggtattgttg ttctcaaacg cctggcggat Y V R G ЕGА G I V V L K R LAD A D G gcccggcaag ccggagataa cattctggcg gtcattcgcg gctcggcggt aaaccaggat ARQ A G D N I L A VIR G S A V Ν O D ggccggagca acggcctgac cgcgcctaat gggcctgctc aacaggcggt aatcagacag NGLT A P N G P A Q Q A V GRS Ι R O gcgctacaaa aagcgggagt cgatgccagt caccttggct acattgaagc gcatggcacc A L Q K A G V D A S H L G Y I E A ΗGΤ ggcact G T

Figure 4.19 Nucleotide sequence and its deduced amino acid sequence of partial type I-PKS KS gene from KK_KSI_035. This sequence contained 666 base pairs with 141 a, 185 c, 199 g, and 141 t. The type I PKS KS important amino acid conserved motifs are highlighted.

The similarities among Type I-PKS KSs from mangrove mud metagenome were assessed using clustalW2 to calculate the identity percentage among each of their deduced amino acid pairs. Besides KK_KSI_026 and KK_KSI_029 with 99 % identity to each others, all of the rest showed no more than 70% identity (ranging from 34% to 70%) among themselves (Table 4.1). These suggested that most of the obtained ketosynthase sequences were diverse. Although, from their deduced amino acid identity percentage alone, they were insufficient to be concluded. They were highly possible from different PKS clusters or organisms of origin.

Table 4.1 Identity percentage among deduced amino acid Type I-PKS KS partial

 sequences from Klongkone mangrove metagenomic DNA calculated by ClustalW2.

KK_KSI_002													
KK_KSI_003	55												
KK_KSI_010	49	60		_									
KK_KSI_013	51	60	59										
KK_KSI_017	40	45	43	43									
KK_KSI_019	50	53	44	50	39								
KK_KSI_021	37	43	41	42	39	39							
KK_KSI_023	45	63	52	54	39	47	40						
KK_KSI_026	41	49	42	43	38	45	39	46					
KK_KSI_027	43	42	43	41	54	37	37	39	34				
KK_KSI_029	43	50	43	43	38	46	39	46	99	34			
KK_KSI_033	52	68	58	62	44	49	44	55	42	41	43		
KK_KSI_035	58	70	59	60	46	55	44	59	47	46	49	65	
Clones	KK_KSI_002	KK_KSI_003	KK_KSI_010	KK_KSI_013	KK_KSI_017	KK_KSI_019	KK_KSI_021	KK_KSI_023	KK_KSI_026	KK_KSI_027	KK_KSI_029	KK_KSI_033	KK_KSI_035

(Excluded KK_KSI_026 and 029, the highest % identity was highlighted in dark shade; the lowest was highlighted in light shade.)

The blastx, and blastp were operated using the insert DNA sequences, and their deduced amino acid sequences as query sequences, respectively, in attempt to identify the homology of the obtained sequences to the proteins on the public database. The BLAST results were the same for the two methods. The conserved domain database (CDD) searching service was also used. It searched and displayed the most likely homologous protein or protein family instantly along with the blast searching (Fig. 4.20).

Confirmed by BLAST and CDD searching, all Klongkone mangrove mud metagenomic DNA inserts from the thirteen (twelve diverse) clones were significantly homology to type I-PKS KS domain genes, as shown in Fig. 4.20. Their maximum % identities were in the range of 53.3% to 78.3% identity (11 out of 12, were ranging at 60s% identity or below) to their closest match on public Database. It very likely suggested the evolutionary distance between the type I-PKS KS from Klongkone mangrove soil and ones on the public database. The top blast hit results were summarized in Table 4.2. It was found that most of the obtained deduced amino acid sequences exhibited homology below 70% to those on the public database. These suggested the diversity and novelty tendency of the KSs, ultimately their linked functional PKS pathway, within the Klongkone mangrove soil metagenome. Their sequences were deposited on GenBank, and their accession numbers are shown in Table 4.3. Further phylogeny of these sequences was studied to determine their homology and novelty.

Figure 4.20 The conserved domain database (CDD) searching services provided alongside with new blast results. The diagram (A) showed the query sequence length and position. The summaries of conserved domain hit results were showed in diagram (B). The annotation for the position (C) of the active site for functional enzyme proteins were also displayed. Selecting on the displayed area brought up the full CDD service with detailed results (D).

Table 4.2 Summary of Blast results, using partial type I PKS KS sequences fromKlongkone mangrove mud metagenome as queries, showing the sequences fromGenBank returned as the highest % identity.

		Top Blast Hit	Known	species with maximum %id	lentity *
KK_KSI	% identity	Description (accession number)	% identity	Description (accession number)	protein
002	63.7	uncultured bacterium KS (ABH08749)	63.3	Mycobacterium sp. JDM601 (Actinobacteria) (YP_004521734)	-
003	78.3	uncultured bacterium KS (ACC99565)	73.9	Anabaena variabilis ATCC 29413 PKS KS (Cyanobacteria) (AAX44126)	-
010	59.2	uncultured bacterium PKS KS (ACC99568)	64.0	Chondromyces crocatus PKS KS (Deltaproteobacteria) (CAQ18829)	AjuB
013**	64.9	Mycobacterium vanbaalenii PYR-1 hybrid PKS/NRPS (Actinobacteria) (YP_951844)			
017	61.0	Hyphomicrobium denitrificans KS (Alphaproteobacteria) (YP_003755474)			-
019	65.2	uncultured bacterium KS (ADE08320)	60.8	Sorangium cellulosum PKS KS (Proteobacteria) (AAY32964)	DszA (DisA)
021	53.3	Streptomyces griseus NRPS/PKS (Actinobacteria) (YP_001821790)			-
023	60.6	Planktothrix rubescens NIVA- CYA 98 PKS (Cyanobacteria) (CAQ48259)			MicA
026	64.2	uncultured bacterium KS (AAX86994)	63.7	Maribacter sp. W-9 PKS KS (Bacteroidetes) (ACR55656)	
027	64.9	Leptolyngbya sp. PCC 73110 PKS KS (Cyanobacteria) (AAX44111)			
029	64.6	uncultured bacterium KS (AAX86994)	64.1	Maribacter sp. W-9 PKS KS (Bacteroidetes) (ACR55656)	
033***	67.0	Lyngbya majuscula PKS KS (Cyanobacteria) (AAS98782)			JamK
035	73.9	Anabaena variabilis ATCC 29413 PKS KS (Cyanobacteria) (AAX44126)			

* For ones with the top blast hit were uncultured, the next hit sequence with known species of origin was determined.

Hit with highest % identity to Chondromyces crocatus PKS KS (Deltaproteobacteria) (CAQ18829); with (65.9%) **, (69.6%) ***

	Partial Type I-PKS KS amplicon insert DNA (carried within the clone)						
Clones	Accession number	Length of nucleotide sequence (bp)	Sequence details (Figure)				
KK_KSI_002	JN224477	675	4.7				
KK_KSI_003	JN224478	678	4.8				
KK_KSI_010	JN224479	684	4.9				
KK_KSI_013	JN2244780	678	4.10				
KK_KSI_017	JN2244781	693	4.11				
KK_KSI_019	JN2244782	681	4.12				
KK_KSI_021	JN2244783	663	4.13				
KK_KSI_023	JN2244784	675	4.14				
KK_KSI_026	JN2244785	678	4.15				
KK_KSI_027	JN2244786	693	4.16				
KK_KSI_029	JN2244787	678	4.17				
KK_KSI_033	JN2244788	681	4.18				
KK_KSI_035	JN2244789	666	4.19				

Table 4.3 Summary data of partial Type I PKS KS amplicon insert DNA from

 Klongkone mangrove mud metagenome

4.2.3 Klongkone type I-PKS KS phylogenetic analysis

To determine the diversity and novelty of the obtained type I-PKS KS sequences, the rooted neighbor-joining phylogenetic trees were constructed using top five blast hits of each insert sequences and used eubacterial FabFs (KASIIs) as out groups with 1000 replication bootstraps. The constructed phylogenetic tree revealed the diversity of the type I-PKS KS acquired from Klongkone mangrove mud metagenome. They were distributed into four different type I PKS sub-classification groups, hybrid PKS/NRPS type I, type II (trans-AT), type III, and cis-AT PKS (Figs. 4.21 and 4.22). Type I-PKS KS from clones KK_KSI_017 and 027 were definely

clustering together with 100% bootstrap supported score. The phylogenetic cluster of this clade was previously assigned as PKS/NRPS hybrid type I group, and the PKS KS members of this clade were described as NRPS preceded PKS system (Moffitt & Neilan, 2003; Ginolhac *et al.*, 2004; Ginolhac *et al.*, 2005; Zhao *et al.*, 2008). In this study, however, had recognized that this PKS/NRPS hybrid type I was separated into two sub clusters. One including KK_KSI_027, showed all the signature motifs [N(DE)K] and VQTACSTS for PKS/NRPS hybrid type I described by Zhao (2008), hence, the cluster was labeled hybrid PKS/NRPS I-I. On the other hand, its sister clade, had the variable signature motif at the active site motif. Instead of having VQTACSTS, it had V*TACSTS, where * could be asparagines (N), serine (S), tyrosine (Y), histidine (H), or valine (V). As the members of this clade possessed variant of hybrid PKS/NRPS I signature, this clade was assigned as hybrid PKS/NRPS I-II; and, KK_KSI_017 was in this group.

Another group assigned as hybrid PKS/NRPS II by Zhao (2008) with the VETACSSS signature motif, but without 22 upstream amino acid [N(DE)K] pattern was closely clustered and shared the common ancestor with significant support by bootstrap value (100%) to KK KSI 019 and domain KS4 of DszA/ DisA (AAY32964), part of the disorazole synthase gene cluster. Although, KK KSI 019 and KS₄ of DszA/ DisA (AAY32964) did not show the VETACSSS signature motif, their sequences together with all others in this clade exhibited proline amino acid residue at the upstream position next to the cysteine active site signature motif (Fig. 4.22). Proline at this position did not present on any other KS sequences on the tree, but only the sequences on this clade. Moreover, the analysis of the intact sequences (where it possible) from which the KS blast results were obtained. The domain organization of these sequences revealed their lacking of AT domain within the PKS module; thus, they were trans-AT modular PKS (Table A1 and A2). As all of the clade members with the intact protein information could be identified as trans-AT PKS, this clade was putatively assigned "trans-AT hybrid PKS/NRPS". The proline residue of the sequences in this clade might be related to the trans-AT functionality. Therefore, the significance of this proline residue, present in all clade members, in the relative to the function of the PKS would be very interesting subject to be pursued.

Figure 4.21 Phylogenetic analysis of type I-PKS KS domains from Klongkone mangrove forest soil, constructed by neighbor-joining under Geneious version 5.4.6. Bootstrap values of >50%, calculated from 1,000 bootstrap trees are indicated. Sequences from this study are in boldface. The accession numbers of those sequences retrieved from Genbank are in brackets. The scale bar indicates 0.2 amino acid substitution per position.

Figure 4.22 Amino acid alignment showing signature sequences around cysteine active site motif and about 22 residues from the active site toward N-terminal pattern of ketosynthase domains for hybrid polyketides synthase/non-ribosomal peptide synthetase. The typical consensus of the KS active site motif (VDTACSSS), the previous assigned hybrid PKS/NRPS I [N(D/E) KD and VQTACSTS], and hybrid PKS/NRPS II (VETACSSS) signatures are present at the top of the alignment. Sequences from this study are in boldface. The remarks on the alignment for hybrid PKS/NRPS of each distinct clades are indicated. "*" indicates the proline residue present only on trans-AT hybrid clade, "**" indicate residue in the signature active site motif of assigned hybrid PKS/NRPS I-II that are varied (polar: asparagine, N; serine, S; histidine, H, or hydrophobic: tyrosine, Y; valine, V) amino acids. "***" indicates the possible other patterns at about 22 residues from the active site toward N-terminal (NLXX) which seem to vary according to the organisms of origin in assigned hybrid PKS/NRPS III. Marked with a diamond and an asterisk is glycine third residue downstream from active site dominantly found in this clade.

For the most distinct clade on the tree, it was the clade, where the KK_KSI_021 was placed on with 77.9% bootstrap support. This clade was distinctively separated from the rest of the tree. The domain organization from the sequences on the clade that could be analyzed showed that the module the KS belong to was placed between NRPS modules (Table A1 and A2). In addition, the last serine (S) residue on the cysteine active site motif mostly was replaced by glycine (G). As the KSs on this distinctive clade were representing those KS domain from PKS module sandwiched by NRPS module on the same megapeptide; and, it did not belong to the hybrid PKS/NRPS I. thus, this clade was hypothetically proposed as hybrid PKS/NRPS III.

The last and biggest was the cis-AT clade. This clade comprised many clusters and many of the Klongkone mangrove metagenomic type I-PKS KSs were placed here, including KK KSI 002, 003, 010, 013, 023, 026, 029, 033, and 035. No significant distinguish on the conserved motifs or their domain organization of their clade members could be used to sub-categorized them apart. All of the minor clades seemed to be the clusters of KSs from mixed groups of organisms of their origins. For example, KK KSI 026 and KK KSI 029 the similar sequences pair were placed on the clade of mixed Proteobacteria and Bacteroidetes. KK KSI 010 placed closely related to KS from Sorangium cellulosum (ABD17628). They were clustered together with KS from Cyanobacteria and Proteobacteria, while, KK KSI 002 which was closely related to KS from Actinobacteria, was placed among KS from *Cyanobacteria*. It was highly unlikely to be able to conclude anything deeper than to conclude that all of these type I-PKS KS domains from Klongkone mangrove metagenome were highly possible cis-AT PKS. Another interesting point on this clade was the KS sequences from the uncultured bacteria (ACC99586 and ACC99565) placed closely related to KK KSI 003 on the tree. They were also obtained from mangrove soil, but, from China. If these KSs from China mangrove soil and KK KSI 003, the Thailand mangrove soil, were related or come from the same PKS gene cluster, it might suggest that this PKS gene cluster was common or might be important in response to environmental stresses (niche specific) in mangrove ecosystem (Elsaied et al. 2007; Elsaied et al. 2011), harboring the same gene even geographically far apart.

It was clear that metagenome from Klongkone mangrove soil, contained variety of type I-PKS KS domains. There were both cis-AT and trans-AT together with many types of PKS/NRP hybrid systems, some of which were very likely the new systems. In fact, two of PKS/NRP hybrid systems were newly proposed in this study. In addition, as can be seen from the table. 4.2 and phylogenetic tree (Fig. 4.21), most of the homologous PKS KS domains from public database to the Klongkone mangrove metagenome's deduced amino acid sequences were from Proteobacteria Cyanobacteria, few of them were from Firmicutes, Acidobacteria, and Verrucomicrobia, Chloroflexi, and Actinobacteria. Most of these organisms of origin of the PKS KS, except those from Cyanobacteria and Actinobacteria, were in agreement with the 16S rDNA diversity study below. These may, in part, be caused by, the limitation of the metagenome extraction method used in this study. Using only SDS and heat might not be able to extract the DNA of Actinobacteria from mangrove sediment. The more vigorous extraction combination of both chemical and mechanical may be needed to reduce the DNA extraction bias (Jiang et al., 2010). Therefore, those hit blast result sequences from Cyanobacteria and Actinobacteria would most likely represent the origin of PKS KS domain resulting from horizontal gene transfers which have been recognized and documented (Ginolhac *et al.*, 2005). Even, with the biases of bacterial variation of this Klongkone mangrove mud metagenome, it certainly was the good source for searching for new PKS gene.

4.2.4 PCR amplification of 16S rRNA from Klongkone mangrove mud metagenome.

Not only the diversity of the PKS genes was monitored, but the variety of bacteria within the Klongkone mangrove mud metagenome was also observed. The universal 27f and 1492r primers (Table 3.1) targeting bacterial 16S rRNA gene were used. The length of the amplicons generate by this pair of primers was about 1500 bp (Fig. 4.23). As the amplicons were generated using Taq DNA polymerase, they were able to ligate into T-A type cloning vector, i.e. $pGEM^{\mbox{\sc B}}$ -T Easy Vector (Promega), and transformed into *E. coli* DH5 α . One hundred white colonies grown for 18-24 hours on 100 µg/ml ampicillin supplemented LB agar plate were randomly picked. The

confirmation of successful transformation was assessed by plasmid extraction and colony PCR with pUC/M13 forward and pUC/M13 reverse primer pair. The pGEM[®]-T Easy_16S rRNA amplicon recombinant plasmids from 15 clones were sequenced. Clone KK_16S_035 was suspected to be the result of chimeric amplicon and was removed during sequence submission to GenBank. The accession numbers for other 14 sequnces are JN802261 to JN802274 as shown on in the table 4.5.

Figure 4.23 Agarose electrophoresis gel showing PCR products obtained from amplification of the 16S rRNA gene in mangrove mud metagenome. *E. coli* genomic DNA was used as positive control (lane 1). Lane 2 and 3 were mangrove mud metagenome and water, respectively. Lane M was 100 bp DNA ladder.

4.2.5 Sequence analyses of 16S rRNA gene from Klongkone mangrove mud metagenome

Multiple alignment and sequence homology of 16S rDNA obtained from Klongkone mangrove metagenome were performed and calculated using ClustalW2. It was found that the range of 16S rDNA sequence identity percentage among themselves were between 72% and 85% (Table 4.4). As the similarity levels of the 16S rDNA sequences were below 97%, these indicated that all of the 16S rDNA sequences obtained from Klongkone mangrove metagenome were come from different bacterial species (Janda 2007; Stackebrandt 1994; Fox 1992).

Table 4.4 Identity percentage among 16S rDNA sequences from Klongkone mangrove metagenomic DNA calculated by ClustalW2. Total number of nucleotides in each sequence (1452-1526 bp) was shown in Fig. B1 to B14.

018														
019	79													
023	81	80												
034	77	80	78											
036	78	84	80	81										
037	79	83	80	79	85									
038	79	80	81	79	81	82								
039	80	81	81	78	80	81	84							
040	85	80	82	78	78	80	80	80						
041	77	77	77	76	76	76	77	75	75					
042	74	78	75	75	76	75	75	76	76	74				
043	72	74	73	75	74	76	74	72	73	72	75			
044	78	83	82	79	83	81	81	82	79	77	78	75		
045	77	78	77	76	77	76	78	76	75	79	75	73	77	
Clones KK_168	018	019	023	034	036	037	038	039	040	041	042	043	044	045

(The values with highlighted in dark or light shades were the highest or lowest % identity, respectively.)

To determine the novelty of the bacterial species inhabited within Klongkone mangrove soil, the obtained 16S rDNA sequences were used as query sequences to blast against GenBank database. All of the top blast results for each query sequences (Table 4.5) were uncultured bacteria, and most of them were from marine environmental samples. The top blast results for KK_16S_018, KK_16S_034, KK_16S_037, KK_16S_040, KK_16S_043, KK_16S_044, and KK_16S_045 were returned with 16S rDNA sequences with the homology level below 97%. These

suggested that half of the randomly selected 16S rDNA sequences represented novel bacterial species. For those that had been classified (KK_16S_018, KK_16S_034, and KK_16S_037), they were distributed among bacterial phyla, *Acidobacteria* and *Proteobacteria*. Another four sequences (KK_16S_040, KK_16S_043, KK_16S_044, and KK_16S_045) had not been classified.

On the other hand, the top hit blast results of KK 16S 019, KK 16S 023, KK 16S 036, KK 16S 038, KK 16S 039, KK 16S 041, and KK 16S 042 were returned with 16S rDNA sequences showing the homology equal or over 97% but not 99.5%. These implied the species novelty represented by these 16S rDNA sequences comparison was uncertainty, since; the identity score of the 16S rDNA alone is not enough to clarify the classification rank from the species level and beyond (Fox 1992). To identify as reliable same species, the genomic reassociation over 70% identity is required, which is not applicable for this study. Additionally most of them were still unclassified, for those classified [alphaproteobacterium (DQ811848), the top hit for KK 16S 02 and deltaproteobacterium (JF344660), the top hit for KK 16S 038], they were belong to phylum Proteobacteria. However, with these great 16S rDNA homology, it could not be denied the closely relationship of the Klongkone mangrove phylotypes to those already discovered elsewhere. Especially, when their counter hit blast results were also from marine environmental samples. In particular, EF125450, DQ811848, and EF125455 the top hit blast results of KK 16S 019, KK 16S 023, and KK 16S 039, respectively, were all come from mangrove soil samples. Even though it could not be concluded with confidence clearly, these Klongkone mangrove mud 16S rDNA sequences and their counter blast results were very closely related, and highly possible the same species. Although, these would mean that many of them were already discovered and not novel (which more than half that were), it confirmed that the obtained 16S rDNA sequences from Klongkone mangrove mud metagenome were come from and part of the real mangrove bacterial community.

Table 4.5 Summary of Blast results, using 16S rDNA sequences from Klongkone

 mangrove mud metagenome as queries, showing the hit results with the highest %

 identity.

Clones		Тор	Blast Hit	
(accession number)	% identity	Description	Accession number	Classification group /environmental site *
KK_16S_018	93	Uncultured sediment bacterium	HQ191049	Gammaproteobacteria/ Janssand
(JN802261)	1414/1509	clone JSS S04 317		intertidal sediment (Germany)
KK_16S_019	98	Uncultured bacterium clone	EF125450	Unclassified/ Haikou mangrove soil
(JN802262)	1486/1516	MSB-2F3		(China)
KK_16S_023	97	Uncultured alpha proteobacterium	DQ811848	Alphaproteobacteria/ Haikou
(JN802263)	1426/1456	clone MSB-3A6		mangrove soil (China)
KK_168_034	94%**	Uncultured bacteria clone	AB177173	Unclassified /subseafloor sediment
(JN802264)		ODP1230B34.16		(Peru)
KK_16S_036	98%	Uncultured bacterium clone	FJ813582	Unclassified/ volcano mud, the Gulf
(JN802265)	1485/1522	GoC_Bac_29_D1_C0_M0 ()		of Cadiz (Belgium)
KK_16S_037	93%	Uncultured Acidobacteria	HQ396922	Acidobacteria/ haloalkaline soil (salt
(JN802266)	1399/1500	bacterium clone HAHS13.83		paddy) (India)
KK_16S_038	99%	Uncultured delta proteobacterium	JF344660	Deltaproteobacterium/ Galicia marine
(JN802267)	500/1520	clone ANOX-098		oil-polluted sediments (Spain)
KK_16S_039	97%	Uncultured bacterium clone	EF125455	Unclassified/ Haikou mangrove soil
(JN802268)	1485/1527	MSB-2G1		(China)
KK_16S_040	92%	Uncultured bacterium clone	HQ190558	Unclassified/ Zhonguan oil field
(JN802269)	1403/1531	BP100		(China)
KK_16S_041	97%	Uncultured bacterium clone	GU145394	Unclassified/ Black sea suboxic zone
(JN802270)	1468/1518	BS009		
KK_168_042	98%	Uncultured bacterium clone	HM598232	Unclassified/ Deep sea sediment
(JN802271)	1435/1466	SCS_HX36_194		South China sea (China)
KK_168_043	90%	Uncultured bacterium clone	HM243858	Unclassified/ Honghu lake sediment
(JN802272)	1375/1526	HWB2224-2-58		(China)
KK_16S_044	95%	Uncultured bacterium clone	EU925843	Unclassified/ Yellow Sea sediment
(JN802273)	1451/1530	034E59		(China)
KK_16S_045	89%	Uncultured bacterium clone	EU617882	Unclassified/ northern Bering Sea
(JN802274)	1332/1504	C13S-66		sediment (China)

*The information on the sequences was from GenBank

** Uncultured bacterium (AB177173): 94% identity of 93% query coverage

4.2.6 Klongkone 16S phylogenetic analysis

Phylogenetic tree was constructed using the 16S rDNA sequences of Klongkone mangrove metagenomic 16S rDNA, their top hit blastn search, and their

related 16S rDNA from ribosomal database projects (RDP) Release 10 (Update 27 with total 1,921,179 16 rDNA sequences, with 962,279 good quality over 1200 bp of bacterial sequences). The sequences from RDP were obtained using sequatch searching tool provided at RDP website. Three related 16S rDNA sequences from non type strains and three from type strain hit matches of each Klongkone mangrove metagenomic 16S rDNA sequences were made up the related sequences from RDP. Also from RDP database, a type strain from non related bacterial phyla which did not present in the sequatch search results was included for the phylogenetic tree construction. The phylogenetic tree constructed with these 16S rDNA, visually displayed the distribution of Klongkone mangrove metagenomic 16S rDNA among 16S rDNA sequences from many bacterial phyla. From the phylogenetic tree, the 16S rDNA sequences from Klongkone mangrove mud metagenome were placed on clades the Proteobacteria, from 6 bacterial phyla, Acidobacteria, Chloroflexi, Verrucomicrobia, Lentisphaerae, and Deferribacteres. 16S rDNA sequences from 6 clones were placed on the proteobacterial clade. 16S rDNA sequences from clones KK 16 018 and 040 were on Gammaproteobacteria sub-clade, while KK 16S 023 were clustered within Alphaproteobacteria, and KK 16S 044, 039, and 038 were placed on Deltaproteobacteria. Those of KK 16S 037, 036, and 019 were clustered on Acidobacteria clade (Fig. 4.24 A.). Each of the 16S rDNA sequences from KK 16S 041, 042 and 045 was distinctively placed clostly to phylogenetic clade of Verrucomicrobia, Chloroflexi, and Lentisphaerae, respectively (Fig. 4.24 B).

The 16S rDNA sequences from clones KK_16S_034 was found to be placed among phylotypes and bacterium classified into *Deferribacteres* phylum which were the bacterial group found in deep sea ocean floor (Inagaki *et al.*, 2006). The 16S rRNA gene of uncultured bacterium clone ODP1230B34.16 was the one most related to the Klongkone mangrove mud 16S rDNA KK_16S_034. Although together with ODP1230B21.12's sequence, they were deposited on public database as unclassified. However, phylogenetic tree, in this study, (Fig. 4.24_B) clustered them with *Caldithrix abbyssi* (T) LF13T (AJ430587), the bacterium in phylum *Deferribacteres* (Mori *et al.*, 2008). This was agreed with phylogenetic tree from the study of Inagaki (2006) that those uncultured bacterium clone ODP1230B34.16 and ODP1230B21.12

were clustered on *Deferribacteres* clade as well. Thus, it was most likely the insert of KK 16S 034 would belong to the bacterium in this phylum.

For KK_16S_043, each of them was phylogenetically placed on its own distinct clade that was evolutionary closely related to those environmental unclassified 16S rDNA. In addition to its most homologous sequence from blast results was an unclassified bacterium with only 90% identity, and the phylogenetic tree suggesting the evolutionary distinct apart from all other existing bacterial phyla. It was possible this Klongkone mangrove metagenomic 16S rDNA belonged novel unclassified bacterial group.

As can be seen, no bacterium from *Actinobacteria*, the main sources of natural product in soil, was identified in this study. The limited number of 16S rDNA studied may be one of the reasons. However, the most possible reason should be the limitation of the DNA extraction method used in this study. The direct extraction with chemical (SDS) and heat was used for extraction of the Klongkone mangrove metagenome. This most gently extraction procedure was used because of the promising of high molecular weight DNA result. However, the diversity of genomic DNAs was compromised, and the ones from actinobacteria could not be extracted from mangrove soil (Jiang *et al.*, 2010). Despite the suspected limitation of bacterial phyla from the extraction bias of metagenomic DNA, the most abundant bacterial group found in this study was agreed with the study of Sakami (2008). From four of their DGGE major bands, three of them were representing proteobacterial groups (Sakami *et al.*, 2008). However, as they did not identify the 16S rRNA gene of those variety minor bands, the diversity of bacterial phylotypes present in klongkone mangrove forest had not been concluded in their study.

This study had demonstrated that Klongkone mangrove metagenome contained bacterial genomic information of diverse groups of bacteria, at least from 6 phyla and one unclassified, and half of them were very likely new bacterial phylotypes (at the species level) which could be accessed through this metagenomic DNA.

Figure 4.24_A Phylogenetic tree based on 16S rRNA gene, inferred by Neighborjoining, showing the distribution of klongkone metagenomic derived 16S rRNA genes among bacterial phyla. Bootstrap values over 50% from 1,000 resampling were shown at each node. The scale bar represents 0.05 nucleotide substitutions per site.

Figure 4.24_B Phylogenetic tree based on 16S rRNA gene, inferred by Neighborjoining, showing the distribution of klongkone metagenomic derived 16S rRNA genes among bacterial phyla. Bootstrap values over 50% from 1,000 resampling were shown at each node. The scale bar represents 0.03 nucleotide substitutions per site. (*) based on phylotypes from Inagaki (2006). Clades with 16S rRNA gene from Klongkone metagenome were displayed in bold.

4.3 Mangrove mud metagenomic fosmid library construction

From the type I-PKS KS gene diversity, it had been shown that numbers of type I PKSs could be detected in the Klongkone mangrove mud metagenome. Most of them potentially belonged to new type I PKS. However to be more practical and putting the PKS gene into work more than partial type I PKS KS domain gene was needed, and at least the whole KS domain gene or an intact PKS modular gene should be obtained for using it in the future expression or combinatorial biosynthesis study. To capture a large piece of metagenomic DNA that could hold at least an intact minimal PKS module, fosmid library of Klongkone mangrove mud metagenome was constructed using CopyControlTM Fosmid Library Production Kit. The constructed library contained about 14,000 fosmid clones. The library was kept as pooled of clones as suggested by the manufacturer's instruction manual. The 95 sub-pools contained about 150 clones per pool were kept at -80 °C until used.

4.4 Screening of metagenomic fosmid library

4.4.1 Functional based screening

The clones of metagenomic library were observed for their ability to express the desirable traits, the pigment production, hemolytic activity, and antimicrobial activities. All pooled clones were grown on LBA_{Cm} or LB_{CmAr} and the pigment formation of the clone was observed for up to six days. No clone with pigment or color was developed. The similar result was received from the hemolytic activity test on 7% (v/v) sheep blood agar. There was no hemolytic zone could be observed from 39 tested pools (1-30, 41-44, 91-95), which was corresponding to approximately 5800 clones. Unsuccessful screening for functional properties on the antimicrobial activity was repeated as the same pools as used in hemolytic activity screening were used. From all three testing strains, any clones that might exhibit a hollow or cleared zone around their colony at any sizes were collected, 479 suspected clones were obtained. The suspected clones were undergone the confirmational test against all test strains (*C. albicans*, *B. subtilis*, and *S. marcescens*) (Table 4.6). The results were inconsistent and not reproducible which led to the conclusion of no antimicrobial active clone was found.

It was not surprised that no positive clone from any tests was found. There are many factors contributing to the success rate of the functional based screening. Environmental sample choosing was one of the important factors. The sample that supported or enriched with the traits of interest would enhance the chance success rate, such as the discovery of novel agarase genes from agarolytic consortium (Voget et al., 2003). The enrichment stretagy was inapplicable in this study because. the uniqueness of mangrove forest was required. Incomplete gene, gene cluster, or operon would lead to no expression and function. Incompatible host, lack of the required expression machineries, or unequipped with the right transporting systems, all could also lead to no expression and function. The example studying of Schmitz and colleagues in 2008, the screening for genes with hemolytic activity from phage genomic DNA, and the hit rate was as high as one in 5,000 screened clones (Schmitz et al., 2008). The phage genomic DNA, which could readily be expressed in bacterial host, was speculated as one of the reason for such high hit rate. The expression of toxic elements was another factor contributed to low rate of discovering the positive results and added more challenges to the procedure. A chance of finding one positive clone in 20,000 clones to less than 1 in 100,000 clones was considered high success screening rates for the antimicrobial activity and pigment production to be found (Brady, 2007). With the modest size of the fosmid library in this study (about 15,000 clones), the functional-based screening strategy currently used was too much time consuming and the chance of finding positive clones was slim. Therefore, it was detained, and the screening strategy was steered to mainly focus on sequence-based screening until the better and more effective functional-based screening method would be found.

Pool	C. albicans	C. albicans + ketoconazole	B. subtilis*	S. marcescens*	Total
1	0	4	10	0	14
2	0	3	16	0	19
3	0	0	20	0	20
4	0	3	11	0	14
5	0	1	72	0	73
9	0	0	19	0	19
10	0	0	12	0	12
31	0	0	30	0	30
35	0	0	22	0	22
36	0	0	10	0	10
42	22	8	75	0	105
43	0	18	69	0	87
44	0	2	52	0	54
Total	22	39	356	0	479

 Table 4.6 Number of clone with suspicious inhibition zone against specific test organisms

*Chloramphenicol resistant strain.

4.4.2 Sequence based screening

This was searching processes for genes of interest captured within the metagenomic library based on the prior knowledge of the nucleotide sequences of that specific gene. Type I PKSs, one of the most important genes involving in biosynthesis of bioactive natural products, the wealthy sources for drug development and production, were the targets in this screening.

4.4.2.1 Identification of type I PKS KS domain gene from Klongkone mangrove mud metagenomic library using PCR

The sub-pools of Klongkone mangrove mud metagenomic library clones were screened for type I PKS KS domain genes. From 24 screened subpools (21-44), sub-pool number 37 was found to produce about 700 bp amplicons from the type I-PKS KS domain gene specific PCR. This successful hit rate of one from approximately 3600 might seem low comparing to 7 hit from 1000 clones. However, that high hit rate (7/1000) was from the screening of PKS within the enriched source of polyketides producing marine sponge and its associated microorganisms (Schirmer et al., 2005). Therefore, the hit rate in this study might be considered modest. The clone carrying the DNA template for this partial KS domain gene amplicon was sought out as described in section 3.7.2. The results were shown in Fig. 4.25. Three isolates (KKFOS KSI pool37 050, 088, and 106) were found to be responsible for the positive PCR reaction for the target gene. However the type I-PKS KS sequences of their recombinant fosmid vectors were identical, they were believed to be the same clone. These clones were also tested for the functional activities. There was no functional trait of interest discovered from them. The pKKFOS KSI pool37 088 recombinant fosmid vector extracted from KKFOSKSI pool 37 088 was used for further sequencing of the entire insert fragment DNA within its.

Figure 4.25 Type I PKS KS gene specific colony PCR pool matrix diagram. (a) The location of individual clone. Triplicate of these subpool matrix were prepared, two sets (on LB_{CmAr}) for pooling in column and row manner, another (LB_{Cm}) for later individual selection. Colony PCR result of pool of the matrix columns c-1 to c-10 and row r-0 to r-14 visualized on agarose gel electrophoresis (b) and (c), respectively. Nine possible positive clones [red crosses marked in (a)] were tested for type I PKS KS gene individually, and the results was visualized on agarose gel electrophoresis (d). The positive clones from (d) were confirmed for positive type I-PKS KS gene carrying (e).

4.4.2.2 Identification of novel PKS module by primer walking sequencing

The pKKFOS_KSI_pool37_088 fosmid was extracted and purified using FOSMID MAX (Epicentre), then it was sent for it DNA insert to be sequenced at 1st BASE (Singapore). The first outward primers were the reverse complement of MDPQQRf and HTGTr primers. All other designed primers and their properties were listed in the table 4.7. All primers were designed using Primer3 and were confirmed with NetPrimer and OligoAnalyzer to ensure their properties, e.g. Tm, and potential hairpin loop and dimer formation, were fitted for sequencing. Nucleotide sequencing of the inserted DNA by primer walking resulted in 4,468 bp long with about 68.6 % GC content. The entire sequence could be read through into a deduced amino sequence on a single open reading frame of translation, which also contained all three Type I-PKS KS gene characteristic motifs. The conserved motif VDPQQR (5'-GTCGATCCTCAGCAGCGT-3') was found at base position to 2,039-2,056, **VDTACSSS** (5'the cysteine active site motif **GTGGATACGGCCTGCTCCTCGTCG**-3') was found at nucleotide position 2,294 to 2,317, and the histidine active site motif HGTGT (5'-CATGGCACGGGGACG-3') located at the nucleotide number 2,711 to 2,725 (Fig. 4.26).

Walking primers								
Name	Sequences	Length (Bases)	Tm (°C)	Hairpin	Dimer			
Out5'_01	GCC GAG ACA AGC CGA AGA GCG A	22	61.4	2	0			
Out5'_02	GGG AAG ACT CGA GGA GCC AGG GTC GAT C	28	65.0	6	4			
Out5'_03	CTC GCG CAG GAG ATC CCA GTA CCG ACC GAC	30	67.9	4	1			
Out5'_04	GAA GGA GAG GTC CCG GTG CTT GGG GTA GTT	30	65.7	4	0			
Out3'_01	CGG TCA AGA CGA ACA TCG GAC ATA C	25	58.0	6	0			
Out3'_02	GAG CTC GCG TCT CTC CCG CCG CTT C	25	68.0	6	0			
Out3'_03	GTG CTA TTC GCT TTC GAG TAT GCC CTC	27	60.0	4	0			
Out3'_04	TCT CTT CAC CGG CCA GGG CTC GCA GTT C	28	67.5	4	0			
Out3_05	CCT CGA GAG ATG CGA CGA GC	20	57.1	6	2			

Table 4.7 Primers used in primer walking sequencing of pKKFOS_KSI_pool37_088insert DNA.

10) 20) 30) 40) 50)
CCACGTCGAG	CGAGCGCTCA	ACGTCAGGGC	CAGTGGTTTT	CTCCATCGCC	50
GCTATTTCGA	CGGCGTACGC	GACGTCGTCG	CTTCGATCTT	CGACACGAAG	100
CCTTTCGAAG	CTCAGCCCCG	TTACGTCGTG	GATACCGGCT	GCGGGGACGG	150
CACCTTCCTG	CGGTCGATCT	ACGAGACGGT	CCGAGCGCGC	ACGGCTCGGG	200
GCAAGGTTCT	CGATCAGTAC	CCTCTCGTCC	TCGTCGGGGT	CGACCTCAAC	250
GATGCGGCGC	TCGAGGAGGC	GAAGGGCACG	CTCGACGATC	TTCCGCACGT	300
TCTCTTGAAG	GGCGACGTCG	CCGACCCTAA	CGGGATCGAG	GCCGAGCTCG	350
AGCGTCGAGG	AATCGCGGCC	GACGACGTCC	TGCACGTGCG	CTCGTTTCTC	400
GATCACGACT	CGCACCTCCC	GATGGTCACG	GACCGCCTCG	CGGCGCAGGC	450
GCGCGCGGAC	GTCCCGTACC	GCGGCGTGTC	GGTGGGCCCG	GCGGGTGAGC	500
TCGTTCCGCA	GTCGGTCGTG	ATGCAGGGGC	TCGTCGAGCA	TCTCACCCGA	550
TGGGCGAGTG	TGCTGACGCG	ACACGGGATG	ATCCTGCTCG	AGGTTCACTC	600
GGTCGACCCC	GTCACCGCGG	CTCGCTACCG	CGAGTCGACG	GAGAGCCTCA	650
GCTTCGACGC	TTTTCAGGCG	TTCTCGCTCC	AGTACCTCGT	GGAGGCGTCC	700
GACTTCCTGC	TCGCGGTGGC	CGAGGCGGGG	CTCTTCGCGC	GGCCGGCCTT	750
CGCGCGTCGC	TACCCGACCG	CCCTTCCTTT	TACACGAATC	TCGCTCAACT	800
GGCTCGAAAG	GCGCCCTAC	CGGGTCCGCC	TGGCACGCGC	GTCCGACATC	850
CCCGCGATGA	TGGAGATCGA	GGCGGCGGCC	TGGCCCGAGC	CCCTCTCGGC	900
GTCTCGCGAG	GAGATCGAGC	GCCGTCTCGT	CACCGATCCA	CGTGGTCAGA	950
TCGTCGTGGA	ATCGGAAGGG	CGTCTCGTCG	CCGTCCTCTA	TTCCCAGCGC	1000
ATCGGGTCCG	TCGACCATCT	CGAGGGGACG	ACCCACCGGG	ACGTCGGCTC	1050
GATCGCGCGG	GAGGACGGTC	CGGTCCTTCA	GCTTCTCGGG	ATCTTCGTGC	1100
ACCCCTCGGT	GCAACACCTG	GGGATCGGCG	ACCAGCTCCT	CGAGCTCGCC	1150
CTTCAGGTCG	CCGAGGTCAC	CGCGGAGATC	CAGCTCGTTG	CCGGCGTCAC	1200
GCGATGCAGG	AACTACCCCA	AGCACCGGGA	CCTCTCCTTC	GAGGAGTACG	1250
TAGAGAGCAT	GGGGAGCTCG	AGCGTCCCGG	TCGACCCCAT	CCCTCTGATG	1300
CACACGAGCC	ACGGCGCCCG	GATCGTCAAA	GTGCTCGCGG	GGCATCGACC	1350
CGAGGACGTC	GAGAACGACG	GGGCGGGCGT	TCTCGTGACC	TACGACGTTC	1400
GCGGGGGCGG	TGGGGGCAGA	GCCCCTTCGA	CCGAGCTCGG	GAAGCGAGGT	1450
CCGGGGATCG	ACGTCGCCGA	CGAGGGGTCG	CTCGCGGCGA	AGATCGAGAA	1500
AGCGGTCCGA	AAGGTGCTTC	GCCCCGAGCG	CGAGCGCGTC	TTCTCGTCGA	1550
GCCGCGCTCT	GATGGACATG	GGCTTCGACT	CGGCCGACCT	CCTCGAGCTT	1600
CGGGTCCTGC	TGGGTGATCT	CTTTGCTCTG	GAGCTGGATC	CGACGCTCTT	1650
CTTCCGATAC	CCCACCGCCG	ACGCGCTCGC	GAGCTACCTG	GCGGGACGAG	1700
GGAAGGTCGA	GCCCACGCCT	TCGCCGACGC	CCTGGCTCGC	GCCGGTCGAG	1750
AGGACGCCGA	GCTTTGCGCG	GTCGGAGCCG	CACCGGCGCG	ACGTACAACC	1800
GCGAGCGACG	GGCTCGAGCC	GGATCGCGAT	CGTGGGAATC	GGCTGCCGGT	1850
TTCCCGGCGC	CTCGAACGTC	GGTCGGTACT	GGGATCTCCT	GCGCGAGGGA	1900
CGCGATGCCG	TCGCCGAAGC	GCCCGGGGAT	CGACCCTGGC	TCCTCGAGTC	1950
TTCCCACGCT	CGCTTCGGCG	GTTTTCTCGA	AGCGGTGGAC	CGGTTCGACG	2000
CGTCGCTCTT	CGGCTTGTCT	CGGCGCGAGG	CGAACCAG <mark>GT</mark>	CGATCCTCAG	2050
CAGCGTCTCC	TTCTCGAGAC	CTGCTGGACG	GCCCTCGAGA	ACGCGGGCAT	2100
CGCTCCCCCT	TCACTGGAAG	GCACGAGGAC	GGGCGTCTTT	CTGGGGATCA	2150
TGTCGCACGA	CTACGAGCTC	TTGCAGGTTC	GGCGCGGCCA	GGTCGGCGCG	2200
AAGGCCGACC	CCTACTTCGC	CTCCGGCAAC	TCTCTCGCCG	TCGCCGCAGG	2250

Figure 4.26 Insert nucleotide sequence obtained from primer walking sequencing. The conserved characteristics motif for type I PKS KS domain gene were highlighted in yellow, green and blue for MDPQQR conserved, cysteine active site , and histidine active site motif, respectively.

CCGCCTCGCC	TACGTGTTCG	GCTTTCGGGG	GCCGGCCATC	TCG <mark>GTGGATA</mark>	2300
CGGCCTGCTC	CTCGTCGCTC	GTCGCGGTTC	ACCTCGCCGC	CGAGAGCCTT	2350
TTTCGCGGTG	AGTGCGAGGT	CGCGATCGCG	GCCGGCGTTC	AGCTTCTGCT	2400
CGCTCCCGAG	CTCACGGCCT	CCTACGCCAA	GGCGGGTATG	TTGTCGCCGG	2450
ACGGAAGGTG	CAAGACCTTC	GACGCCTCCG	CGAACGGCTA	CGTGCGGAGC	2500
GAGGGGGTGG	GAGCGGTCGT	GCTCAAGCGG	CTCGAGGACG	CGCTTCGCGA	2550
CGGCGACGAC	GTGCTGGCGG	TCGTTCGCGG	CTCGGCGCTC	AACCAGGACG	2600
GGAGCAGCAA	CGGGCTCACG	GCGCCGAGCG	CCGCCGCCCA	GGAAGAGGTC	2650
ATCCGGGAAG	CGCTCCGAAG	GGCCGAGCTG	AGCCCCTCCG	AGATCTCTTA	2700
CGTGGAAGCT	CATGGCACGG	GGACG CCGCT	CGGAGATCCG	ATCGAGTTCG	2750
ACGCGCTCGC	CGCCGTCTAC	GGCGAGTCCC	GGGACGAAGA	GAACCCGCTG	2800
CACCTGGGCT	CGGTCAAGAC	GAACATCGGA	CATACCGAGG	GCGCGGCCGG	2850
CATCGCGGGC	CTCATCAAAG	TCGCGCTCGC	CTTGCGTCAC	GCCACCATCC	2900
CCGCGCACCT	CCACTTCGAG	CGGCCGAACC	CCTCGATCGA	TCTGACGAGG	2950
ATCCCGGCAC	GCATTCCCCG	CGAGAGCCTG	GGCTGGTCTC	TCGGGAAAGG	3000
CGCGACCAGC	CGCCTGGCCG	CGGTCAGCGC	CTTCGGCTTC	AGCGGCACCA	3050
ACGCCCACGT	CGTGCTCGAG	GAGTGGCTCG	CTCCGCCGCC	GCCGGTGCCG	3100
AGCGGTCGTC	GACCCCTGCA	CCTGCTCACG	GTCTCGGCCG	CGAGCGAGGC	3150
CTCGCTTCAC	GAGCTCGCCT	CGTCGTACGC	CGAGCGCCTT	CGACGCGACG	3200
AGACGGACTT	CGGCGACTTC	GCCTTCAGCG	TCAACACCGG	GCGCGCCCAA	3250
TTCGAAGAGC	GCTCCGTGAT	CCTCGCCGGC	TCGAGCGCCG	AAGCGGCGGG	3300
AAAGATCGAC	GGCCTGTCGA	AGGCGGGGGC	GGTCGAGCCG	GGTGTGCACC	3350
GAGCTCGCGT	CTCTCCCGCC	GCTTCGCCCA	CCATCGCGTT	TCTCTTCACC	3400
GGCCAGGGCT	CGCAGTTCGC	GGAGATGGGA	AGACAGCTCT	TCGCGAGCGA	3450
GCCCGTGTTC	CGCCGCACCC	TCGAGAGATG	CGACGAGCTC	CTGACGGACC	3500
GGCTCGCGGG	CGGACTTCTC	GCCGCCCTGT	TCCCTTCGAT	GGAGGGCGGT	3550
GTGCCCGCCG	CCCCCATCGA	CGAGACCGCC	TATACGCAGC	CGGTGCTATT	3600
CGCTTTCGAG	TATGCCCTCG	CCGAGCTCTG	GCGCTCGTGG	GGCGTCGAGC	3650
CCGCCTTCGT	TCTCGGACAC	AGCGTGGGAG	AGTACGTCGC	CGCTTGCGTC	3700
GCGGGCGTTC	TCGACCTGGA	GGGCGCGCTC	GATCTCGTGG	CCGAGCGCGG	3750
GCGGCTCATG	CAGGAGCTGC	CCGAGAAAGG	CGCCATGGCC	GCCGTCGCGG	3800
CGACGGAGTC	CGAGGTCGCG	GCCTGGATCG	GAAGCTTCGG	AGACGATCTC	3850
TCGGTAGCCG	CGGTCAACGC	GCCGTCGAGC	GTCGTGGTCT	CCGGCCGGTG	3900
CGAAGCTTTG	AACGAGCTCC	AGAAAGATCT	CGAATCGCGC	GGCGTTCGGG	3950
TGAGACGCCT	CAGGGTCTCG	AACGCCTTCC	ACTCCGCCTT	GATGGAGCCG	4000
ATGCTCGGCG	CGCTCGAGGC	CGAGGCCGCG	AAGCTCGAGC	TGCGAGCTTC	4050
GTCCATCCGG	CTCGTCTCGA	ACCTCGACGG	CCGGTTCGTG	GAGCCCGAGT	4100
CCCTGACCCC	CGACTATTGG	GCCCGGCACG	CACGCCGCGC	GGTGCGCTTC	4150
TCTGACGGGA	TCCGTACGCT	CGTCGCGAAC	GGGTGCGACA	CCTTCCTGGA	4200
GATCGGTCCG	GGAACGACGC	TCCTGACCCT	CGGCCGGATG	TCGGCGGGTG	4250
AGGTGCCGGC	GCTTTGGCTT	CCGAGCCTCC	GTCCCGGGGG	CACGGATTGG	4300
GAGTCGATGC	TCAGCTCGCT	CGCCGAGCTC	CATCTCCGGG	GGGTGAACAT	4350
CGACTGGCTC	CGCTACGACG	CGCCTCACGC	GCGTCGGCGT	ATCGAGGTTC	4400
CCAACTACCC	GTTCTCGCGG	GAGCGCTACT	GGTTCGACGA	GGGGTCGGAG	4450
GGATCTTCCG	AGGAGAGC 44	168			

Figure 4.26 Insert nucleotide sequence obtained from primer walking sequencing. The conserved characteristics motif for type I PKS KS domain gene were highlighted in yellow, green and blue for MDPQQR conserved, cysteine active site , and histidine active site motif, respectively. (Continue)

Blastp using deduced amino acid of an entire sequence as query sequence returned with the polyketide synthase module of CurA from Lyngbya majuscula 3L (AEE88289) and beta-ketoacyl synthase of Burkholderia ambifaria AMMD (ABI91470) as the most homologous protein on the public database with 45.7 and 41.4% identity. The result from blastx using the nucleotide sequence as a query sequence, those two most homologous proteins from blastp were returned as top 5 most homology, and the top blast was PKS from Myxococcus xanthus DK 1622, with 41.0% identity of very low query coverage. There were other blastx results with higher % homology, but the query coverage percentage was much lower, implying the smaller portion of query was used in comparison during the search for homologous sequences. These low query coverage results might not be the reliable representative of the whole protein molecule. Using the blast results and the characteristic motifs of entire KS proteins (N-terminal motif, EPIAIVGACD; motif between histidine active site and C-terminal motif, KTNIGHL; and the terminal motif, GTNAHVIEE (Pawlik et al., 2007), the whole KS protein was located with quite distinct N-terminal motif, SRIAIVGIGC (1817-1845, 5'-AGCCGGATCGCGATCGTGGGAATCGGCTGC-3') and C-terminal motif of GTNAHVVLE (3044-3070, 5'-GGCACCAACGCCCACG TCGTGCTCGAG-3'). Using only the whole KS portion and the core conserved part of KS as queries sequences, blastx was performed along side with blastp using their deduced amino acid sequences. The results from the core conserved sequence of KS domain were the same for both blast programs; the KS domain within the insert of pKKFOS KSI pool37 088 was homologous to type I-PKS KS domain of uncultured bacteria with 65.5% identity. For the homology search of the whole KS domain with blastp and blastx, the top 10 hits returned were similar. They were PKS KS domain from mainly Proteobacteria, Cyanobacteria, and few from firmicutes, with the highest homology at 58.9% identity [beta-ketoacyl synthase from Burkholderia ubonensis Bu, (ZP 02381208)]. The homology of type I-PKS KS domain with those sequences in the public database suggested that the KS domain in pKKFOS KSI pool37 088 fosmid potentially belonged to new PKS.

Moreover, from the blast results of the obtained 4,468 bp sequence, the flanking regions of KS domain might also belong to other domain of PKS. These portions of the sequence were investigated using blastp. The N-terminal characteristic

motif of AT domain (AFLFTGQGAQR) was found. The sequences AFLFTGQGSQF located at nucleotide position 3,386-3,418, but the C-terminal motif GVAVDWXXA could not be located. The deduced amino acid sequence of the insert, then, was used as query to search against conserved domains database (CDD) (Marchler-Bauer et al., 2005; Marchler-Bauer et al., 2007; Marchler-Bauer et al., 2009; Marchler-Bauer et al., 2011). It was also submitted to PKS/NRPS Analysis Web-site (Bachmann & Ravel, 2009), and at Structure Based Sequence Analysis of Polyketide Synthases (SBSPKS) web services (Yadav et al., 2003a, 2003b; Ansari et al., 2004; Yadav et al., 2009; Anand et al., 2010) to be analyzed for the PKS/NRPS domains and domain organization within the sequence. The results were all agreed that the domains on the sequence, from N-terminal, were NRPS T domain, PKS KS domain, and PKS AT domain (Fig. 4.27). The blast results for each of these individual domains, confirm the novelty of the sequence and its deduced amino acid sequence, as the highest similarity to the sequences on GenBank for each domain was lower than 60 % identity. Despite being multifunctional domain protein with three intact obtained domains, this sequence has not contained a complete single gene and its deduced amino acid was not an intact protein. Additional sequencing was needed to obtain the intact coding region of this gene or sequence. However, as informed by the sequencing operator, the sequencing step had advanced into the higher G+C rich region, a lot of trial and

Figure 4.27 The diagram showing the the enzymatic domains predicted by (A) SBSPKS, and (B) CDD within the pKKFOS_KSI_pool37_088 insert DNA sequence obtained by primer walking. (NAT_SF: N-acetyl transferase superfamily; ACP: acyl carrier protein (predicted as T by SBSPKS); KS: ketosynthase; and AT: acyl transferase)
error for primer design and sequencing, implying that the unsuccessful sequencing often occurred and must be acceptable. Besides highly expending of precious DNA template, a lot more time was spent for little sequencing progression. Alternative sequencing methods was considered.

4.4.2.3 Identification of novel gene involving in bioactive compound biosynthesis within the recombinant fosmid insert by Next Generation Sequencing

With the support from Professor Vithaya Meevootisom, Ph.D., Mahidol University, Thailand, the entire inserted DNA sequence, almost 30 kb long, of clone KKFOS pool 37 088 was generated from a single run using next generation sequencing, the mass sequencing technology allowing many megabases of DNA to be sequenced at once. The procedure for 454 GS Junior, the small scale, system (Roche) capable of at least 35 and possibly up to 70 megabases sequencing per run was briefly described in section 3.8.2. The obtained sequences with average 68.1% G+C nucleotide were assembled into the single contiguous fragment of DNA from 3,981 read fragments with the average dept of 50 folds for each concluded nucleotide (Fig. 4.28). The insert DNA was analyzed for ORFs with the size over 800 bp that begin with start codon in all frame. The 24 of them were found with the size range from 840 to 9,921 bp and used as query sequences for blastx. Eight ORFs were putatively annotated according to its top hit blast results (Fig. 4.29). Two largest open reading frame, the ORF 5 and 7 were putatively identified as homologous sequence to NRPS and PKS genes, respectively. Their domain organizations were determined by web based tools for analysis of conserved domain [CDD], and PKS/NRPS domain organization ["DOMAIN SEARCH PROGRAM for NRPS and PKS" from SBSPKS (Yadav et al., 2003; Ansari et al., 2004; Yadav et al., 2009; Anand et al., 2010), and "PKS/NRPS Analysis" (Bachmann & Ravel, 2009)], the functional domains of ORF 5 and ORF 7 were deduced and illustrated (Fig. 4.30, 4.31).

Figure 4.28 A contiguous consensus fragment of the insert DNA from fosmid clone. The 3,892 DNA fragments generated from GS junior 454 sequencing system were assembled into a single contig with the size of 34,248 base long by Geneious software version 5.4.6 (Biomatters). The average dept of the assembly was 51 bases.

ORF	Size (bp)	Top Blast hit	Closest taxon	E-value	Identity (%)
1	1587	integral membrane protein MviN (YP_003843702)	Clostridium cellulovorans 743B	2.7e-40	26.4
2	852	hypothetical protein Vapar_3187 (YP_002945071)	Variovorax paradoxus S110	2.9e-33	49.7
3	1887	putative ABC transporter ATP-binding/permease protein (YP_002763257) T-2		0	50.0
4	807	Microcystin synthetase associated thioesterase (ZP_07114033)	Oscillatoria sp. PCC 6506	2.9e-63	43.0
5	9921	non ribosomal peptide synthetase (Chondramide synthetase; CmdD) (Q0VZ70)	Chondromyces crocatus	0	38.6
6	879	taurine catabolism dioxygenase TauD/TfdA (YP_001866800)	Nostoc punctiforme PCC 73102	1.6e-18	25.2
7	8055	polyketide synthase module (CurL) (ZP_08432360)	Lyngbya majuscula 3L	0	39.8
8*	2594	JamK (AAS98782)	Lyngbya majuscula	0	51.0

Figure 4.29 Predicted ORFs and their putative function identified according to their Blast results. Striped arrows represent those proteins related to polyketides biosynthetic pathway. Gray arrow was ORF likely to encode for NRPS. For others, the ORFs were in white.

* the incomplete ORF 8.

Figure 4.30 Domain organization of predicted ORF5 (a) and ORF7 (b). Using deduced amino acid from ORF5 and ORF7, their domain organizations were analyzed and predicted using web based analysis tool from (a1) PKS/NRPS Analysis Web-site (Bachmann & Ravel, 2009), (a2 and b1) Structure Based Sequence Analysis of Polyketide Synthases (SBSPKS) web services (Yadav *et al.*, 2003a, 2003b; Ansari *et al.*, 2004; Yadav *et al.*, 2009; Anand *et al.*, 2010), and (a3 and b2) CDD search service at NCBI (Marchler-Bauer *et al.*, 2011). There were two modules of NRPS containing ORF with incomplete N-terminal condensation (C) domain (a) as depicted in Fig. 4.31, and one PKS module with NRPS T domain at N-terminal (b).

Figure 4.31 The putative functional domains of ORF 5 predicted by conserved domain database (CDD) searching results. It revealed the truncated of N-terminal condensation (C) domain (circled) of the putative ORF 5.

The ORF 5 was predicted to locate between nucleotide number 7,230 and 17,151 of the 29,812 bp insert DNA. Its top hit blastp result with the significant homology (e-value 0), ORF 5 was only about 39% identical to CmdD protein, the part of enzyme involving in potent anticancer agent, chondramide, biosynthesis. Revealed by CDD (Fig. 4.31), this predicted ORF contained the truncated N-terminal condensation (C₁) domain. This ORF was predicted to contain two NRPS modules orderly organized from N-terminal as incomplete condensation1 (C₁), adenylation1 (A₁), methyltransferase1 (M₁, NM₁, or MT₁), peptidyl carrier protein1 (PCP₁, PP₁, or T₁), epimerization1 (E₁), condensation2 (C₂), adenylation2 (A₂), peptidyl carrier protein2 (PCP₂), and epimerization2 (E₂). According to blastp, C2 was similar to the condensation domain within the amino acid adenylation domain protein (ZP_08494730) from *Microcoleus vaginatus* FGP-2 (ZP_08495279) with 48% identity (e-value of 4e-121). Its active site residues "HHVILDG" were similar to "HHIILDG" active site residues from McyB of microcystin biosynthesis enzyme, which catalyzes the condensation between D-alanine and leucine. Similarly, the

selected and activated putative amino acid to be attached to the thiolation (T) domain of NRPS could be predicted by amino acid residues at core motif involving in the catalytic pocket of the adenylation domains (A) (Challis, Ravel, & Townsend, 2000; Ansari, 2004; Rausch, 2005; Anand, 2010; Rottig, 2011). It was found that A₁ with the core motif of "D A F W L G G T" was predicted to select and activate alanine or D-valine by SBSPKS, or valine by "PKS/NRPS Analysis". For the E₁ (epimerization) domain with the active site residue of "HHLVVDV", it was predicted to epimerize alanine. A2 with the core motif of "D A W F L G H V" was predicted to select and activate leucine by all three bioinformatics softwares. These suggested that the A₁ domain of the deduced NRPS from KKFOS pool37 088 insert should tentatively activate alanine which would be epimerized by E_1 domain. The D-alanine was then condensed with A₂-selected leucine by C₂ domain. This concerted function might be tested by subcloning of the ORF 5 into expression plasmid, and transform into suitable host. The heterologous host as E. coli could be used for convenience. Subsequently the expressed enzyme could be tested for amino acid-dependent ATPpyrophosphate exchange reactions of radiolabeled [³²P] pyrophosphate in the selection and activation of the amino acids (Edwards et al., 2004; Binz et al., 2010). For E₂ domain, however, its active site residue "HHLVVDA" was predicted to be closer to E domain catalyzing the epimerization of alanine than the one of leucine. This also might be tested by TLC of the epimerized targeted amino acid (Stachelhaus & Walsh, 2000).

To confirm and evaluate the novelty of the predicted functional domains, their deduced amino acid sequences were used as query sequences for blastp operation. The result of C₂ domains was mentioned above. For A₁ and A₂ domains, their most homologous counterparts were amino acid adenylation domain-containing proteins from *Nostoc punctiforme* PCC 73102 (YP_001869792) with 51% identity (e-value 3e-158), and gramicidin synthethase subunit C (Q70LM5) from *Brevibacillus parabrevis* with 49% identity (e-value 8e-137), respectively. For methylation (M) domain, the N-methylation (NM) is catalyzed by methyltransferase (MT), these interchangeable names were used in different research groups (Ansari *et al.*, 2004; Fischbach & Walsh, 2006; Bachmann & Ravel, 2009; Anand *et al.*, 2010). Protein from public database with the highest homology to M₁ domain, according to blastp, was S-

adenosylmethionine-dependent methyltransferases of amino acid adenylation domain protein from *Pedosphaera parvula* Ellin514 (ZP_03627826) with 44% identity (evalue 3e-91). While T₁ domain was similar to phosphopantetheine attachment site from *Anabaena variabilis* ATCC 29413 non-ribosomal peptide synthethase (YP_324595) with 67% identity (e-value 3e-21), T₂ domain was similar to one from *Streptomyces violaceusniger* Tu 4113 (YP_004815010) with 69% identity (e-value 4e-19). The most homologous E domain from public database to E₁ and E₂ were the ones of amino acid adenylation domain-containing proteins from *Nostoc punctiforme* PCC 73102 (YP_001866471) with 38% identity (e-value 6e-94), and YP_001866468 with 43% identity (e-value 2e-120), respectively. Besides T₁ and T₂ domains which exhibited about 67-69 % identity, all other domains showed only about 50% identity to their closest relative proteins.

In comparison between ORF 5 and its top hit blastp result, the differences could be distinguished at the C-terminal. While CmdD (Fig. 4.32) was ended with thioesterase (TE) indicating the end of the assembly-line (Rachid *et al.*, 2006), ORF 5 (Fig. 4.30) ended with epimerization2 (E₂) indicating further step of the assembly-line, which was most likely beginning with $^{D}C_{L}$ (the condensation of D-amino acid epimerized from L-amino acid) (Fischbach & Walsh, 2006). In addition, it had been experimentally confirmed that A₆, the first A domain of CmdD with core motif "D G V Q M A G V" selected and activated L-tryptophan, and A₇, the second A domain with core motif "D G S T I T A V", involved in tyrosine selection and activation (Rachid *et al.*, 2006). These emphasized the potential functional novelty of the NRPS modules in ORF 5. Their currently most homologous NRPS modules available in the public database selected and activated the substrates to be incorporated into the intermediate carbon backbone molecule differently from the predicted ones for NRPS modules in ORF 5. Despite their similar domain organization, their function and products were highly possibly different.

Figure 4.32 Gene cluster responsible for chondramide biosynthesis. (A) Modules and domain organization for condramide biosynthetic gene cluster. (B) Domain organization of CmdD module (modified from Rachid *et al.*, 2006).

For ORF 7 located at nucleotide number 19,162 to 27,216 of the pKKFOS_KSI_pool37_088 insert DNA, it was predicted as a single PKS module comprised thiolation (T), ketosynthase (KS), acyltransferase (AT), methyltransferase (M), ketoreductase (KR), and acyl carrier protein (ACP) organized in order from N-terminal, as shown in Fig. 4.30b,. From its predicted KR domain, it was expected one step reductive activity of beta-keto group by this PKS module. Indicated by blastp and psi-blast, this PKS module was homologous to CurL, the module before the termination module of enzyme involving in another anticancer agent, curacin A (Fig. 4.33), with about 40% identity. By using the "DOMAIN SEARCH PROGRAM for NRPS and PKS" from SBSPKS, the predicted domain organization of ORF 7 (Fig. 4.30) and CurL (Fig. 4.33) have been shown to be very similar, except for the N-terminal of ORF 7. It was predicted as thiolation domain (T) (which was the same to PCP, or PP). This indicated that the substrate for enzyme encoded from ORF 7 would most likely be aminoacyl- or peptidyl- molecule, while it was most likely an acylated

short carboxylic molecule for CurL. This T domain on ORF 7 exhibited the most

Figure 4.33 Curacin A biosynthetic gene cluster, showing domain organization of CurL module. (modified from Jones *et al.*, 2011).

homology to the phosphopantetheine attachment site of putative type I polyketide synthase from symbiont bacterium of *Paederus fuscipes* (ABM63529) with 47% identity (e-value 4e-10). KS and S-adenosylmethionine-dependent methyltransferases (OM) domain were found to be similar with ones from *Lyngbya majuscula* 3L but from different module. KS was similar to one from CurA with 58% identity (e-value 5e-159), while methyltransferase domain was similar to one from CurL 48% identity (e-value 7e-78). The putative AT domain in ORF 7 was homologous to the acyltransferase domain of polyketide synthase from *Oscillatoria* sp. PCC 6506 with 53% identity (e-value 1e-95). Top hit of blast result for ketoreductase (KR) domain of ORF 7 was returned with beta-ketoacyl reductase (KR) domain of polyketide synthase from *Nostoc* sp. PCC 7120 with 47% identity (e-value 1e-49). The final domain, acyl carrier protein (ACP) domain, of ORF 7 was identified as low complexity and was inappropriate to be used as a query in blast searching because its results are not produced from the sequences sharing homology. Therefore, its significant similarity could not be found.

However, for those domains that could produce blast results with significant homology, the blast results confirmed their belonging functional domain to be as predicted. Although, this ORF 7 was significantly homologous to CurL, they likely catalyzed the different product biosynthesis. The CurL upstreamed module, the PKS module (CurK) (Chang *et al.*, 2004), has been reported to deliver polyketide intermediate for CurL to be condense onto it selected ketide molecule. On the contrary, the T domain at the N-terminal of ORF 7 was predicted to bring the aminoacyl or peptidyl molecule to be condensed on ketide molecule. These two homologous modules seemed to function differently.

These comparison of domain organization and putative functionality of the predicted ORFs within the insert DNA of KKFOS_pool37_088 to their top hit blast results, they seemed most likely different, and suggested the novelty of PKS and NRPS modules from Klongkone mangrove mud metagenome.

CHAPTER V

CONCLUSION

Cultural-based have proved microorganisms are the excellent source for bioactive compound needed in drug development (Newman, and Cragg, 2007). However, there are about 99% of them that have not been exploited due to unsupported current cultivation technology (Torsvik *et al.*, 2002). Metagenomics, the culture independent technology have been developed to study the collective genomes of the whole microbial community in the environmental sample (Handelsman *et al.*, 1998). This technology could reach into those microorganisms that have not been cultured, so their genes involving in bioactive compound biosynthesis could be accessible.

In this study, metagenomics was the tool of choice, and the environmental source was mangrove forest soil from Klongkone, Samut Songkhram Province, Thailand. The metagenome was extracted directly using detergent and heat as cell disrupting agent. The obtained about 30-40 kb in length of purified DNA was used in finding type I PKS KS gene, observing the bacterial source of the metagenome, and constructing the fosmid library. From the metagenome, 12 partial KS PCR amplicons were homology to type I-PKS KS gene on the public database with % identity ranging from 53.3 to 78.3. Phylogenetic tree also suggested that they were all type I PKS KS domain genes, and most of them were possible hybrid PKS/NRPS. In addition, KSs from KK KSI 017 and 027 were phylogenetically grouped as preceding NRPS hybrid, and each of them was placed on the different sister clades. Hybrid PKS/NRPS I-I and hybrid PKS/NRPS I-II was proposedly assigned to each clade for KK KSI 027 and KK KSI 017, respectively, according to the variation on their cysteine active site motif. Moreover the hybrid PKS/NRPS III was also proposed based on the appearing of "NRPS domains-PKS-NRPS domains" formation on the PKS module which definely placed on the distinctive phylogenetic clade of KS gene.

For 16S rDNA obtained from Klongkone mangrove mud metagenome, a total of 7 out of 14 sequences exhibited homology below 97% to their top hit Blast results, suggesting highly possible new species. Phylogenetic analysis showed that there were at least 6 different phyla in the metagenome. The actinobacteria were not included, which is possible due to the extraction bias (Jiang *et al.*, 2011). These had been implied that the Klongkone metagenomic DNA came from about 6 different, mainly *Proteobacteria*, phyla; so, did the type I PKS KS genes.

In library construction the library had about 14,000 clones covering about 500 Mb of genomic DNA. About one third was undergone functional base screening without success. Other strategy, like antibiotic susceptibility test might be more convenient and high throughput. As those who produce antibiotics should have the mechanisms to protect themselves.

Using type-I PKS KS gene specific PCR, one positive clone in the library was detected by this sequence based technique. The insert DNA was sequenced and revealed two complete open reading frames being modular multifunctional domain genes. One was a module of PKS. Another contained two modules of NRPS. This insert is highly possible to be novel and a part of hybrid PKS/NRPS gene cluster.

This Klongkone metagenome could be used as a source for finding new gene involving in bioactive compound biosynthesis via sequence based screening, and it could be used for accessing bacterial diversity as well.

REFERENCES

- Alain, K., and Querellou, J. (2009) Cultivating the uncultured: limits, advances and future challenges. *Extremophiles* 13: 583-594.
- Altschul, S.F. & Lipman, D.J. (1990) Protein database searches for multiple alignments. *Proc Natl Acad Sci U S A* 87: 5509-5513.
- Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990) Basic local alignment search tool. *J Mol Biol* 215: 403-410.
- Amann, R.I., Ludwig, W., and Schleifer, K.H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. *Microbiol Rev* 59: 143-169.
- Anand, S., Prasad, M.V., Yadav, G., Kumar, N., Shehara, J., Ansari, M.Z., and Mohanty, D. (2010) SBSPKS: structure based sequence analysis of polyketide synthases. *Nucleic Acids Res* 38:W487–496.
- Ansari, M.Z., Yadav, G., Gokhale, R.S., and Mohanty, D. (2004) NRPS-PKS: a knowledge-based resource for analysis of NRPS/PKS megasynthases. *Nucleic Acids Res* 32: W405-413.
- Bachmann, B.O., and Ravel, J. (2009) Chapter 8. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. *Methods Enzymol* 458: 181-217.
- Badji, B., Zitouni, A., Mathieu, F., Lebrihi, A., and Sabaou, N. (2006) Antimicrobial compounds produced by *Actinomadura* sp. AC104 isolated from an Algerian Saharan soil. *Can J Microbiol* 52: 373-382.
- Barrera-Alba, J.J., Gianesella, S.M.F., Moser, G.A.O., and Saldanha-Corrêa, F.M.P.
 (2007) Bacterial and phytoplankton dynamics in a sub-tropical estuary. *Hydrobiologia* 598: 229-246.
- Barrett, C.T., and Barrett, J.F. (2003) Antibacterials: are the new entries enough to deal with the emerging resistance problems? *Curr Opin Biotechnol* 14: 621-626.
- Beja, O., Suzuki, M.T., Koonin, E.V., et al. (2000) Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. *Environ Microbiol* 2: 516-529.
- Bérdy, J. (2005) Bioactive Microbial Metabolites. J. Antibiot. 58: 1-26.

- Bhuiyan, F.A., Nagata, S., and Ohnishi, K. (2011) Novel chitinase genes from metagenomic DNA prepared from marine sediments in southwest Japan. *Pak J Biol Sci* 14: 204-211.
- Binz, T. M., Maffioli, S.I., Sosio, M., Donadio, S., and Müller, R. (2010) Insights into an unusual nonribosomal peptide synthetase biosynthesis: identification and characterization of the GE81112 biosynthetic gene cluster. *J Biol Chem* 285: 32710-32719.
- Bode, H.B., and Muller, R. (2005) The impact of bacterial genomics on natural product research. *Angew Chem Int Ed Engl* 44: 6828-6846.
- Boggs, A.F., and Miller, G.H. (2004) Antibacterial drug discovery: is small pharma the solution? *Clin Microbiol Infect* 10 Suppl 4: 32-36.
- Brady, S.F. (2007) Construction of soil environmental DNA cosmid libraries and screening for clones that produce biologically active small molecules. *Nat Protoc* 2: 1297-1305.
- Brady, S.F., and Clardy, J. (2005) N-acyl derivatives of arginine and tryptophan isolated from environmental DNA expressed in *Escherichia coli*. Org Lett 7: 3613-3616.
- Brady, S.F., and Clardy, J. (2003) Synthesis of long-chain fatty acid enol esters isolated from an environmental DNA clone. *Org Lett* 5: 121-124.
- Brady, S.F., Chao, C.J., and Clardy, J. (2004) Long-chain N-acyltyrosine synthases from environmental DNA. *Appl Environ Microbiol* 70: 6865-6870.
- Bush, K. (2004) Antibacterial drug discovery in the 21st century. Clin Microbiol Infect 10 Suppl 4: 10-17.
- Butler, M.S. (2005) Natural products to drugs: natural product derived compounds in clinical trials. *Nat Prod Rep* 22: 162-195.
- Butler, M.S. (2004) The role of natural product chemistry in drug discovery. *J Nat Prod* 67: 2141-2153.
- Butler, M.S., and Cooper, M.A. (2011) Antibiotics in the clinical pipeline in 2011. *J Antibiot* (Tokyo) 64: 413-425.
- Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T.L. (2009) BLAST+: architecture and applications. *BMC Bioinformatics* 10: 421.

- Challis, G. L., Ravel, J., and Townsend, C.A. (2000) Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. *Chem Biol* 7: 211-224.
- Chang, Z., Sitachitta, N., Rossi, J.V., et al. (2004) Biosynthetic pathway and gene cluster analysis of curacin A, an antitubulin natural product from the tropical marine cyanobacterium Lyngbya majuscula. *J Nat Prod* 67: 1356-1367.
- Chung, E.J., Lim, H.K., Kim, J.C., et al. (2008) Forest soil metagenome gene cluster involved in antifungal activity expression in *Escherichia coli*. Appl Environ Microbiol 74: 723-730.
- Clardy, J., Fischbach, M.A., and Walsh, C.T. (2006) New antibiotics from bacterial natural products. *Nat Biotechnol* 24: 1541-1550.
- Conly, J., and Johnston, B. (2005) Where are all the new antibiotics? The new antibiotic paradox. *Can J Infect Dis Med Microbiol* 16: 159-160.
- Committee on Metagenomics: Challenges and functional applications, National Research Council. (2007) *The New Science of Metagenomics: Revealing the Secrets of Our Microbial Planet.* The National Academics Press, Washington.
- Courtois, S., Cappellano, C.M., Ball, M., et al. (2003) Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products. *Appl Environ Microbiol* 69: 49-55.
- Daniel, R. (2004) The soil metagenome-a rich resource for the discovery of novel natural products. *Curr Opin Biotechnol* 15: 199-204.
- Davies, J. (2006) Are antibiotics naturally antibiotics? *J Ind Microbiol Biotechnol* 33: 496-499.
- de Lorenzo, V. (2005) Problems with metagenomic screening. *Nat Biotechnol* 23: 1045; author reply 1045-1046.
- Demain, A.L. (2006) From natural products discovery to commercialization: a success story. J Ind Microbiol Biotechnol 33: 486-495.
- Demain, A.L., and Sanchez, S. (2009) Microbial drug discovery: 80 years of progress. *J Antibiot* (Tokyo) 62: 5-16.

- Dent, L.L., Marshall, D.R., Pratap, S., and Hulette, R.B. (2010) Multidrug resistant *Acinetobacter baumannii*: a descriptive study in a city hospital. *BMC Infect Dis* 10: 196.
- Dewick, P.M. (2009) *Medicinal Natural Products : A Biosynthetic Approach*. John Wiley., and Sons, Chichester, U.K.
- Donadio, S., Maffioli, S., Monciardini, P., Sosio, M., and Jabes, D. (2010) Antibiotic discovery in the twenty-first century: current trends and future perspectives. J Antibiot (Tokyo) 63: 423-430.
- Drummond, A., Ashton, B., Buxton, S., et al. (2010) Geneious v5.3, Available from http://www.geneious.com.
- Dupre, J., and O'Malley, M.A. (2007) Metagenomics and biological ontology. Stud. Hist. Phil. Biol. Biomed. Sci. 38(4): 834-846.
- Edwards, D. J., Marquez, B. L., Nogle, L.M., et al. (2004) Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. *Chem Biol* 11: 817-833.
- Elsaied, H., Stokes, H.W., Kitamura, K., Kurusu, Y., Kamagata, Y., and Maruyama, A. (2011) Marine integrons containing novel integrase genes, attachment sites, attI, and associated gene cassettes in polluted sediments from Suez and Tokyo Bays. *ISME J.* 5: 1162–1177.
- Elsaied, H., Stokes, H.W., Nakamura, T., Kitamura, K., Fuse, H., and Maruyama, A. (2007) Novel and diverse integron integrase genes and integron-like gene cassettes are prevalent in deep-sea hydrothermal vents. *Environ Microbiol.* 9: 2298-312.
- Fahy, E., Subramaniam, S., Brown, H.A., et al. (2005) A comprehensive classification system for lipids. *J Lipid Res* 46: 839-861.
- Fatima, F., Chaudhary, I., Ali, J., Rastogi, S., and Pathak, N. (2011) Microbial DNA extraction from soil by different methods and its PCR amplification. *Biochem. Cell. Arch.* 11: 85-90
- Fischbach, M.A., and Walsh, C.T. (2006) Assembly-line enzymology for polyketide and nonribosomal Peptide antibiotics: logic, machinery, and mechanisms. *Chem Rev* 106: 3468-3496.

- Fleck, W., Strauss, D., Koch, W., and Prauser, H. (1974) Violamycin, a new redpigment antibiotic. *Zeitschrift für allgemeine Mikrobiologie* 14: 551–558. doi: 10.1002/jobm.19740140702
- Forns, X., Bukh, J., Purcell, R.H., and Emerson, S.U. (1997) How Escherichia coli can bias the results of molecular cloning: Preferential selection of defective genomes of hepatitis C virus during the cloning procedure. *Proc Natl Acad Sci* USA 94: 13909-13914.
- Fox, G.E., Wisotzkey, J.D., and Jurtshuk, P., Jr. (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. *Int J Syst Bacteriol* 42: 166-170.
- Fried, M., and Crothers, D.M. (1981) Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. *Nucleic Acids Res* 9: 6505-6525.
- Gabor, E.M., de Vries, E.J., and Janssen, D.B. (2004) Construction, characterization, and use of small-insert gene banks of DNA isolated from soil and enrichment cultures for the recovery of novel amidases. *Environ Microbiol* 6: 948-958.
- Gabor, E. M., de Vries, E. J., and Janssen, D. B. (2003). Efficient recovery of environmental DNA for expression cloning by indirect extraction methods. *FEMS Microbiol. Ecol.* 44: 153-163.
- Ghosh, A., Dey, N., Bera, A., Tiwari, A., Sathyaniranjan, K., Chakrabarti, K., and Chattopadhyay, D. (2010) Culture independent molecular analysis of bacterial communities in the mangrove sediment of Sundarban, India. *Saline Systems* 6: 1.
- Gillespie, D.E., Brady, S.F., Bettermann, A.D., et al. (2002) Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. *Appl Environ Microbiol* 68: 4301-4306.
- Ginolhac, A., Jarrin, C., Robe, P., Perriere, G., Vogel, T.M., Simonet, P., and Nalin, R. (2005) Type I polyketide synthases may have evolved through horizontal gene transfer. *J Mol Evol* 60: 716-725.
- Ginolhac, A., Jarrin, C., Gillet, B., et al. (2004) Phylogenetic analysis of polyketide synthase I domains from soil metagenomic libraries allows selection of promising clones. *Appl Environ Microbiol* 70: 5522-5527.

- Gontang, E.A., Gaudencio, S.P., Fenical, W., and Jensen, P.R. (2010) Sequence-based analysis of secondary-metabolite biosynthesis in marine actinobacteria. *Appl Environ Microbiol* 76: 2487-2499.
- Gullo, V.P., McAlpine, J., Lam, K.S., Baker, D., and Petersen, F. (2006) Drug discovery from natural products. *J Ind Microbiol Biotechnol* 33: 523-531.
- Haefner, B. (2003) Drugs from the deep: marine natural products as drug candidates. *Drug Discov Today* 8: 536-544.
- Handelsman, J. (2004a) Metagenomics: application of genomics to uncultured microorganisms. *Microbiol Mol Biol Rev* 68: 669-685.
- Handelsman, J. (2004b) Soil-The metagenomics Approach. *Microbial Diversity and Bioprospecting* (Bull AT, ed.), pp. 109-119. ASM Press, Washington, D.C.
- Handelsman, J., Liles, M., Mann, D., Riesenfeld, C., and Goodman, R.M. (2002)
 Cloning the Metagenome: culture-independent access to the diversity and functions of the uncultivated microbial world. *Methods in Microbiology*, Vol. 33 (Wren B., and Dorrell N, eds.), p. 241. Academic Press, New York.
- Handelsman, J., Rondon, M.R., Brady, S.F., Clardy, J., and Goodman, R.M. (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. *Chem Biol* 5: R245-249.
- Hertweck, C. (2009) The biosynthetic logic of polyketide diversity. *Angew Chem Int Ed Engl* 48: 4688-4716.
- Heuermann, K., and Cosgrove, J. (2001) S-Gal: an autoclavable dye for color selection of cloned DNA inserts. *Biotechniques* 30: 1142-1147.
- Hoff, K.J. (2009) The effect of sequencing errors on metagenomic gene prediction. BMC Genomics 10: 520.
- Hoff, K.J., Lingner, T., Meinicke, P., and Tech, M. (2009) Orphelia: predicting genes in metagenomic sequencing reads. *Nucleic Acids Res* 37: W101-105.
- Hoff, K.J., Tech, M., Lingner, T., Daniel, R., Morgenstern, B., and Meinicke, P. (2008) Gene prediction in metagenomic fragments: a large scale machine learning approach. *BMC Bioinformatics* 9: 217.
- Hussein, A.M., and El-Gammal, A. (1976) Characterization of a red pigmentantibiotic produced by *Streptomyces* sp. strain NRC-C7. *Z Allg Mikrobiol*. 16: 27-32.

- Inagaki, F., Nunoura, T., Nakagawa, S., et al. (2006) Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. *Proc Natl Acad Sci U S A*. 103: 2815-20.
- Janda, J.M., and Abbott, S.L. (2007) 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol 45: 2761-2764.
- Jenke-Kodama, H., Sandmann, A., Muller, R., and Dittmann, E. (2005) Evolutionary implications of bacterial polyketide synthases. *Mol Biol Evol* 22: 2027-2039.
- Jiang, Y.X., Wu, J.G., Yu, K.Q., Ai, C.X., Zou, F., and Zhou, H.W. (2011) Integrated lysis procedures reduce extraction biases of microbial DNA from mangrove sediment. *J Biosci Bioeng* 111: 153-157.
- Jones, A.C., Monroe, E.A., Podell, S., et al. (2011) Genomic insights into the physiology and ecology of the marine filamentous cyanobacterium *Lyngbya majuscula*. *Proc Natl Acad Sci U S A*. 108: 8815-20
- Jones, K.E., Patel, N.G., Levy, M.A., Storeygard, A., Balk, D., Gittleman, J.L., and Daszak, P. (2008) Global trends in emerging infectious diseases. *Nature* 451: 990-993.
- Kathiresan, K., and Selvam, M.M. (2006) Evaluation of bebeficial bacteria from mangrove soil. *Bot Mar* 49: 86-88
- Keller, M., and Zengler, K. (2004) Tapping into microbial diversity. *Nat Rev Microbiol* 2: 141-150.
- Kenters, N., Henderson, G., Jeyanathan, J., Kittelmann, S., and Janssen, P.H. (2011)Isolation of previously uncultured rumen bacteria by dilution to extinction using a new liquid culture medium. *J Microbiol Methods* 84: 52-60.
- Kim, T.K., and Fuerst, J.A. (2006) Diversity of polyketide synthase genes from bacteria associated with the marine sponge *Pseudoceratina clavata*: culturedependent and culture-independent approaches. *Environ Microbiol* 8: 1460-1470.
- Koehn, F.E., and Carter, G.T. (2005) The evolving role of natural products in drug discovery. *Nat Rev Drug Discov* 4: 206-220.
- Kristensen, E., Bouillon, S., Dittmar, T., and Marchand, C. (2008) Organic carbon dynamics in mangrove ecosystems: a review. *Aquatic Botany* 89: 201-219.

- Kumar, S., Hatha, A.A.M., and Christi, K.S. (2007) Diversity and effectiveness of tropical mangrove soil microflora on the degradation of polythene carry bags. *Rev Biol Trop* 55: 777-786
- LaMontagne, M.G., Michel, F.C. Jr., Holden, P.A., and Reddy, C.A. (2002) Evaluation of extraction and purification methods for obtaining PCRamplifiable DNA from compost for microbial community analysis. *J Microbiol Methods* 49: 255-264.
- Lane, D.J. (1991) 16S/23S rRNA Sequencing. Nucleic Acid Techniques in Bacterial Systematic, (Stackebrandt E., and Goodfellow M, eds.), pp. 115-175. John Wiley, and Sons, Chichester, UK.
- Langer, M., Gabor, E.M., Liebeton, K., et al. (2006) Metagenomics: an inexhaustible access to nature's diversity. *Biotechnol J* 1: 815-821.
- Larkin, M., Blackshields, G., Brown, N., et al. (2007) ClustalW and ClustalX version 2 *Bioinformatics* 23: 2.
- Lazzarini, A., Cavaletti, L., Toppo, G., and Marinelli, F. (2000) Rare genera of actinomycetes as potential producers of new antibiotics. *Antonie Van Leeuwenhoek* 78: 399-405.
- Lefevre, F., Robe, P., Jarrin, C., et al. (2008) Drugs from hidden bugs: their discovery via untapped resources. *Res Microbiol* 159: 153-161.
- Leitao, E., Moradas-Ferreira, P., and De Marco, P. (2009) Evidence of methanesulfonate utilizers in the Sargasso Sea metagenome. *J Basic Microbiol* 49 Suppl 1: S24-30.
- Liang, J-B., Chen, Y-Q., Lan, C-Y., Tam, N.F.Y., Zan, Q-J., and Huang, L-N. (2006) Recovery of novel bacterial diversity from mangrove sediment. *Mar Biol* 150: 739-747.
- Lin, J., Kudrna, D., and Wing, R.A. (2011) Construction, characterization, and preliminary BAC-end sequence analysis of a bacterial artificial chromosome library of the tea plant (Camellia sinensis). *J Biomed Biotechnol* 2011: 476723.
- Livermore, D.M. (2004) The need for new antibiotics. *Clin Microbiol Infect* 10 Suppl 4: 1-9.
- Lorenz, P., and Eck, J. (2005) Metagenomics and industrial applications. *Nat Rev Microbiol* 3: 510-516.

- Maillard, O., Corvec, S., Dantal, J., Reynaud, A., Lucet, J.C., Bemer, P., and Lepelletier, D. (2010) Emergence of high ampicillin-resistant *Enterococcus faecium* isolates in a kidney transplant ward: role of antibiotic pressure and cross transmission. *Microb Drug Resist* 16: 123-128.
- Marchler-Bauer, A., Panchenko, A.R., Shoemaker BA, Thiessen PA, Geer, L.Y., and Bryant, S.H. (2002) CDD: a database of conserved domain alignments with links to domain three-dimensional structure. *Nucleic Acids Res* 30: 281-283.
- Marchler-Bauer, A., Anderson, J.B., Cherukuri, P.F., et al. (2005) CDD: a Conserved Domain Database for protein classification. *Nucleic Acids Res* 33: D192-196.
- Marchler-Bauer, A., Anderson, J.B., Derbyshire, M.K., et al. (2007) CDD: a conserved domain database for interactive domain family analysis. *Nucleic Acids Res* 35: D237-240.
- Marchler-Bauer, A., Anderson, J.B., DeWeese-Scott, C., et al. (2003) CDD: a curated Entrez database of conserved domain alignments. *Nucleic Acids Res* 31: 383-387.
- Marchler-Bauer, A., Lu, S., Anderson, J.B., et al. (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. *Nucleic Acids Res* 39: D225-229.
- Marchler-Bauer, A., Anderson, JB., Chitsaz, F., et al. (2009) CDD: specific functional annotation with the Conserved Domain Database. *Nucleic Acids Res* 37: D205-210.
- Moffitt, M.C., and Neilan, B.A. (2003) Evolutionary affiliations within the superfamily of ketosynthases reflect complex pathway associations. *J Mol Evol* 56: 446-457.
- Mori, K., Sunamura, M., Yanagawa, K., et al. (2008) First cultivation and ecological investigation of a bacterium affiliated with the candidate phylum OP5 from hot springs. *Appl Environ Microbiol* 74: 6223–6229.
- Nabeel, M.A., Kathiresan, K., Rajendran, N., Ohnishi, H., Hamaoka, H., and Omori, K. (2010) Contribution by microbes to the foodweb of a mangrove biotope: the approach of carbon and nitrogen stable isotopes. *Afr J Mar Sci* 32: 65-70.
- Newman, D.J., and Cragg, G.M. (2007) Natural products as sources of new drugs over the last 25 years. *J Nat Prod* 70: 461-477.

- Newman, D.J., Cragg, G.M., and Snader, K.M. (2003) Natural products as sources of new drugs over the period 1981-2002. *J Nat Prod* 66: 1022-1037.
- Newman, D.J., Cragg, G.M., and Snader, K.M. (2000) The influence of natural products upon drug discovery. *Nat Prod Rep* 17: 215-234.
- Newman, D.J., and Hill, R.T. (2006) New drugs from marine microbes: the tide is turning. *J Ind Microbiol Biotechnol* 33: 539-544.
- Paphavasit, N., Piumsomboon, A., Aumnuch, E., et al. (2002) Ecological Assessment of Mangrove Reforestation/ Afforestation in Samut Songkharm Province on Zooplankton and Benthic Communities, 1st ed. National Research Council of Thailand, Bangkok.
- Park, E.J., Kim, K.H., Abell, G.C., Kim, M.S., Roh, S.W., and Bae, J.W. (2011) Metagenomic analysis of the viral communities in fermented foods. *Appl Environ Microbiol* 77: 1284-1291.
- Park, S.J., Kang, C.H., Chae, J.C., and Rhee, S.K. (2008) Metagenome microarray for screening of fosmid clones containing specific genes. *FEMS Microbiol Lett* 284: 28-34.
- Parsley, L.C., Consuegra, E.J., Kakirde, K.S., Land, A.M., Harper, W.F. Jr., and Liles, M.R. (2010a) Identification of diverse antimicrobial resistance determinants carried on bacterial, plasmid, or viral metagenomes from an activated sludge microbial assemblage. *Appl Environ Microbiol* 76: 3753-3757.
- Parsley, L.C., Consuegra, E.J., Thomas, S.J., et al. (2010b) Census of the viral metagenome within an activated sludge microbial assemblage. *Appl Environ Microbiol* 76: 2673-2677.
- Parsley, L.C., Linneman, J., Goode, A.M., et al. (2011) Polyketide synthase pathways identified from a metagenomic library are derived from soil Acidobacteria. *FEMS Microbiol Ecol* 78: 176-187.
- Pawlik, K., Kotowska, M., Chater, K.F., Kuczek, K., and Takano, E. (2007) A cryptic type I polyketide synthase (cpk) gene cluster in Streptomyces coelicolor A3(2). *Arch Microbiol* 187: 87-99.
- Piel, J., Hui, D., Fusetani, N., and Matsunaga, S. (2004) Targeting modular polyketide synthases with iteratively acting acyltransferases from metagenomes of uncultured bacterial consortia. *Environ Microbiol* 6: 921-927.

- Rachid, S., Krug, D., Kunze, B., et al. (2006) Molecular and biochemical studies of chondramide formation-highly cytotoxic natural products from Chondromyces crocatus Cm c5 *Chem Biol* 13: 667-81.
- Rausch, C., Weber, T., Kohlbacher, O., Wohlleben, W., and Huson, D.H. (2005) Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). *Nucleic Acids Res* 33: 5799-5808.
- Ray, D., Sinha, S., Saha, S., et al. (2010) A preliminary sentinel surveillance report on antibiotics resistance trend of *Streptococcus pyogenes* in Kolkata Region, India. *Al Ameen J Med Sci* 3: 6.
- Riesenfeld, C.S., Schloss, P.D., and Handelsman, J. (2004) Metagenomics: genomic analysis of microbial communities. *Annu Rev Genet* 38: 525-552.
- Rondon, M.R., August, P.R., Bettermann, A.D., et al. (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. *Appl Environ Microbiol* 66: 2541-2547.
- Rottig, M., Medema, M. H., Blin, K., Weber, T., Rausch, C., and Kohlbacher, O. (2011) NRPSpredictor2 - a web server for predicting NRPS adenylation domain specificity. *Nucleic Acids Res* 39 (Web Server issue): W362-367.
- Sakami, T., Fujioka, Y., and Shimoda, T. (2008) Comparison of microbial community structures in intensive and extensive shrimp culture ponds and a mangrove area in Thailand. *Fisheries Science* 74: 889-898.
- Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) *Molecular Cloning: A Laboratory Manual*, 2nd ed. Cold Spring Harbor Laboratory Press, Painview, N.Y.
- Sambrook, J., and Russell, D.W. (2001) *Molecular Cloning: A Laboratory Manual*. 3rd ed. Cold Spring Harber Laboratory Press, New York.
- Sarker, S.D., Latif, Z., and Gray, A.I. (2006) *Natural Product Isolation*. Humana Press, Totowa, NJ.
- Schirmer, A., Gadkari, R., Reeves, C.D., Ibrahim, F., DeLong, E.F., and Hutchinson, C.R. (2005) Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge *Discodermia dissoluta*. *Appl Environ Microbiol* 71: 4840-4849.

- Schito, G.C. (2006) The importance of the development of antibiotic resistance in Staphylococcus aureus. *Clin Microbiol Infect* 12 Suppl 1: 3-8.
- Schmidt, T.M., DeLong, E.F., and Pace, N.R. (1991) Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol 173: 4371-4378.
- Schmitz, J.E., Daniel, A., Collin, M., Schuch, R., and Fischetti, V.A. (2008) Rapid DNA library construction for functional genomic and metagenomic screening. *Appl Environ Microbiol* 74: 1649-1652.
- Schwarzer, D., and Marahiel, M.A. (2001) Multimodular biocatalysts for natural product assembly. *Naturwissenschaften* 88: 93-101.
- Selvameenal, L., Radhakrishnan, M., and Balagurunathan, R. (2009) Antibiotic pigment from desert soil actinomycetes; biological activity, purification and chemical screening. *Indian J Pharm Sci.* 71: 499–504.
- Shen, B., Du, L., Sanchez, C., Edwards, D.J., Chen, M., and Murrell, J.M. (2002) Cloning and characterization of the bleomycin biosynthetic gene cluster from *Streptomyces verticillus* ATCC15003. *J Nat Prod* 65: 422-431.
- Sigmon, J., and Larcom, L.L. (1996) The effect of ethidium bromide on mobility of DNA fragments in agarose gel electrophoresis. *Electrophoresis*. 17: 1524-7.
- Silakowski, B., Kunze, B., and Muller, R. (2001) Multiple hybrid polyketide synthase/non-ribosomal peptide synthetase gene clusters in the myxobacterium *Stigmatella aurantiaca. Gene* 275: 233-240.
- Sjöling, S., Mohammed, S.M., Lyimo, T.J., and Kyaruzi, J.J. (2005) Benthic microbial diversity and nutrient processes in mangroves; impact of deforestation. *Estuar Coast Shelf Sci* 63: 10.
- Spizek, J., Novotna, J., Rezanka, T., and Demain, A.L. (2010) Do we need new antibiotics? The search for new targets and new compounds. *J Ind Microbiol Biotechnol* 37: 1241-1248.
- Stachelhaus, T. and Walsh, C. T. (2000) "Mutational analysis of the epimerization domain in the initiation module PheATE of gramicidin S synthetase." *Biochemistry* 39: 5775-5787.

- Stackebrandt, E., Ludwig, W., Weizenegger, M., et al. (1987) Comparative 16S rRNA oligonucleotide analyses and murein types of round-spore-forming bacilli and non-spore-forming relatives. *J Gen Microbiol* 133: 2523-2529.
- Stevenson, B.S., Eichorst, S.A., Wertz, J.T., Schmidt, T.M., and Breznak, J.A. (2004) New strategies for cultivation and detection of previously uncultured microbes. *Appl Environ Microbiol* 70: 4748-4755.
- Streit, W.R., and Schmitz, R.A. (2004) Metagenomics-the key to the uncultured microbes. *Curr Opin Microbiol* 7: 492-498.
- Stubbings, W., and Labischinski, H. (2009) New antibiotics for antibiotic-resistant bacteria. *F1000 Biol Rep* 1:40.
- Sudha, S.S. (2009) Marine Environment: A potential Source for L-Asparaginase Producing Microorganisms. *IUP J Biotechnol* 3: 57-62.
- Taketani, R.G., Franco, N.O., Rosado, A.S., and van Elsas, J.D. (2010) Microbial community response to a simulated hydrocarbon spill in mangrove sediments. J Microbiol 48: 7-15.
- Tebbe, C.C., and Vahjen, W. (1993) Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. *Appl Environ Microbiol* 59: 2657-2665.
- Tirawongsaroj, P., Sriprang, R., Harnpicharnchai, P., et al. (2008) Novel thermophilic and thermostable lipolytic enzymes from a Thailand hot spring metagenomic library. *J Biotechnol* 133: 42-49.
- Torsvik, V., and Ovreas, L. (2002) Microbial diversity and function in soil: from genes to ecosystems. *Curr Opin Microbiol* 5: 240-245.
- Torsvik, V., Daae, F.L., Sandaa, R.A., and Ovreas, L. (1998) Novel techniques for analysing microbial diversity in natural and perturbed environments. J Biotechnol 64: 53-62.
- Torsvik, V., Goksoyr, J., and Daae, F.L. (1990) High diversity in DNA of soil bacteria. *Appl Environ Microbiol* 56: 782-787.
- Treusch, A.H., Kletzin, A., Raddatz, G., et al. (2004) Characterization of large-insert DNA libraries from soil for environmental genomic studies of Archaea. *Environ Microbiol* 6: 970-980.

- Tyson, G.W., and Banfield, J.F. (2005) Cultivating the uncultivated: a community genomics perspective. *Trends Microbiol* 13: 411-415.
- Tyson, G.W., Chapman, J., Hugenholtz, P., et al. (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. *Nature* 428: 37-43.
- van Elsas, J.D., Costa, R., Jansson, J., et al. (2008a) The metagenomics of diseasesuppressive soils - experiences from the METACONTROL project. *Trends Biotechnol* 26: 591-601.
- van Elsas, J.D., Speksnijder, A.J., and van Overbeek, L.S. (2008b) A procedure for the metagenomics exploration of disease-suppressive soils. J Microbiol Methods 75: 515-522.
- Venter, J.C., Remington, K., Heidelberg, J.F., et al. (2004) Environmental genome shotgun sequencing of the Sargasso Sea. *Science* 304: 66-74.
- Voget, S., Leggewie, C., Uesbeck, A., Raasch, C., Jaeger, K.E., and Streit, W.R. (2003) Prospecting for novel biocatalysts in a soil metagenome. *Appl Environ Microbiol* 69: 6235-6242.
- Wang, G. (2006) Diversity and biotechnological potential of the sponge-associated microbial consortia. J Ind Microbiol Biotechnol 33: 545-551.
- Wanunu, M., Sutin, J., and Meller, A. (2009) DNA profiling using solid-state nanopores: detection of DNA-binding molecules. *Nano Lett.* 9: 3498-3502.
- Warnecke, F., Luginbuhl, P., Ivanova, N., et al. (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. *Nature* 450: 560-565.
- Watson, J.D., Caudy, A.A., Myers, R.M., and Witkowski, J.A. (2007) *Recombinant DNA : Genes and Genomes : A Short Course*, 3rd ed. W.H. Freeman: Cold Spring Harbor Laboratory Press, New York.
- Watve, M.G., Tickoo, R., Jog, M.M., and Bhole, B.D. (2001) How many antibiotics are produced by the genus *Streptomyces*? *Arch Microbiol* 176: 386-390.
- Webb, M.R., and Ebeler, S.E. (2004) Comparative analysis of topoisomerase IB inhibition and DNA intercalation by flavonoids and similar compounds: structural determinates of activity. *Biochem J.* 384: 527–541

- Weissman, K.J., and Leadlay, P.F. (2005) Combinatorial biosynthesis of reduced polyketides. *Nat Rev Microbiol* 3: 925-936.
- Whitman, W.B., Coleman, D.C., and Wiebe, W.J. (1998) Prokaryotes: the unseen majority. *Proc Natl Acad Sci U S A* 95: 6578-6583.
- Wilfinger, W.W., Mackey, K., and Chomczynski, P. (1997) Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. *Biotechniques* 22: 474-476, 478-481.
- Willner, D., Furlan, M., Schmieder, R., et al. (2011) Metagenomic detection of phageencoded platelet-binding factors in the human oral cavity. *Proc Natl Acad Sci U* SA 108 Suppl 1: 4547-4553.
- Yadav, G., Gokhale, R.S., and Mohanty, D. (2003a) Computational approach for prediction of domain organization and substrate specificity of modular polyketide synthases. *J Mol Biol* 328: 335-363.
- Yadav, G., Gokhale, R.S., and Mohanty, D. (2003b) SEARCHPKS: A program for detection and analysis of polyketide synthase domains. *Nucleic Acids Res* 31: 3654-3658.
- Yadav, G., Gokhale, R.S., and Mohanty, D. (2009) Towards prediction of metabolic products of polyketide synthases: an in silico analysis. *PLoS Comput Biol* 5: e1000351.
- Zengler, K., Walcher, M., Clark, G., et al. (2005) High-throughput cultivation of microorganisms using microcapsules. *Methods Enzymol* 397: 124-130.
- Zengler, K., Toledo, G., Rappe, M., Elkins, J., Mathur, E.J., Short, J.M., and Keller, M. (2002) Cultivating the uncultured. *Proc Natl Acad Sci U S A* 99: 15681-15686.
- Zhang, J., and Madden, T.L. (1997) PowerBLAST: a new network BLAST application for interactive or automated sequence analysis and annotation. *Genome Res* 7: 649-656.
- Zhao, J., Yang, N., and Zeng R (2008) Phylogenetic analysis of type I polyketide synthase and nonribosomal peptide synthetase genes in Antarctic sediment. *Extremophiles* 12: 97-105.

APPENDICES

APPENDIX A

 Table A1 Accession number and Domain organization of sequences included

 in KS phylogenetic tree (Fig. 4.21) (for those that available), sorted by accession

 number.

Order	Accession	Name	Domain Organization
On			
Tree			
58	AAF15892	Nostoc sp.	KS-AT-ACP
61	AAM33468	Aphanizomenon ovalisporum	A-A-T-KS-AT-DH
53	AAO39789	unidentified microorganism	KS
13	AAS98782	Lyngbya majuscula	KS-AT-KR-ACP (NRPS)
1	AAS98783	Lyngbya majuscula	KS-AT-DH-ER-KR- ACP-C-A-T
6	AAW55365	Scytonema hofmanni	KS
20	AAW55386	Microcoleus chthonoplastes	KS
18	AAW55387	Microcoleus chthonoplastes	KS
30	AAW55402.1	Scytonema hofmanni	KS
56	AAX44111	Leptolyngbya sp.	KS
57	AAX44114	Leptolyngbya sp	KS
21	AAX44126	Nostoc sp	KS
31	AAX44132.1	Scytonema hofmanni	KS
36	AAX86994	uncultured bacterium	KS
49	AAY32964	Sorangium cellulosum	KS-DH(trans-AT)
3	ABA29781	Cystobacter fuscus	KS-AT-KR-ACP- <u>KS-AT-</u>
			DH-KR-ACP (NRPS)
4	ABD17628	Sorangium	KS
34	ABH08749.1	uncultured bacterium	KS
23	ACC99565	uncultured bacterium	KS
7	ACC99568	uncultured bacterium	KS
24	ACC99586	uncultured bacterium	KS
37	ACR55656	Maribacter sp	KS

 Table A1 Accession number and Domain organization of sequences included

 in KS phylogenetic tree (Fig 4.21) (for those that available), sorted by accession

 number. (Continue)

Order	Accession	Name	Domain Organization
On			
1 ree	ADD65215	ungultured bagterium	VS
42	ADD03213		KS
47	ADE08320	uncultured bacterium	KS
16	AEH26539	uncultured Acidobacteria	KS-AT-CM-KR-ACP-KS-
			AT-KR-ACP
12	CAQ18829	Chondromyces crocatus	(module1)KS-AT-DH-KR-
11	G + 0 100 2 0		ACP (NRPS)
11	CAQ18829	Chondromyces crocatus	(module2)KS-AT-KR-ACP
20	G A O 40 2 50		(NRPS)
28	CAQ48259	Planktothrix rubescens	KS-AT-ACP-C-A-T
60	JN22446	KKDKSI_027	KS
35	JN224477	KKDKSI_002	KS
5	JN2244779	KKmKSI_010	KS
25	JN224478	KKmKSI_003	KS
8	JN224480	KKmKSI_013	KS
55	JN224481	KKmKSI_017	KS
48	JN224482	KKmKSI_019	KS
67	JN224483	KKmKSI_021	KS
29	JN224484	KKDKSI_023	KS
38	JN224485	KKDKSI_026	KS
39	JN224487	KKDKSI_029	KS
17	JN224488	KKDKSI_033	KS
26	JN224489	KKDKSI_035	KS
43	YP_001418687	Xanthobacter autotrophicus	KS-AT-DH-ER-KR-ACP
44	YP_001421292	Bacillus amyloliquefaciens	A-T-C-A-T-KS-KR-ACP-
			ACP- <u>KS-KR-ACP</u> -KS
			(trans-AT)
66	YP_001544779	Herpetosiphon aurantiacus	A-T-KS-AT-KR-ACP-C-A-
			T-C

Table A1 Accession number and Domain organization of sequences included in KS phylogenetic tree (Fig 4.21) (for those that available), sorted by accession number. (Continue)

Order	Accession	Name	Domain Organization	
On				
Tree	ND 001(57705			
2	YP_001657795	Microcystis aeruginosa	KS-AT (NRPS)	
15	YP_001804493	Cyanothece sp.	KS-AT-DH- <mark>CM</mark> -ER-KR-ACP	
10	YP_001818846	Opitutus terrae PB90-1	KS-CM-KR-ACP- <u>KS-AT-KR-</u>	
()	VD 001001700		ACP	
62	YP_001821790	Streptomyces griseus	A-1-KS-A1-ACP-KR-ACP-C- A-T-C	
40	YP_001832244	<i>Beijerinckia indica</i> ATCC 9039	KS-AT-ER-KR-ACP	
59	YP_001865726	<i>Nostoc punctiforme</i> ATCC 29133	KS-AT-ACP	
50	YP_001869791	<i>Nostoc punctiforme</i> ATCC 29133	KS-AT-ACP .(AAT_I)	
41	YP_002363007	Methylocella silvestris	KS-AT-CM-ER-KR-ACP	
54	YP_003755474	Hyphomicrobium denitrificans	KS-AT-ACP(AAT_I)	
33	YP_004521734	Mycobacterium sp. JDM601	A-T-KS-AT-KR-ACP	
22	YP_324603	Anabaena variabilis ATCC 29413	A-T-KS-AT-	
51	YP_325326	Anabaena variabilis ATCC 29413	KS-AT-ACP- (AAT_I)	
46	YP_632113	Myxococcus xanthus	ER-KS-DH-KR-ACP - <u>KS-DH-</u> <u>ACP</u> -KS-DH-KR-ACP-KS	
9	YP_951844	Mycobacterium vanbaalenii	KS-AT ACP-C-A-T-C	
27	ZP_02890743	Burkholderia ambifaria	A-T-KS-DH (trans-AT)	
64	ZP_04698103	Streptomyces roseosporus	A-T-KS-	
65	ZP_04713303	Streptomyces roseosporus	A-T-KS-AT-KR-ACP-C-A-T- C-	
19	ZP_05029386	Microcoleus chthonoplastes	A-T-KS-AT	
45	ZP_06873407	Bacillus subtilis subsp. spizizenii	A-T-C-A-T-KS-KR-ACP-ACP- <u>KS-KR-ACP</u> -KS-KR-ACP-KS (trans-AT)	
52	ZP_07108688	Oscillatoria sp. PCC 9029	KS-AT-ACP- (AAT_I)	
63	ZP_08233860	Streptomyces cf.	A-T-KS-AT-KR-ACP-C-A-T-C	
32	ZP_08425908.1	Lyngbya majuscula	KS-AT-KR-ACP	
14	ZP_08429734	Lyngbya majuscula	KS-AT-DH-CM	

Table A2 Accession number and Domain organization of sequences included in KS phylogenetic tree (Fig 4.21) (for those that available), sorted by position on the tree.

Order	Accession	Name	Domain Organization
On			
Tree	A A CO0702		
1	AAS98/83	Lyngbya majuscula	KS-AI-DH-ER-KR-ACP-
	VD 001657705	Minner and in a survey in a sur	
2	YP_001657795	Microcystis deruginosa	KS-AI (NKPS)
3	ABA29781	Cystobacter fuscus	KS-AT-KR-ACP- <u>KS-AT-</u>
			DH-KR-ACP (NRPS)
4	ABD17628	Sorangium	KS
5	JN2244779	KKmKSI_010	KS
6	AAW55365	Scytonema hofmanni	KS
7	ACC99568	uncultured bacterium	KS
8	JN224480	KKmKSI_013	KS
9	YP_951844	Mycobacterium vanbaalenii	KS-AT ACP-C-A-T-C
10	YP_001818846	Opitutus terrae PB90-1	KS-CM-KR-ACP- <u>KS-AT-</u>
			KR-ACP
11	CAQ18829	Chondromyces crocatus	(module2)KS-AT-KR-ACP
			(NRPS)
12	CAQ18829	Chondromyces crocatus	(module1)KS-AT-DH-KR-
			ACP (NRPS)
13	AAS98782	Lyngbya majuscula	KS-AT-KR-ACP (NRPS)
14	ZP_08429734	Lyngbya majuscula	KS-AT-DH-CM
15	YP_001804493	Cyanothece sp.	KS-AT-DH-CM-ER-KR-
			ACP
16	AEH26539	uncultured Acidobacteria	KS-AT-CM-KR-ACP-KS-
			AT-KR-ACP
17	JN224488	KKDKSI_033	KS

Table A2 Accession number and Domain organization of sequences included in KS phylogenetic tree (Fig 4.21) (for those that available), sorted by position on the tree. (continue)

10			
18	AAW55387	Microcoleus chthonoplastes	KS
19	ZP_05029386	Microcoleus chthonoplastes	A-T-KS-AT
20	AAW55386	Microcoleus chthonoplastes	KS
21	AAX44126	Nostoc sp	KS
22	YP_324603	Anabaena variabilis ATCC 29413	A-T-KS-AT-
23	ACC99565	uncultured bacterium	KS
24	ACC99586	uncultured bacterium	KS
25	JN224478	KKmKSI_003	KS
26	JN224489	KKDKSI_035	KS
27	ZP_02890743	Burkholderia ambifaria	A-T-KS-DH (trans-AT)
28	CAQ48259	Planktothrix rubescens	KS-AT-ACP-C-A-T
29	JN224484	KKDKSI_023	KS
30	AAW55402.1	Scytonema hofmanni	KS
31	AAX44132.1	Scytonema hofmanni	KS
32	ZP_08425908.1	Lyngbya majuscula	KS-AT-KR-ACP
33	YP_004521734	Mycobacterium sp. JDM601	A-T-KS-AT-KR-ACP
34	ABH08749.1	uncultured bacterium	KS
35	JN224477	KKDKSI_002	KS
36	AAX86994	uncultured bacterium	KS
37	ACR55656	Maribacter sp	KS
38	JN224485	KKDKSI_026	KS
39	JN224487	KKDKSI_029	KS
40	YP_001832244	Beijerinckia indica ATCC 9039	KS-AT-ER-KR-ACP
41	YP_002363007	Methylocella silvestris	KS-AT-CM-ER-KR-
			ACP
42	ADD65215	uncultured bacterium	KS
43	YP_001418687	Xanthobacter autotrophicus	KS-AT-DH-ER-KR-ACP

Table A2 Accession number and Domain organization of sequences included in KS phylogenetic tree (Fig 4.21) (for those that available), sorted by position on the tree. (continue)

44	YP_001421292	Bacillus amyloliquefaciens	A-T-C-A-T-KS-KR-ACP- ACP- <u>KS-KR-ACP</u> -KS (trans-AT)
45	ZP_06873407	Bacillus subtilis subsp. spizizenii	A-T-C-A-T-KS-KR-ACP- ACP- <u>KS-KR-ACP</u> -KS-KR- ACP-KS (trans-AT)
46	YP_632113	Myxococcus xanthus	ER-KS-DH-KR-ACP - <u>KS-</u> <u>DH-ACP</u> -KS-DH-KR-ACP- KS (trans-AT)
47	ADE08320	uncultured bacterium	KS
48	JN224482	KKmKSI_019	KS
49	AAY32964	Sorangium cellulosum	KS-DH(trans-AT) (NRPS)
50	YP_001869791	Nostoc punctiforme ATCC 29133	KS-AT-ACP .(AAT_I)
51	YP_325326	Anabaena variabilis ATCC 29413	KS-AT-ACP- (AAT_I)
52	ZP_07108688	Oscillatoria sp. PCC 9029	KS-AT-ACP- (AAT_I)
53	AAO39789	unidentified microorganism	KS
54	YP_003755474	Hyphomicrobium denitrificans	KS-AT-ACP(AAT_I)
55	JN224481	KKmKSI_017	KS
56	AAX44111	Leptolyngbya sp.	KS
57	AAX44114	Leptolyngbya sp	KS
58	AAF15892	Nostoc sp.	KS-AT-ACP
59	YP_001865726	Nostoc punctiforme ATCC 29133	KS-AT-ACP
60	JN22446	KKDKSI_027	KS
61	AAM33468	Aphanizomenon ovalisporum	A-A-T-KS-AT-DH
62	YP_001821790	Streptomyces griseus	A-T-KS-AT-ACP-KR-ACP- C-A-T-C
63	ZP_08233860	Streptomyces cf.	A-T-KS-AT-KR-ACP-C-A- T-C
64	ZP_04698103	Streptomyces roseosporus	A-T-KS-
65	ZP_04713303	Streptomyces roseosporus	A-T-KS-AT-KR-ACP-C-A- T-C-
66	YP_001544779	Herpetosiphon aurantiacus	A-T-KS-AT-KR-ACP- <mark>C-A-</mark> T-C
67	JN224483	KKmKSI_021	KS

APPENDIX B

	10) 20) 3() 40	50	0 GO
				••••	•••••	
1	agagtttgat	catggctcag	attgaacgct	ggcggcaggc	ctaacacatg	caagtcgagc
61	ggaaacgaag	aggagcttgc	tcctttggcg	tcgagcggcg	gacgggtgag	taacgcgtgg
121	gaatgtgccc	agtagcgggg	gatagcccgg	ggaaacccgg	attaataccg	cataagcccc
181	tcgggggaaa	gcaggggatc	ttcggacctt	gtgctactgg	atcagcccgc	gtcagattag
241	ctagttggtg	gggtaaaggc	ctaccaaggc	gacgatctgt	agctggtctg	agaggatgat
301	cagccacact	ggaactgaga	cacggtccag	actcctacgg	gaggcagcag	tggggaatat
361	tgggcaatgg	gcgcaagcct	gacccagcca	tgccgcgtgt	gtgaagaagg	ccctagggtt
421	gtaaagcact	ttaagcaggg	aggaaggcta	taaggttaat	acccttgtag	attgacgtta
481	cctgcagaat	aagcaccggc	taaatccgtg	ccagcagccg	cggtaatacg	gatggtgcaa
541	gcgttaatcg	gaattactgg	gcgtaaagcg	cgcgtaggtg	gttcgttaag	ttggatgtga
601	aagccccggg	cttaacctgg	gaactgcatc	cgatactggc	gaactagagt	ataggagagg
661	gaggtagaat	ttccggtgta	gcggtgaaat	gcgtagagat	cggaaggaat	accagtggcg
721	aaggcggcct	cctggcctaa	tactgacact	gaggtgcgaa	agcgtgggga	gcaaacagga
781	ttagataccc	tggtagtcca	cgccgtaaac	gatgtctgct	agccgttgga	gtccttagag
841	gctttagtgg	cgtagttaac	gcgttaagca	gaccgcctgg	ggagtacggc	cgcaaggtta
901	aaactcaaat	gaattgacgg	gggcccgcac	aagcggtgga	gcatgtggtt	taattcgatg
961	caacgcgaag	aaccttacca	gggcttgaca	tccagcgaac	tttccagaga	tggattggtg
1021	ccttcgggaa	cgctgtgaca	ggtgctgcat	ggctgtcgtc	agctcgtgtc	gtgagatgtt
1081	gggttaagtc	ccgcaacgag	cgcaaccctt	gtccttagtt	gccagcacat	tatggtggga
1141	actctaagga	gactgccggt	gacaaaccgg	aggaaggtgg	ggacgacgtc	aagtcatcat
1201	ggcccttacg	tcctgggcta	cacacgtgct	acaatggtcg	gtacagaggg	ctgcgaaccc
1261	gcgagggtaa	gccaatctct	taaagccgat	cgtagtccgg	attggagtct	gcaactcgac
1321	tccatgaagt	cggaatcgct	agtaatcgcg	aatcagaatg	tcgcggtgaa	tacgttcccg
1381	ggccttgtac	acaccgcccg	tcacaccatg	ggagttgact	gcaccagaag	taggtagcct
1441	aaccgcaagg	agggcgctta	ccacggtgtg	ctcaatgact	ggggtgaagt	cgtaacaagg
1501	tagccgta					

Figure B1 Nucleotide sequence of 16S rDNA from KK_16S_018. This sequence contained 1,508 base pairs with 374 a, 347 c, 485 g, and 302 t

	10) 20) 30) 4() 50	0 CO
				••••	•••••	
1	agagtttgat	cctggctcag	aatgaacgct	ggcggcgtgc	ttaacacatg	caagtcgagc
61	gagaacgtcg	acttcggtcg	actagtaaag	cggcgaacgg	gtgagtaaca	cgtgggcaac
121	ctgccccgga	gtgggggata	acctggggaa	actcgggcta	ataccgcata	cgatctcagc
181	actgcggtgc	tgcgatgaaa	gctggccaat	tcatgaaagc	tggcgctcct	ggaggggccc
241	gcgcccgatt	agcttgttgg	tgaggtaacg	gctcaccaag	gcgacgatcg	gtagccggcc
301	tgagagggtg	atcggccaca	ctgggactga	gacacggccc	agactcctac	gggaggcagc
361	agtggggaat	attggacaat	gggcgcaagc	ctgatccagc	aacgccgcgt	ggaggacgaa
421	ggccttcggg	tcgtaaactc	ctgtcagttg	ggacgaaaag	tcgtcgatca	atagtcggcg
481	attatgacgg	taccagcaga	ggaagccccg	gctaactccg	tgccagcagc	cgcggtaata
541	cggagggggc	tagcgttatt	cggaattatt	gggcgtaaag	ggcgcgtagg	cggcttggta
601	ggtcaaaggt	gaaatccctc	agctcaactg	aggaactgcc	tttgaaacca	cctcgcttga
661	ggctgggagg	gggtagcgga	attcccggtg	tagcggtgaa	atgcgtagat	atcgggagga
721	acaccggtgg	cgaaggcggc	tacctggacc	agttctgacg	ctgaggcgcg	aaagtgtggg
781	gagcaaacag	gattagatac	cctggtagtc	cacactgtaa	acgatgggca	ctcggtgccg
841	tgggtgttga	cccctgcggt	gccttagcta	acgcgttaag	tgccccgcct	ggggagtacg
901	gtcgcaaggc	tgaaactcaa	aggaattgac	gggggcccgc	acaagcggtg	gagcatgtgg
961	tttaattcga	tgcaacgcga	agaaccttac	ctgggcttga	actgtggagg	accgttctgg
1021	aaacaggacc	ttctcttcgg	agacccccat	agaggtgctg	catggctgtc	gtcagctcgt
1081	gtcgtgagat	gttgggttaa	gtcccgcaac	gagcgcaacc	cctatcccta	gttgccagcg
1141	agtgatgtcg	ggaactctag	ggagactgcc	ccggaaatcg	gggaggaagg	tggggatgac
1201	gtcaagtcct	catggccttt	atgtccaggg	ctacacacgt	gctacaatgg	gcggcacaga
1261	gggccgcgac	agcgcgagct	cgagctaatc	ccaaaaaacc	gtcctcagtt	cggattgcag
1321	tctgcaactc	gactgcatga	agttggaatc	gctagtaatc	ccggatcagc	atgccggggt
1381	gaatacgttc	ccgggccttg	tacacaccgc	ccgtcacatc	acgaaagtcg	gctgtaccgg
1441	aagtcggtgg	gctaaccttc	gggaggcaac	tgcccatggt	atggtcggcg	attggggtga
1501	agtcgtaaca	aggtagccgt	a			

Figure B2 Nucleotide sequence of 16S rDNA from KK_16S_019 bp. This sequence contained 1,521 base pairs with 350 a, 380 c, 503 g, and 288 t
	10) 20) 30) 4() 50) 60
				••••	•••••	
1	agagtttgat	catggctcag	aacgaacgct	ggcggcatgc	ctaacacatg	caagtcgaac
61	gaacccttcg	gggtgagtgg	cgcacgggtg	cgtaacgcgt	gggaacctgc	ccttaggttt
121	ggaataactc	agagaaattt	gagctaatac	caaataatgt	cttcggacca	aagatttatc
181	gcctttggat	gggcccgcgt	aggattagct	tgttggtgag	gtaaaggctc	accaaggcga
241	cgatccttag	ctggtcttag	aggatgatca	gccacactgg	gactgagaca	cggcccagac
301	tcctacggga	ggcagcagtg	gggaatattg	gacaatgggc	gaaagcctga	tccagcaatg
361	ccgcgtgagt	gatgaaggcc	ttagggttgt	aaagctcttt	tacccgggat	gataatgaca
421	gtaccgggag	aataagcccc	ggctaactcc	gtgccagcag	ccgcggtaat	acggaggggg
481	ctagcgttgt	tcggaaatac	tgggcgtaaa	gcgcacgtag	gcggcgccgt	aagtcagggg
541	tgaaatcccg	gggctcaacc	ccggaactgc	ccttgaaact	gcagtgctag	aatcttggag
601	aggcgagtgg	aattccgagt	gtagaggtga	aattcgtaga	tattcggaag	aacaccagtg
661	gcgaaggcga	ctcgctggac	aagtattgac	gctgaggtgc	gaaagcgtgg	ggagcaaaca
721	ggattagata	ccctggtagt	ccacgccgta	aacgatgata	actagctgtc	cgggttcaca
781	gaacttgggt	ggcgcagcta	acgcattaag	ttatccgcct	ggggagtacg	gtcgcaagat
841	taaaactcaa	aggaattgac	gggggcctgc	acaagcggtg	gagcatgtgg	tttaattcga
901	agcaacgcgc	agaaccttac	cagcgtttga	catcctgatc	gcgaatagca	gagatgcttt
961	tcttcagttc	ggctggatca	gtgacaggtg	ctgcatggct	gtcgtcagct	cgtgtcgtga
1021	gatgttgggt	taagtcccgc	aacgagcgca	accctcgtcc	ttagttgcca	tcatttagtt
1081	gggaactcta	aggaaaccgc	cggtgataag	ccggaggaag	gtggggatga	cgtcaagtcc
1141	tcatggccct	tacacgctgg	gctacacacg	tgctacaatg	gcaactacag	tgggcagcga
1201	actcgcgagg	gtgagctaat	ctccaaaagt	tgtctcagtt	cggattgttc	tctgcaactc
1261	gagagcatga	aggcggaatc	gctagtaatc	gcggatcagc	atgccgcggt	gaatacgttc
1321	ccaggccttg	tacacaccgc	ccgtcacgcc	atgggagttg	gtttcacccg	aagatggtgc
1381	gctaaccttt	taggaggcag	ccagccacgg	tgggatcagc	gactggggtg	aagtcgtaac
1441	aaggtaaccg	ta				

Figure B3 Nucleotide sequence of 16S rDNA from KK_16S_023 bp. This sequence contained 1,452 base pairs with 364 a, 337 c, 447 g, and 304 t

	10) 20) 30) 40) 50) 60
				••••	•••••	
1	agagtttgat	catggctcag	gacgaacgct	agcggcgcgc	ttaatacatg	caagtcgaac
61	gccaacggtt	gacttcggtt	ggcctagtag	cgtggcgaac	gggtgagtaa	cgcgtaggca
121	acctgccctt	gagcggggaa	taagcccggg	aaaccgggta	caataccgca	tgttgttccg
181	agatcgcatg	gttttggaat	taaagccttc	gggcgctcag	ggatgggcct	gcgttctatt
241	agcttgttgg	tgaggtaacg	gctcaccaag	gcaacgatgg	atagttggtc	tgagaggacg
301	atcagccaca	ctgggactga	gatacggccc	agactccttc	gggaggcagc	agtaaggaat
361	attgcgcaat	ggacgaaagt	ctgacgcagc	gacgccgcgt	gtgcgactaa	gcccttcggg
421	gtgtaaagca	ctgtccagtg	ggaagaatgc	ccattacggc	gggagagacg	gtaccactgt
481	agaaagctcc	ggctaactcc	gtgccagcag	ccgcggtgat	acgggggggag	caagcgttgt
541	ccggatttac	tgggcgtaaa	gggcgtgtag	gcgggacggt	cagtcgtggg	tgaaatcttc
601	aggcttaacc	tggaaattgc	ccccgatact	gccgttcttg	agtgcaggag	agggtagtgg
661	aattcccggt	gtagcggtgg	aatgcgcaga	tatcgggagg	aacaccagtg	gcgaaggcgg
721	ctgcctggcc	tgacactgac	gctaaggcgc	gaaagcgtgg	ggagcaaaca	ggattagata
781	ccctggtagt	ctacgctgta	aacgatgggt	actaggtgtt	ggaggaatcg	acccctccgg
841	tgccgcagtt	aacgcattaa	gtaccccgcc	tggggagtac	gatcgcaagg	ttgaaactca
901	aaggaattga	cggggccccg	cacaagcggt	ggagcatgtt	gtttaattcg	atgcaacgcg
961	aagaacctta	cctggcctgg	aagcacaact	gctcatccgg	tgaaagccgg	actccttcga
1021	gggtgttgtg	gaggtgctgc	atggctgtcg	tcagctcgtg	tcgtgagatg	ttgggttaag
1081	tcccgcaacg	agcgcaaccc	ctatcgttag	ttgccatcag	atcttcggat	gctgggaact
1141	ctaacgagac	tgcccgggtt	aaccgggagg	aaggtgggga	tgatgtcaag	tcctcatggc
1201	ccttacggcc	agggctacaa	acgtgctaca	atgggtggta	cagagggaag	cgataccgcg
1261	aggtggagcc	aatcccaaaa	aaccatcccc	agttcggatt	gcagtctgca	actcgactgc
1321	atgaagttgg	aatcgctagt	aatcgctgat	cagcaggcag	cggtgaatac	gttcccgggg
1381	cttgtacaca	ccgcccgtca	caccatggga	gccggtagca	cccgaagtcg	ctgtgctaac
1441	cgcaaggagg	caggcgccga	aggtgagatc	ggtgactggg	gtgaagtcgt	aacaaggtaa
1501	ccgta					
//						

Figure B4 Nucleotide sequence of 16S rDNA from KK_16S_034 bp. This sequence contained 1,505 base pairs with 356 a, 361 c, 492 g, and 296 t

	10) 20) 3() 4() 50) 60
				••••	•••••	
1	agagtttgat	catggctcag	aatcaacgct	ggcggcgtgc	ctaacacatg	caagtcgagc
61	gagaaagggg	gcttcggccc	ttgagtacag	cggcggacgg	gtgagtaacg	cgtgggtaat
121	ctgcccttga	gtggggaata	acactgggaa	actggtgcta	ataccgcatg	acgtcttcgg
181	atcctcgggt	tcggagatca	aagctgggga	ccgtaaggcc	tagcgctcgg	ggaggagccc
241	gcgtccgatt	agcttgttgg	tgaggtaatg	gctcaccaag	gctccgatcg	gtagccggcc
301	tgagagggcg	gacggccaca	ctgggactga	gacacggccc	agactcctac	gggaggcagc
361	agtggggaac	tttgcgcaat	gggggaaacc	ctgacgcagc	aacgccgcgt	ggaggatgaa
421	ggccttcggg	tcgtaaactc	ctgtcaatcg	ggacgaaagc	gctccgacct	aatacgtcgg
481	gacgttgact	gtaccggtgg	aggaagctcc	ggctaactct	gtgccagcag	ccgcggtaat
541	acagagggag	caagcgttgt	tcggaattac	tgggcgtaaa	gggcgcgcag	gcggcctggt
601	cagtctcgtg	tgaaatccct	cggctcaact	gaggaattgc	acgggaaact	gcctggcttg
661	agttcgggag	agggaagcgg	aattccgggt	gtagcggtga	aatgcgcaga	tatccggagg
721	aacaccagtg	gcgaaggcgg	cttcctggac	cgtgactgac	gctgaggcgc	gaaagctagg
781	ggagcaaacg	ggattagata	ccccggtagt	cctagctgta	aacgttgagt	gctgggtgta
841	gggggtattg	acccccctg	tgccgaagct	aacgcattaa	gcactccgcc	tggggagtac
901	ggtcgcaagg	ctgaaactca	aaggaattga	cggggggcccg	cacaagcggt	ggagcatgtg
961	gttcaattcg	acgcaacgcg	aagaacctta	ccggggtttg	aactgtacgg	gacagctgca
1021	gagaggcagt	tttccttcgg	gacccgtata	gaggtgctgc	atggctgtcg	tcagctcgtg
1081	tcgtgagatg	ttgggttaag	tcccgcaacg	agcgcaaccc	ttgcctcctg	ttgccagcag
1141	gtaatgctgg	gcactctgga	gagactgccg	gtgataaacc	ggaggaaggt	ggggatgacg
1201	tcaagtcctc	atggccttta	tgccccgggc	tacacacgtg	ctacaatggc	tggaacaaag
1261	ggttgcaaaa	ccgtgaggtg	gagctaatcc	caaaaaacca	gtctcagttc	ggattggagt
1321	ctgcaactcg	actccatgaa	gctggaatcg	ctagtaatcg	cggatcagca	tgccgcggtg
1381	aatacgttcc	cgggccttgt	acacaccgcc	cgtcacatca	cgaaagctgg	ctgtactaga
1441	agtcgctgag	ctgacccttc	ggggggggcag	gcgcccacgg	tatggttagt	gattggggtg
1501	aagtcgtaac	aaggtagccg	ta			

Figure B5 Nucleotide sequence of 16S rDNA from KK_16S_036 bp. This sequence contained 1,522 base pairs with 347 a, 374 c, 511 g, and 290 t

	10) 20) 30) 4() 50) 60
					•••••	
1	agagtttgat	catggctcag	aatcaacgct	ggcggcgtgc	ctaacacatg	caagtcgaac
61	gggaaaagtc	cttcgggact	gagtagagtg	gcgaacgggt	gagtaacgcg	tgggtgatct
121	accctaaaga	gggggataac	ccgccgaaag	gcgggctaat	accgcatgag	cctgtggggt
181	cggacctaca	gggaaaggcc	ttcgggtcgt	tttaggagga	gcccgcgtcg	gattagctag
241	taggtgaggt	aagggctcac	ctaggcgacg	atccgtagcc	ggtctgagag	gacggacggc
301	cacactggga	ctgagacacg	gcccagactc	ctacgggagg	cagcagtggg	gaattttggg
361	caatgggcgc	aagcctgacc	cagcaacgcc	gcgtggagga	agaagttttt	cggaacgtaa
421	actcctgtcc	tgagggacga	agccagtgac	ggtacctcgg	gaggaagccc	cggctaactc
481	cgtgccagca	gccgcggtaa	tacggggggg	gcaagcgttg	ttcggaatta	ctgggcgtaa
541	agggcgcgta	ggcggcatgg	gaagtcatgg	gtgaaagccc	cgggctcaac	tcgggaatgg
601	cctgtgaaac	cactgtgctg	gagtgctgga	gagggaagcg	gaattcccag	tgtagcggtg
661	aaatgcgtag	atattgggag	gaacatcggt	ggcgaaggcg	gcttcctgga	cagacactga
721	cgctgaggcg	cgaaagccag	gggagcaaac	gggattagat	accccggtag	tcctggctgt
781	aaacgatgaa	cacttggtgt	ggggggtgtt	gaaagtccct	ccgtgccgaa	gaaaactcat
841	taagtgttcc	gcctggggag	tacggccgca	aggctgaaac	tcaaaggaat	tgacggggggc
901	ccgcacaagc	ggtggagcat	gtggtttaat	tcgacgcaac	gcgaagaacc	ttaccggggt
961	ttgaactgtc	cgagccgcct	ctagagatag	ggggttcctt	tcggggactc	gggcagaggt
1021	gctgcatggc	tgtcgtcagc	tcgtgtcgtg	agatgttggg	ttaagtcccg	caacgagcgc
1081	aacccttgtc	tgtagttgcc	accaggtgaa	gctgggcact	ctacggagac	tgtcggcgaa
1141	aagccggagg	aaggtgggga	tgacgtcaag	tccccatggc	ctttatgtcc	cgggctacac
1201	acgtgctaca	atgggcggaa	cagagggcag	cgacctcgca	agagcaagcg	aatcccagaa
1261	atccgctctc	agttcggatt	gtagtctgca	actcgactac	atgaaggtgg	aatcgctagt
1321	aatcgcggat	cagaacgccg	cggtgaatac	gttcccgggc	cttgtacaca	ccgcccgtca
1381	catcacgaaa	gtgggttgta	ctagaagtcg	ccaggctaac	ccttcgggga	ggcaggtgcc
1441	gacggtatga	tccatgattg	gggtgaagtc	gtaacaaggt	aaccgta	

Figure B6 Nucleotide sequence of 16S rDNA from K_16S_037 bp. This sequence contained 1,487 base pairs with 352 a, 354 c, 509 g, and 272 t

	10) 20) 3() 40) 51	0 60
1	aggtttgatc	atggctcaga	atgaacgctg	gcggcgtgct	taacacatgc	aagtcgcacg
61	agaacgcttc	agcttgctga	agtaagtaaa	gtggcgcacg	ggtgagtaac	gcgtgggtaa
121	tctaccctca	aattggggat	aacccgccga	aaggcgggct	agtaccgaat	aacatcctga
181	aaattcatgt	tttcaggatc	aaaggtggcc	tctacgtgta	agctattgtt	tgaggatgag
241	cccgcgtacc	attagcttgt	tggtagggta	atggcctacc	aaggcgacga	tggttagctg
301	gtctgagagg	atgatcagcc	acactggaac	tgacacacgg	tccagactcc	tacgggaggc
361	agcagtgagg	aattttgcgc	aatgggggaa	accctgacgc	agcaacgccg	cgtgagtgat
421	gaaggctttc	gggtcgtaaa	gctctgtcaa	gtgggaagaa	cccatatggt	gttaatacca
481	ccatatgctg	acggtaccac	tgaaggaagc	accggctaac	tccgtgccag	cagccgcggt
541	aatacggggg	gtgcgagcgt	tattcggaat	tactgggcgt	aaagagcgcg	taggcggtct
601	cttaagtcag	gtgtgaaagc	ccggggctca	accccggaag	tgcacttgaa	actaagagac
661	ttgagtatgg	gagagggaag	tggaattcct	ggtgtagcgg	tgaaatgcgt	agatatcagg
721	aggaacatca	gtggcgaagg	cgacttcctg	gaccaatact	gacgctgagg	cgcgaaggcg
781	tggggagcaa	acaggattag	ataccctggt	agtccacgca	gtaaacggtg	aacactaggt
841	gtagcgggta	ttgacccctg	ctgtgccgca	gcaaacacat	taagtgttcc	gcctggggag
901	tacggccgca	aggttaaaac	tcaaaggaat	tgacgggggc	ccgcacaagc	ggtggagcat
961	gtggtttaat	tcgacgcaac	gcgaagaacc	ttacctaggt	ttgacatccc	gggaatcctg
1021	tggaaacacg	ggagtgccct	tcggggagcc	cggtgacagg	tgctgcatgg	ctgtcgtcag
1081	ctcgtgtcgt	gagatgttgg	gttaagtccc	gcaacgagcg	caaccccttt	ctttagttac
1141	catcatttag	ttggggactc	taaagacact	gccccggtta	acggggagga	aggtggggat
1201	gacgtcaagt	cctcatggcc	tttatgccta	gggctacaca	cgtgctacaa	tggactgtac
1261	aaagggttgc	cagcctgtga	gggtgagcca	atcccagaaa	gcagttcgta	gttcggattg
1321	gagtctgcaa	ctcgactcca	tgaagctgga	atcgctagta	atcgtggatc	agcatgccac
1381	ggtgaatacg	ttcccgggcc	ttgtacacac	cgcccgtcac	accatgagag	ttggttgtac
1441	cagaagtcgt	tgggcaaacc	tttctaggat	gcaggcgcct	aaggtatggc	tgatgattgg
1501	ggtgaagtcg	taacaaggta	accgta			

Figure B7 Nucleotide sequence of 16S rDNA from KK_16S_038 bp. This sequence contained 1,526 base pairs with 384 a, 346 c, 472 g, and 324 t

	10	20) 3() 40) 50	0 60
					.	
1	agagtttgat	cctggctcag	aacgaacgct	ggcggcgtgc	ttaacacatg	caagtcgaac
61	gagaaagttt	ccttcgggaa	acgagtagag	tggcgcacgg	gcgagtaacg	cgtagataat
121	ctacccttat	atctgggata	acattgggaa	actggtgcta	ataccggata	cacttcttat
181	ctgcggggat	aaggaggaaa	ggtggcctct	tcttgaaagc	taccgtatag	ggatgagtct
241	gcgtaccatt	agctagtagg	tggggtaacg	gcccacctag	gcgacgatgg	ttagcgggtc
301	tgagaggatg	atccgccaca	ctggaactgg	aacacggacc	agactcctac	gggaggcagc
361	agtgaggaat	attgcgcaat	gggggaaacc	ctgacgcagc	gacgccgcgt	gagtgaggaa
421	ggtcttcgga	tcgtaaagct	ctgtcagaag	ggaagaagtg	ttatatagct	aatacctatg
481	taatttgacg	gtaccttcag	aggaagcacc	ggctaactcc	gtgccagcag	ccgcggtaat
541	acggagggtg	cgagcgttgt	tcggaattac	tgggcgtaaa	gggcgcgtag	gcggccggat
601	atgtcagatg	tgaaagtcca	cggctcaacc	gtggaagtgc	atttgaaact	gtccggcttg
661	agtatcggag	gggagtgtgg	aattcccggt	gtagaggtga	aattcgtaga	gatcgggagg
721	aacaccggtg	gcgaaggcga	cactctggac	gaatactgac	gctgaggcgc	gaaagcgtgg
781	ggagcaaaca	ggattagata	ccctggtagt	ccacgccgta	aacgatgtga	actagaggta
841	ggtggtgttg	atcccatctg	tctcgcagct	aacgcattaa	gttcaccgcc	tggggagtac
901	ggtcgcaaga	ttaaaactca	aaggaattga	cggggggcccg	cacaagcggt	ggagtatgtg
961	gtttaattcg	acgcaacgcg	aagaacctta	cctgggcttg	acatcccgag	aatttcctgg
1021	aaacaggaaa	gtgcgtcatt	agatgaactc	ggtgacaggt	gctgcatggc	tgtcgtcagc
1081	tcgtgtcgtg	agatgttggg	ttaagtcccg	caacgagcgc	aacccctatc	tttagttgcc
1141	agcagttcgg	ctgggcactc	tagagagact	gccggtgtca	aaccggagga	aggtggggat
1201	gacgtcaagt	cctcatggcc	tttatgtcca	gggctacaca	cgtactacaa	tggtcggtac
1261	aaagggctgc	aagcacgcga	gtgtaagcca	atcccagaaa	gccggtctca	gtccggattg
1321	gagtctgcaa	ctcgactcca	tgaagttgga	atcgctagta	atcgcggatc	agcatgccgc
1381	ggtgaatacg	ttcccgggcc	ttgtacacac	cgcccgtcac	accacgaaag	tcggttgttc
1441	cagaagtagt	tgagctaacc	ttcgggaggc	aggctaccaa	ggaatgatcg	gtaattgggg
1501	tgaagtcgta	acaaggtaac	cgta			

Figure B8 Nucleotide sequence of 16S rDNA from KK_16S_039 bp. This sequence contained 1,524 base pairs with 391 a, 340 c, 476 g, and 317 t

	10) 20) 30) 4() 50) 60
				••••	.	
1	agagtttgat	catggctcag	attgaacgct	ggcggcatgc	ttaacacatg	caagtcgaac
61	ggtaacaggc	cttcgggcgc	tgacgagtgg	cggacgggtg	agtaacgcgt	gggaatctgc
121	ccttgagtgg	gggacaacat	tcggagacga	atgctaatac	cgcatgatgt	ctacggacca
181	aagttgcctt	cgggtgacgc	ttgaggatga	gcccgcgttg	gattagctag	taggtggggt
241	aaaggctcac	ctaggcgacg	atccatagct	ggtctgagag	gatgatcagc	cacactggga
301	ctgagacacg	gcccagactc	ctacgggagg	cagcagtggg	gaatattgga	caatgggcgc
361	aagcctgatc	cagcaatgcc	gcgtgtgtga	agaaggcctg	cgggttgtaa	agcacttttc
421	tgagagaaga	aagcagccag	gttaagagct	aggctgtgtg	acggtatctc	aggaataagc
481	accggctaac	tccgtgccag	cagccgcggt	aatacggagg	gtgcaagcgt	taatcggaat
541	tactgggcgt	aaagggtacg	taggcggcta	tttaagtcgg	atgtgaaagc	cccgggctta
601	acctgggaat	gtcgttcgat	actggatagc	tagagtctgg	cagaggctgg	tggaattccc
661	ggtgtagcgg	tgaaatgcgt	agatatcggg	aggaacatta	gtggcgaagg	cggccagctg
721	ggtcaagact	gacgctgagg	tacgaaagcg	tggggagcaa	acaggattag	ataccctggt
781	agtccacgcc	ctaaacgatg	aacactagac	gttggttcca	tttaagggat	tagtgtcgaa
841	gcaaacgcgt	taagtgttcc	gcctggggag	tacggccgca	aggttgaaac	tcaaaggaat
901	tgacgggggc	ccgcacaagc	ggtggagcat	gtggtttaat	tcgatgcaac	gcgaagaacc
961	ttaccagccc	ttgacatcct	cggaatcttt	cagagatgaa	agagtgcctt	cgggaatcga
1021	gtgacaggtg	ctgcatggct	gtcgtcagct	cgtgtcgtga	gatgtcgggt	taagtcccgc
1081	aacgagcgca	acccttgtcc	ctagttgcca	gcacttcggg	tgggaactct	agggagactg
1141	ccggtgataa	accggaggaa	ggtggggatg	acgtcaagtc	atcatggccc	ttatgggctg
1201	ggctacacac	gtgctacaat	ggtcggtaca	gagggccgca	aagccgcgag	gtggagcaaa
1261	tcccagaaag	ccgatcttag	tccggatcgc	agtctgcaac	tcgactgcgt	gaagtcggaa
1321	tcgctagtaa	tcgcgaatca	gcaatgtcgc	ggtgaatacg	ttcccgggcc	ttgtacacac
1381	cgcccgtcac	accatgggag	ttggctgcac	cagaagccgg	tagctcaaca	tcgagcgctg
1441	tccgcggtgt	ggtcaatgac	tggggtgaag	tcgtaacaag	gtagccgta	

Figure B9 Nucleotide sequence of 16S rDNA from KK_16S_040 bp. This sequence contained 1,489 base pairs with 367 a, 338 c, 485 g, and 299 t

	10) 20) 3() 4() 50	0 60
1	agagtttgat	cctggctcag	agtgaacgct	ggcggcgtgg	ttaagacatg	caagtcgaac
61	gggattgtta	aagttgacgc	ttcggttgat	tctttaacat	gagagtggca	aacgggtgcg
121	taacacgtga	gcaacctgcc	ctaaagcctg	ggatagctcg	gagaaattcg	aattaatacc
181	ggatgtggca	cgaaaacaca	tgtttttagt	gctaaagctt	gtaacggcac	tttaggaggg
241	gctcgcggcc	tatcagcttg	ttggtgaggt	aacggctcac	caaggctaag	acgggtagct
301	ggtctgagag	gatgatcagc	cacactggaa	ctgagacacg	gtccagacac	ctacgggtgg
361	cagcagtttc	gaatcattca	caatggggga	aaccctgatg	gtgcaacgcc	gcgtgaggga
421	tgaaggcctt	cgggtcgtaa	acctctgtca	ccaaggagca	acaagcaggt	tcatagcctg
481	ccctgagtta	acttggagag	gaagcagtgg	ctaactccgt	gccagcagcc	gcggtaatac
541	ggagactgca	agcgttactc	ggattcactg	ggcgtaaagg	gtgcgtaggc	cgctaagcgt
601	gtcaggtgtg	aaatctcggg	gcttaacctc	gaaactgcgc	ctgaaactgt	ttagcttgag
661	tattggagag	gtaagcggaa	tttctggtgt	agcggtgaaa	tgcgtagata	tcagaaggaa
721	caccaatggc	gaaggcagct	tactggacaa	taactgacgc	tgaggcacga	aagcgtgggt
781	agcgaaaggg	attagatacc	cctgtagtcc	acgccgtaaa	cgttgtacac	taggtcttgg
841	gggtttcgac	cccttcagga	ccccagctaa	cgcgataagt	gtaccgcctg	aggactacgg
901	ccgcaaggct	agaactcaaa	ggaattgacg	ggggcccgca	caagcggtgg	agcatgtggt
961	ttaattcgat	gcaacgcgaa	gaaccttacc	taggcttgac	atgtatcgga	cggtttccag
1021	agatgggttc	tttccttcgg	gactgataca	caggtgctgc	atggccgtcg	tcagctcgtg
1081	tcgtgagatg	tttggttaag	tccagcaacg	agcgcaaccc	tcgtccttag	ttgccagcac
1141	gttatggtgg	ggactctaag	gagacaaact	tctttcagaa	gtgggaaggt	ggggatgacg
1201	tcaggtcagt	atggccctta	cgcctagggc	tacacacgtg	ctacaatgcc	cggtacagtg
1261	ggacgcaata	ccgcgaggtg	gagcaaatcc	tcaaaaccgg	gcccagttcg	gattggagtc
1321	tgcaactcga	ctccatgaag	tcggaatcgc	tagtaatgac	gtatcagcta	tgacgtcgtg
1381	aatacgttcc	cgggccttgt	acacaccgcc	cgtcacatca	tgaaagccgg	ttttgcccga
1441	agtacgtgcg	ctaacttcgg	aagcagcgtc	ctaaggcagg	gccggtgatt	gggatgaagt
1501	cgtaacaagg	taaccgta				

Figure B10 Nucleotide sequence of 16S rDNA from KK_16S_041 bp. This sequence contained 1,518 base pairs with 383 a, 350 c, 458 g, 327 t

	10) 20) 30) 4() 50	0 CO
				••••	•••••	
1	agagtttgat	cctggctcag	gatgaacgct	agcggcgtgc	ctaatgcatg	caagtcgaac
61	gggaaccttt	ggaattattc	tgaaggggag	agtggcggac	gggtgagtaa	cacgttggtg
121	acctgcccca	gagaggggga	taaccattgg	aaacgatggc	taataccccg	gatgtcatta
181	tggttagaga	gtaatgacta	aagctccggc	gctctgggag	gggcctgcgg	cccatcagct
241	tgttggtagg	gtaacggcct	accaaggcga	agacgggtag	ggggcgtgag	agcgtgaccc
301	cccacactgg	tactgaaaca	cggaccagat	acctacgggt	agcagcagca	aggaatattg
361	cccaatggac	gaaagtctga	ggcagcaacg	ccgcgtggag	gatgaaggcc	ttcgggttgt
421	aaactccttt	tctgggggaa	gagaaaggac	ggtaccccag	gaataagtct	cggctaacta
481	cgtgccagca	gccgcggtaa	aacgtaggag	gcgagcgtta	tccggattta	ctgggcgtaa
541	agcgcgtgca	ggcggttttc	taagtcggac	gtgaaagctc	ccggctcaac	tgggagaggt
601	cgttcgaaac	taggaggctt	gagggtggta	gaggagagtg	gaattcccgg	tgtagtggtg
661	aaatgcgtag	atatcgggag	gaacaccagt	ggcgaaggcg	gctctctggg	ccattcctga
721	cgctaagacg	cgaaagctag	gggagagaac	gggattagaa	accccggtat	tcctagccgt
781	aaacgatgtc	aactaggtgt	ggggggtatc	caacccccct	gtgctgcagc	aaacgcgata
841	agttgaccgc	ctggggacta	cggccgcaag	gctaaaactc	aaaggaattg	acggggaccc
901	gcacaagcag	cggagcgtgt	ggtttaattc	gaggctacgc	gaagaacctt	accagggttt
961	gacatgacgg	tggtaggaag	gcgaaagccg	accgaccctt	cggggagccg	tcacaggtgc
1021	tgcatggctg	tcgtcagctc	gtgccgtgag	gtgttaggtt	aagtcctgta	acgagcgcaa
1081	ccctcatcgt	tagttatacg	tgtctaacga	gactgccggt	gataaaccgg	aggaaggtga
1141	ggatgacgtc	aagtcagcat	ggcctttata	tcctgggcta	cacacacgct	acaatggccg
1201	gtacaatggg	tagcgaaacc	gcgaggtgaa	gccaatcctc	caaagccggt	ctcagttcgg
1261	attgcaggct	gcaactcgcc	tgcatgaagt	cggagttgct	agtaaccgcg	cgtcagcaac
1321	agtgcggtga	atacgttccc	gggtcttgta	cacaccgccc	gtcacgtcat	ggaagttggc
1381	aacgcctgaa	gtcagtgagc	taaccttcac	gggaggcaac	tgcccaaggt	ggggtcggta
1441	actgggacga	agtcgtaaca	aggtagccgt	a		

Figure B11 Nucleotide sequence of 16S rDNA from KK_16S_042 bp. This sequence contained 1,471 base pairs with 367 a, 344 c, 480 g, and 280 t

	10	20) 3() 40) 5	0 60
				••••	•••••	
1	agagtttgat	cctggctcag	gactagcgct	ggcggtgtgt	cttagacatg	caagtcgagc
61	gggattcact	ccggtagcaa	taccggggtg	cgcctagcgg	cgaacgggtg	agtaatgcaa
121	gggtaaccta	ccctgaggtg	aggcacaacc	cgtcgaaagg	cgggctaatt	cctcatgtgt
181	tgcagcctcg	gcatcctggc	tgcagcaaag	acgccgcaag	gtgtcgcctc	ttgaggggct
241	cttgttctat	cagcttgatg	gcggggtaac	ggcccaccat	ggctgcgacg	gatagtcggc
301	gtgagagcgt	gaccggccac	aggggaactg	agatacggtc	cccactccta	cgggaggcag
361	cagtctagaa	atttgggcaa	tgggcgaaag	cctgacccag	cgacaccgcg	tggaggatga
421	agtctttcgg	gatgtaaact	cctgtcaggg	tgaacgatgc	cgttccggag	taactgccgg
481	ggcggtgacg	gtactcccaa	aggaagctcc	ggctaactac	gtgccagcag	ccgcggtgat
541	acgtaggggg	caagcgctgt	ccggattcac	tgggcgtaaa	gggtgtgtag	gcggactggt
601	gggtcgatgg	tgaaagcttc	gggcttaacc	cgggaattgc	tgtcgaaact	accagtctag
661	agagcaggag	agggaactgg	aacttccggt	gtagcggtag	aatgcgtaga	tatcggaagg
721	aacgctaata	gcgaaggcag	gttcctggaa	tgcatctgac	gctgagacac	gaaagctagg
781	ggagcgaaca	ggattagata	ccctggtagt	cctagctgta	aacgatgtac	attaggcgtg
841	ggggcctagt	ctccgtgccg	cagctaacgc	gataaatgta	ccgcctgggg	actacggccg
901	caaggctgaa	actcaaagga	attgacgggg	acccgcacaa	gcggtggagg	atgtggttta
961	attcgatgat	acgcgaagaa	ccttacctgg	gtttgacatg	caagtggtag	ggacccgaaa
1021	ggggatcgac	cggggtttat	ctctggagct	tgcacaggtg	ctgcatggct	gtcgtcagct
1081	cgtgccgtga	ggtgtatggt	taagtcccgc	aacgagcgca	acccctgccc	ttagttgcca
1141	accggtgacg	gtgcactcta	aggggactgc	ctccgtcaag	gaggaggaag	gtggggacga
1201	tgtcaagtca	tcatggcctt	tatgcccagg	gctacacacg	tcctacagtg	gccgctacaa
1261	tgggcagcga	catcgcgagg	tggagcgaat	ccccaaaggt	ggccatggtt	cggatagcag
1321	gctgcaactc	gcctgcttga	agacggaatc	gctagtaatc	gctgatcaga	acgcagcggt
1381	gaatacgttc	ccgggtcttg	tacacaccgc	ccgtcacgcc	atgggagttg	gcaacgcccg
1441	aagtccctcc	tttgcggggg	cccaaggcgg	ggccgatgac	tggggcgaag	tcgtaacaag
1501	gtaaccgta					

Figure B12 Nucleotide sequence of 16S rDNA from KK_16S_043 bp. This sequence contained 1509 base pairs with 344 a, 373 c, 503 g, and 289 t

	10) 20) 30) 40) 50	60
				••••	•••••	
1	agagtttgat	catggctcag	aacgaacgct	ggcggcgtgc	ctaacacatg	caagtcaaac
61	gggaaagtcc	tcttcggggg	gcgagtacag	tggcgaacgg	gtgagtaaca	cgtgggcaac
121	ctgccctcag	gattgggata	acctcgcgaa	agtggggcta	ataccggata	agaccacgct
181	gtctacgggc	agtggggtaa	aaggtggcct	ctccatggaa	gctatcacct	gaggatgggc
241	ccgcggccta	ttagcttgtt	ggtgaggtaa	cggctcacca	aggcgacgat	gggtagccgg
301	cttgagaggg	tgtacggcca	cactggcact	gagacacggg	ccagactcct	acgggaggca
361	gcagtgggga	attttgcgca	atgggggaaa	ccctgacgca	gcaacgccgc	gtgagtgatg
421	aaggccttcg	ggttgtaaag	ctcttttagt	ggggaagaaa	caccctggga	ctaataattc
481	cagggcttga	cggtacccac	agaaaaagtt	ccggctaact	acgtgccagc	agccgcggta
541	atacgtaggg	agctagcgtt	gttcggaatc	attgggcgta	aagagcgcgt	aggcggcgtg
601	gcaagtccgt	tgtgaaatcc	caaagcttaa	ctttggaact	gcatcggata	ctgccatgct
661	agagttcggg	agaggagagt	ggaattccca	gtgtagaggt	gaaattcgta	gatattggga
721	ggaacaccgg	tggcgaaggc	ggctctctgg	accgatactg	acgctgaggc	gcgaaagcta
781	ggggagcaaa	cgggattaga	taccccggta	gtcctagccg	taaacgatgg	gcactaggtg
841	ttgggggtat	cgaccccttc	agtgccgcag	ctaacgcatt	aagtgccccg	cctggggagt
901	acggtcgcaa	gactaaaact	caaaggaatt	gacggggggcc	cgcacaagcg	gtggagcatg
961	tggtttaatt	cgacgcaacg	cgaagaacct	tacctgggtt	tgaactgcag	tggaccggtg
1021	cagagatgta	cctttccttc	gggactgctg	cagaggtgct	gcatggctgt	cgtcagctcg
1081	tgtcgtgaga	tgttgggtta	agtcccgcaa	cgagcgcaac	ccatgccctt	agttaccagc
1141	ggttcggccg	gggactctaa	gggaactgcc	ggtgataaac	cggaggaagg	tgtggatgac
1201	gtcaagttct	catggccttt	atgcccaggg	ctacacacgt	gctacaatgg	tcggtacaaa
1261	gggttgcaat	accgtgaggt	ggagccaatc	ccaaaaagcc	ggtctcagtt	cggattgtag
1321	gctgcaactc	gcctgcatga	aggtggaatc	gctagtaatc	ccggatcagc	atgccggggt
1381	gaatacgttc	ccgggccttg	tacacaccgc	ccgtcacacc	acgaaagccg	gttgtaccag
1441	aagtcgctga	gccaacccgc	aagggaggca	ggtgccgaag	gtatggccgg	tgattggggt
1501	gaagtcgtaa	caaggtaacc	gta			

Figure B13 Nucleotide sequence of 16S rDNA from KK_16S_044 bp. This sequence contained 1523 base pairs with 368 a, 362 c, 496 g, and 297 t

	10	20) 3() 4() 50) 60
					•••••	
1	agagtttgat	catggctcag	aacgaacgct	ggcggcgtgc	ctaacacatg	caagtcaaac
61	gggaaagtcc	tcttcggggg	gcgagtacag	tggcgaacgg	gtgagtaaca	cgtgggcaac
121	ctgccctcag	gattgggata	acctcgcgaa	agtggggcta	ataccggata	agaccacgct
181	gtctacgggc	agtggggtaa	aaggtggcct	ctccatggaa	gctatcacct	gaggatgggc
241	ccgcggccta	ttagcttgtt	ggtgaggtaa	cggctcacca	aggcgacgat	gggtagccgg
301	cttgagaggg	tgtacggcca	cactggcact	gagacacggg	ccagactcct	acgggaggca
361	gcagtgggga	attttgcgca	atgggggaaa	ccctgacgca	gcaacgccgc	gtgagtgatg
421	aaggccttcg	ggttgtaaag	ctcttttagt	ggggaagaaa	caccctggga	ctaataattc
481	cagggcttga	cggtacccac	agaaaaagtt	ccggctaact	acgtgccagc	agccgcggta
541	atacgtaggg	agctagcgtt	gttcggaatc	attgggcgta	aagagcgcgt	aggcggcgtg
601	gcaagtccgt	tgtgaaatcc	caaagcttaa	ctttggaact	gcatcggata	ctgccatgct
661	agagttcggg	agaggagagt	ggaattccca	gtgtagaggt	gaaattcgta	gatattggga
721	ggaacaccgg	tggcgaaggc	ggctctctgg	accgatactg	acgctgaggc	gcgaaagcta
781	ggggagcaaa	cgggattaga	taccccggta	gtcctagccg	taaacgatgg	gcactaggtg
841	ttgggggtat	cgaccccttc	agtgccgcag	ctaacgcatt	aagtgccccg	cctggggagt
901	acggtcgcaa	gactaaaact	caaaggaatt	gacggggggcc	cgcacaagcg	gtggagcatg
961	tggtttaatt	cgacgcaacg	cgaagaacct	tacctgggtt	tgaactgcag	tggaccggtg
1021	cagagatgta	cctttccttc	gggactgctg	cagaggtgct	gcatggctgt	cgtcagctcg
1081	tgtcgtgaga	tgttgggtta	agtcccgcaa	cgagcgcaac	ccatgccctt	agttaccagc
1141	ggttcggccg	gggactctaa	gggaactgcc	ggtgataaac	cggaggaagg	tgtggatgac
1201	gtcaagttct	catggccttt	atgcccaggg	ctacacacgt	gctacaatgg	tcggtacaaa
1261	gggttgcaat	accgtgaggt	ggagccaatc	ccaaaaagcc	ggtctcagtt	cggattgtag
1321	gctgcaactc	gcctgcatga	aggtggaatc	gctagtaatc	ccggatcagc	atgccggggt
1381	gaatacgttc	ccgggccttg	tacacaccgc	ccgtcacacc	acgaaagccg	gttgtaccag
1441	aagtcgctga	gccaacccgc	aagggaggca	ggtgccgaag	gtatggccgg	tgattggggt
1501	gaagtcgtaa	caaggtaacc	gta			

Figure B14 Nucleotide sequence of 16S rDNA from KK_16S_045 bp. This sequence contained 1,483 base pairs with 366 a, 340 c, 473 g, and 304 t.

	10) 20) 30) 40) 50	. 60
				••••	.	
1	ggatcatttg	gtctcctcgg	cgctcggcca	tgccatggag	gacgccggcg	agcgccgcga
61	acgtcgagcc	aggctgtgga	agacggcccg	gtattgatcg	agctcctcgg	ggcacatgag
121	gcggaggagc	agaacgtagc	tcgcgaggaa	aacgagcccg	acaagcacga	gctcgacgat
181	ggcgatctcg	ggcagtcggt	ggctcgtgag	ccggtccgtg	agaagcgagc	ccccgagcgc
241	gagaagcgcc	gccgcgacga	ccttcgcgct	gtctccaagg	accctcgccg	tgctcgccgt
301	gcccaggatc	gtgcgcaagt	agacgaagag	gatgccgagc	ttgatatagg	cggacacggt
361	caccgccacg	gcgatgccct	ggtggccgag	gctgggagag	aggagcgcgc	agagggcgag
421	gttcagaacg	acccgcgcga	gccccgaacg	gaggggcacc	tggggctcct	gacggctgtg
481	gaacaccgag	acgaggagct	cgttgagccc	gagcgcgagg	atgaccggtg	cgaggatgcg
541	gagcaccgcg	accgtgagcg	cggtcgagcc	cgcgtcgaac	gagccgcgct	cgaagagagc
601	ccgaacgagg	ggagtcgccg	cgacgtagac	gaaccccgcg	agcggcgcga	agaagaccac
661	cgtcgtgacg	agggctcttc	tcacggactc	gcgcgcctgg	gcgctctctt	tcgccaggaa
721	ctgttcggaa	aggaagggga	acagagcgcc	ggtcatcgat	tttcccagga	tccgaatggg
781	cgactcgacc	agcaaggtgg	cgtattggag	cgaggagacc	gccccgacgc	ccaggagcga
841	ggcgaaggcc	cggccgacga	cgacgttgag	cttccccgtc	gccgtgccca	cgtagatcgg
901	gagcgacagg	cggatcgctt	tgaccaccgt	ggcgtcccgg	agatcgaagt	cgggccggat
961	ctggtgtcgg	cggttccgga	gcgcgatccc	gatgatgagg	agctggacgg	ctccgcccac
1021	gatctgaccc	cagacgaggg	cgaggacgcc	ccaggagtgg	aagatcagga	aataagtggt
1081	ggagacgatc	tggaatacgg	cctcggagct	cgcaccggcg	aggaaacgtt	tctcggcata
1141	gagcaccatc	gcgagcagac	gcgccgcgcc	caccgggggcc	gccatccaca	ggaggagccg
1201	ggtcatggtc	acggtggctt	cgcgcccttc	cgctccgaga	ccgggtccga	cgacgcgcag
1261	cagaggctcg	gtggcaatcg	acgcgatcgc	gatcgccgag	acgaggagca	gcagccaata
1321	ggtgagcatc	ttccccgcgg	agcgccaggc	gcctctctcg	gagacgcttc	gctcggaggc
1381	gaagagcggg	atgaagttga	aagcacccgt	ccccgcgaga	tgcatggtga	ggtccggaat
1441	cacgagggcg	aggaggtagg	tgtccatggc	gcccgacgtg	ccgaagaagt	aggccgcgag
1501	cacgttcttc	aggaagccga	cgagcgcgac	ggtcacggag	gacgcgccga	gcacggcgaa
1561	ggcgcggagg	atgtcgacgg	cgaggcccat	gtcagcgtcg	cttttccagt	tgggcgaaac
1621	gggccaagtg	agggctcacg	cgctcgcggg	aagcgaatcg	atcgaacgac	gtcctgcccc
1681	cgcgtctcgt	tccattgtca	tcccaagctc	tcgagctcga	accatggcgc	tccaccggca
1741	tcgggttcgc	gggcctgggg	ggcacccacg	ggaagtccga	gtctccgtcc	ggctggcaga
1801	atacgccgtc	cctagggttg	ggattagggg	aaagcgtaac	ttttatggga	atttcgattc
1861	cctgtcaagg	tcgagagagc	gcgtccactc	gcaaaccgtc	gacaagaggt	cgccttgtga
1921	gcttcggtgg	gtgaagatgt	gatccgtccc	gcgaatcaag	tgcgtcgtca	ccgcgcccgt
1981	tcggcgaagc	ggcccgaccg	ggcgcttcac	gccggtccgg	tagaagtagt	gggacgggct
2041	gccttgcgag	tagacgagaa	gggtacgggt	gccgcgccgt	cccagcgctt	cgaggctcga

	10	20) 3() 4() 50) 60
					.	
2101	gagaatctcg	ctcttcgacg	gcacgaggga	cagggcgtct	tcctcgggtc	ttgcgtcggc
2161	tccgttcgct	tgcgtcttct	tgccgtccct	ctcggcggcc	gagcgtttca	acatccgaat
2221	cacgtcctgc	cagatctcgc	tccggcccga	gagcagtcgc	agccagcttg	ccggccggag
2281	gagcttcttc	cgatacagat	ggcgcaggta	ggcggtcgtc	ggtacggcgt	ggccctcgat
2341	gagcaccgcg	cccaccacgc	ggggatctcg	agcggcggcg	cgcagcgcgt	tgtcggctcc
2401	ggaacagagc	ccgacgagca	cgaagcgctc	gatcccctc	gacgaagcga	ggtaatcgag
2461	cgcctccttc	acctcctcga	gcgagctctg	ggtaaagggc	cgcccgtcgc	gtcgaggctc
2521	gctgtcgccg	attcccgaga	agtcgaaacg	catggtcacg	aagcccgcct	cggcgagctc
2581	gcgcgcgagc	ttgacgtgca	aacggttcgg	cccgacgcga	tggacgatcc	ccgcgttgag
2641	aatgacgacg	ccgccgcgcg	gccggccgcc	gttcgaagcg	gccgggtcgg	tgacgattcc
2701	caccagggtc	ttccactcac	cgaagaggag	cgctttctcc	gtcaagtcgc	tctccccgcc
2761	agccaagacg	cgatctcgga	tacggttggc	ttcgggacga	cggcctggtc	gattccctct
2821	tctcgaagcc	agaaccgggc	gctcggaatc	cgggagcggc	tcacctccac	accccgcgcc
2881	cggagggcct	ccgcagcggc	ttcgacgtcc	tcgtcgccgt	cgccctccgc	gccggtcacg
2941	atgagggccc	tctgcgccgg	cgctctatcg	aggcgcgtca	gatcgatgga	cgcgattgct
3001	tccctcaagc	cgcgcggcaa	ggggaagccg	agggcttcgt	cctcctcgcc	ctcgccttcg
3061	ccttcgcctt	cgccttcgcc	gccccccgg	tgagctttcg	cccaggctcg	tctcagcgca
3121	tcgagctcgt	cgaggtacct	ggcgccgcgg	acgacgggct	cccagagcac	gaggttcgag
3181	aagcgcaggc	tttcgcgctc	ggcggcgagc	acggacaagg	cggcgccgag	cctcagcccg
3241	acggcggaga	tatccgtcgc	cgatgagccc	tcggcgagct	cctcgtgggc	gagcgcgacg
3301	tcccgaaccc	actggtcgag	gctgccctcc	tcgccgctcc	ccgcggagtc	gccgcagccg
3361	aagtagtcga	accgaaggct	ctcccgcccc	tcgttcgaga	gcgcttccgc	gagtgcccgc
3421	agggctcggt	gcgcccgaag	gtactcgcgc	ccgaaggggt	tgcacatcag	gacggctcgc
3481	ttggctcctc	ccgacgcggc	gaggtggtgg	acaccgaaga	gcgctctccc	cgaggagccg
3541	aagaagaagg	gtctcatggc	gggtcgggat	ccgcgtcctg	gcgttcgctt	catcgtcaca
3601	atggggcggg	gggagccgat	actagcacag	tcgcgtgggc	cgcgattcga	gccggcgcaa
3661	cgtcaccggg	accgagcgtc	gcgacgttct	cggtaaggcc	acctggttgc	agcgaagcgg
3721	cactgtggta	gtgtagaccc	gggtcgggac	ccaactcctc	ggctgaaaat	cgaacacgac
3781	gcgacttcgg	ggaaactagc	cgtctcttcg	tcggcgagag	ctgaggcaaa	tggcacgaga
3841	catcaagctc	agggatgctt	ggcgcgagac	caagcgcatt	ctctgggagc	accgtcgccg
3901	gctcaccctc	gccttcctcc	tgacgctctt	cagccggatg	gccggcctcg	ccgtccccgc
3961	gtcgaccaag	tttctgatcg	atgacgtcat	cggcggcggg	cggggtgagc	tgctcgagac
4021	ggtcgcgatg	ctcctcgtct	tcgccatcgt	cgctcaggcc	gcgagcgcct	tcgtcatgtc
4081	gcagctcatc	ggcgtcgccg	cgcagaggac	catcaacgat	cttcgcaccc	ggttacagag

	1() 2() 3() 4() 50) 60
				••••	.	
4141	ccacgtgacg	cggcttccgg	tgaagttctt	ccagtccgag	cacaccggaa	gcctcatcgc
4201	ccggatcatg	accgaccccg	aggcggtgcg	gaacctcgtg	ggcacgggcc	tgatccagct
4261	cgtggggggc	tccttgaccg	ccgtgctcgc	tctcggcgtg	ctgctctatc	tgaactggcg
4321	tctgacgttc	ctgaccgttc	tcgccctgac	gctcttcgcc	ggggtgatca	ccttcgcgtt
4381	cgtctggatg	cgtcccttgt	atcgcgagcg	gcgcgagatc	tacgcggggg	tgagcgggcg
4441	gttgtccgag	tccctgagcg	gcatccagac	cgtgaagtgt	tatcgcgccg	agaagcgaga
4501	agacgaggtc	ttcgttcgag	gcgtggacga	cctcttccgt	aacgtggcga	ggacgatcac
4561	cggggggcgcg	gccgtcggct	cggtctcgat	catcatcgtg	ggcggcgtgg	tcgtcgcgat
4621	ttttctcgtg	ggggggacggg	cgatcctcgc	cggcaccatg	accctcggcg	acctcgcgat
4681	gtacgtggcc	ttcaccgcgg	tgatggtcgc	gcccctgacg	cagatcgccg	gggtggccac
4741	ccaactgagc	gacgccttct	cggggctcga	tcgcatccgc	gagctcctcg	acctcgagac
4801	cgagagcgac	gaggacgagg	gaagagcacc	gctcctgtcg	ctccagggcg	acatcgtgtt
4861	cgagaacgtg	gcgttcgagt	acgagccgga	aactcccgtg	ctgaagggga	tcgacttcga
4921	agcgcgtgcc	gcgaccacca	ccgcgctcgt	cgggccgagc	ggagccggga	agagcaccgt
4981	catcgggctg	gtgatggggt	ttcaccgtcc	caccgtgggg	cgggttctcg	tcgacggccg
5041	cgatctgtcg	acgattcgcc	tcgccgatta	tcgctcctac	ctcggcgtgg	tgctccagga
5101	gaactttctc	ttcgacggca	ccgtggccga	caacattcgc	tacgcccgcc	ccgccgcgac
5161	ggacgaggag	gtccgccgcg	ccgccgagat	cgcgcattgc	gacgagttcg	tctcgcgctt
5221	caaggagggc	tacgacacgg	tggtgggcga	gcgcggggtc	aagctctcgg	gcggcgagcg
5281	ccagcgggtc	agcatcgccc	gcgcgattct	cgcgaaccct	cggatactga	ttctggacga
5341	agcgacctcg	agcctcgaca	gcgagaacga	ggcgctgatt	caggatgggc	tgcgttcgct
5401	gcdddcdddd	aggacgacgt	tcgtcatcgc	ccaccggctc	tcgacgatcc	ggtcggcgga
5461	tcagatcctc	gtcgtggacg	ggggccggat	cgtggagcgg	ggtgaccacc	acacgctcct
5521	cgagaagaga	ggacggtacc	ggcagctcta	cgaccgccag	tactccgcgg	agtcgaaccg
5581	ctacgtcaac	ccgggcgaag	agttctcggt	ccggagcgag	aaggccgccg	aggccgagga
5641	cggcacccat	gaggagcttc	cgatgacgga	ggcgatgccc	aacgtcggcg	ccgcgcttcg
5701	gtacgacgac	aagtagtagg	aaggtctacg	agatgagcac	cagcgcgaac	ccgaaccgca
5761	cgacgcctct	caatcgcacc	ggcgggagcc	cgtggatcgt	acggccccag	gcgagggacg
5821	gcgcgcgttt	gcgcctcttg	tgctttccct	acgcgggtgg	cggtccctcc	gcctttcgga
5881	cctggcgcaa	ccgcatgccc	ggggacgtcg	agtgctgcct	cgtgcaaccg	ccgggcaagg
5941	agagccgggt	cctcgaagcc	ccggtgcgga	gcatcgacga	gatcgtcgcc	tccgtctacg
6001	aagccctgcg	cccgctgctc	gacctgcccg	tcgtcttctt	cgggcacagc	atgggaggca
6061	aggtctcgtt	cgagctcgcg	cgcctcctga	gacggagggg	agagcggatt	cccagcgcgc

	1() 20) 30) 4() 5() 60
					•••••	
6121	tcgtgatctc	cgcgacgcgc	gcgcccacgg	tgcccgaccc	cgacccgccc	gtgagacatt
6181	tgcccgacaa	ggagttcgtg	gcggagatcc	agagccgcta	cgacgccatc	ccgagtggcg
6241	tgatggagaa	cgaagagctt	ctggagctca	tcatgccggg	ccttcgcgcc	gacttcgagg
6301	cgatggagac	ccacgttcac	caggaggagg	agccgctcgc	ctgtcccatc	atctgcatgg
6361	gcggtgaaga	ggacgaccgg	gtcggcgaag	cggggctgcg	tgcctgggaa	gcggagacca
6421	cgagcgactt	cgaggccacg	atttttcccg	gcgaccattt	ctacatccaa	tcgcaagagg
6481	atcgcgtcgt	gccgtttctc	gccgagcggc	tccagaagat	tctcgagcgc	tgcccttagg
6541	cgccatgccg	gagcgcgcga	gcccgggata	ggcgagaagg	atgggggagt	cgtggagctg
6601	acggatcttc	tcgctctcgt	ccgggagcgc	gacatcctgc	tctgggcgga	gggtgagaag
6661	ctccgctacg	acgcgcccaa	aggcgcgctg	acccccgatc	tccgcgagcg	gctggccgag
6721	catcgcgccg	aggtcctgga	gttcctgcga	gaggcgcgaa	ccttcgcgga	cgagcccgcg
6781	acgagcgggc	ccgtggcgat	cgtcgagcgc	gatggaccgc	tccttccgag	cttcgcgcag
6841	gagcggctcc	tgtttctgcg	ggagctcgct	cccgagagcc	cgttctacaa	cgtacccgtg
6901	gcgctccggc	tgcgaggccg	gctcgacgtc	gcggcgctcg	aggcgagcct	cggtcggctc
6961	gtggagcggc	acgaaacact	ccggacgacg	ttccggaacg	ggaggcaggt	cgtcggcgct
7021	ccacgaccgg	tcgttctccc	tcacgtcgac	ctgctcgggc	ttccggttgc	ggatcgtgag
7081	cgcgaggcgc	gacgtctcgc	gaatgcggag	gcggcgcggc	tgttcgacct	cdcdcdcddd
7141	ccccttcttc	gcgcgcggct	gtttcagctc	gcggaggacg	agcatttgct	ctcgctcacc
7201	ctccaccacg	tgatcgcgga	cggttggtcc	atgagtgttc	tgctcagaga	catggcggag
7261	ctctacgacg	ccgccgcgtc	gcggcggccg	cccgcgctcg	ccgagctcga	ggcgcagtac
7321	gcggacttcg	cggcctggca	gcgagagacg	gccaggggcg	agaccctcga	ccgccacgtg
7381	gcgttctggc	ggcggaagct	cgagaacctc	gagcccctcg	accttcccac	cgaccggccg
7441	cggcccgcgt	cgccgcgcta	cgacggcgcc	cgagaatggc	gcgcgctccc	cccggatctc
7501	gtggacgagc	tccgtgcgct	cgcacgctcc	gaggacgtca	cgctcttcac	gctccttctc
7561	gccgccttct	tcgtgctcct	gcaccgctac	accggccagg	acgatctcac	cgtgggctcg
7621	ccattcgcgg	gtcggacccg	ccccgagctc	gaggagctca	tcggcttttt	cgtgaacagc
7681	ctggtgatgc	gcgtcgacgt	gtcctccgat	ccctccttcc	gcgcgcttct	cggccgggtg
7741	gggtcgatga	cgaaggacgc	cctcgagcac	tcggacgcgc	cgttcgagaa	gctcgtcgag
7801	acgatcgagc	cggaccgaga	gctcggtcga	aaccccttct	ttcaggtcgt	cttcgccctt
7861	cagagcacgc	catctaccgc	gctcgcgatg	ggcgatctcc	gcctggagtg	gggctgggcg
7921	gagacgggtg	cgacgcgctt	cgacctcgag	gcgcacgtct	gggacgacgg	tgcgagcttg
7981	accctcgcct	tcgtctacgg	cagctcgatc	ttcgaggccg	ccacgatccg	tcgcctgcag
8041	gcgcactacg	agcacctgct	ccggtcgatc	gtccggtccc	cgggagcgcg	tctctccgag
8101	ctcgcctatc	tcgacgacgc	ggagcgagcc	tcgctcctcg	cctgggcggg	agcctcgagc
8161	ccttatcgga	acgcttcgac	gattcccgag	ctcttccagg	agcaagcgcg	gctgcgaccg

	1() 20) 3() 4() 5() 60
				•••••	•••••	
8221	gaagccgtcg	cgctctccca	ccgctcgggc	tcgatgagct	acgccgagct	cgaccaccgc
8281	tcgagtcggc	tggcgtgtgt	gcttcgccgc	cacggcgtcg	gcacggagac	gcgcgtcgcg
8341	gtcgcctgcg	agcgaagccc	ggcgctcgtc	gtcgccctcc	tggggatcct	caaggcgggc
8401	ggggcctacg	tacccgtcga	cccggacctt	cccgagggaa	ggcgcctctt	cgttctcgat
8461	gacaccgagt	cgcgcgtgct	gctgacccgc	gcggagctgg	cgcctcggtt	tgggggttac
8521	gcgggcgcgc	tcctcgtctt	cgaagccatc	gaagccgaga	tcgaggcggg	aagtcccgac
8581	cttgattggg	agcccatccc	gggcgtggtg	ggagccgaga	acctcgccta	cgtcacctat
8641	acgtcgggct	cgaccggccg	ccccaaaggc	gtcgcgatcg	cccaccgcgg	cgtggtccgt
8701	ctcgtcaagg	acaccgacta	cgtcgcgctc	ggccccgagg	acgtcgtgct	ccagctcgcg
8761	cccgtctcgt	tcgacgcctc	gacgttcgag	atctggggag	gcctgctgaa	cggatcgagg
8821	ctcgtcctct	atccgggcga	gacccccacg	ctcgaggagc	tcgcccgggt	tcttcgcgac
8881	gaaggcgtca	cgacgctctg	gctcacgggg	tcgctcttcc	accagatggt	cgaccgcgag
8941	cgcgagcgag	agactctcgc	ctcggtcgag	acgctcctcg	ccggcggcga	agcgctctcg
9001	ccccctcacg	tggcgaggat	gctcgaggcg	ctcgcgcccg	gctgccgcct	cgtgaacggc
9061	tacggtccga	ccgagggcac	gaccttcacg	tgctgccacc	ccatgacgcg	aaacacggag
9121	ccgagcgagc	tcttgccttc	cgttcccatc	ggccggccca	tcgcgaacac	ccgggtccat
9181	ctgctcgatc	gtcatttgga	gctcgtgccc	gtcggcgtcc	cgggagagct	ctatctcggt
9241	ggaggcgggc	tcgcgcgcgg	gtacctcgcc	cgccccgagc	tcaccgcgga	gcgcttcgtc
9301	cccgacccct	tcgcgaccga	aaggggaggc	aggctctacg	cgacgggaga	cttctgtcgc
9361	tatcggccgg	acgggacgat	cgagtttctc	ggccgaaagg	acgatcaagt	gaaggtccgc
9421	ggcttccgcg	tggagctcgc	ggagatcgag	gcccgtctgc	gcgaagcgcc	cgggatcgcg
9481	gacgccgtcg	tgctcgcgcg	gcgagacgcg	accgcagaga	cacgtctcgt	ggcttacgtc
9541	accgccgccg	acggcgcgga	gaacgacgac	gacgagcatg	cccacgtcga	ggcctgggca
9601	gacctcttcg	accagactta	cggaggcgcg	ggctccgccg	agccgaccgc	tcccgacttc
9661	acgggctgga	acagcagcta	caccggtgag	cccattccgc	gcaaagagat	ggaagcgtgg
9721	ctcgacgcca	tcgtcgcgcg	cgtcctttcg	ctccgtcccg	aaaaggtgct	cgagatcggc
9781	tgcggcacgg	gactcctcgt	ggaacgaatc	gcgccgagct	gcgagcgcta	cctgggcacc
9841	gacttctccg	cgtccgcgat	cgcgaagctc	ggggccaggc	tcgcgactcg	aaagagcctt
9901	tcgcacgtcg	ccctcctcga	gcgcgaggcc	gcggacttcg	aaggcatcga	gagcgaatcg
9961	ttcgatacgg	tcatcctcaa	ctccgtcgtg	cagtactttc	cctccgcgga	ctacctgctc
10021	cgggtgatcg	aggggggcgtc	gacctgtctc	tcctcgggcg	gccggatcgt	cctgggcgac
10081	gtccgcagcc	ttcccctcct	cgaggcgttt	cacgcgtcgg	tgttgctcgc	gcgttcggcg
10141	ggctccgacg	cgagagaggc	gctccgtcaa	ggcgtcgcgg	aagccgtcga	ggacgaaagc
10201	gagetegtge	tggcgccctc	ctttttctc	gcgctacccg	ggcgtctccc	cgctgtcacg
10261	gacgtcgagg	tcctgctcaa	agagggacgg	cacgagaacg	agctctcgaa	gttccgctac

	10) 20) 3() 4() 50) 60
				••••	.	
10321	gacgtcatcc	tgcacatcgg	acgggtggag	cgagcgccgg	acgtcggtcg	ctggctcgac
10381	cgggagcgcg	gtgcgctcac	gctcggtgat	ctcgatgcgg	cgctcgcatc	gggggagagc
10441	ttcggggtgc	gcgggattcc	cgacccgaga	ctcacgaccg	aagaagcgct	cctcgcctgg
10501	ctcgcgcggg	aagatggaac	gcacaccgtc	gacgggtttc	gcgccgagct	ctccggtcga
10561	gacgcgaagc	ctctggagct	atccgcgatc	gcccgcctgg	ctcgcgaccg	tggattccac
10621	gccgagctca	cctattcttc	cgaaggcgag	gaccgcgtgg	atgcgctctt	ccggccgcgc
10681	gcagagcggg	agcgcttcac	ggtcttctgg	tcgatggccc	gcgccgggag	ggacgagaga
10741	gaagcggcga	accatccgct	ccgcgctcga	cgcgcgcgag	cactcgccgc	tcgcctccgc
10801	cagcacctga	aagagcgcct	cccggactac	atgatcccgg	cgagcttcct	gctcctcgag
10861	agcttccccg	tcggtccgac	gggaaagctc	gaccggcgcg	cgctcccgag	cccgagccgc
10921	dcccdddcdd	accgcgcggg	cgagtaccgg	gctccgcgct	cgcgcacgga	gaagctcctc
10981	gtccgcatct	gggccgatgt	gctgcggctc	gaccgggtcg	ggattcacga	caacttcttc
11041	gagctcggtg	gagactccat	cctcgggatc	caggtcgcgg	cccgggctcg	ggacgaaggg
11101	ctcgccgtcg	cggtgcgcca	gctcttcgag	caccagaccg	tggcggagct	cgccgcttcc
11161	gtcgcgcctt	cgaaagcgcg	cccggacgag	cctccgcccg	aggagggtcc	ggttccgctg
11221	acgccgatcc	agcgctggtt	cttcgagctt	cgtctctccg	agcctcacca	cttcaaccag
11281	gcgctggtgc	tcgcgccccg	tgttcccctc	gaagcggatc	gactgcggcg	ggccgtgggg
11341	cgcctcgtcg	agcaccacga	cgcgctccgc	ctgcggttcc	accgagaagg	acgacgagcg
11401	ggagggaggc	gtcaggagct	cgtcgccttc	gacggggagg	ctcccttcga	agcggtggag
11461	ctcggcgagc	ggagccttct	cgaggtcgcg	agcgaggtgc	agcatcgcct	cgacctggag
11521	agcggccctt	tgctgcgggc	cgtgctcgta	cggggtgacg	acgacgagca	cgcacgcctc
11581	gttctcgtcg	cgcaccacct	cgtcgtggac	gtcgtctcgt	ggcgcgttct	tctcgaggat
11641	ctggagcggc	tcgttcgaga	ccccgaggcg	aggctctcga	ggacgacggc	tttcgccacc
11701	tggtcgcgag	agctcgagcg	cttcgcgcgc	gggcgcgact	tcgccgaaga	gctcccgttc
11761	tggctcgccc	aaggggaggc	ctcggtcccg	ccgctcccga	gagacgtcgt	gagcggagcc
11821	ccatcggcgg	cgagcctgga	tcgcgtcgtc	gagaccttcg	acgaagcgga	aacggagtcg
11881	ctgcttcgaa	gagcgccggg	ccgccccgac	gccgagctcg	ccgagcacgt	cctcacggcg
11941	ctgagcctcg	ctttttcttc	ctggacgaga	cagaggaagc	tccgggtgtc	tctcgaaggg
12001	cacggccgtg	aagagctctt	cgagggtgca	gatctctcgc	ggacggtagg	ctggttcacg
12061	tccctctacc	cgatcgtgct	ggaggcggag	cgcgacgccg	acccgagggc	cgcgctcgaa
12121	ggcgtgaaga	aggtcctgag	agcggtgccc	tcgccgcgcg	tcggcttcgg	cctcttgcgc
12181	tatctgcgag	aagagccgag	gctcgcgagc	gtccccgctc	ccgaggtgag	cttcagctat
12241	ctcggtcagc	tcgacgcgac	gcttccgtcg	agcgcgatct	tcgagaccac	cgaggacgat
12301	gtcgggccgc	tccagagccc	gaagggaacg	agagcgcacc	tcatcgacgt	gaccgctcgc
12361	atccggcgag	ggcgcctcac	ggttcacttc	tacttcagcc	ggtcggtgca	tcgtcgcgag

	10) 20) 30) 4() 50) 60
				••••	.	
12421	acgatcgaag	cgctggcggc	ggctttcgcc	tcgaaccttc	ggaagcttct	cggcgccttc
12481	ttcctggccg	agtatccgga	ggcccgtctc	gagccttcac	agtgggagga	gctcgacagc
12541	cggtacggag	ccgaggcgtt	cgaggacgtc	taccggctca	gccccatgca	gcgggggatg
12601	ctcttcgaga	gcttctacca	gcccgacgcg	ggcgtctacg	tcgagcagta	cgcgctcgag
12661	ctctccgagc	tggatccgag	cgctttcctc	cgatcctggc	agcgggtcgt	ggatcggcac
12721	cccgcgctcc	gcacctcgat	cgtgggcacg	gcatgggaag	agcctcacca	gatcgtgtgg
12781	aaacgagcgg	cgctcccggt	cgaggatcac	gacttgcgag	gccggaagcc	cgacgcgcag
12841	cgagcgtggc	tcgagtgtta	ccgtagccgt	gaccgggagc	gaggcatcga	tctcgagtcg
12901	cccccctca	tgcgcctcgc	gctcttcgcg	ctgggcgctg	ggcggtacga	atgcctctgg
12961	acgttccacc	acgtcatcct	ggacgggtgg	agcgttccgc	tcgtgctcgg	cgaggtcttt
13021	cagatctacc	agagctcacg	ccgcggtgag	gatctcgtgc	ttcccgcgcc	gccgatcttt
13081	cggagcttca	tcggctggct	cggccgtcgg	agcaccgcgg	acgcggagcg	ctactggcgg
13141	cagaggctcc	ggggcatcac	gtccgcgacg	ccgctcccgc	tcgcctcggc	ctcgcgcgag
13201	gcgcgctcga	gcacgaagga	gtacggcgaa	gagcgtatcg	tgttgtctcg	gaccgtcacg
13261	gagcaggtgc	gcgcggccgc	ggccggctgt	cgcgtcaccg	tcaatatctg	cgtgctcggc
13321	gcctggtcga	ttctcctgag	ccgctatgcc	ggcgaggaag	acatcgtgct	cggcacgacg
13381	gtctcggggc	gacccgccga	gctcgagggc	gtcgagtcga	tcgtgggcct	cttcatcaac
13441	accctgcccc	tccgggtacg	cgtggacccc	gccgtgaacg	tggagcaatt	cctgcgagag
13501	gtgcagtccc	gtcagatcga	gcagcgggag	tacgagcaca	gccctctgtg	gcaggtgcag
13561	caatggagcg	acgtgcccgc	ggggggggagc	ctgttcgaga	cctttttcgt	cttcgagaat
13621	taccccgccg	aggccatgcg	tctcatcgaa	gcctcggatc	tgaggggccg	gtccaagccg
13681	agcgtggagc	gctcgggtta	tcccctcgcg	ctcgcggcca	gccttcggga	ggagctttcg
13741	cttcggctct	tctacgatcg	cgaccgcttc	gagccggaag	cggttcgagc	tctcgcggct
13801	cgtctcgagc	gagcgctcga	agccatttcc	tccggggcct	cgaaccgctc	ccgaacgctg
13861	agcgggctga	accttctggg	agagaccgag	cgccgacttc	tcctggggcc	ctggagcgag
13921	ggaccgatgc	ccgtctcgat	cgaaagcgcg	acgagcgaga	cggtcgtgga	gctcgtcgag
13981	cgagtcgccc	ggcgtgagcc	ctcgagggtg	gcgctcgtcg	acgccgaggt	caccctccgc
14041	tatggcgagc	tgaacgctcg	cgcgaaccag	atcgcgcgcc	gtctcctcga	tggcggcgtg
14101	ggaccggagg	ccgtcgtcgc	cgtccacctc	gagcgcgggt	gggagctcgt	cgtagccaag
14161	ctcgcgattc	tgaaggcagg	aggcgcttac	cttccgctcg	atccggaagc	gccccggctc
14221	catcgggagc	tcgtgctcga	ggacgcgcgg	ccccgggcga	tcgtcacgcg	cggggatcag
14281	gattggctcc	tggagaggac	ggtccccgtc	atccgtctcg	acgaggcgct	cgtcccgggg
14341	gagggggacc	gggaccgtga	agaggccttc	gcgccggcga	cgccgcgcga	tctcgatagc
14401	ctcgcgtacg	tcatctacac	ctcgggctcc	accgggcggc	cgaagggagt	cgaggtgacc
14461	caccgcggcc	tcgcgaacct	cgttcgctgg	cacaacgaag	cttacggaat	cacccacgac

146

	10) 20) 3() 40	50 50	60
				••••	•••••	
14521	gatcgcgcca	gccaggtggc	cgcgtcgacg	ttcgacgcct	gcgcgtggga	gatctggccg
14581	cacttggccg	ccggggcgag	cctctacgtg	atcgacgacg	agacccgttc	ggaccccgtg
14641	aagctctggg	ccgccctcgc	acggttcggc	gtcaccatct	cctttctccc	cacaccgctc
14701	gcggaggcgg	cgctcgcgga	gcgcgagcgt	cccgccgggc	tgtcgttgcg	cctgctcttg
14761	accggcggcg	accagctcgg	ccgtgtcgcc	aaggacgagc	gcttcgggtt	cgtcaaccac
14821	tacggcttga	ccgagaccgc	ggtggtcgcg	acggcgggcg	aagcgggtac	ggtcgcgccg
14881	ccgccgattg	gccagcccat	ctccggcgcc	cgcgtctatc	tcgtcgacgc	gtcgatcgag
14941	ctcgttcctc	ccggagcgaa	aggggagatc	gtggtggggg	gcctcggcgt	cgcgcggggga
15001	tacctcgatc	gcccggatct	caccgccgag	cgcttcgtcc	cggatccttt	ctcttcgtca
15061	ccgggcgctc	gcctctaccg	aacggggggat	ctcgggcgtc	acttgccgga	cggaagcatc
15121	gcgttcctcg	gccgcgggga	tcgccagatc	cagctccggg	gattccgggt	cgagctcgcc
15181	gagatcgagc	acttgctgtc	ggcgcatccc	ggcgtcgcgc	aggcggccgt	cgtcgttcgc
15241	gaggaagggg	agcgcaagag	aatcgtcgct	tacgttcgta	ccgggaatcc	gggcccatcc
15301	gagagcgggc	tccgcgctta	tctgagcgac	cggctgcctc	cgcagatggt	gcccgcggct
15361	gtggtcgcgc	tcgacgcctt	tccctcgacg	ccgagcggga	agatcgatcg	cgagcgcctc
15421	ccggcccccg	aaccgacgag	cgagcgggag	cgcgtggcgc	cgcggagccc	caccgagatc
15481	cggctcgccg	cgatgtgggc	ggaagttctg	cgagtcccga	ctcccggcgt	ccacgacaac
15541	tttttcgaga	tcggaggcga	ctcgatcctg	tcgattcagc	tcgtcgcccg	ttcgcggagc
15601	cagggcctct	cgctcaccgc	aaaggacgta	ttccagcacc	cgaccatcgc	ggatctcgcc
15661	gcgctcgtcg	atcgatccat	cgaggcgccc	gcctcgcccg	actcgcccga	cgagctcgag
15721	gccgtgggac	ccataccgct	cacgcccatc	cagcgctggt	tcttcgagca	ggagctcccc
15781	gagccgcacc	acttcaacca	accgctgctt	ctcactttga	acgaacccgt	ggaccccggc
15841	aggctcgagc	acgcccttta	cttcgtcgtc	gaccatcacg	aggcgtttcg	tttccgctat
15901	cggcgggtcg	gcggcgaatg	gcgccaggag	cgggaccccg	caggcccgag	ggcgactttc
15961	gtcgtgatcg	actcacggga	gctcgcaccc	gaggcgcgac	gagccgtcat	gacccgccag
16021	gcgagcgcgc	ttcaagcgag	cctccgcctc	gacgagggtc	cgctcttccg	cgccgcgctc
16081	ttcgacttcg	gagcggacga	gcccgcgagg	ctcctcctca	tcgcccatca	cctcgtggtc
16141	gacgcggtct	cgtggcgcat	cctgcacgag	gatctggagc	gggccctgtc	ttcgagggac
16201	gcggcgaaac	gcgagccggt	gagcttcccc	gagacgacgc	cgttctccgc	gtgggcgaaa
16261	gcccttctcg	atcacgccgc	gtccggcgat	ctctcggccg	cggtcgcgtt	ctatcgggcg
16321	ctcgatccgg	cgcccagcgc	ccgtttgccg	cgcgacaacc	ccaccgtcga	gaacgacgtc
16381	ggcggcctgg	agcagctgag	agtgtccatg	ggagaggagg	agacgaaggc	tcttttgcat
16441	cgagcacccg	cggcgtacaa	cgcgcgggtg	aacgaaatgc	tcgtcaccgc	actcgtcgaa
16501	tgcatcgcgg	gctacacggg	ggatcgccga	atgtggctca	cgctcgaggg	acacggcaga
16561	gaagagttgt	tcccgggggt	gaacgtctct	cgtaccgttg	gatggttcac	gacgatgttt

147

	10) 20) 30) 4() 50) 60
				••••	•••••	
16621	cccgtcctgc	tcgagctgag	cggcacgcgc	ggaccgggtg	acgctctgaa	gcacgtgaag
16681	gagcaactgc	gggccgttcc	cgagcgcggc	ttggcctatg	gactcatccg	gcacgcgggc
16741	gaggaccttg	aagcgtcgag	cctcctcgcg	aggctgccgg	cgcccgaggt	ttccttcaac
16801	tacctcggcc	ggctcgaggc	ggtcggtgtc	tcgggctccc	tcctgtcccg	ctccgacgag
16861	cccgtcggtc	cgacgcgaag	ccctctcggt	cgaaggctgc	acctcctgga	catcacggcc
16921	gcggtcgtcg	cgagcgagct	gcagatccac	tgggccttcc	atcgtgggat	ccaccggaac
16981	gagacggtcc	agggaatggc	ggagcgcttc	gtggcgtcgc	tgcgatcgct	gatcgcgcat
17041	tgtctcgagc	cdddcdcddd	aggctatacc	ccctccgact	tctcgctctc	cggcttgacc
17101	aaggcccagc	tcgatcagct	gatgaagcag	aagtcccgaa	ggccgagctg	aaggctaacg
17161	tgcggtcgga	atcacgaccg	accgtccgat	ccacgctgag	gcgtcctcgt	acgcgttggt
17221	gaacgcgtcc	tcgagctccg	gtgggcagct	cgcgagatcg	ttctcattca	ggctggagat
17281	cgcgagcccg	aggatggcgg	gcaaaaacac	gctcgccgcc	gcgaaccagg	agctctcgcg
17341	cgagcgcccg	gcagatcgag	taggtggaga	ggagcaacaa	gagaaagaaa	ggaatctgcc
17401	cgaagttgag	ccagtggtcg	ctccccggga	cgagggccgt	ccacacgtag	acgagcgcga
17461	cgtgccccgt	cgagctctcg	ccgcgggaca	tcaacttctc	cgatcctccg	gggtcatcgg
17521	actcttcctt	ttctctcttt	ctggggcgtt	ggcgttccag	agcaaagaaa	gtatcatggt
17581	cgacctcgga	ggaatgccgg	ctcacctccg	gaaatggggg	gatttccatg	gaaggaatgc
17641	cactcagtcc	cgagctcggc	ctcgttttga	cggggtgcgc	ttccgacgag	cctccgtcac
17701	ccgagaagac	cgtcgagctc	ctcgctcgcc	acggcgtctt	gctggtgcgg	gggacttccg
17761	ccgaccagga	gaagttcctc	gaatggaccc	ggagcgtcgc	tccgggattg	ccdcdcddcd
17821	tcgtcgacga	caacgtgggc	ctcgacttcc	acggcgaggg	ttattacctc	ccttaccgga
17881	tcgacgtgct	ctggttctac	tgcatcgtgc	cccccggccg	gggcggtgag	acgaagttcg
17941	tcgatggggt	ttccgtgtgg	cgcgagctcg	gctcgagcac	gcgggagttc	ttcgagagcc
18001	acccgctgag	ctacgagctg	acccttccgc	agaacctctg	gacgcccctg	ctgaagttcc
18061	tcgacgtcgg	ccgccgcgac	ccgggagacc	ctttctatct	tcccgccagt	ccggaagccg
18121	ccgccggcgc	gttcggtgag	ctcggtcttc	cctgcgtcgt	ctccgcgagc	ggctcgctct
18181	tcggtcgcta	ccagcaccga	gcaacgatcg	agacgcggtt	cggaggcgag	gacgccttcg
18241	tgaacaccct	ccttcacgcc	gtcgatcccg	tcttcatccc	gaggcagaac	taccggttga
18301	cgaccgtgat	accgggtgac	gtcctcgccg	aagtcaaacg	aacgaccgcg	cggctcacga
18361	tgctcgtccg	gtggcaagag	cgcgacatgg	tcgcggtcga	caacacgcgc	gtgatgcatg
18421	gtcggctccc	gttcgaaggg	ccgagacgga	tccttgcggt	gaacgggcgc	ttcgtcacgg
18481	aaccgactct	ctccgccgcg	tcttgatcgt	accggggggcg	agcgccctcg	tcgccaccgg
18541	tcattccgtc	cagtcgtaat	cattcgcccg	gagaagcggg	ccttcctgaa	aagcgggcgc
18601	gtcaatgtgt	tgcaagcgtc	acgctgccct	tgacacctgg	gaccatccga	tagaaactta
18661	cgcgaccttt	ctcccaacca	tcggtcggag	tttcgttgct	caccgcgtgg	gtacgcgggt

	10) 20) 30) 40) 50) 60
					•••••	
18721	caggaggaga	cacccctgag	ctcgccgccc	ccacgtcggt	tgcatcgtat	gcgggtatta
18781	gcgacttaga	cagcctggcg	ggggcctcgc	tgcggaccaa	gaacgcggcg	agtcggtgga
18841	ggagaaacct	ttggggctcg	aaacaaacag	gggattcgac	gccccagttt	ctcgcacgcc
18901	ggcgcgcggc	tcggcttcgt	ggctcgtgct	cgtgctcgcg	ctcgcgctcg	cgaagcccgg
18961	ctcccggcgc	ccgggacggg	aaggtcggtc	ttgatcgagc	tgctgaaccg	ctacgcccag
19021	gggctcgtgg	ccgtcccggt	ggtcgtggcg	tgccggcgcc	gagggctgtt	cgacctgctg
19081	gagcctcacg	aggagctatc	actcgagacg	atcggacgga	agctctcggc	caactcgggc
19141	catctcgccg	ccgccgttcg	gatgcttctc	ggcctcggct	ggttggagcg	gagggatggc
19201	ggatacgtgc	tcggaccgtc	ggcgtccgag	ctcgactcgg	tgccggacga	tctcgtctcg
19261	cgcttggcgt	ttcccggcga	agcttatctg	cgaggcgagg	cttccctgtc	gctcgcccct
19321	tggctcgacc	tctcggcatc	ccgatggggc	tcgtccgacc	gcgtcctcgc	ggaccagctg
19381	gacggcgtgt	tgctggcccg	cgttcttctc	gcgctcggag	gcatcggcga	cgaagcggca
19441	tccgccgcgc	tctcggagtc	caggccgttg	ttcgggaaga	cgccggagcc	ggctcgtcat
19501	gagctcagga	gagtctttcg	agatcgcgag	tgggcttcgg	gagaaggtcg	ggagctccac
19561	ctgaacgaca	cggggcgcta	cgtgctcgag	catgccgtcg	tgctcgcgct	cgccgcctcc
19621	tacgcgccga	tgctcggccg	gatcgacgag	ctcttgttcg	gcgacgcgac	ggcgccgttc
19681	tcgcaggcgg	gtgccgaaag	ccacgtcgag	cgagcgctca	acgtcagggc	cagtggtttt
19741	ctccatcgcc	gctatttcga	cggcgtacgc	gacgtcgtcg	cttcgatctt	cgacacgaag
19801	cctttcgaag	ctcagccccg	ttacgtcgtg	gataccggct	gcggggacgg	caccttcctg
19861	cggtcgatct	acgagacggt	ccgagcgcgc	acggctcggg	gcaaggttct	cgatcagtac
19921	cctctcgtcc	tcgtcggggt	cgacctcaac	gatgcggcgc	tcgaggaggc	gaagggcacg
19981	ctcgacgatc	ttccgcacgt	tctcttgaag	ggcgacgtcg	ccgaccctaa	cgggatcgag
20041	gccgagctcg	agcgtcgagg	aatcgcggcc	gacgacgtcc	tgcacgtgcg	ctcgtttctc
20101	gatcacgact	cgcacctccc	gatggtcacg	gaccgcctcg	cggcgcaggc	gcgcgcggac
20161	gtcccgtacc	gcggcgtgtc	ggtgggcccg	gcgggtgagc	tcgttccgca	gtcggtcgtg
20221	atgcaggggc	tcgtcgagca	tctcacccga	tgggcgagtg	tgctgacgcg	acacgggatg
20281	atcctgctcg	aggttcactc	ggtcgacccc	gtcaccgcgg	ctcgctaccg	cgagtcgacg
20341	gagagcctca	gcttcgacgc	ttttcaggcg	ttctcgctcc	agtacctcgt	ggaggcgtcc
20401	gacttcctgc	tcgcggtggc	cgaggcgggg	ctcttcgcgc	ggccggcctt	cgcgcgtcgc
20461	tacccgaccg	cccttccttt	tacacgaatc	tcgctcaact	ggctcgaaag	gcgcccctac
20521	cgggtccgcc	tggcacgcgc	gtccgacatc	cccgcgatga	tggagatcga	ggcggcggcc
20581	tggcccgagc	ccctctcggc	gtctcgcgag	gagatcgagc	gccgtctcgt	caccgatcca
20641	cgtggtcaga	tcgtcgtgga	atcggaaggg	cgtctcgtcg	ccgtcctcta	ttcccagcgc
20701	atcgggtccg	tcgaccatct	cgaggggacg	acccaccggg	acgtcggctc	gatcgcgcgg
20761	gaggacggtc	cggtccttca	gcttctcggg	atcttcgtgc	acccctcggt	gcaacacctg

149

	10) 20) 3() 4() 50) 60
				••••	.	
20821	gggatcggcg	accagctcct	cgagctcgcc	cttcaggtcg	ccgaggtcac	cgcggagatc
20881	cagctcgttg	ccggcgtcac	gcgatgcagg	aactacccca	agcaccggga	cctctccttc
20941	gaggagtacg	tagagagcat	ggggagctcg	agcgtcccgg	tcgaccccat	ccctctgatg
21001	cacacgagcc	acggcgcccg	gatcgtcaaa	gtgctcgcgg	ggcatcgacc	cgaggacgtc
21061	gagaacgacg	gggcgggcgt	tctcgtgacc	tacgacgttc	gcggggggcgg	tgggggcaga
21121	gccccttcga	ccgagctcgg	gaagcgaggt	ccggggatcg	acgtcgccga	cgaggggtcg
21181	ctcgcggcga	agatcgagaa	agcggtccga	aaggtgcttc	gccccgagcg	cgagcgcgtc
21241	ttctcgtcga	gccgcgctct	gatggacatg	ggcttcgact	cggccgacct	cctcgagctt
21301	cgggtcctgc	tgggtgatct	ctttgctctg	gagctggatc	cgacgctctt	cttccgatac
21361	cccaccgccg	acgcgctcgc	gagctacctg	gcgggacgag	ggaaggtcga	gcccacgcct
21421	tcgccgacgc	cctggctcgc	gccggtcgag	aggacgccga	gctttgcgcg	gtcggagccg
21481	caccggcgcg	acgtacaacc	gcgagcgacg	ggctcgagcc	ggatcgcgat	cgtgggaatc
21541	ggctgccggt	ttcccggcgc	ctcgaacgtc	ggtcggtact	gggatctcct	gcgcgaggga
21601	cgcgatgccg	tcgccgaagc	gcccggggat	cgaccctggc	tcctcgagtc	ttcccacgct
21661	cgcttcggcg	gttttctcga	agcggtggac	cggttcgacg	cgtcgctctt	cggcttgtct
21721	cggcgcgagg	cgaaccaggt	cgatcctcag	cagcgtctcc	ttctcgagac	ctgctggacg
21781	gccctcgaga	acgcgggcat	cgctccccct	tcactggaag	gcacgaggac	gggcgtcttt
21841	ctggggatca	tgtcgcacga	ctacgagctc	ttgcaggttc	ggcgcggcca	ggtcggcgcg
21901	aaggccgacc	cctacttcgc	ctccggcaac	tctctcgccg	tcgccgcagg	ccgcctcgcc
21961	tacgtgttcg	gctttcgggg	gccggccatc	tcggtggata	cggcctgctc	ctcgtcgctc
22021	gtcgcggttc	acctcgccgc	cgagagcctt	tttcgcggtg	agtgcgaggt	cgcgatcgcg
22081	gccggcgttc	agcttctgct	cgctcccgag	ctcacggcct	cctacgccaa	ggcgggtatg
22141	ttgtcgccgg	acggaaggtg	caagaccttc	gacgcctccg	cgaacggcta	cgtgcggagc
22201	gagggggtgg	gagcggtcgt	gctcaagcgg	ctcgaggacg	cgcttcgcga	cggcgacgac
22261	gtgctggcgg	tcgttcgcgg	ctcggcgctc	aaccaggacg	ggagcagcaa	cgggctcacg
22321	gcgccgagcg	ccgccgccca	ggaagaggtc	atccgggaag	cgctccgaag	ggccgagctg
22381	agcccctccg	agatctctta	cgtggaagct	catggcacgg	ggacgccgct	cggagatccg
22441	atcgagttcg	acgcgctcgc	cgccgtctac	ggcgagtccc	gggacgaaga	gaacccgctg
22501	cacctgggct	cggtcaagac	gaacatcgga	cataccgagg	ccgcggccgg	catcgcgggc
22561	ctcatcaaag	tcgcgctcgc	cttgcgtcac	gccaccatcc	ccgcgcacct	ccacttcgag
22621	cggccgaacc	cctcgatcga	tctgacgagg	atcccggcac	gcattccccg	cgagagcctg
22681	ggctggtctc	tcgggaaagg	cgcgaccagc	cgcctggccg	cggtcagcgc	cttcggcttc
22741	agcggcacca	acgcccacgt	cgtgctcgag	gagtggctcg	ctccgccgcc	gccggtgccg
22801	agcggtcgtc	gacccctgca	cctgctcacg	gtctcggccg	cgagcgaggc	ctcgcttcac
22861	gagctcgcct	cgtcgtacgc	cgagcgcctt	cgacgcgacg	agacggactt	cggcgacttc

150

	10) 20) 30) 40) 50) 60
					.	
22921	gccttcagcg	tcaacaccgg	gcgcgcccaa	ttcgaagagc	gctccgtgat	cctcgccggc
22981	tcgagcgccg	aagcggcggg	aaagatcgac	ggcctgtcga	aggcgggggc	ggtcgagccg
23041	ggtgtgcacc	gagctcgcgt	ctctcccgcc	gcttcgccca	ccatcgcgtt	tctcttcacc
23101	ggccagggct	cgcagttcgc	ggagatggga	agacagctct	tcgcgagcga	gcccgtgttc
23161	cgccgcaccc	tcgagagatg	cgacgagctc	ctgacggacc	ggctcgcggg	cggacttctc
23221	gccgccctgt	tcccttcgat	ggagggcggt	gtgcccgccg	cccccatcga	cgagaccgcc
23281	tatacgcagc	cggtgctatt	cgctttcgag	tatgccctcg	ccgagctctg	gcgctcgtgg
23341	ggcgtcgagc	ccgccttcgt	tctcggacac	agcgtgggag	agtacgtcgc	cgcttgcgtc
23401	gcgggcgttc	tcgacctgga	gggcgcgctc	gatctcgtgg	ccgagcgcgg	gcggctcatg
23461	caggagctgc	ccgagaaagg	cgccatggcc	gccgtcgcgg	cgacggagtc	cgaggtcgcg
23521	gcctggatcg	gaagcttcgg	agacgatctc	tcggtagccg	cggtcaacgc	gccgtcgagc
23581	gtcgtggtct	ccggccggtg	cgaagctttg	aacgagctcc	agaaagatct	cgaatcgcgc
23641	ggcgttcggg	tgagacgcct	cagggtctcg	aacgccttcc	actccgcctt	gatggagccg
23701	atgctcggcg	cgctcgaggc	cgaggccgcg	aagctcgagc	tgcgagcttc	gtccatccgg
23761	ctcgtctcga	acctcgacgg	ccggttcgtg	gagcccgagt	ccctgacccc	cgactattgg
23821	gcccggcacg	cacgccgcgc	ggtgcgcttc	tctgacggga	tccgtacgct	cgtcgcgaac
23881	gggtgcgaca	ccttcctgga	gatcggtccg	ggaacgacgc	tcctgaccct	cggccggatg
23941	tcggcgggtg	aggtgccggc	gctttggctt	ccgagcctcc	gtcccggggg	cacggattgg
24001	gagtcgatgc	tcagctcgct	cgccgagctc	catctccggg	gggtgaacat	cgactggctc
24061	cgctacgacg	cgcctcacgc	gcgtcggcgt	atcgaggttc	ccaactaccc	gttctcgcgg
24121	gagcgctact	ggttcgacga	ggggtcggag	ggatcttccg	aggagagccg	cdddcdcddc
24181	tccgatgacg	ccgttcccat	cgagcctctg	ctggccgaag	tggaaagtct	ctccgagccg
24241	gacctccacc	gagcgcttca	gcccgacggt	aacggcggtg	gaccatccga	tctcgaacgc
24301	cgcctgacgg	gcctctcgcc	cgagcggctg	aagctcttcc	ttcgcaaact	ggcgtcgcgg
24361	ccttcgatgg	gcgcctcgga	gcggagcgtc	gttcacgatt	actacgactc	gctgagcggt
24421	gtctggcgtg	acgagaaggc	gcgcgagtac	gaagcccacg	agcgcttcct	caccttcggc
24481	gtcttccccg	cggtcgtgcc	cggcttttcc	tggtcgcgca	ccctcaccga	ccccgagcac
24541	gatcccgagc	atttccgcat	cgcgctccag	gcccagaagg	agctgcgatc	gctccttttc
24601	cggaaggtcg	acctcgaggg	ccggcgagtg	ctcgacatcg	gctgcggcta	cggctccgat
24661	ctcgtctccc	tcgcccgggc	taatcccgac	ctcaccgccg	tcggctacac	cttgtcggac
24721	cgacaggccg	agatcgcgag	gaagaaagtc	gcggagctcg	gcctcgagac	gcgcgtgagc
24781	atcgagaagg	gggacagctc	ccgggatccg	ttccccggcg	agttcgacgt	caccatcggc
24841	ttcgaggtcg	cgcaccacgt	acgggacaaa	gccgcgctct	tcaccaacgt	tgccgagcac
24901	ctcgtggagg	gaggcaccgt	tcttctggcc	gatttcgtct	ccaacgccgc	cttcgccatc
24961	gagcatcgcg	agacctcgtc	gttcttcgcg	cgaaaggacg	agtgggtcga	gctgctcgcg

	10) 20) 30) 4() 50) 60
				••••	.	
25021	ccgcgcggcc	tcgtcgtcga	ggagtccgtc	gacgtgagcc	gggagatcgc	gaattttctc
25081	gaggacgcgg	agtttcagac	cacgctgcgg	gagatcgcgg	caaagggcgg	cgaggacgtc
25141	cgcaaggcgt	tccgctccta	cgaccagctg	ggacggctcc	tgcggaaaga	gctcgccagc
25201	tacgtcctcc	tcaccctccg	gaagcgtccc	gacatggcgg	ccgacgatcg	cgcgagggcg
25261	agccgtgagg	cgctcgagca	cccgcgacgc	tacgcagacg	tctcccccg	gggcgccgtg
25321	tacggcgtcg	tatggaacga	ggtcgatacg	acgcgcgagc	gaacgagagg	aaactttgcg
25381	tcgagcacgg	atctgataat	cgacgacacc	cgacgcctcg	gctccgggct	cgcccgggag
25441	ctcgagaagg	aaggcgtcgc	cgtttcgctc	gcggcccccg	gggaccggtt	cgagcggctt
25501	tcgcggaatc	gttggcgaat	ccgactggac	cgcccggaag	atctgaaacg	cttcgtcgcg
25561	gaggcgacga	ttccgggggc	atcgggcttt	cgggtcgcct	atctgccgtc	gctcgacgct
25621	tcgacggagg	acggaacgga	cgagcgcgcg	caagactggg	aaaaggagct	cgaccgcggt
25681	cccgtcggtc	tcctccacct	ggttcaggcc	ctcgccgggg	ccgacgcggg	cgaagtccgc
25741	ctcctggtcg	taacccgtgg	ggtgcacggc	gctgtcggca	ccgagcccgt	cgccgtcacc
25801	gagtctccgc	tctccggcgt	cgccgcgagc	cttcgtcgcg	agtaccccgc	ctggagcacc
25861	atccatctcg	acctcgatcc	cgagcgggat	cccgatgtgg	agcagctgcg	cgagcaattc
25921	ctgtcgggtt	cggagccggc	gctcgcgctc	cggggcggcg	cgcgactacg	accgaggctg
25981	gagcgtcgaa	tcgtgctccc	cgtcgaaagc	gactttcggt	tcggcgatga	gaccacgacg
26041	ctcatcacgg	gcgggatggg	cggcatcggt	ctgcgaatcg	cggcctgggc	gagctcgcgc
26101	ggcgcgcggc	atctcctctt	gtgcggccgg	agcgatccgt	caccgcacgc	gcgtgaggtc
26161	atcgcggagc	tccgcgacgc	cggcgtcgag	gtcgtcgtcg	agaaagcgga	cgtgtcccgc
26221	gaggaagacg	tcgagcgcct	gatgagctcg	atgacgcgcc	tcggggggat	gcccccgctc
26281	cgggccgtct	tccacgccgc	ggggaccgcc	gaggacgcca	cgatcggaag	cctcacccgg
26341	gagaggcttc	tcgacacctg	cgccgcgaag	atccggggcg	cctggaacct	gcatcgcgcc
26401	acgttcgaca	tcccgctcga	cgtcttcgtc	ctctgctcct	cggtggtcgc	ggtcctcggc
26461	aacgctggcc	aggccgccta	tggggccgcc	aacgcttttc	tcgatgcgct	cgccgagcgg
26521	cgaaggcaac	aggggcggag	cgccttgagc	gtcgcctggg	ggccgtgggc	gtcggtcggc
26581	atggccgcaa	ggctcggcga	caaggatgct	cgccgatggg	aggagatggg	cttcaccccg
26641	atggatcccg	ccgtcgcgct	gagaggtctc	gagcagctcc	tgtctctttc	ccccgccgtc
26701	ccgcgcgcgc	tcgtcgcggt	cgtggactgg	gatcgctacc	ggtcgagggc	gggcgagagc
26761	ccgctcatcg	aggcgctcgt	ctcccggccg	aaggacggcg	acggcacggc	cgcgagcttc
26821	agcgacaagc	tcgtgcgctc	gaccgcgaga	aagcgacacc	agctgctggt	cgagcacctg
26881	cgtctcgaag	tcgccaaggt	cctcggctcg	tactccgcgc	gcagcatcga	tccggagaaa
26941	gggttctccg	cgctcgggat	ggactcgctg	atgtcggtcg	agctgagaaa	ccgcctccaa
27001	tcgagcctcg	gcctctcgct	ttcctcgacc	ctgaccatgg	attacccaaa	cgtaacggcc
27061	ctggcgactc	atctcgacgg	ccgcctgaca	ccgtcgacga	ccgaagacgg	agcctcgagc

	10) 20) 3() 4() 50) 60
				••••	.	
27121	gcctcgcgct	cctcgctgga	ggagacggac	ctcgcgggac	tcagtgagag	cgaagcacaa
27181	ctactcctgg	aaacgctcaa	ggagttggag	cactaatcat	ggaacgagag	agtaccgacg
27241	agaagagaac	gcccgcgctc	gaaaaagcgc	tcagagcctt	gacgctgatg	aaggagaagc
27301	tcgaggccct	ggagtatcgg	aagcgcgagc	ccatcgccgt	tgtcggcatg	tcctgccggt
27361	ttcccggcga	tgccgacacg	ccggagaagt	tctgggagaa	tctctcgaac	ggcgtcgacg
27421	cgatcaccga	gatccccaag	gatcgtttcg	acatcgatcg	ctactacgac	cccaggcccg
27481	ccgttcctgg	aaagacgaac	actcgatgcg	ggggcttcgt	tcgggggatc	gaggagttcg
27541	accccacgtt	tctcggagtc	gctcccaagt	acgcgtacgg	tgtcgatcct	cagttccgct
27601	tgttcggggc	ggtgtgctgg	gaggcgctcg	agcgcgccgg	ctacgcgccc	ttgagcctcg
27661	acgggagcct	gaccggggtc	tacgtcggca	tctggagcat	cgactactgg	caccggctcg
27721	cttcgcgacg	gcccgacctc	atcgacgcgg	gcatggtggg	aggcaacact	catagcgtcg
27781	ccgccggggg	catctcctac	gtcctcggtc	tcaagggggcc	gagcatggcg	gtggataccg
27841	cctgctcctc	ctctctcgtg	acggtcgacc	tcgcgtgcca	ggcgcttcgc	gccggcacct
27901	gcgacatggc	gctcgcggga	ggcgtgaacg	ccattctctc	gcacgagaac	ttcgtgtccc
27961	tctccagcat	gcaggtgctc	gcgcccgacg	gacgctgcaa	gaccttcgac	gcctccgcgg
28021	acggtttcag	ccgcggcgag	ggcgcgggcg	tggtcgtgct	caagcggctc	tccgacgcgc
28081	tcgccgacgg	cgatccggtg	ctggccgtga	ttcggggcac	cgccgtctat	caggacggca
28141	agacgagcgg	gatcacggtg	cccaacgggc	cttcgcaaca	ggagaccgcg	cdccdddcdc
28201	tcgcgcaggc	ggggctcacc	gccgccgacg	tgagctacgt	cgaagcccac	gggacgggca
28261	cctcgctcgg	ggatcccatc	gaagtgcagt	cgctcgccga	cgtgtaccgg	ccggggagct
28321	ccgagacgct	cctcatcggc	tcggtcaagt	ccaacatcgg	ccacctggag	accgcggcgg
28381	ggatcgcggg	cctcatcaaa	gtgattctgt	cgctcgagaa	cgaggccttg	ccgccgaacc
28441	ttcatttcaa	gaacccgaac	ccgcatatcc	cctgggatcg	tctcccggtg	aaggtggtgg
28501	cggagaagac	cccctggccg	cgcggcgcca	agcccaggcg	agccggggtc	agctccttcg
28561	gggcgagcgg	cacgaacgcg	cacgtgatcg	tggaggaggc	cccgatcgtt	ccccggaagc
28621	cggcggaaaa	gcccgagcgg	gacgtccacc	tgttcacctt	ctcctccaag	aacggcaagc
28681	gcttgccgga	agtggccgct	cgggtcgggg	aattgctccc	cgacgccgac	atgcagatcg
28741	ccgacgcttg	ctacaccgct	agcgtcgcgc	gctgtcactt	cagcgagcgc	gtcgccatca
28801	tggggcgaag	ccgtgaggag	atcagcgaca	ggctcgcggc	tttcgccaac	gggaagagtg
28861	ggccgggggt	tttccgcggg	cggctgaaag	ggagcgctcg	gccttcgctc	gccttcctct
28921	tcaccgggca	gggcgcccag	cacgtcaaga	tgggccagag	gctctacgag	accgagcccc
28981	ggttccgcga	ggtcatcgac	cgctgcgacg	agacgctgtc	cgcgcttctt	cccctgcgtc
29041	tgctcgacgt	cctgtacccc	ggagacgggg	ggtcgagccc	gattcacgag	acgacctaca
29101	cccagcccgc	tttgttcgcg	atcgagctcg	gtctcgccag	gctctggcag	cactgggggg
29161	tggagccgac	gcacgtcatg	ggtcacagcg	tcggcgagta	cgtcgccgct	tgtatcgccg

	10) 20) 30) 40) 50) 60
					•••••	
29221	aggtcttcag	cgaagaagac	ggtttgcggc	tgatcgcgga	gcgagcgcgg	ctgatgggaa
29281	gcctgcctcg	cggcggcgtc	atggccgcgg	tgctcgcccc	cgagtcccgg	gtgctcgaga
29341	tgctcgaggt	gctcgcgaag	ggtcgtgagc	gctcggggggc	cgtcgcggtc	gccgccgtca
29401	acggtcccga	gaacgtcgtg	ctctccggca	acgaggaggc	cgtcgcgtca	gtgctggccg
29461	agctcgaggc	ttccggcatc	gaggccaaga	cgcttcaagt	ctcccacgcc	ttccactcgc
29521	cgctcatgga	gcccatgctc	gcttcgttcg	aggcggtggc	gcgggaggtc	gagttccgtc
29581	agcctcagat	tcctttcgtc	tccaacctca	ccggccagct	cgcgagtgac	gaggtcaccg
29641	tccccgagta	ctgggtcagc	cacgttcgcc	acgcggtgcg	attcgccgac	ggcatcaaga
29701	cgctcggcca	gctcggctgc	cggctctttc	tggagatcgg	accgaagccc	gtgctcgtgg
29761	gcatggggcg	cagctccctt	cccggcggcg	ccacctggct	gccgagcctg	cg

Figure B15 Nucleotide sequence of KKFOS_KSI_pool37_088 insert DNA. This sequence contained 29,812 base pairs. (Continue)

Mycobacterium tuberculosis, (j) antibiotic TA from Myxococcus xanthus. (Schwarzer and Marahiel, 2001) (Enlargement of figure 2.6) PKS/NRPS hybrid (f) myxothiazol from Stigmatella aurantiaca, (g) epothilone from Sorangrium cellulosum So ce90, (h) yersiniabactin from Yersinia pestis, (i) mycobactin from Bacillus brevis ATCC 8185, (c) cyclosporine from Tolypocladium inflatum, (d) chlorocremomycin from Amycolatopsis orientalis, (e) actinomycin from Streptomyces chrysomallus;

site motif, VDTACSSS. (Enlargement of figure 4.6) showing the important characteristics of the conserved motifs for Type I-PKS KS proteins, the cysteine(*) active Figure B17 The clustalW2 alignment of partial sequence Type I-PKS KSs from mangrove mud metagenome 156

APPENDIX C

REAGENTS AND BUFFERS

1. EDTA 0.5M (pH 8.0)

Dissolve 186.1 g disodium EDTA dihydrate in 700 ml water. Adjust pH to 8.0 with 10 M NaOH (~50 ml; add slowly). Add water to 1 liter and filter sterilize.

2. Glycerol (10% v/v)

Glycerol	1	Volume
H ₂ O	9	Volume

3. Lysis buffer

Tris-HCl	100	mМ
EDTA	100	mM
NaCl	1.5	mM
CTAB	1%	(w/v)
SDS	2%	(w/v)
Adjust pH to8.0		

4. NaCl, 5 M

NaCl	292	g
H ₂ O to 1 liter		

5. SDS, 20% (w/v)

Dissolve 20 g SDS (sodium dodecyl sulfate or sodium lauryl sulfate) in H_2O to 100 ml total volume with stirring. Filter sterilize using a 0.45-µm filter.

6. Sodium acetate, 3 M

Dissolve 408 g sodium acetate trihydrate (NaC₂ H₃O₂ \cdot 3 H₂O) in 800 ml H₂O.

Adjust pH to 4.8, 5.0, or 5.2 (as desired) with 3 M acetic acid Add H₂O to 1 liter, Filter sterilize

7. TBE (Tris/borate/EDTA) 5×

Tris base (890 mM)	54	g
boric acid (890 mM)	27.5	g
H ₂ O	960	ml
0.5 M EDTA, pH 8.0,(20 mM final)	20	ml

8. TE (Tris/EDTA) buffer

Tris·Cl, pH 7.4, 7.5, or 8.0	10	mМ
EDTA, pH 8.0	1	mМ

9. Tris·Cl, 1 M

Dissolve 121 g Tris base in 800 ml H 2 O Adjust to desired pH with concentrated HCl Adjust volume to 1 liter with H₂O Filter sterilize if necessary Store up to 6 months at 4°C or room temperature Approximately 70 ml HCl is needed to achieve a pH 7.4 solution, and ~42 ml for a solution that is pH 8.0.

BIOGRAPHY

Mr. Anirut Limtrakul has been graduated with a Bachelor of Science (Microbiology) from the Faculty of Sciences, Prince of Songkla University, Thailand in 1995. Since 1996, he has been working at Srinakharinwirot University. He has entered the degree of Doctor of Philosophy Program in Interdisciplinary Program in Medical Microbiology, Graduate School, Chulalongkorn University since 2004.

During the Ph.D. study, He has obtained the scholarship from the 90th Anniversary of Chulalongkorn University Ratchadaphiseksomphot Endowment Fund.