IMPROVEMENT OF

H-F POINT-TO-POINT COMMUNICATION ANTENNAS

FOR USE IN DOMESTIC CIRCUIT

by

DANAI LEKHYANANDA

B.Eng., Chulalongkorn University, 1964

006943

THESIS

Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Engineering
in The Graduate College of Chulalongkorn University
Department of Electrical Engineering
April, 1966

(B.E. 2509)

Accepted by the Graddate School, Charatong North Chiversity in partial
fulfillment of the requirements for the Degree of Master of Engineering.

Dean of the Graduate School
\wedge \wedge \cdot \cdot
Thesis Committee P. Pattabougse Chairman
Thesis Committee
· Control Cont
1 Kovatlana
T Kovathana
April Kenggh
stopme Kenggill
· · · · · · · · · · · · · · · · · · ·

1 1/2 Th
Thesis Supervisor. T. Korathan
D. 27 A. 1 1855
Date. 27. April. 1966

ABSTRACT

The new effective and economic way of setting up the double doublet antenna with reflectors for use in domestic point-to-point communication circuit for 24 hour service is presented. The whole antenna set consists of two sets of dipole antenna with reflector, one for day frequency operation and the other for night frequency operation. Both dipole antennas are connected in parallel to a single coaxial transmission line. The whole antenna set possesses constant input impedance at 48 ohms, gain over dipole at about 4.5 db, front-to-back ratio at about 2.3 for both day and night frequencies. The wave angles are at 30 and 50 for day and night frequency respectively. The VSWR's are less than 1.5 : 1 for both frequencies. The guide diagram of the whole antenna set with all dimensions in term of wavelengths. is also presented which enable one to apply any set of day and night frequency to this antenna directly. Also, the typical design of the LPD with frequency range 3 to 10 Mc for use in domestic circuit is presented. A step by step proceduce in designing is described which enables one to design independently. The modelling method and the proper frequency selection for HF radio communication in domestic point-to-point circuit for 24 hour service are studied. The accumulated facts are presented which assist in the above designs.

The state of the s

บทกักยอ

เสนะวิธีใหม่นี้ได้บลิดีและประหยัดในการใช้สายอากาศแบบ double doublet ประกอบ
กับ reflector เพื่อการศิกศตระหว่างจุดในวงจรภายในประเทศตลอด 24 ชั่วโมง สายอากาศหนีคนี้ประกอบด้วยสายอากาศแบบ dipole และ reflector รวม 2 ชุด จุดหนึ่งใช้ สำหรับการศิกศอเวลากลางคืน สายอากาศแบบ dipole ทั้งคู่ก่อกับอย่างขนาน บ้อนใดบสายส่งแบบ coaxial สายเดียว สายอากาศหูคนี้มีค่า input impedance คงที่ที่ 48 ohms ปี gain over dipole 4.5 db, ปี front-to-back ratio 2-3 ที่กวามที่ทั้งสองคือ day และ night frequency, คำ wave angle สำหรับ day frequency คือ 30 และสำหรับ night frequency คือ 50 ค่า vswa ที่กวามที่ทั้งสองน้อยกว่า 1.5: 1, guide diagram ของสวยอากาศพันมีขนาดกวามบาวทั้งหมด อยู่ใน term ของความบาวขวงคลื้น ก็มีประกอบไว้ให้เพื่อนำมาใช้กับค่า day และ night frequency ใด ๆ ได้กันที พร้อมกับนี้ก็ได้เสนอการออกแบบสายอากาศแบบ log periodic dipole ที่มีกวามที่อยู่ในบาน 3 ฉึง 10 พร สำหรับใช้ในวงจรภายในประเทศด้วยวิธีการขอก แบบแด่ละขึ้นตอน ก็ได้อฮียายไว้ซึ่งทำให้งายผลผู้ที่จะนำไปออกแบบต่อไป การศึกษาวิธีการขอด แบบแด่ละขึ้นตอน ก็ได้อฮียายไว้ซึ่งทำให้งายผลผู้ที่จะนำไปออกแบบต่อไป การศึกษาวิธีการขอด 24 ชั่วโมง ก็ใค้รวบรวมข้อมูลตาง ๆ นำมาใช้ในการหลองและออกแบบกังกล่าว.

ACKNOWLEDGEMENT

The author wishes to acknowledge his indebtedness to the Stanford Research Institute for sponsoring this thesis experiment. This work would not have been possible without the approval of Mr. E. Leroy Younker, the Technical Director, and Mr. Glenn D. Koehrsen, the Administrative Manager, for which the author is grateful. The guidence and supervision of Sq. Ldr. Termpoon Kovattana R.T.A.F., and the continued interest of Lt. Cdr. Paibul Naoaskul R.T.N. are particularly appreciated. Thanka are also due to Mr. Roungroj Sriprasertsuk, the electrical engineer at the Department of Aviation, for his suggestion and encouragement of this work.

TABLE OF CONTENTS

SECTION I --- EXPERIMENTS AND DESIGNS

	Trunine (No.	Page
CHAPTER I 1-1. 1-2. 1-3. 1-4.	- INTRODUCTION Introduction Definition Terms Multiband Antenna Double Doublet Antenna	. 1 . 3 . 6
CHAPTER II	I DOUBLE DOUBLET ANTENNA'S CONSTRUCTION AND	
	NEASUREMENTS	
2-1.	Introduction	. 10
2-2.	The Required Characteristics for Point-To-Foint	7.0
2-3.	Communication Antenna	
2-74	Antenna's Height - Antenna's Input Impedance - Parasitic Elements	
2-4.	Construction of Antenna	. 16
2-5.	Measurements of Antenna	
2-6.	Analyzing the Data	. 35
2-7•	The Design for Any Set of Frequencies	, 56
2-8.	Conclusions	. 59
CHAPTER I	II LOC-PERIODIC ANTENNA THEORY AND DESIGN	. 61
3-1.	Introduction	. 61
3-2.	General Characteristics	. 61
3-3.	Log-Periodic Dipole Antenna	•
	teristic Pattern as a Function of $ au$ and σ -	
	The Take-Off Angle as a Function of Height Above	
3-4.	Ground - The Phase Center as a Function of α The Design of Log-Periodic Dipole Antenna	. 75
<i>)</i> =4•	Review of Parameters and Effects - Design Procedure - Choosing 7 and 6 to Obtain a Given Directivity Design for a Given Input Impedance	>
3-5.	Application of the Design Procedure	. 85
		. –

	Page
3-6. Conclusions	. 92
SECTION II GENERAL THEORIES OF LINEAR ANTENNAS	
CHAPTER IV THE ELECTRIC DIPOLE AND THIN LINEAR ANTENNAS 4-1. The Short Electric Dipole	94 95 97 99
CHAPTER V SELF AND MUTUAL IMPEDANCES 5-1. Introduction 5-2. Self-Impedance of a Thin Linear Antenna 5-3. Self-Impedance of Thin Linear Antenna Not Exact Number of ½ - Wavelength Long 5-4. Mutual Impedance of Two Parallel Linear Antennas 5-5. Mutual Impedance of Parallel Antennas Side by Side 5-6. Mutual Impedance of Parallel Antennas Side by Side but Not of the Same Length	105 105 108 113 . 115
GHAPTER VI — ARRAY OF TWO DRIVEN & - WAVELENGTH ELEMENT END- FIRE CASE 6-1. Array of Two Driven & - Wavelength Element. End- Fire Case Field Patterns - Driving Point Impedance 6-2. Horizontal Antennas Above a Plane Ground Horizontal & - Wavelength Antenna Above Ground - The Vertical Field Pattern of Straight Horizontal Malf-Wave Dipole Above Ground	122 122 125
6-3. Arrays with Parasitic Elements	., 130
CHAPTER VII THEORY OF MODELS OF ELECTROMAGNETIC SYSTEMS	136 137 144
CHAPTER VIII IONOSPHERIC LAYERS AND FREQUENCY SELECTION	146 146

Pa	nge
8-2. Ionospheric Layers	146
8-3. Cyclic Variations in the Ionosphere	147
8-4. Long Distance Short Wave Communication by	
Reflection	149
8-5. MUF Predictions	152
ibliography	.54

LIST OF ILLUSTRATIONS

Figure		Page
1-1.	Double doublet antenna.	8
2-1.	The vertical pattern of $\frac{1}{2}$ - λ dipole, 0.5 λ above ground	12
2-2.	Designate the longer dipole by #1, and the shorter one by #2.	13
2-3.	Top view of double doublet antenna with parasitic elements.	15
. 2-4.	A $\frac{1}{3}$ scale model of double doublet antenna, using the same method of construction as the full size aerial.	17
2-5.	Balum for dipole #2.	18
2–6.	Input impedance measurement.	20
. 2-7.	First setting of double doublet antenna.	21
2-8.	The second setting of double doublet antenna.	2 2
2-9.	The third setting of double doublet antenna.	23
2-10.	Double doublet antenna with reflectors.	24
2-11.	Field strength measurements.	27
2-12.	Antenna aperture at frequency 16.85 Mc.	27
2-13.	Antenna aperture at frequency 38.035 Mc.	28
3-14.	Block diagram of s.w.r. measurements.	31
2-15.	The standing wave ratio measurements.	31
2-16.	Graph Percent Reflected Power vs. VSWR (1.0 to 1.3)	33
2-17.	Graph Percent Reflected Power vs. VSWR (1.0 to 8.0)	34
2-1,8,	Curve of input resistance vs. reflector's spacing.	36
2-19.	Curve of gain over dipole vs. reflector's spacing.	38
2-20.	Curve of front-to-back ratio vs. reflector's spacing.	38
2-21.	Curve of input resistance was reflector's apacing.	40

Figure	F	age
2-22.	Curve of gain over dipole vs. reflector's spacing.	42
2-23.	Curve of front-to-back ratio vs. reflector's spacing.	42
2-24.	Relation of vertical angle ϕ to antenna's elements.	43
2-25.	Relation of antenna and ground.	44
2-26.	Array factor for horizontal $\frac{\lambda}{2}$ - dipole with tuned reflector ($\frac{1}{2}$ λ long) spaced 0.2 $^2\lambda$ from driven element.	46
2-27.	Ground - reflection factor for horizontal $\frac{\lambda}{2}$ - dipole placed 0.225 λ above ground.	48
2-28.	Vertical-plane pattern of horizontal $\frac{\lambda}{2}$ - dipole placed 0.225 λ above ground with tuned reflector ($\frac{1}{2}$ λ long) spaced 0.2 λ from driven element.	49
2-29.	Relations of antenna and ground.	50
2-30.	reflector spaced 0.2 λ from Griven element.	52
2-31.	Ground-reflection factor for horizontal $\frac{\lambda}{2}$ - dipole placed 0.5 λ above ground.	54
2-32.	Vertical-plane pattern of horizontal $\frac{\lambda}{2}$ - dipole placed 0.5 λ above ground with self-resonamt reflector spaced 0.2 λ from driven element.	5 5
2-33.	Relations of various dimensions to wavelengths.	58
3-1.	Logarithmically periodic structures.	63
3-2.	A schemetic of the log-periodic dipole antenna, including symbols used in its description.	65
3-3.	Average characteristic impedance of a dipole $\mathbf{Z}_{\mathbf{a}}$ vs. height to radius ratio $\mathbf{h}/\mathbf{a}_{\star}$	70
3-4.	Relative feeder impedance Z/R vs. relative dipole impedance Z_a/R_o , from the approximate formula.	71
3-5.	Computed contours of constant directivity vs. \mathcal{T} , σ , and α ; Z_0 = 100, Z_T = short at h ₁ /2, h/a = 177.	72
3-6.	Nomograph, $\sigma = \frac{1}{4}(1 - 7) \cot \alpha$.	80

Figure	е	Page
3-7.	Nomograph, $B_{ar} = 1.1 + 7.7 (1 - 7)^2 \cot \alpha$.	Bl
3-8.	Nonograph, $\frac{L}{\lambda_{\text{max}}} = \frac{1}{\log \frac{1}{B_s}} (1 - \frac{1}{B_s}) \cot \alpha$.	82
3-9.	Nomograph, 1 + ——————————————————————————————————	83
3-10.	Shortening factor S, vs. Zo and h/a.	87
3-11.	Log-periodic dipole antenna for frequency 3-1.0 Me, \mathcal{T} = 0.9, σ = 0.153.	90
3-12.	LPD above ground.	9 1
4-1.	A short dipole antenna (a) and its equivalent (b).	94
4-2.	Relation of dipole to coordinates.	95
4-3.	Geometry for short dipole.	95
4-4-	Near-and far-field patterns of E_Θ and $E_{\not \Theta}$ components for short dipole.	97
4-5.	Approximate natural current distribution for thin, linear center-fed antennas of various lengths.	100
4-6.	Relations for symmetrical, thin, linear, center-fed antenna of length L.	101
4-7.	Far-field pattern of \$\frac{1}{2}\$-wavelength antenna. The entenna is center-fed, and the current distribution is assumed to be sinusoidal.	101
4-8.	Relation of current \mathbf{I}_1 at transmission-line terminals to current \mathbf{I}_0 at current maximum.	104
5-1.	Center-fed linear $\frac{1}{2}$ -wavelength antenna.	106
5-2.	One-half wavelength antennas.	107
5-3.	Calculated input impedance (R + jX) in ohms for cylindrical center-fed antennas with ratios of total length to diameter (21/2a) of 60 and 2,000 (after Hallen)	110
5-4.	Antenna resistance according to Hallen. The resistance of center-fed dipole is plotted as a function of $29H/\lambda$, the antenna half-length in radians, for various ratios of H/c, half-length to radius. For monopole of length H, the ordinates should be divided by two.	1 ,1,1

Figure	1	Pago
55.	Antenna reactance according to Hallen (see legend for Fig. 5-4)	111
56.	Resistance \mathbf{R}_{o} of cylindrical antenna, King-Middleton second-order expansion.	112
5-7.	Reactance \mathbf{X}_{o} of cylindrical antenna, King-Middleton second-order expansion.	112
5-8.	Parallel coupled antennac.	113
5-9.	Parallel coupled antennas with dimensions.	115
5~10.	Curves of matual resistance (R_{21}) and reactance (X_{21}) of two parallel side-by-side linear $\frac{1}{2}$ -wavelength antennas as a function of distance between them.	13.6
5-11.	Geometry and notation used in calculation of mutual impedances.	117
6-1.	End-fire array of two $\frac{1}{2}$ -wavelength elements with currents of equal magnitude but opposite phase.	1 2 2
6-2.	Patterns for end-fire array of two linear out-of-phase y-wavelength elements with spacing d of \(\frac{1}{2} \) wavelength.	123
٥ -3.	wavelength antenna at height h above ground with image at equal distance below ground.	125
5-4.	Anterna above ground with image showing direct and reflected waves.	126
6-5.	Driving—or feed—point resistance R_1 at the center of a horizontal $\frac{1}{2}$ —wavelength antenna as a function of its height above a perfectly conducting ground.	127
6-6 .	Vertical polar diagrams for horizontal dipoles.	129
6-7.	Angles of maximums and minimums, horizontal dipole.	129
<u>ن-8.</u>	Parasitie antennas.	131
6-9.	Gain in a two-element parasitic array as a function of element spacing when the parasitic element is self-resonant	. 1.34
6-10,	A parasitic element shorter than the driven element acts like a director (a). A parasitic element longer than the driven element acts like a reflector(b).	134

Figure		Page
6-11.	The maximum possible gain obtainable with a peresitic element over a half-wave antenna alone, assuming that the parasitic element tuning is adjusted for greatest gain at each spacing.	
6-12.	Radiation resistance at center of driven element as a function of element spacing, when the parasitic element is adjusted for the gains given in Fig. 6-11.	135
8-1.	Tenespheric data.	148
8-2.	Transmission curves showing vertical angles.	151
Table		
3-1.	LPD parameters and their effect on the observed performance.	75
3-2.	Design equations.	77
3-3.	Values of $\widetilde{\mathcal{L}}$, \mathscr{O}' and \mathscr{O} , which give 9.0 db directivity over 3.33 : 1 band.	38
3-4.	Antenna dimensions in meters.	89
7-1,	Conditions for a practical geometrical model.	142