CHAFMDR IV

THE GUAPH OF TH'U BINORIAL COEFFICIENT FUNCTIONS IN THREE DIMENSIONS

```
4.1 The Graph of f (r,n) Using m = = in the Eliminating of the Singularities.
When we eliminate the singularitics on the lattice points by taking the limit along the lines with slope to those pointi, we have the valuea of lin. \(f(r, \dot{n})\) as shown in figure? (the same valucs as in Wanida's thesis: figure 4 )
```


Figure 7: The values of the Binomial coefficient Function on the Lattice Points of the (r, n) Plane

From the above data, we can plot the graph shown in Eigure 8.

4.2 The ${ }_{5}$ raph of $f(r, n)$ using $m=1$ in the climinating of the singularity.

Chulalongkorn University

Figure 9 : The values of the Binomial Coefificient Function on the Lattice Foints of the (r, n) Plane.

4.3 Graph of $f(r, n)$ in the neighbourhood of (0,0).

To invertigate the values of $f(r, n)$ in the reighbourtood of the origin the region $-1 \leqslant r \leqslant l$ and $-1 \leqslant n \leqslant 1$ wai divided into 400 equal soluafes of side 0.1 . It each corner the value of $f(r, n)$ was computed and the results are shown in $\bar{r} i g .11$. 'Live calculations ware made by ?.f.B bxell using the I B M 1620 computer in the Gonputer Science Labaratory, Chulalongkorn University. The block diagram of the method, omitting programmine details, is shown below.

CALCULATION OF $F=\frac{T i N+1)}{(R+1) \Gamma(N-R+1)}=\frac{G_{E}}{G_{2}}$

From Main Proziran

