DEDUCED AND SEVERAL LITT OF A T. O. CO. LONLEST LARGE DYNAMONETERS

EX .

DULIRONO DONGKAO-CH

B. Eng., Chulclonchern University, 1965

Teesis

Substitted in partial fulfillment of the requirements for the Degree of Master of Ungineering

in

The Similal conditions University Graduate School
Department of Rechanical Engineering

April, 1967

(B. E. 2510)

006949

Accepted by the Graduate School, Chulalongkorn
University in partial fulfillment of the requirements for
the Degree of Master of Engineering.

***	T. Nilanidhi.
·	Deen of the Graduate School
Thecis Convittee Patt	aboujseChairman
	litban

Mesis Supervisor.	<i>y</i>
Dato 14 June 1967	

<u>yeriya</u>a

วักอุประธงค์ของวัดยานีกมช์เรื่องนี้ เกี๋ยที่จะอยกแบบและสราจโคนาโรมีเคอรแบบ สองนี้คือากรับเครื่องกลึงใช้ในการวัดแรงกักและบรงสุขของมีกกอึง โกบใจระบบการวัดแบบสเครบ เกจบริกจ์ และใช้กัวมีกลารในคำก็กออกเปลี่ยนโกงายเรื่อเกิกการฝึกกรอ

ไดนาไม่มีเลองนี้ แล้งเมรกใจยโตนีวะยักถ่วง ทั้งในแนวคึ่งและแนวระดับ นอกจาก นี้มีจไกลดบอนหาวา แรงในแนวหนึ่งมีมอกจลาธองแรงที่อานได้ในอีกแนวหนึ่งเกียงใก

ใหมาในมีเทองนี้ได้ใช้ในการทธยอมทาความนักกับตัวสารากก่าง ๆ ในทารหลึ่ง อาทิเล่น อักราความเร็วของการเนื่อนจองมีคกถึง ความอีกของการหลึ่ง กวามเร็วของรอบจองการ กอึง ธอะยอดับเนื่องจากการใช้จางเทองทอดอื่น

วีทยานิยนขึ้งให้สมุปขอในหร้างของวิธีกอึงกาง ๆ ในการพดของ.

ABSTRACT

A two component lathe dynamometer is designed and made to measure the cutting force and thrust for normal cutting, a strain gauge bridge measuring system being used.

Throw-away type cemented carbide tips are used as they can easily be replaced at the first sign of wear.

The dynamometer is calibrated by a deadweight method in both vertical and horizontal directions and is also checked for cross - coupling between the measuring systems of the two components.

The completed dynamometer is used for a series of tests relating the cutting parameters of feed, speed, depth of cut, and the effect of a cutting fluid.

General conclusions regarding the cutting process are drawn from these tests.

ACRIC: J.EDCIZVEITS

The experiment work involved in the properation of this thesis was carried out in the laboratories of the Department of Mechanical Engineering, Chulalongkorn University, under the supervision of Professor R. C. Skelton between June, 1966 and April, 1967

The author wishes to thank Professor R. C. Skelten for proposing the thesis topic and also for his advice and encouragement while the work was being carried out.

TABLE OF CONTENTS

CHAPTER		PAGE
	Title page	1
	EDAO.túa	11
	Abstract	111
	адмо:Додовнай с	IA
	Table of contents	У
	Edut of tables	VI
	hist of Illustrations	VII
Y.	Introduction and Review of previous work	1
Į.I	Theoretical considerations	4
113.	Becomination of apparents	77
IV	Expendance tal procedure	27
Ą	Reculto	头
ΨI	Discussions and conclusions	60
VII	Auggostions for further work	64
	ສີວຸກິບສາຍພ ອຣ	65

LIGH OF TABLES

	maq
Vertical force calibration	3/ 4
Horizontal force calibration	5 6
Test for cross-coupling	38
Constant feed test (without cutting fluid)	40
Constant speed test (without cutting fluid)	45
Constant feed test (with cutting fluid)	50
Constant cposd test (with cutting fluid)	59
Enrinees of the opesicons	52
cutting ratio pre-present	55
Amplitudo measurement	57

- VII -

LIST OF ILLUSTRATIONS

Fig.		Page
2.1	Theat stone bridge	6
2.2	Strain gauge	6
2.3	Force diagram for orthogonal cutting	11
2.4	Dependance of Shon $S_{\mathbf{n}}$ assumed in Merchant's second theory	11
3.1	Meacuring bar	18
3.2	Tool holder	18
3+3	Tool tip angles	18
3.4	Strain distribution	19
3.5	Strain gauge attochment	19
3.6	Tool holder equivalent system	19
3.7	Unsymmetical bending	22
3.8	Strain gauge bridge circuit	25
3.9	Strain gauge bridge & selector switch	26
3.10	Dynamometer showing in side	26
4.1	Dynamometer calibration	28
4.2a	Cutting force measurement	28
4.2b	Dynamometer on test	29
4.3	Wayne-kerr vibration motor	29
4.4	Natural frequency tosting apparatus	33
5.1	Vertical force calibration curve	35
5+2	Morizontal force calibration curve	37
5-3	Cross-coupling curve	3 9
5-4	Relationship between F. & V.	41
5-5	Rolationship between F. & V.	43
5.6	Relationship between F & Feed/rev.	46
5.7	Relationship between Ft & Feed/rev.	48
5.8	Hardness at different radii	53
5.9	Relationship between A ₁ /A ₂ & V _c	56
5.10	Relationohip between Amplitude & V	59