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CHAPTER I

INTRODUCTION

1.1 Introduction

LetK be a number field with the ring of integers R. A triple (a, b, c) of elements

of R is said to be a Pythagorean triple if a2+b2 = c2. For R = Z, Bryan Dawson [4]

defined operations on the set of all Pythagorean triples so that this set is a ring.

E. Eckert [5] defined an operation, addition, by (a1, b1, c1) + (a2, b2, c2) = (a1a2 −

b1b2, a1b2+b1a2, c1c2) so that the set of Pythagorean triples of natural numbers and

(1, 0, 1) with + is a free abelian group. P. Zanardo and U. Zannier [11] generalized

the domain from Z to the ring of integers R of any field K such that i /∈ R. R.

Beauregard and E. Suryanarayan [1] considered the set of Pythagorean triples

over Z and defined ∗ by (a1, b1, c1) ∗ (a2, b2, c2) = (a1a2, b1c2 + b2c1, b1b2 + c1c2).

The well-known representation of Pythagorean triples in Number Theory resulted

in properties and a unique factorization theorem of primitive Pythagorean triples.

The set of equivalence classes of Pythagorean triples is a free abelian group which

is isomorphic to the multiplicative group of positive rationals. In this thesis, we

wish to investigate properties and structures of the set of Pythagorean triples.

N. Sexauer [10] investigated solutions of the equation x2 + y2 = z2 on unique

factorization domains satisfying some hypotheses. Later, K. Kubota [6] charac-

terized Pythagorean triples in an arbitrary unique factorization domain. Where

R is the Gaussian integers, James T. Cross [3] displayed a method for generating

all Pythagorean triples. Each equivalence class of primitive Pythagorean triples

is mapped from a certain pair of Gaussian integers. In this thesis, we wish to

determine all Pythagorean triples in the ring of integers of any number field.

In section 1.2, we introduce definitions and prove auxiliary theorems used

throughout this thesis.
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In chapter 2, we describe the unique factorization of primitive Pythagorean

triples when R is the Gaussian integers.

In chapter 3, we consider a quadractic field and a biquadratic field such that

its ring of integers R is a UFD. The set P of all Pythagorean triples in R is

partitioned into Pη, sets of triples (α, β, γ) in P where η = γ − β. We show ring

structures of each Pη and P from the ring structure of R.

In chapter 4, for any number field K with the ring of integers R, we charac-

terize all Pythagorean triples in R and demonstrate an isomorphism between the

multiplicative group of K and the group of Pythagorean triples of R. Moreover,

we describe that the group of Pythagorean triples in R whose first components

are non-zero with operation ∗ is isomorphic to the group of Pythagorean triples

in R whose third components are non-zero with the operation + defined above.

1.2 Preliminaries

In this section, we give notation, definitions and theorems used throughout the

thesis. Details and proofs can be found in [7], [8] and [9] unless otherwise stated.

1.2.1 The Ring of Integers

Definition 1.2.1. A number field is a finite extension of Q (in C).

Definition 1.2.2. Let K be an integral domain with identity 1. α ∈ K is an

algebraic integer in K if and only if there exist n ∈ N and a0, a1, . . . , an−1 ∈ Z

such that

αn + an−1α
n−1 + . . .+ a1α + a0 = 0.

Remark 1.2.3. α ∈ Q is an algebraic integer if and only if α ∈ Z.

Definition 1.2.4. The ring of all algebraic integers in a number field K is called

the ring of integers in K and denoted by OK.

Definition 1.2.5. An embedding of L over K in C is a one to one homomorphism

σ : L→ C fixing K pointwise. An embedding of L in C is an embedding of L over

Q in C.
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Let K and L be number fields with K ⊆ L and [L : K] = n. Then there exist

n embeddings of L over K in C denoted by σ1 = idL, σ2, . . . , σn.

Definition 1.2.6. For α ∈ L, define the relative trace of α =TrL/K (α) = σ1 (α)+

σ2 (α)+. . .+σn (α) and the relative norm of α = NL/K (α) = σ1 (α)σ2 (α) . . . σn (α).

If K = Q, then denote TrL/Q by TrL and NL/Q by NL and call the absolute

trace and absolute norm, respectively.

Definition 1.2.7. Let α1, α2, . . . , αn ∈ L. The discriminant of α1, α2, . . . , αn in

L over K denoted by discL/K (α1, α2, . . . , αn) := det[σi(αj)]
2.

Theorem 1.2.8. Let K be a number field of degree n over Q. Then OK is a free

abelian group (or Z-module) of rank n, i.e, it is isomorphic to the direct sum of

n subgroups each of which is isomorphic to Z.

Definition 1.2.9. A Z-basis {α1, . . . , αn} of OK is called an integral basis of K.

Note. An integral basis of K is also a basis of K over Q.

Proposition 1.2.10. Let {α1, . . . , αn} and {β1, . . . , βn} be any integral bases of

K. Then discK(α1, . . . , αn) = discK(β1, . . . , βn).

Definition 1.2.11. The discriminant of the field K = discK(α1, . . . , αn) where

{α1, . . . , αn} is an integral basis of K over Q, we denote it by disc(K) or δK .

1.2.2 Factorization of Elements in the Ring of Integers

The factorization of elements in the ring of integers will appear in chapters 2 and

3, especially chapter 2 where we show the unique factorization of a Pythagorean

triple which comes from the prime factorization of its first component.

Definition 1.2.12. Let D be an integral domain with identity 1.

(1) Let x, y ∈ D such that x 6= 0. x divides y (or y is divisible by x), in notation

x|y, if and only if there exists z ∈ D such that y = xz.

(2) u ∈ D is a unit if and only if u|1.
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(3) x, y ∈ D are associates or y is an associate of x, in notation x ∼ y, if and only

if there exists a unit u ∈ D such that x = yu.

(4) A nonzero nonunit x ∈ D is irreducible if and only if for all m ∈ D, if m|x

then m is a unit or m and x are associates.

(5) A nonzero nonunit x ∈ D is prime if and only if for all m,n ∈ D, if x|mn then

x|m or x|n.

(6) Let x, y ∈ D such that x 6= 0 or y 6= 0. A nonzero d ∈ D is a greatest common

divisor of x and y, in notation d =gcd(x, y), if and only if d|x and d|y and for all

z ∈ D, if z|x and z|y then z|d.

Note.

(1) x and y are associates if and only if x|y and y|x.

(2) If x is irreducible, then for every associate y of x, y is irreducible.

(3) If x is prime, then for every associate y of x, y is prime.

(4) If x and y are associates and x = yz for some z ∈ D, then z is a unit.

Proposition 1.2.13. Let D be an integral domain with identity 1 and x, y ∈

D r {0}. Then

(i) x and y are associates if and only < x >=< y >.

(ii) x is prime if and only < x > is a prime ideal.

Proposition 1.2.14. Let x, y ∈ OK. Then

(i) if x|y in OK, then NK(x)|NK(y) in Z.

(ii) if x and y are associates, then NK(x) = ±NK(y).

Theorem 1.2.15. Let D be a UFD. Then x ∈ D is irreducible if and only if x is

prime.

1.2.3 Decomposition of Ideals

This subsection will be used for theorems about quadratic and biquadratic fields

in the next subsection.

Theorem 1.2.16. Every nonzero proper ideal in OK can be written uniquely as

a product of prime ideals.
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Definition 1.2.17. The norm of a nonzero ideal A in OK , denoted by N(A), is

defined to be |OK/A|.

Theorem 1.2.18. For any α 6= 0 in OK, N(〈α〉)= |NK(α)|.

Remark 1.2.19. If P is a nonzero ideal such that N(P ) = p a prime number,

then P is a prime ideal in OK .

Let L ⊇ K be a finite extension of number fields. Let P be a nonzero prime

ideal in OK . Then POL is a nonzero ideal in OL. We will consider the prime

factorization of POL in OL. From now on, the term prime ideals means nonzero

prime ideals.

Theorem 1.2.20. Let P be a prime ideal in OK and P be a prime ideal in OL.

Then the following are equivalent.

(i) P|POL.

(ii) P ⊃ POL.

(iii) P ⊃ P .

(iv) P ∩ OK = P .

(v) P ∩K = P .

Definition 1.2.21. For P and P satisfying any of the above theorem, we say

that P lies over/above P or P lies under P .

Definition 1.2.22. Let POL =

g∏
i=1

Pei
i be the prime factorization in OL where

P is a prime ideal in OK .

(1) g is called the decomposition number of P in L.

(2) For each i, ei is called the ramification index of Pi over P in L over K,

denoted by e(Pi/P ).

P is ramified in OL (in L) if there exists i such that ei > 1.

P is inert in L if g = 1 and e1 = 1, i.e., POL is a prime ideal.

The field OK/P is embedded in the field OL/P so it can be considered as a

subfield of OL/P .
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Definition 1.2.23. The degree of OL/Pi over OK/P is called the residue class

degree or inertial degree of Pi over P , denoted by f(Pi/P ).

Remark 1.2.24. N(Pi) =N(P )f where f = f(Pi/P ).

Theorem 1.2.25. Let L ⊇ K be a number field extension of degree n and let

P1, . . . ,Pg be primes in OL lying above a prime P of OK with ramification indices

e1, . . . , eg and residue class degrees f1, . . . , fg. Then n =

g∑
i=1

eifi.

Definition 1.2.26. Let L ⊇ K be a number field extension of degree n and P be

a prime ideal in OK such that POL = Pe11 Pe22 . . .Peg
g where Pi are distinct prime

ideals of OL.

(1) P is totally ramified in L if g = 1 and e1 = n, so f1 = 1 and POL = Pn1 .

(2) P splits completely in L if g = n, so ei = 1, f1 = 1 for all i and POL =

P1P2 . . .Pn.

Theorem 1.2.27. Let L ⊇ K be a Galois extension number field of degree n and

Pi,Pj be primes in OL lying above a prime P of OK. Then e(Pi/P ) = e(Pj/P )

and f(Pi/P ) = f(Pj/P ), i.e., POL = (P1 . . .Pg)e, hence n = efg where e =

e(Pi/P ) and f = f(Pi/P ).

1.2.4 Quadratic and Biquadratic Fields

We collect necessary results of quadratic and biquadratic fields here. These prop-

erties will be used in chapter 3.

Definition 1.2.28. A quadratic extension is a field extension E over F of

degree two, and a quadratic field is a quadratic extension of Q.

Let K be a quadratic field. Then [K : Q]=2 and K = Q[α] where α is a root of

monic irreducible polynomial of degree 2, say f(x) = x2 + ax+ b where a, b ∈ Q,

i.e, α = (−a ±
√
a2 − 4b)/2. Since a, b ∈ Q, a2 − 4b = d1/d2 = (d1d2/d

2
2) for

some d1, d2 ∈ Z and then there exist d, c ∈ Z such that d1d2 = c2d where d is

a squarefree integer. Hence K = Q[α] = Q[
√
a2 − 4b] = Q[

√
d1d2] = Q[

√
d] for

some squarefree integer d. The integral basis of K can be found as follows [7].
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Theorem 1.2.29. Let K = Q[
√
d] where d is a squarefree integer.

(i) If d ≡ 1 (mod 4), then

OK =

{
u+ v

√
d

2
|u, v ∈ Z and u ≡ v (mod 2)

}
= Z

[
1 +
√
d

2

]
.

Consequently,
{

1, 1+
√
d

2

}
is an integral basis of K and δK = d.

(ii) If d ≡ 2 or 3 (mod 4), then

OK =
{
u+ v

√
d|u, v ∈ Z

}
= Z[
√
d].

Consequently,
{

1,
√
d
}

is an integral basis of K and δK = 4d.

Next, the decomposition of principal ideals generated by 2 in quadratic fields

can be determined in the following theorem [7].

Theorem 1.2.30. Let K = Q[
√
d] where d is a squarefree integer. Then

(i) 2Z is totally ramified in OK if d ≡ 2 or 3 (mod 4).

(ii) 2Z splits completely in OK if d ≡ 1 (mod 8).

(iii) 2Z is inert in OK if d ≡ 5 (mod 8).

Moreover, if 2Z is totally ramified in OK, there is a prime δ ∈ OK such that

2 ∼ δ2 and |OK/ < δ >| = 2. If 2Z splits completely in OK, there are non-

associate prime δ, δ ∈ OK such that 2 ∼ δδ and |OK/ < δ >| =
∣∣OK/ < δ >

∣∣ = 2.

If 2Z is inert in OK, 2 is a prime in OK.

Definition 1.2.31. A biquadratic field is an extension of degree four over Q of

the form Q[
√
m,
√
n] where m,n are distinct squarefree integers.

The study of the decomposition of principal ideals generated by 2 in bi-

quadratic fields can be found in [2].

Theorem 1.2.32. Let K = Q[
√
d1,
√
d2] ⊃ ki = Q[

√
di] where, for i = 1, 2, 3, di

are discriminant of ki, d3 = d1d2/t
2 and t ∈ Z. Then

(i) 2 = δ4 if d1 ≡ d2 ≡ 8 (mod 16) and d3 ≡ 12 (mod 8).

(ii) 2 = δ2 if d1 ≡ d2 ≡ 8 or 12 (mod 16) and d3 ≡ 5 (mod 8).

(iii) 2 = δ2
1δ

2
2 if d1 ≡ d2 ≡ 8 or 12 (mod 16) and d3 ≡ 1 (mod 8).
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(iv) 2 = δ1δ2δ3δ4 if d1 ≡ d2 ≡ d3 ≡ 1 (mod 8).

(v) 2 = δ1δ2 if d1 ≡ d2 ≡ 5 (mod 8) and d3 ≡ 1 (mod 8).



CHAPTER II

THE SEMIGROUP OF PYTHAGOREAN TRIPLES

OVER GAUSSIAN INTEGERS

Inspired by R. Beauregard and E. Suryanarayan’s work [1], this chapter investi-

gates the unique factorization of primitive Pythagorean triples over the Gaussian

integers.

2.1 The Semigroup

Let PT be the set of all Pythagorean triples in the ring of Gaussian integers where

their first components are non-zero; i.e.,

PT = {(a, b, c) | a, b, c ∈ Z[i] with a 6= 0 and a2 + b2 = c2}.

Define the operation ∗ on PT by

(a1, b1, c1) ∗ (a2, b2, c2) = (a1a2, b1c2 + b2c1, b1b2 + c1c2). (2.1)

Proposition 2.1.1. The set PT under the operation ∗ is a commutative monoid

with the identity element (1, 0, 1).

Proof. Let (a1, b1, c1), (a2, b2, c2), (a3, b3, c3) ∈ PT . It is easy to see that (a1a2)
2 +

(b1c2 +b2c1)
2 = (b1b2 +c1c2)

2 and [(a1, b1, c1)∗(a2, b2, c2)]∗(a3, b3, c3) = (a1, b1, c1)∗

[(a2, b2, c2)∗(a3, b3, c3)]. Clearly, (PT , ∗) is commutative. Since (a, b, c)∗(1, 0, 1) =

(a, b, c), we have that (1, 0, 1) is the identity element in PT . Therefore, (PT , ∗) is

a commutative monoid.

K. Kubota [6] determined the representation of Pythagorean triples in a unique

factorization domain. We applied the theorem to the ring of the Gaussian integers.
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Proposition 2.1.2. If (a, b, c) ∈ PT , then there exist f, u, v, d ∈ Z[i] where d is

a factor of 2 relatively prime to f and d | u2 ± v2 such that

a =
2fuv

d
, b =

f(u2 − v2)

d
, and c =

f(u2 + v2)

d
. (2.2)

Definition 2.1.3. A Pythagorean triple (a, b, c) is said to be primitive if the

components a, b, c have no common divisor.

Corollary 2.1.4. If (a, b, c) ∈ PT is primitive, then there exist u, v, d ∈ Z[i]

where d is a factor of 2 and d | u2 ± v2 such that

a =
2uv

d
, b =

u2 − v2

d
, and c =

u2 + v2

d
. (2.3)

Proof. From Proposition 2.1.2, if f is not a unit, then (a, b, c) is not primitive.

Parity makes things much easier in Z. James T. Cross [3] use δ := 1 + i

to define “even” and “odd” Gaussian integers and gave a proof of the following

lemma.

Lemma 2.1.5. Z[i]/ < δ >={[0], [1]}.

Here [0] and [1] are the residue classes of 0 and 1 in Z[i]/ < δ >, respectively.

Definition 2.1.6. Let a be a Gaussian integer. We say that a is even or odd

according as a is in the residue class determined by 0 or 1, respectively.

It follows that the sum of two even or two odd Gaussian integers gives an even

one, the sum of an even Gaussian integer and an odd one gives an odd one, the

product of two odd ones gives an odd one, and the product of an even one and

any Gaussian integer gives an even one.

Lemma 2.1.7. If (a, b, c) ∈ PT is primitive, then only one of a, b, c is even and

the others are odd.

Proof. Suppose that two of a, b, c are even. Since a2 + b2 = c2, all a, b, c are even.

This contradicts the fact that (a, b, c) is primitive.
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A significant difference between the set of integers and the set of Gaussian

integers is i. This number is the key to the next lemma which plays important

role in several following theorems. The proof is straightforward.

Lemma 2.1.8. (a, b, c) ∈ PT if and only if (c, bi, a) ∈ PT .

Recall that the notation a ∼ b will be used when a and b are associates, i.e.,

b = ±a or ±ai. For example, if d | 2, then d ∼ 1, δ or δ2.

Proposition 2.1.9. For each primitive triple (a, b, c) in PT , either a, b or c is a

multiple of δ3.

Proof. By Lemma 2.1.7, only one of a, b, c is even and the others are odd. If a is

an even Gaussian integer, by Corollary 2.1.4, there exist Gaussian integers u, v, d

where d | 2 and d | u2 ± v2 such that

a =
2uv

d
, b =

u2 − v2

d
, and c =

u2 + v2

d
.

Case 1 : u is even and v is odd. Then u2 − v2 is odd. Since b is odd, we have

d ∼ 1. Hence a ∼ 2uv and thus a is divisible by δ3.

Case 2 : u is odd and v is even. This is similar to the above case.

Case 3 : u and v are odd. Both u − v and u + v are divisible by δ. Therefore,

u2 − v2 is divisible by δ2. Since b is odd, it follows that d ∼ δ2 ∼ 2 and a ∼ uv.

Hence a is odd, a contradiction.

Case 4 : u and v are even. If δ2 | u or δ2 | v, then a is divisible by δ3 and we are

done. Suppose that δ2 - u and δ2 - v. Thus u = δu1 and v = δv1 where u1, v1 are

odd Gaussian integers. Since b = (u2− v2)/d = δ2(u2
1− v2

1)/d and u2
1− v2

1 is even,

b is even. This is a contradiction.

For the case that b is even, we can prove in a similar way.

When c is even by Lemma 2.1.8, (c, bi, a) ∈ PT and the above proof shows

that c is divisible by δ3.

From Proposition 2.1.9 and Lemma 2.1.7, there are no Gaussian integers

b1, b2, c1, c2 such that (δ, b1, c1) and (2, b2, c2) are primitive. However, every odd

prime appears in specific forms of primitive Pythagorean triples.
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Proposition 2.1.10. Let p be an odd prime in the Gaussian integers (i.e., p � δ).

If p occurs as a component of a primitive Pythagorean triple in PT , then it must

be one of the following forms:

(i) (p,±p
2 − 1

2
,±p

2 + 1

2
) and (p,±p

2 + 1

2
i,±p

2 − 1

2
i)

(ii) (±p
2 − 1

2
, p,±p

2 + 1

2
) and (±p

2 + 1

2
i, p,±p

2 − 1

2
i)

(iii) (±p
2 + 1

2
,±p

2 − 1

2
i, p) and (±p

2 − 1

2
i,±p

2 + 1

2
, p).

Proof. First we will show that (p,±p
2 − 1

2
,±p

2 + 1

2
) and (p,±p

2 + 1

2
i,±p

2 − 1

2
i)

are elements in PT . If p is a prime in Z, then p ≡ 3 (mod 4) and it is obvious

that
p2 ± 1

2
∈ Z. If p /∈ Z, then p ∼ a + bi where a, b ∈ Z, a > 0, b 6= 0 and

a2 + b2 ≡ 1 (mod 4). Hence a2 − b2 ≡ 1 (mod 2) and

p2 ± 1

2
=
±(a+ bi)2 ± 1

2
=
±(a2 − b2 + 2abi)± 1

2
=
±(a2 − b2 ± 1)± 2abi

2

are Gaussian integers.

Now we will show that case (i) is the only way in which p can occur as the first

component of a primitive Pythagorean triple. Let (p, b, c) ∈ PT . By Corollary

2.1.4, there exist Gaussian integers u, v, d where d | 2 and d | u2 ± v2 such that

p =
2uv

d
, b =

u2 − v2

d
, and c =

u2 + v2

d
.

Since p is odd, p � 2/d. Therefore, p ∼ u or p ∼ v. If p ∼ u, then v ∼ 1

and d follows from p = 2uv/d. It can be seen that there exist exactly sixteen

combinations that satisfy the conditions that p ∼ u (i.e., p = u,−u, ui,−ui)

and v ∼ 1 (i.e., v = 1,−1, i,−i). Upon substituting each of these combinations

into the formulas for b and c, we obtain four possible forms as follows: (p, (p2 −

1)/2, (p2 + 1)/2), (p,−(p2 − 1)/2,−(p2 + 1)/2), (p, (p2 + 1)i/2, (p2 − 1)i/2) and

(p,−(p2 + 1)i/2,−(p2 − 1)i/2). If p ∼ v, then u ∼ 1. Substituting the sixteen

combinations that satisfy the condition into the formulas given in Corollary 2.1.4,

we obtain four formulas where each of the middle components has the different sign

from the four previous formulas as follows: (p,−(p2 − 1)/2, (p2 + 1)/2), (p, (p2 −

1)/2,−(p2 + 1)/2), (p,−(p2 + 1)i/2, (p2− 1)i/2) and (p, (p2 + 1)i/2,−(p2− 1)i/2).

Case (ii) can be proved similarly and case (iii) follows from Lemma 2.1.8.
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Since each Gaussian integer has the unique factorization up to units, this fact

effects the unique factorization of each Pythagorean triple. We then introduce

units and irreducible elements in PT .

Definition 2.1.11. (a, b, c) ∈ PT is called a unit if there exists (d, e, f) ∈ PT

such that (a, b, c) ∗ (d, e, f) = (1, 0, 1).

Lemma 2.1.12. All units in PT are (±1, 0,±1), (±1,±i, 0), (±i, 0,±i) and

(±i,±1, 0).

Proof. If (1, b, c) ∈ PT , then there exist u, v, d ∈ Z[i] where d | 2 and d | u2 ± v2

such that

1 =
2uv

d
, b =

u2 − v2

d
, and c =

u2 + v2

d

by Corollary 2.1.4. This implies that d ∼ 2, u ∼ 1, v ∼ 1 and all triples satisfying

these conditions are (1, 0,±1) and (1,±i, 0). Since the first component of a unit

in PT must associate 1, we are done.

Definition 2.1.13. Let (a, b, c), (d, e, f) ∈ PT . If there exists a unit (x, y, z) ∈

PT such that (a, b, c) = (d, e, f) ∗ (x, y, z), we say that (a, b, c) associates (d, e, f)

denoted by (a, b, c) ≈ (d, e, f).

For example, (3, 4, 5) ≈ (3, 5i, 4i) since (3, 5i, 4i) = (3, 4, 5) ∗ (1, i, 0).

Definition 2.1.14. A non-unit (a, b, c) ∈ PT is said to be irreducible provided

that: whenever (a, b, c) = (u, v, w) ∗ (x, y, z) we will have (u, v, w) or (x, y, z) is a

unit.

For example, (1 + 2i,−2 + 2i,−1 + 2i) is irreducible but (12, 5, 13) = (3, 4, 5) ∗

(4,−3, 5) is not. Furthermore, every triple in case (i) of Proposition 2.1.10 is

irreducible because the prime p cannot be factored.

Proposition 2.1.15. For each positive integer k ≥ 3, δk occurs as the first com-

ponent of a primitive Pythagorean triple in PT as follows and in no other way:

(δk,±(δ2k−4 + 1),±(δ2k−4 − 1)) and (δk,±(δ2k−4 − 1)i,±(δ2k−4 + 1)i). Moreover,

these triples are irreducible.
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Proof. Let (δk, b, c) ∈ PT be primitive. By Lemma 2.1.7, b and c must be odd.

Then

δk =
2uv

d
, b =

u2 − v2

d
, and c =

u2 + v2

d

for some Gaussian integers u, v, d where d | 2 and d | u2 ± v2 by Corollary 2.1.4.

Case 1 : u is even and v is odd. Then u2 − v2 is odd. Since b is odd, d ∼ 1

and δk ∼ 2uv. Hence v ∼ 1 and u ∼ δk−2. These conditions give rise to four

possible forms, namely, (δk, δ2k−4 + 1, δ2k−4− 1), (δk,−(δ2k−4 + 1), −(δ2k−4− 1)),

(δk, (δ2k−4 − 1)i, (δ2k−4 + 1)i) and (δk,−(δ2k−4 − 1)i,−(δ2k−4 + 1)i).

Case 2 : u is odd and v is even. Similarly, d ∼ 1, u ∼ 1 and v ∼ δk−2. We obtain

another four possible forms where the middle components have different signs

from the previous case: (δk,−(δ2k−4 + 1), δ2k−4 − 1), (δk, δ2k−4 + 1,−(δ2k−4 − 1)),

(δk,−(δ2k−4 − 1)i, (δ2k−4 + 1)i) and (δk, (δ2k−4 − 1)i,−(δ2k−4 + 1)i).

Case 3 : u and v are odd. Since δk = 2uv/d and k ≥ 3, this is a contradiction.

Case 4 : u and v are even. Since b = (u2 − v2)/d is odd, d ∼ 2 and u, v cannot

be both divisible by δ2. If u ∼ δ, then v ∼ δk−1 and the result is the same as in

case 2. For v ∼ δ, we have u ∼ δk−1 and the result is the same as in case 1.

Now suppose that (δk, b, c) = (δi, b1, c1) ∗ (δj, b2, c2) where b1, b2, c1, c2 ∈ Z[i]

and i, j ∈ N. Since (δk, b, c) is primitive, (δi, b1, c1) and (δj, b2, c2) are primitive.

By Lemma 2.1.7, b1, b2, c1, c2 are odd. Then c = b1b2+c1c2 is even, a contradiction.

Hence (δk, b, c) is irreducible.

2.2 Unique Factorization Theorem

The unique factorization of any primitive Pythagorean triple (a, b, c) is reflected

by the unique factorization of a, its first component. The following theorem shows

how a primitive Pythagorean triple can be factored into a product of irreducible

triples. We use the usual integer-exponent notation. For example, A0 = (1, 0, 1),

A1 = A, A2 = A ∗ A for A ∈ PT .

Theorem 2.2.1. (Unique factorization theorem)

Let A = (a, b, c) ∈ PT be primitive and a = µδs0ps11 ...p
sk
k , where µ is a unit, pi
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are non-associate odd primes, si are non-negative integers and s0 6= 1, 2. Then A

has the unique (up to order of factors and the multiplication of factors by units)

factorization

A = P0 ∗ P s1
1 ∗ ... ∗ P

sk
k

where

P0 ≈

(1, 0, 1) if a is odd,

(δs0 ,±(δ2s0−4 + 1), δ2s0−4 − 1) if a is even

and

Pi ≈ (pi,±
p2
i − 1

2
,
p2
i + 1

2
)

for i ≥ 1. The choice of ± depending on (a, b, c).

Proof. There exist Gaussian integers u, v, d where d | 2 and d | u2 ± v2 such that

a =
2uv

d
, b =

u2 − v2

d
, and c =

u2 + v2

d
.

If a is odd, then d ∼ 2. We obtain

(a, b, c) ≈ (uv,
u2 − v2

2
,
u2 + v2

2
)

= (u,
u2 − 1

2
,
u2 + 1

2
) ∗ (v,

1− v2

2
,
1 + v2

2
)

where the two triples on the right-hand side are elements in PT . Mathematical

induction implies the factorization in this case.

In case that a is even, b and c are odd by Lemma 2.1.7. The parity of u and

v can be divided into four cases as follows:

Case 1 : u is even and v is odd. Since b = (u2− v2)/d is odd, d ∼ 1. Let 2u = δkn

where n is an odd Gaussian integer and k ∈ N. Then

(a, b, c) ≈ (2uv, u2 − v2, u2 + v2)

= (δknv,−δ2k−4n2 − v2,−δ2k−4n2 + v2)

= (δk,−(δ2k−4 + 1),−(δ2k−4 − 1)) ∗ (nv, (n2 − v2)/2, (n2 + v2)/2).
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Since n and v are odd, (nv, (n2 − v2)/2, (n2 + v2)/2) ∈ PT is primitive. We then

factor (nv, (n2 − v2)/2, (n2 + v2)/2) as in the odd case.

Case 2 : u is odd and v is even. This is similar to the above case.

Case 3 : u and v are odd. Then δ3 does not divide a. This is a contradiction.

Case 4 : u and v are even. Thus u = δm and v = δn for some m,n ∈ Z[i]. Since

b = (u2 − v2)/d = (δ2m2 − δ2n2)/d is odd, we have d ∼ 2 and b ∼ m2 − n2. This

means that m and n must have the different parity. Then (a, b, c) ≈ (2mn,m2 −

n2,m2 + n2) which can be factored as in case 1 or case 2.

From the property that (x, y, z) ∗ (x,−y, z) = (x2, 0, x2) for all (x, y, z) ∈ PT ,

the choice ± of the term P si
i of A cannot vary, otherwise A would not be primitive.

Since a determines the first components of all factors of A, we assume that

A = P0 ∗ P s1
1 ∗ ... ∗ P

sk
k = Q0 ∗Qs1

1 ∗ ... ∗Q
sk
k

where for each i, Pi and Qi are irreducible triples with identical first components.

Now if P = (x, y, z), we define P ′ = (x,−y, z). If Pj ≈ Qj for some j, it can be

cancelled by multiplying P ′j on both sides of the equation. Repeating this process

until we have

Px0 ∗ Px1 ∗ ... ∗ Pxm = Qx0 ∗Qx1 ∗ ... ∗Qxm

which is a factor of A and Pxi
does not associate Qxi

. Propositions 2.1.10 and

2.1.15 and Lemma 2.1.12 show that Pxi
≈ Q′xi

. Then, by multiplying the above

equation by each of the Q′xi
, we have

(Px0 ∗ Px1 ∗ ... ∗ Pxm)2 = (r2, 0, r2)

where the Gaussian integer r is the product of the first components of Pxi
. It

follows that Px0 ∗ Px1 ∗ ... ∗ Pxm ≈ (r, 0, r) which contradicts primitivity. This

completes the proof.

Observe that (l, 0, l) ∗ (a, b, c) = (la, lb, lc). We will use the notation l(a, b, c)

for (l, 0, l) ∗ (a, b, c) in the next proposition which indicates how (δk,±(δ2k−4 +

1), δ2k−4 − 1) can be generated from (δ3,±(δ2 + 1), δ2 − 1).
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Proposition 2.2.2. If k ≥ 3 is an integer, then δ2k−6(δk, δ2k−4 + 1, δ2k−4 − 1) ≈

(δ3, δ2+1, δ2−1)k−2 and δ2k−6(δk,−(δ2k−4+1), δ2k−4−1) ≈ (δ3,−(δ2+1), δ2−1)k−2.

Proof. It is trivial when k = 3. For k > 3,

δ2(δk, δ2k−4 + 1, δ2k−4 − 1) = (δk+2, δ2k−2 + δ2, δ2k−2 − δ2)

≈ (δk+2,−(δ2k−2 − δ2)i,−(δ2k−2 + δ2)i)

= (δk+2, 2δ2k−4 − 2, 2δ2k−4 + 2)

= ((δ3)(δk−1), (δ2 + 1)(δ2k−6 − 1) + (δ2 − 1)(δ2k−6 + 1),

(δ2 + 1)(δ2k−6 + 1) + (δ2 − 1)(δ2k−6 − 1))

= (δ3, δ2 + 1, δ2 − 1) ∗ (δk−1, δ2k−6 + 1, δ2k−6 − 1).

Mathematical induction gives the desired result. When middle components

have different signs the proof is similar.

Example 2.2.3. For the primitive triple (96 + 72i,−24 + 151i, 24 + 137i) and

96+72i = δ6 ·3·(1+2i)2, Proposition 2.2.1 provides (96+72i,−24+151i, 24+137i)

= (δ6, δ8 + 1, δ8 − 1) ∗ (3, 5i, 4i) ∗ (1 + 2i, 2− 2i,−1 + 2i)2. By Proposition 2.2.2,

δ6(96 + 72i,−24 + 151i, 24 + 137i) can be written as (1,−i, 0) ∗ (δ3, δ2 + 1, δ2 −

1)4 ∗ (3, 5i, 4i) ∗ (1 + 2i, 2− 2i,−1 + 2i)2.



CHAPTER III

THE RING OF PYTHAGOREAN TRIPLES OVER

QUADRATIC FIELDS AND BIQUADRATIC FIELDS

Let K be a number field such that the ring of integers R of K is a UFD. Let P

be the set of all Pythagorean triples in R; i.e.,

P = {(α, β, γ) ∈ R3 | α2 + β2 = γ2}.

The set P is partitioned into sets

Pη = {(α, β, γ) ∈ P | γ − β = η}

for all η ∈ R. Bryan Dawson [4] gave a construction in such a way as to give P

and Pη ring structures when R = Z. We apply his ideas on quadratic fields and

biquadratic fields.

Throughout this chapter, all variables will be assumed to represent algebraic

integers unless otherwise stated. The notation dre will be used for the smallest

rational integer greater than or equal to the real number r.

3.1 Pythagorean Triples Over Quadratic Fields

This section shows how to find all elements of each Pη with all elements of P as

the byproducts when K = Q[
√
d] where d is a squarefree integer.

The parity is significant in many theorems about Pythagorean triples. Lemma

2.1.5 shows that 1 + i plays a role in the ring of Gaussian integers like that played

by 2 in Z. We employ this concept by using Theorem 1.2.30.

We will separate each case of R into three subsections. If 2 is ramified in R,

there is a prime δ ∈ R such that 2 ∼ δ2 and |R/ < δ >| = 2. For α ∈ R, we may

say that α is even if α is divisible by δ and α is odd otherwise. It follows that
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all elementary properties of evenness and oddness hold. For example, the sum of

an even algebraic integer and an odd one is odd. Moreover, since δ|2, 2 and all

integers that are divisible by 2 are even algebraic integers. All units in R are odd.

In case that 2 splits completely in R, there are non-associate primes δ, δ ∈ R such

that 2 ∼ δδ and |R/ < δ >| =
∣∣R/ < δ >

∣∣ = 2. If 2 is inert in R, 2 is a prime in

R.

Let π be a prime in R. The set R r πR contains all elements of R which are

not divisible by π. We use the countability property of R to show a connection

between R r πR and R which leads to a one-to-one correspondence between Pη

and R.

Definition 3.1.1. Let π be a prime in R. All non-associate primes in R can be

put into order, say π, π1, π2, π3,... Define Ψπ : (Rr πR)→ R by

Ψπ(uπa1
1 π

a2
2 π

a3
3 ...) = uπa1πa2

1 π
a3
2 ...

where {a1, a2, ...} ⊂ Z+
0 and u is a unit in R. It is not difficult to see that the

mapping Ψπ is a one-to-one correspondence.

First, we consider the case that η = 0.

Theorem 3.1.2. P0 = {(0, β, β) | β ∈ R} and the mapping ϕ : P0 → R defined

by

ϕ((0, β, β)) = β

is a one-to-one correspondence.

3.1.1 2 is Ramified in R

In this subsection, there is a prime δ ∈ R such that 2 ∼ δ2 and |R/ < δ >| = 2.

To show a ring structure of Pη and P , we characterize Pη and define bijections

by considering three cases of η where η is odd, δ||η, and δ2|η in the following

theorems.
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Theorem 3.1.3. Let η be an odd algebraic integer and η = uπa1
1 π

a2
2 ...π

am
m where

ak ∈ Z+
0 , u is a unit and πk ∈ R are non-associate odd primes. Set ρ = πb11 π

b2
2 ...π

bm
m

where bk = dak

2
e. Then Pη is{(
α,
α2 − η2

2η
,
α2 + η2

2η

)
| α = τρ for some odd τ ∈ R

}
.

Moreover, the mapping ϕ : Pη → R defined by

ϕ((α, β, γ)) = Ψδ(
α

ρ
)

is a one-to-one correspondence.

Proof. Suppose (α, β, γ) ∈ Pη. Since η = γ − β, we have

(α, β, γ) = (α,
α2 − η2

2η
,
α2 + η2

2η
).

Therefore, 2η|α2 + η2. Thus α2 + η2 is even. Since η2 is odd, α2 is odd and so is

α. We also have η|α2 + η2. Hence η|α2. This means that πa1
1 π

a2
2 ...π

am
m |α2. Since

for each k = 1, ...,m, bk = dak

2
e, we have πb11 π

b2
2 ...π

bm
m |α. Then α = τρ for some

odd τ ∈ R.

Conversely, suppose α = τρ where τ is odd. Then α is odd and α2 =

τ 2π2b1
1 π2b2

2 ...π2bm
m . Since 2bk = 2dak

2
e ≥ ak, we have πa1

1 π
a2
2 ...π

am
m |α2. Hence

η|α2 − η2. Since α and η are odd, α + η and α − η are divisible by δ. Then

2|α2 − η2. Since gcd(η, 2) = 1, we have 2η|α2 − η2 and thus 2η|α2 + η2.

If (α, β, γ) ∈ Pη, then α/ρ is an odd algebraic integer and Ψδ(α/ρ) makes the

mapping ϕ injective and surjective.

Example 3.1.4. Let R = Z[i]. For η = i, we have ρ = 1 and

τ odd α = τ β = α2+1
2i

γ = α2−1
2i

±1 ±1 −i 0

±i ±i 0 i

±(1 + 2i) ±(1 + 2i) 2 + i 2 + 2i

±(1− 2i) ±(1− 2i) −2 + i −2 + 2i

±(2 + i) ±(2 + i) 2− 2i 2− i

±(2− i) ±(2− i) −2− 2i −2− i



21

Theorem 3.1.5. Let η be an even algebraic integer and η = uδπa1
1 π

a2
2 ...π

am
m

where ak ∈ Z+
0 , u is a unit and πk ∈ R are non-associate odd primes. Set

ρ = δπb11 π
b2
2 ...π

bm
m where bk = dak

2
e. Then Pη is{(

α,
α2 − η2

2η
,
α2 + η2

2η

)
| α = τρ for some odd τ ∈ R

}
.

Moreover, the mapping ϕ : Pη → R defined by

ϕ((α, β, γ)) = Ψδ(
α

ρ
)

is a one-to-one correspondence.

Proof. Suppose (α, (α2 − η2)/2η, (α2 + η2)/2η) ∈ Pη. Then 2η|α2 + η2.

We have δ3πa1
1 π

a2
2 ...π

am
m |α2 + u2δ2π2a1

1 π2a2
2 ...π2am

m . Hence δ2πa1
1 π

a2
2 ...π

am
m |α2 and

thus δπb11 π
b2
2 ...π

bm
m |α where b1, ..., bm are defined as in theorem. Therefore, there

exist an algebraic integer τ such that α = τρ. If τ is even, then δ3|α2 and thus

δ3|δ2π2a1
1 π2a2

2 ...π2am
m . This is a contradiction, so τ is odd.

Conversely, suppose α = τρ where τ is odd. We have α2+η2 = τ 2δ2π2b1
1 π2b2

2 ...π2bm
m

+ u2δ2π2a1
1 π2a2

2 ...π2am
m = δ2(τ 2π2b1

1 π2b2
2 ...π2bm

m +u2π2a1
1 π2a2

2 ...π2am
m ). Since τ 2π2b1

1 π2b2
2 ...π2bm

m

and u2π2a1
1 π2a2

2 ...π2am
m are odd and the summation of these two numbers is even,

δ3|α2 +η2. Since 2bk ≥ ak, we have πa1
1 π

a2
2 ...π

am
m |α2 +η2. Hence α2 +η2 is divisible

by δ3πa1
1 π

a2
2 ...π

am
m . Consequently, 2η|α2 + η2.

It is not difficult to see that the mapping ϕ is a one-to-one correspondence.

Example 3.1.6. Let R = Z[i]. For η = 9 + 9i = δ × 32, we have ρ = δ × 3 and

τ odd α = τρ β = α2−162i
18+18i

γ = α2+162i
18+18i

±1 ±(3 + 3i) −4− 4i 5 + 5i

±i ±(−3 + 3i) −5− 5i 4 + 4i

±(1 + 2i) ±(−3 + 9i) −8− 4i 1 + 5i

±(1− 2i) ±(9− 3i) −4− 8i 5 + i

±(2 + i) ±(3 + 9i) −5− i 4 + 8i

±(2− i) ±(9 + 3i) −1− 5i 8 + 4i
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Theorem 3.1.7. Let η be an even algebraic integer and η = uδa0πa1
1 π

a2
2 ...π

am
m

where a0 ≥ 2 and for k ≥ 1, ak ∈ Z+
0 , u is a unit and πk ∈ R are non-associate

odd primes. Set ρ = δb0πb11 π
b2
2 ...π

bm
m where b0 = da0+2

2
e and bk = dak

2
e. Then Pη is{(

α,
α2 − η2

2η
,
α2 + η2

2η

)
| α = τρ for some τ ∈ R

}
.

Moreover, the mapping ϕ : Pη → R defined by

ϕ((α, β, γ)) =
α

ρ

is a one-to-one correspondence.

Proof. Suppose (α, (α2 − η2)/2η, (α2 + η2)/2η) ∈ Pη. Then δa0+2πa1
1 π

a2
2 ...π

am
m |α2+

u2δ2a0π2a1
1 π2a2

2 ...π2am
m . Therefore, δa0+2πa1

1 π
a2
2 ...π

am
m |α2. Hence δb0πb11 π

b2
2 ...π

bm
m |α.

Thus α = τρ for some τ ∈ R.

Conversely, suppose α = τρ where τ ∈ R. We have α2 = τ 2δ2b0π2b1
1 π2b2

2 ...π2bm
m

which is divisible by 2η. Moreover, η2 is divisible by 2η because 2|η. Hence

2η|α2 + η2.

Since any algebraic integer can be written in the form α/ρ, the mapping ϕ is

bijective.

Example 3.1.8. Let R = Z[i]. For η = −2 + 2i = δ3, we have ρ = δ3 and

τ ∈ Z[i] α = τρ β = α2+8i
−4+4i

γ = α2−8i
−4+4i

0 0 1− i −1 + i

±1 ±(−2 + 2i) 0 −2 + 2i

±i ±(−2− 2i) 2− 2i 0

±(1 + i) ∓4 −1− 3i −3− i

±(1− i) ±4i 3 + i 1 + 3i

3.1.2 2 Splits Completely in R

There are non-associate primes δ, δ ∈ R such that 2 ∼ δδ and |R/ < δ >| =∣∣R/ < δ >
∣∣ = 2. Notice that the ideas of even and odd we used in the proofs of

the previous theorems are also practical in this subsection where we consider four

cases of η depending on the divisibility by δ and δ.
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Theorem 3.1.9. Let η ∈ R and η = uδ
a0
πa1

1 ...π
am
m where a0 ≥ 1, and for k ≥ 1,

ak ∈ Z+
0 , u is a unit and πk ∈ R are non-associate primes where πk � δ, δ. Set

ρ = δ
b0
πb11 ...π

bm
m where b0 = da0+1

2
e and bk = dak

2
e. Then Pη is{(

α,
α2 − η2

2η
,
α2 + η2

2η

)
| α = τρ for some τ ∈ R where δ - τ

}
.

Moreover, the mapping ϕ : Pη → R defined by

ϕ((α, β, γ)) = Ψδ(
α

ρ
)

is a one-to-one correspondence.

Proof. Suppose (α, (α2 − η2)/2η, (α2 + η2)/2η) ∈ Pη. Then 2η|α2 + η2 and thus

δδ
a0+1

πa1
1 π

a2
2 ...π

am
m |α2 + u2δ

2a0
π2a1

1 π2a2
2 ...π2am

m . Therefore, δ
a0+1

πa1
1 π

a2
2 ...π

am
m |α2.

Hence δ
b0
πb11 π

b2
2 ...π

bm
m |α. Thus α = τρ for some τ ∈ R. If δ|τ , then δ|α2 and

δ|u2δ
2a0
π2a1

1 π2a2
2 ...π2am

m , a contradiction. This means that δ - τ .

Conversely, suppose α = τρ where τ ∈ R and δ - τ . We have δη|α2 + η2. Since

δ - α2 (odd wrt δ) and δ - η2, we have δ|α2 + η2 (even wrt δ). Since 2 ∼ δδ,

2η|α2 + η2.

It is easy to check that the mapping ϕ is a one-to-one correspondence.

The next three theorems can be proved similarly.

Theorem 3.1.10. Let η ∈ R and η = uδa0πa1
1 ...π

am
m where a0 ≥ 1, and for k ≥ 1,

ak ∈ Z+
0 , u is a unit and πk ∈ R are non-associate primes where πk � δ, δ. Set

ρ = δb0πb11 ...π
bm
m where b0 = da0+1

2
e, and bk = dak

2
e. Then Pη is{(

α,
α2 − η2

2η
,
α2 + η2

2η

)
| α = τρ for some τ ∈ R where δ - τ

}
.

Moreover, the mapping ϕ : Pη → R defined by

ϕ((α, β, γ)) = Ψδ(
α

ρ
)

is a one-to-one correspondence.

Theorem 3.1.11. Let η ∈ R and η = uδa0δ
a0
πa1

1 ...π
am
m where a0 ≥ 1, a0 ≥ 1,

and for k ≥ 1, ak ∈ Z+
0 , u is a unit and πk ∈ R are non-associate primes where
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πk � δ, δ. Set ρ = δb0δ
b0
πb11 ...π

bm
m where b0 = da0+1

2
e, b0 = da0+1

2
e and bk = dak

2
e.

Then Pη is {(
α,
α2 − η2

2η
,
α2 + η2

2η

)
| α = τρ for some τ ∈ R

}
.

Moreover, the mapping ϕ : Pη → R defined by

ϕ((α, β, γ)) =
α

ρ

is a one-to-one correspondence.

The following theorem use the idea that all non-associate primes in R can be

put into order, say δ, δ, π1, π2,...

Theorem 3.1.12. Let η ∈ R and η = uπa1
1 ...π

am
m where ak ∈ Z+

0 , u is a unit

and πk ∈ R are non-associate primes where πk � δ, δ. Set ρ = πb11 ...π
bm
m where

bk = dak

2
e. Then Pη is{(
α,
α2 − η2

2η
,
α2 + η2

2η

)
| α = τρ for some τ ∈ R where δ - τ, δ - τ

}
.

Moreover, the mapping ϕ : Pη → R defined by

ϕ((α, β, γ)) = Ψδ(Ψδ(
α

ρ
))

is a one-to-one correspondence.

3.1.3 2 is Inert in R

By Theorems 1.2.29 and 1.2.30, R =
{
u+v
√
d

2
| u, v ∈ Z and u ≡ v (mod 2)

}
and

2 is a prime in R. Notice that the norm of 2 in Q[
√
d] is 4, this means that the

parity is not as useful as in the previous subsections.

Theorem 3.1.13. Let η ∈ R and η = uπa1
1 π

a2
2 ...π

am
m where ak ∈ Z+

0 , u is a unit

and πk ∈ R are non-associate primes such that 2 - πk. Set ρ = πb11 π
b2
2 ...π

bm
m where

bk = dak

2
e. Then Pη is{(
α,
α2 − η2

2η
,
α2 + η2

2η

)
| α = τρ for some τ ∈ R where 2 - τ

}
.
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Moreover, the mapping ϕ : Pη → R defined by

ϕ((α, β, γ)) = Ψ2(
α

ρ
)

is a one-to-one correspondence.

Proof. Suppose (α, (α2 − η2)/2η, (α2 + η2)/2η) ∈ Pη. Then 2η|α2 + η2 and thus

2πa1
1 π

a2
2 ...π

am
m |α2 + u2π2a1

1 π2a2
2 ...π2am

m . Therefore, πa1
1 π

a2
2 ...π

am
m |α2. Hence ρ|α, say

α = τρ for some τ ∈ R. If 2|τ , then 2|α2 and 2|u2π2a1
1 π2a2

2 ...π2am
m , a contradiction.

This means that 2 - τ .

Conversely, suppose α = τρ where τ ∈ R and 2 - τ . We have η|α2 − η2. Let

α = (x + y
√
d)/2 and η = (u + v

√
d)/2 where x, y, u, v ∈ Z and x ≡ y, u ≡ v

(mod 2). Since 2 - α and 2 - η, x ≡ y ≡ u ≡ v ≡ 1 (mod 2). Hence 2|α − η and

thus 2|α2 − η2. Since gcd(η, 2) = 1, 2η|α2 + η2.

Clearly, the mapping ϕ is a one-to-one correspondence.

Theorem 3.1.14. Let η ∈ R and η = u2a0πa1
1 π

a2
2 ...π

am
m where a0 ≥ 1 and for

k ≥ 1, ak ∈ Z+
0 , u is a unit and πk ∈ R are non-associate primes such that 2 - πk.

Set ρ = 2b0πb11 π
b2
2 ...π

bm
m where b0 = da0+1

2
e and bk = dak

2
e. Then Pη is{(

α,
α2 − η2

2η
,
α2 + η2

2η

)
| α = τρ for some τ ∈ R

}
.

Moreover, the mapping ϕ : Pη → R defined by

ϕ((α, β, γ)) =
α

ρ

is a one-to-one correspondence.

Proof. The proof is similar to the proof of Theorem 3.1.7.
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3.2 Pythagorean Triples Over Biquadratic Fields

In this section, let K be a biquadratic field such that the ring of integers R of

K is a UFD. We extend ideas in the previous section and show how to find all

elements of the set P and Pη.

By Theorem 1.2.32, R is separated into five cases depending on factorization

of 2 which are 2 = δ4, 2 = δ2, 2 = δ2
1δ

2
2, 2 = δ1δ2δ3δ4 and 2 = δ1δ2. We need the

following lemmas to show features of elements of Pη.

Lemma 3.2.1. Let δ, α, β ∈ R. If δ is a prime such that δ|2 and δ|α2 − β2, then

δ|α− β and δ|α + β.

Proof. Assume δ|α2 − β2. Then δ|α− β or δ|α+ β. Since α− β = (α+ β)− 2β,

we are done.

Lemma 3.2.2. Let δ, α, β ∈ R. If δ is a prime such that 2 = δ4 and δ3|α2 − β2,

then δ2|α− β.

Proof. Assume δ3|α2 − β2. By Lemma 3.2.1, δ|α − β, i.e., α − β = δγ for some

γ ∈ R. It follows that α2−β2 = (α−β)(α−β+ 2β) = (δγ)(δγ+ δ4β) is divisible

by δ3. Hence δ|(γ)(γ + δ3β). This means that δ|γ and δ2|α− β.

The case that η = 0 is similar to the case for quadratic fields. However, we

state it here for completeness.

Theorem 3.2.3. P0 = {(0, β, β) | β ∈ R} and the mapping ϕ : P0 → R defined

by

ϕ((0, β, β)) = β

is a one-to-one correspondence.

3.2.1 2 = δ4

In this subsection, there is a prime δ ∈ R such that 2 = δ4. We consider two cases

of η as follows.
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Theorem 3.2.4. Let η ∈ R and η = uδa0πa1
1 ...π

am
m where a0 = 0, 1, 2, 3 and for

k ≥ 1, ak ∈ Z+
0 , u is a unit and πk ∈ R are non-associate primes where πk � δ.

Set ρ = δa0πb11 ...π
bm
m where bk = dak

2
e. Then Pη is{(

α,
α2 − η2

2η
,
α2 + η2

2η

)
| α = τρ where τ = δd

4−a0
2
eµ+ uπa1−b1

1 ...πam−bm
m and µ ∈ R

}
.

Moreover, the mapping ϕ : Pη → R defined by

ϕ((α, β, γ)) =

α
ρ
− uπa1−b1

1 ...πam−bm
m

δd
4−a0

2
e

is a one-to-one correspondence.

Proof. Suppose (α, (α2 − η2)/2η, (α2 + η2)/2η) ∈ Pη. Therefore, 2η|α2−η2. Thus

δa0+4πa1
1 ...π

am
m |α2−u2δ2a0π2a1

1 ...π2am
m . We obtain δ2a0πa1

1 ...π
am
m |α2. This means that

δa0πb11 ...π
bm
m |α. Then α = τρ for some τ ∈ R and

δa0+4πa1
1 ...π

am
m |τ 2δ2a0π2b1

1 ...π2bm
m − u2δ2a0π2a1

1 ...π2am
m .

Thus δ4−a0πa1
1 ...π

am
m |τ 2π2b1

1 ...π2bm
m −u2π2a1

1 ...π2am
m . Since gcd(δ4−a0 , π2b1

1 ...π2bm
m ) = 1,

we have δ4−a0|τ 2−u2π2a1−2b1
1 ...π2am−2bm

m . From Lemmas 3.2.1 and 3.2.2, δd
4−a0

2
e|τ−

uπa1−b1
1 ...πam−bm

m . Hence τ = δd
4−a0

2
eµ+ uπa1−b1

1 ...πam−bm
m for some µ ∈ R.

Conversely, suppose α = τρ where τ = δd
4−a0

2
eµ+uπa1−b1

1 ...πam−bm
m and µ ∈ R.

We have

α2 − η2 = (δd
4−a0

2
eµ+ uπa1−b1

1 ...πam−bm
m )2δ2a0π2b1

1 ...π2bm
m − u2δ2a0π2a1

1 ...π2am
m

= δ2d 4−a0
2
e+2a0µ2π2b1

1 ...π2bm
m + 2δd

4−a0
2
e+2a0µuπa1+b1

1 ...πam+bm
m

which is divisible by 2η. It follows that 2η|α2 − η2.

If (α, β, γ) ∈ Pη, then ϕ((α, β, γ)) = µ for some µ ∈ R. Indeed, the mapping

ϕ is injective and surjective.

Theorem 3.2.5. Let η ∈ R and η = uδa0πa1
1 ...π

am
m where a0 ≥ 4 and for k ≥ 1,

ak ∈ Z+
0 , u is a unit and πk ∈ R are non-associate primes where πk � δ. Set

ρ = δb0πb11 ...π
bm
m where b0 = da0+4

2
e and bk = dak

2
e. Then Pη is{(

α,
α2 − η2

2η
,
α2 + η2

2η

)
| α = µρ where µ ∈ R

}
.
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Moreover, the mapping ϕ : Pη → R defined by

ϕ((α, β, γ)) =
α

ρ

is a one-to-one correspondence.

Proof. Suppose (α, (α2 − η2)/2η, (α2 + η2)/2η) ∈ Pη. Then 2η|α2 − η2.

We have δa0+4πa1
1 ...π

am
m |α2 − u2δ2a0π2a1

1 ...π2am
m . Hence δa0+4πa1

1 ...π
am
m |α2 and thus

δb0πb11 ...π
bm
m |α. Therefore, there exist an algebraic integer µ such that α = µρ.

Conversely, suppose α = µρ where µ ∈ R. We have α2−η2 = µ2δ2b0π2b1
1 ...π2bm

m −

u2δ2a0π2a1
1 ...π2am

m . Hence 2η|α2 − η2.

Clearly, the mapping ϕ is a one-to-one correspondence.

3.2.2 2 = δ2

There is a prime δ ∈ R such that 2 = δ2. We consider 2 cases of η depending on

the divisibility by δ.

Theorem 3.2.6. Let η ∈ R and η = uδa0πa1
1 ...π

am
m where a0 = 0, 1 and for k ≥ 1,

ak ∈ Z+
0 , u is a unit and πk ∈ R are non-associate primes where πk � δ. Set

ρ = δa0πb11 ...π
bm
m where bk = dak

2
e. Then Pη is{(

α,
α2 − η2

2η
,
α2 + η2

2η

)
| α = τρ where τ = δµ+ uπa1−b1

1 ...πam−bm
m and µ ∈ R

}
.

Moreover, the mapping ϕ : Pη → R defined by

ϕ((α, β, γ)) =

α
ρ
− uπa1−b1

1 ...πam−bm
m

δ

is a one-to-one correspondence.

Proof. Suppose (α, (α2 − η2)/2η, (α2 + η2)/2η) ∈ Pη. We obtain 2η|α2 − η2, i.e.,

δa0+2πa1
1 ...π

am
m |α2−u2δ2a0π2a1

1 ...π2am
m . Thus δ2a0πa1

1 ...π
am
m |α2. Hence δa0πb11 ...π

bm
m |α.

Then α = τρ for some τ ∈ R and δa0+2πa1
1 ...π

am
m |τ 2δ2a0π2b1

1 ...π2bm
m −u2δ2a0π2a1

1 ...π2am
m .

Thus δ2−a0|τ 2−u2π2a1−2b1
1 ...π2am−2bm

m . From Lemma 3.2.1, δ|τ −uπa1−b1
1 ...πam−bm

m .

Therefore, τ = δµ+ uπa1−b1
1 ...πam−bm

m for some µ ∈ R.
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Conversely, suppose α = τρ where τ = δµ + uπa1−b1
1 ...πam−bm

m and µ ∈ R. We

have

α2 − η2 = (δµ+ uπa1−b1
1 ...πam−bm

m )2δ2a0π2b1
1 ...π2bm

m − u2δ2a0π2a1
1 ...π2am

m

= δ2+2a0µ2π2b1
1 ...π2bm

m + 2δ1+2a0µuπa1+b1
1 ...πam+bm

m

which is divisible by 2η. Hence 2η|α2 − η2.

Moreover, for (α, β, γ) ∈ Pη, ϕ((α, β, γ)) = µ for some µ ∈ R and the mapping

ϕ is a one-to-one correspondence.

Theorem 3.2.7. Let η ∈ R and η = uδa0πa1
1 ...π

am
m where a0 ≥ 2 and for k ≥ 1,

ak ∈ Z+
0 , u is a unit and πk ∈ R are non-associate primes where πk � δ. Set

ρ = δb0πb11 ...π
bm
m where b0 = da0+2

2
e and bk = dak

2
e. Then Pη is{(

α,
α2 − η2

2η
,
α2 + η2

2η

)
| α = µρ where µ ∈ R

}
.

Moreover, the mapping ϕ : Pη → R defined by

ϕ((α, β, γ)) =
α

ρ

is a one-to-one correspondence.

Proof. The proof is similar to the proof of Theorem 3.2.5.

3.2.3 2 = δ2
1δ

2
2

There are non-associate primes δ1, δ2 ∈ R such that 2 = δ2
1δ

2
2.

Theorem 3.2.8. Let η ∈ R and η = uδc11 δ
c2
2 π

a1
1 ...π

am
m where cj, ak ∈ Z+

0 , u is a unit

and πk ∈ R are non-associate primes where πk � δ1, δ2. Set ρ = δd11 δ
d2
2 π

b1
1 ...π

bm
m

where

dj =

cj if cj = 0, 1

d cj+2

2
e if cj ≥ 2

and bk = dak

2
e. Set

ej =

1 if cj = 0, 1

0 if cj ≥ 2.
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Then Pη is
{(

α, α
2−η2

2η
, α

2+η2

2η

)
| α = τρ where τ = δe11 δ

e2
2 µ

+uδc1−d11 δc2−d22 πa1−b1
1 ...πam−bm

m and µ ∈ R
}
.

Moreover, the mapping ϕ : Pη → R defined by

ϕ((α, β, γ)) =

α
ρ
− uδc1−d11 δc2−d22 πa1−b1

1 ...πam−bm
m

δe11 δ
e2
2

is a one-to-one correspondence.

Proof. Suppose (α, (α2 − η2)/2η, (α2 + η2)/2η) ∈ Pη. Therefore, 2η|α2 − η2 and

so δc1+2
1 δc2+2

2 πa1
1 ...π

am
m |α2 − u2δ2c1

1 δ2c2
2 π2a1

1 ...π2am
m . Hence

δ
min{c1+2,2c1}
1 δ

min{c2+2,2c2}
2 πa1

1 ...π
am
m |α2.

This means that δd11 δ
d2
2 π

b1
1 ...π

bm
m |α. Thus α = τρ for some τ ∈ R and

δc1+2
1 δc2+2

2 πa1
1 ...π

am
m |τ 2δ2d1

1 δ2d2
2 π2b1

1 ...π2bm
m − u2δ2c1

1 δ2c2
2 π2a1

1 ...π2am
m .

We obtain δe11 δ
e2
2 |τ 2−u2δc1−2d1

1 δ2c2−2d2
2 π2a1−2b1

1 ...π2am−2bm
m . By Lemma 3.2.1, δe11 δ

e2
2 |τ−

uδc1−d11 δc2−d22 πa1−b1
1 ...πam−bm

m . Hence τ = δe11 δ
e2
2 µ+uδc1−d11 δc2−d22 πa1−b1

1 ...πam−bm
m for

some µ ∈ R.

Conversely, suppose α = τρ where τ = δe11 δ
e2
2 µ + uδc1−d11 δc2−d22 πa1−b1

1 ...πam−bm
m

and µ ∈ R. We have

α2 − η2 = (δe11 δ
e2
2 µ+ uδc1−d11 δc2−d22 πa1−b1

1 ...πam−bm
m )2δ2d1

1 δ2d2
2 π2b1

1 ...π2bm
m

− u2δc11 δ
2c2
2 π2a1

1 ...π2am
m

= δ2e1+2d1
1 δ2e2+2d2

2 µ2π2b1
1 ...π2bm

m + 2δe1+c1+d1
1 δe2+c2+d2

2 µuπa1+b1
1 ...πam+bm

m

which is divisible by 2η. Therefore, (α, (α2 − η2)/2η, (α2 + η2)/2η) ∈ Pη.

It is straightforward to check that ϕ is a one-to-one correspondence.

3.2.4 2 = δ1δ2δ3δ4

There are non-associate primes δ1, δ2, δ3, δ4 ∈ R such that 2 = δ1δ2δ3δ4.

Theorem 3.2.9. Let η ∈ R and η = uδc11 δ
c2
2 δ

c3
3 δ

c4
4 π

a1
1 ...π

am
m where cj, ak ∈ Z+

0 ,

u is a unit and πk ∈ R are non-associate primes where πk � δ1, δ2, δ3, δ4. Set
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ρ = δd11 δ
d2
2 δ

d3
3 δ

d4
4 π

b1
1 ...π

bm
m where

dj =

0 if cj = 0

d cj+1

2
e if cj ≥ 1

and bk = dak

2
e. Set

ej =

1 if cj = 0

0 if cj ≥ 1.

Then Pη is
{(

α, α
2−η2

2η
, α

2+η2

2η

)
| α = τρ where τ = δe11 δ

e2
2 δ

e3
3 δ

e4
4 µ

+uδc1−d11 δc2−d22 δc3−d33 δc4−d44 πa1−b1
1 ...πam−bm

m and µ ∈ R
}
.

Moreover, the mapping ϕ : Pη → R defined by

ϕ((α, β, γ)) =

α
ρ
− uδc1−d11 δc2−d22 δc3−d33 δc4−d44 πa1−b1

1 ...πam−bm
m

δe11 δ
e2
2 δ

e3
3 δ

e4
4

is a one-to-one correspondence.

Proof. Suppose (α, (α2 − η2)/2η, (α2 + η2)/2η) ∈ Pη. Therefore, 2η|α2 − η2 and

so δc1+1
1 δc2+1

2 δc3+1
3 δc4+1

4 πa1
1 ...π

am
m |α2 − u2δ2c1

1 δ2c2
2 δ2c3

3 δ2c4
4 π2a1

1 ...π2am
m . Hence

δ
min{c1+1,2c1}
1 δ

min{c2+1,2c2}
2 δ

min{c3+1,2c3}
3 δ

min{c4+1,2c4}
4 πa1

1 ...π
am
m |α2.

This means that δd11 δ
d2
2 δ

d3
3 δ

d4
4 π

b1
1 ...π

bm
m |α. Thus α = τρ for some τ ∈ R and

δc1+1
1 δc2+1

2 δc3+1
3 δc4+1

4 πa1
1 ...π

am
m |τ 2δ2d1

1 δ2d2
2 δ2d3

3 δ2d4
4 π2b1

1 ...π2bm
m −u2δ2c1

1 δ2c2
2 δ2c3

3 δ2c4
4 π2a1

1 ...π2am
m .

We obtain δe11 δ
e2
2 δ

e3
3 δ

e4
4 |τ 2−u2δc1−2d1

1 δ2c2−2d2
2 δ2c3−2d3

3 δ2c4−2d4
4 π2a1−2b1

1 ...π2am−2bm
m . By

Lemma 3.2.1, δe11 δ
e2
2 δ

e3
3 δ

e4
4 |τ − uδc1−d11 δc2−d22 δc3−d33 δc4−d44 πa1−b1

1 ...πam−bm
m . Hence τ =

δe11 δ
e2
2 δ

e3
3 δ

e4
4 µ+ uδc1−d11 δc2−d22 δc3−d33 δc4−d44 πa1−b1

1 ...πam−bm
m for some µ ∈ R.

Conversely, suppose α = τρ. We have

α2 − η2

= (δe11 δ
e2
2 δ

e3
3 δ

e4
4 µ+uδc1−d11 δc2−d22 δc3−d33 δc4−d44 πa1−b1

1 ...πam−bm
m )2δ2d1

1 δ2d2
2 δ2d3

3 δ2d4
4 π2b1

1 ...π2bm
m

− u2δc11 δ
2c2
2 δ2c3

3 δ2c4
4 π2a1

1 ...π2am
m

= δ2e1+2d1
1 δ2e2+2d2

2 δ2e3+2d3
3 δ2e4+2d4

4 µ2π2b1
1 ...π2bm

m

+2δe1+c1+d1
1 δe2+c2+d2

2 δe3+c3+d3
3 δe4+c4+d4

4 µuπa1+b1
1 ...πam+bm

m which is divisible by 2η.

Therefore, 2η|α2 − η2.

It is not difficult to check that the mapping ϕ is injective and surjective.
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3.2.5 2 = δ1δ2

There are non-associate primes δ1, δ2 such that 2 = δ1δ2.

Theorem 3.2.10. Let η ∈ R and η = uδc11 δ
c2
2 π

a1
1 ...π

am
m where cj, ak ∈ Z+

0 , u

is a unit and πk ∈ R are non-associate primes where πk � δ1, δ2. Set ρ =

δd11 δ
d2
2 π

b1
1 ...π

bm
m where

dj =

0 if cj = 0

d cj+1

2
e if cj ≥ 1

and bk = dak

2
e. Set

ej =

1 if cj = 0

0 if cj ≥ 1.

Then Pη is
{(

α, α
2−η2

2η
, α

2+η2

2η

)
| α = τρ where τ = δe11 δ

e2
2 µ

+uδc1−d11 δc2−d22 πa1−b1
1 ...πam−bm

m and µ ∈ R
}
.

Moreover, the mapping ϕ : Pη → R defined by

ϕ((α, β, γ)) =

α
ρ
− uδc1−d11 δc2−d22 πa1−b1

1 ...πam−bm
m

δe11 δ
e2
2

is a one-to-one correspondence.

Proof. Through the proof of Theorem 3.2.9, this theorem can be proved in a

similar way.

3.3 The Ring Structure

Let K be a quadratic/biquadratic field such that the ring of integers R of K is

a UFD. We define bijections between Pη and R, which construct a one-to-one

correspondence between P and R×R.

Corollary 3.3.1. Let η be a algebraic integer. (Pη,⊕,�) is a commutative ring

with identity where ⊕ and � are operations on Pη defined by

(α, β, γ)⊕ (µ, ν, λ) = ϕ−1(ϕ((α, β, γ)) + ϕ((µ, ν, λ)))
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and

(α, β, γ)� (µ, ν, λ) = ϕ−1(ϕ((α, β, γ)) · ϕ((µ, ν, λ))).

Proof. The ring structures of Pη are constructed from the ring structure of R by

using mappings in Theroems 3.1.2, 3.1.3, 3.1.5, 3.1.7, 3.1.9, 3.1.10, 3.1.11, 3.1.12,

3.1.13, 3.1.14, 3.2.3, 3.2.4, 3.2.5, 3.2.6, 3.2.7, 3.2.8, 3.2.9 and 3.2.10.

Corollary 3.3.2. The mapping Φ : P → R×R given by

Φ((α, β, γ)) = (γ − β, ϕ((α, β, γ)))

is a bijection. Consequently, (P,�,�) is a commutative ring with identity where

� and � are operations on P defined by

(α, β, γ) � (µ, ν, λ) = Φ−1(Φ((α, β, γ)) + Φ((µ, ν, λ)))

and

(α, β, γ) � (µ, ν, λ) = Φ−1(Φ((α, β, γ)) · Φ((µ, ν, λ))).



CHAPTER IV

THE GROUP OF PYTHAGOREAN TRIPLES OVER

NUMBER FIELDS

Let K be a number field and R be the ring of integers in K. In this chapter, we

determine all Pythagorean triples in R and study the set of Pythagorean triples

in terms of its structure.

4.1 The Representation of Pythagorean Triples

K. K. Kubota [6] characterized Pythagorean triples in a UFD. We extend his work

to the ring of integers of any number field.

Theorem 4.1.1. Let R be the ring of integers of a number field K. If (a, b, c) is

a Pythagorean triple in R, then there exist f, u, v, d ∈ R where d | u2 ± v2 and

d | 2uv such that

a =
2fuv

d
, b =

f(u2 − v2)

d
, and c =

f(u2 + v2)

d
. (4.1)

Proof. Let (a, b, c) be a Pythagorean triple in R. If b+ c = 0, then a = 0 and we

choose f = b, u = 0, v = 1, d = −1 which satisfy equation (4.1).

Suppose b + c 6= 0. Let f be a common divisor of a, b, c. Let a1 = a/f ,

b1 = b/f , c1 = c/f ∈ R. Define u = b1 + c1, v = a1, d = 2(b1 + c1). Then

2fuv

d
=

2f(b1 + c1)a1

2(b1 + c1)
= fa1 = a,

f(u2 − v2)

d
=
f(b21 + c21 + 2b1c1 − a2

1)

2(b1 + c1)
=
f(2b21 + 2b1c1)

2(b1 + c1)
= fb1 = b,

f(u2 + v2)

d
=
f(b21 + c21 + 2b1c1 + a2

1)

2(b1 + c1)
=
f(2c21 + 2b1c1)

2(b1 + c1)
= fc1 = c.

Since (2uv)/d = a1, (u2 − v2)/d = b1 and (u2 + v2)/d = c1, it follows that d | 2uv

and d | u2 ± v2 and the proof is complete.
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4.2 The Group of Equivalence Classes

In this section, we show the isomorphisms between the multiplicative group of K

and the groups of Pythagorean triples with different operations.

Definition 4.2.1. Let (a, b, c), (d, e, f) be Pythagorean triples in R. We say that

(a, b, c) is equivalent to (d, e, f) if there exists a nonzero element k ∈ K such that

(a, b, c) = (kd, ke, kf). Denote the equivalence class of (a, b, c) by [a, b, c].

In a UFD, the set of all equivalence classes of Pythagorean triples may be

considered as the set of all primitive Pythagorean triples. For this reason, let

PPTR = {[a, b, c] | a, b, c ∈ R with a 6= 0 and a2 + b2 = c2}

be the set of all equivalence classes of Pythagorean triples in R where first com-

ponents are not zero. Define the operation ∗ as in (2.1) as follows:

[a1, b1, c1] ∗ [a2, b2, c2] = [a1a2, b1c2 + b2c1, b1b2 + c1c2].

It is not hard to see that PPTR with ∗ is an abelian group.

Proposition 4.2.2. (PPTR,∗) is an abelian group. The identity element in

PPTR is [1, 0, 1], and the inverse of [a, b, c] is [a,−b, c].

Corollary 4.2.3. (PPTZ[i],∗) is an abelian group.

Next we investigate a free abelian group, making use of the subgroup

H := {[1, 0, 1], [1, 0,−1], [1, i, 0], [1,−i, 0]}

of PPTZ[i]. Propositions 2.2.1, 2.2.2 and 4.2.3 give the following corollary.

Corollary 4.2.4. (PPTZ[i]/H,∗) is a free abelian group which is generated by the

set of [a, b, c]H with a = δ3 or a is an odd prime.

We establishs an isomorphism between the group of Pythagorean triples of R

and the multiplicative group of its quotient field K.

Proposition 4.2.5. (PPTR,∗) is isomorphic to (K×, ·).
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Proof. Note that if [a, b, c] ∈ PPTR, then b+c 6= 0. Define ϕ : (PPTR,∗)→ (K×, ·)

by ϕ([a, b, c]) = (b + c)/a. It is clear that ϕ is well-defined. Let [a, b, c], [d, e, f ] ∈

PPTR. Then

ϕ([a, b, c] ∗ [d, e, f ]) = ϕ([ad, bf + ec, be+ cf ])

=
be+ cf + bf + ec

ad

=
b+ c

a
· e+ f

d

= ϕ([a, b, c]) · ϕ([d, e, f ]).

To show that ϕ is injective, let [a, b, c] ∈ PPTR be such that ϕ([a, b, c]) = 1.

Hence (b + c)/a = 1, i.e., a = b + c. Since a2 + b2 = c2, we obtain 2b(b + c) = 0.

Then b = 0 or b + c = 0. But b + c = a which is not 0, then b = 0 and a = c.

Therefore, [a, b, c] = [a, 0, a] = [1, 0, 1] as desired.

Now let u/v ∈ K× where u, v ∈ R r {0}. Choose a = 2uv, b = u2 − v2, c =

u2 + v2 ∈ R. Then ϕ([a, b, c]) = (b+ c)/a = (u2 + v2 + u2 − v2)/2uv = u/v. This

implies that ϕ is an isomorphism.

Corollary 4.2.6. (PPTZ[i],∗) is isomorphic to (Q[i]×, ·).

In order to make PPTR a field, we add [0, 1, 1] into PPTR and define the

operation addition ⊕ by using the isomorphism ϕ between (PPTR,∗) and (K×, ·).

The mapping φ : PPTR∪{[0, 1, 1]} → K given by

φ([a, b, c]) =

 ϕ([a, b, c]) if [a, b, c] ∈ PPTR,

0 if [a, b, c] = [0, 1, 1]

is both injective and surjective. Define the operation ⊕ on PPTR∪{[0, 1, 1]} by

[a, b, c]⊕ [d, e, f ] = φ−1(φ([a, b, c]) + φ([d, e, f ])).

Proposition 4.2.7. (PPTR∪{[0, 1, 1]}, ⊕, ∗) is a field.

Proof. First, we show that (PPTR∪{[0, 1, 1]}, ⊕) is an abelian group. Clearly,

(PPTR∪{[0, 1, 1]}, ⊕) is closed and commutative. Let [a, b, c], [d, e, f ], [x, y, z] ∈
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PPTR∪{[0, 1, 1]}. We have

([a, b, c]⊕ [d, e, f ])⊕ [x, y, z] = φ−1(φ([a, b, c]) + φ([d, e, f ]))⊕ [x, y, z]

= φ−1((φ([a, b, c]) + φ([d, e, f ])) + φ([x, y, z]))

= φ−1(φ([a, b, c]) + (φ([d, e, f ]) + φ([x, y, z])))

= φ−1(φ([a, b, c]) + φ(φ−1(φ([d, e, f ]) + φ([x, y, z]))))

(by definition of ⊕) = [a, b, c]⊕ φ−1(φ([d, e, f ]) + φ([x, y, z]))

= [a, b, c]⊕ ([d, e, f ]⊕ [x, y, z]).

Let [a, b, c] ∈ PPTR∪{[0, 1, 1]} and a 6= 0. Then

[a, b, c]⊕ [0, 1, 1] = φ−1(φ([a, b, c]) + φ([0, 1, 1]))

= φ−1

(
b+ c

a
+ 0

)
= [a, b, c]

and

[a, b, c]⊕ [−a, b, c] = φ−1(φ([a, b, c]) + φ([−a, b, c]))

= φ−1

(
b+ c

a
+
b+ c

−a

)
= φ−1(0)

= [0, 1, 1].

Moreover, [0, 1, 1] ⊕ [0, 1, 1] = [0, 1, 1]. Hence [0, 1, 1] is the identity element in

(PPTR∪{[0, 1, 1]}, ⊕) and the inverse element to [a, b, c] is [−a, b, c].

Next, it is easy to see that [0, 1, 1] ∗ [a, b, c] = [0, b + c, b + c] = [0, 1, 1] for all

[a, b, c] ∈ PPTR∪{[0, 1, 1]}.

It remains to prove the distributive law. Let [a, b, c], [d, e, f ], [x, y, z] ∈ PPTR∪

{[0, 1, 1]}. Notice that the distributive law holds if a, d, or x = 0, so we consider

the case where a, d, and x are non-zero. We have

([a, b, c]⊕ [d, e, f ]) ∗ [x, y, z]

= ϕ−1(ϕ([a, b, c]) + ϕ([d, e, f ])) ∗ [x, y, z]

= ϕ−1(ϕ([a, b, c]) + ϕ([d, e, f ])) ∗ ϕ−1(ϕ([x, y, z]))
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= ϕ−1((ϕ([a, b, c]) + ϕ([d, e, f ])) · ϕ([x, y, z])) (since ϕ−1 is a homomorphism)

= ϕ−1((ϕ([a, b, c]) ·ϕ([x, y, z])) + (ϕ([d, e, f ]) ·ϕ([x, y, z]))) (by distributive law

of K)

= ϕ−1(ϕ([a, b, c]) · ϕ([x, y, z])) ⊕ ϕ−1(ϕ([d, e, f ]) · ϕ([x, y, z])) (by definition of

⊕)

= ([a, b, c] ∗ [x, y, z])⊕ ([d, e, f ] ∗ [x, y, z]) (since ϕ−1 is a homomorphism).

The set of Pythagorean triples with operation + defined by

[a, b, c] + [d, e, f ] = [ad− be, ae+ bd, cf ] (4.2)

was also studied in terms of its structure. In [11], P. Zanardo and U. Zannier

described on a ring of integers R such that i =
√
−1 /∈ R. In case of a ring of

integers R where i ∈ R, let

PPT R = {[a, b, c] | a, b, c ∈ R with c 6= 0; a2 + b2 = c2}.

With operation + in (4.2), PPT R is a group. Note that i comes in handy when

we show the relation between two operations.

Lemma 4.2.8. Assume that i ∈ R. [a, b, c] ∈ PPTR if and only if [c, bi, a] ∈

PPT R.

The next proposition will show that (PPTR,∗) and (PPT R,+) are isomorphic.

Hence (PPT R,+) is isomorphic to (K×, ·) as well.

Proposition 4.2.9. Assume that i ∈ R. (PPTR,∗) is isomorphic to (PPT R,+).

Proof. Define λ : (PPTR,∗) → (PPT R,+) by λ([a, b, c]) = [c, bi, a].

Let [a, b, c], [d, e, f ] ∈ PPTR. Then

λ([a, b, c] ∗ [d, e, f ]) = λ([ad, bf + ec, be+ cf ])

= [be+ cf, (bf + ec)i, ad]

= [cf − biei, cei+ fbi, ad]

= [c, bi, a] + [f, ei, d]

= λ([a, b, c]) + λ([d, e, f ]).

The rest of the proof comes from the above lemma.



REFERENCES

[1] Beauregard, R.A., Suryanarayan, E.R.: Pythagorean Triples: The Hyper-
bolic View, The College Mathematics Journal 27, 170-181 (1996).

[2] Cohn, H.: A Classical Invitation to Algebraic Numbers and Class Fields,
Springer-Verlag, New York, 1978.

[3] Cross, J.T.: Primitive Pythagorean Triples of Gaussian Integers, Mathemat-
ics Magazine 59, 106-110 (1986).

[4] Dawson, B.: A Ring of Pythagorean Triples, Missouri Journal of Mathe-
matical Sciences 6, 72-77 (1994).

[5] Eckert, E.J.: The Group of Primitive Pythagorean Triangles, Mathematics
Magazine 57, 22-27 (1984).

[6] Kubota, K.K.: Pythagorean Triples in Unique Factorization Domains, The
American Mathematical Monthly 79, 503-505 (1972).

[7] Marcus, D.A.: Number Fields, Springer-Verlag, New York, 1977.

[8] Mollin, R.: Algebraic Number Theory, Chapman & Hall CRC, New York,
1999.

[9] Ribenboim, P.: Classical Theory of Algebraic Numbers, Springer-Verlag,
New York, 2001.

[10] Sexauer, N.E.: Pythagorean triples over gaussian domains, The American
Mathematical Monthly 73, 829-834 (1966).

[11] Zanardo, P., Zannier, U.: The group of pythagorean triples in number fields,
Annali di Matematica pura ed applicata (IV) CLIX, 81-88 (1991).



40

VITA

Name Miss Cheranoot Somboonkulavudi

Education B.Sc. Mathematics (First Class Honor, Gold Medal)

Chulalongkorn University, 2002

Full Scholarship Granted by Chulalongkorn University

M.Sc. Mathematics & Finance

Imperial College London, 2003

Full Graduate Scholarship Granted by Royal Thai government

Reward Gold Medal from IMSO Thailand Camp 1997

Winner of High School Mathematical Competition (team)

by Mathematical Association of Thailand 1998

Runner-up of High School Mathematical Competition (individual)

by Mathematical Association of Thailand 1998

Bronze Award in the Asian Pacific Mathematics Olympiad 1998


	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I Introduction
	1.1 Introduction
	1.2 Preliminaries

	Chapter II the Semigroup of Pythagorean Triples Over Gaussian Integers
	2.1 the Semigroup
	2.2 Unique Factorization Theorem

	Chapter III the Ring of Pythagorean Triples Over Quadratic Fields and Biquadratic Fields
	3.1 Pythagorean Triples Over Quadratic Fields
	3.2 Pythagorean Triples Over Biquadratic Fields
	3.3 The Ring Structure

	Chapter IV the Group of Pythagorean Triples Over Number Fields
	4.1 the Representation of Pythagorean Triples
	4.2 the Group of Equivalence Classes

	References
	Vita



