RFFICIENCY IN INTERFERENCE FITS

pa

Mr. Khongsak Phanich

B. Eng., Chulalongkorn University, 1966

Thesis

Submitted in partial fulfilment of the requirements

for the Degree of Master of Engineering

The Chulalongkorn University Graduate School,

Department of Mechanical Engineering.

Bangkok, Thailand.

May. 1968

(B.E. 2511)

006953

Accepted by the Graduate School. Chulalongkorn University in partial fulfillment of the requirements for the Degree of Master of Engineering.

T. Nilanidhi,
Dean of the Graduate School.

Thesis Committee

P. Malony Chairman

9 Howard

Thesis Supervisor

Date ... 1st July 1968

1 THeward

ABSTRACT

This paper presents the results of an experimental investigation on axial separating forces on shrink-fit members consist ng of short hubs and relatively long shafts.

The tests included four different materials; cast iron, mild steel, brass and aluminium. The range of surface finish used is from as turned to brasso polished; mating surface conditions from lubricated to chemically dry; and fit allowances from 0.5 to 6 mils. per inch diameter. Pure axial force and combined axial force and torsion are used for separating. The latter is carried out to see the effect of torsion. The co-efficient of friction deduced there from depends on the bore pressures. Experimental bore pressures are obtained by assuming that the test results agree well with Lame theory within elastic range (6). For over-strained condition, the equations of Timoshenko (7) and equation of strain deduced from Maximum Shear Stress theory* using the law of compressibility are used to compare with the test results.

The main findings from the experimental work are summarized and discussed. Experimental results do not agree with Lame theory at high co-efficient of friction. For over-strained condition, the results do not agree at all to maximum Shear Stress theory. There is a loss in grip efficiency rather than increase as predicted by theory.

Data on the derived co-efficient of friction are tabulated. A drop in slip force after the first slip was found in every tests.

Samples of graphs drawn by the testing machine are also presented for each test series.

^{*} See Appendix

ACKNOWLEDGEMENT

The author owes a grateful debt to Mr. B.W. Young and Mr. J.F. Heward for their useful suggestions and their constant encouragement, and to Mr. J.W.E. Gale, Mr. Clive Bret and Mr. Thongchai on their helping in the installation and calibration of the Avery Universal Testing Machine.

TABLE OF CONTENTS

	PAG
Abstract	. iii
Acknowledgement	
Table Index	
Figure Index	
Notation	
Introduction	. 1
Theory	. 2
Materials and Method of Measurements	. 12
Factor Affecting Interference Fitted Joint	. 16
Test Report	. 17
Series 1 Brass on Brass	
Series 2 Aluminium on Aluminium	. 26
Series 3 Mild Steel on Mild Steel	. 31
Series 4 Cast Iron on Cast Iorn	. 36
Series 5 Brass on Brass, Polished Shaft	. 40
Series 6 Brass on Brass, Greased Surface	
Series 7 Aluminium on Brass	
Series 8 Brass on Brass, Combined Pulling and Torsion	
The Frictional Coefficient	
Main Error in the Experiment	
Conclusion and Discussion	
Suggestion for Further Work	61
Appendix	
References	64

TABLE INDEX

TABLE	P	AGE
I	Stresses and Displacement of Hub and Shaft	5
II	Pressure Between Mating Surfaces	6
III	Material Properties	15
IV	Average Coefficient of Friction	57

FIGURE INDEX

FIGURE	1	AGE
1	Rankin Chart	8
2	***************************************	9
3	Movement of Elasto-Plastic Boundary	10
4	Testing and Measuring Apparatus	11
5	Specimen	13
6	Effect of the Increase $\frac{D}{d}$ Ratio	14
7	Specimen and Specimen Holder	18
8	Specimen and Specimen Holder Pictures	19
Test S	eries 1 Brass on Brass	
9	Test Result Graph	22
10	Theoretical Pressure and Stress	23
11	Elastic Grip Test Curve	24
12	Elasto-Plastic Grip Test Curve	25
Test S	eries 2 Aluminium on Aluminium	
13	Test Result Graph	27
14	Theoretical Pressure and Stress	28
15	Elastic Grip Test Curve	29
16	Elasto-Plastic Grip Test Curve	30
Test S	eries 3 Mild Steel on Mild Steel	
17	Test Result Graph	32
18	Theoretical Pressure and Stress	
19	Elastic Grip Test Curve	
20	Elasto-Plastic Grip Test Curve	35

FIGURE INDEX

		PAGE
FIGURE		INGL
Test Ser	ries 4 Cast Iron on Cast Iron	
21	Test Result Graph	37
22	Theoretical Pressure and Stress	38
23	Test Curve	39
Test Ser	ries 5 Brass on Brass, Polished Shaft	
24	Test Result Graph	41
25	Elastic Grip Test Curve	42
26	Elasto-Plastic Grip Test Curve	43
Test Ser	ries 6 Brass on Brass, Greased Surface	
27	Test Result Graph	45
28	Elastic Grip Test Curve	46
29	Elasto-Plastic Grip Test Curve	47
Test Se	ries 7 Aluminium on Brass	
30	Test Result Graph	49
31	Elastic Grip Test Curve	50
32	Elasto-Plastic Grip Test Curve	51
Test Se	ries 8 Brass on Brass, Combined Pulling and Torsion	
33	Combined Pulling and Torsion Test Pictures	53
34	Test Result Graph	54
35	Elastic Grip Test Curve	55
36	Elasto-Plastic Grip Test Curve	. 56

NOTATION

C = A constant of integration.

D = Outside diameter of hub.

d = Nominal diameter = outside diameter of shaft

= inside diameter of hub.

d; = Inside diameter of hollow shaft.

E = Modulus of elasticity.

e = Interference inch per inch nominal diameter.

emax = Maximum elastic interference inch per inch

nominal diameter.

G = Modulus of rigidity.

h(subscript) = Belongs to hub material.

K = Rankin factor.

L = Total test length of shaft.

1 = length of hub.

P = Pressure

P4 = Internal Pressure.

Po = External Pressure.

P = Internal Pressure in Elasto-Plastic Hub.

Px = Pressure at Elasto-Plastic front.

Pmax = Internal Pressure to bring hub to yield at bore.

Pult = Internal Pressure to bring hub to fully plastic state

r = Radius from axis.

ri = Internal radius of hub.

r = Outer radius of hub.

Sus = Ultimate shear strength by simple torsion.

Sy = Yield strength in simple tension of material.

s(subscript) = Belongs to shaft material.

U = Displacement vector.

Uri = Deflection of hub inside radius in elasto-plastic state

Up = Deflection of elasto-plastic front at radius p

Tt = Tangential stress or hoop stress.

Tmax = Maximum shear stress.

Or = Radial stress.

U.T.S. = Ultimate tensile stress.

= Poisson's ratio.

ρ = Radius of elasto-plastic front.

λ = Radial interference.

8.6r = Radial deflection.

Et = Tangential deflection.