CHAPTER III

DERIVATIVES

III.1 Expansion of polynomials

From the Binomial Theorem we know that if f(x) is a polynomial of degree n,then f(x + h) is also a polynomial of degree n in x and

 $f(x + h) = f(h) + f_1(h) x + f_2(h) x^2 + \dots + f_n(h) x^n,$ where $f_1(h)$, $f_2(h)$, ..., $f_n(h)$ are some polynomials in h.

Definition III.2

The derivative of f(x) at x = h (denoted by $D_x^h f(x)$) is defined to be the coefficient of x in the expansion of f(x + h).

Note This definition obviously allows us to write $f(x + h) = f(h) + \begin{bmatrix} h \\ D_x f(x) \end{bmatrix} \cdot x + \text{terms in higher powers of } x.$ III.3 <u>Algebra of derivatives</u>. 006976

According to the previous definition the following formulae are valid.

III.3.1
$$D_x^n(c) = 0$$
, where c is constant
III.3.2 $D_x^h(x) = 1$
III.3.3 $D_x^h(x^n) = n h^{n-1}$, n being a positive integer
III.3.4 $D_x^h(f(x) + g(x)) = D_x^h f(x) + D_x^h g(x)$

III.3.5
$$D_x^h \left[c f(x) \right] = c \cdot D_x^h f(x)$$

III.3.6 $D_x^h \left[f(x) g(x) \right] = f(h) D_x^h g(x) + g(h) D_x^h f(x)$
III.3.7 $D_x^h \left[f(x) \right]^n = n \left[f(h) \right]^{n-1} \cdot D_x^h f(x), n \text{ being}$
 $e \text{ positive integer.}$

To prove that $D_x^h(c) = o$ Proof. Let $\oint (x) = c$ $\therefore \oint (x + h) = c$ $\therefore \oint (h) + \left[D_x^h \oint (x) \right] \cdot x + \text{terms in higher powers of } x = c.$

By equating the coefficient of x, we have

•

$$D_{\mathbf{x}}^{\mathbf{h}} \oint (\mathbf{x}) = 0$$

i.e. $D_{\mathbf{x}}^{\mathbf{h}}(\mathbf{c}) = 0$

To prove that $D_x^{n_1}(x) = 1$

Proof. Let $\oint (x) = x$ $\therefore \quad \oint (x + b) = x + b$ L-S = $\oint (h) + \left[\frac{D_x^h}{x} \oint (x) \right] \cdot x + \text{terms in higher powers of } x.$

R.S. = h + x

. . By equating the coefficient of x, we have

$$D_{x}^{h} \phi(x) = 1$$

i.e. $D_{x}^{h}(x) = 1$

To prove that $D_x^h(x^n) = n h^{n-1}$

Proof. Let $\oint (x) = x^{n}$ $\therefore \quad \oint (x + h) = (x + h)^{n}$ $= (h + x)^{n}$ L.S. $= \oint (h) + \left[\frac{h}{x} \oint (x) \right] x + \text{terms in higher powers of } x.$ R.S. $= h^{n} + n h^{n-1}$. x + terms in higher powers of 1.

. . By equating the coefficient of x, we have

$$D_{\mathbf{x}}^{n} \phi(\mathbf{x}) = n h^{n-1}$$
e.
$$D_{\mathbf{x}}^{h}(\mathbf{x}^{n}) = n h^{n-1}$$

To prove that $D_x^h \left[f(x) + g(x) \right] = D_x^h f(x) + D_x^h g(x)$

Proof. Let $\oint (x) = f(x) + g(x)$

1

• •
$$\oint (x + h) = f (x + h) + g (x + h)$$

L.S. = \oint (h) + $\left(D_x^h \oint (x) \right) x$ + terms in higher powers of x. R.S. = f (h) + $\left[D_x^h f (x) \right] x$ + terms in higher powers of x. + g (h) + $\left(D_x^h g (x) \right) x$ + terms in higher powers of x. = f (h) + g (h) + $\left(D_x^h f (x) + D_x^h g (x) \right) x$ + terms in higher powers of x.

By equating the coefficient of x, we have

$$D_{\mathbf{x}}^{\mathbf{h}} \oint (\mathbf{x}) = D_{\mathbf{x}}^{\mathbf{h}} \mathbf{f} (\mathbf{x}) + D_{\mathbf{x}}^{\mathbf{h}} \mathbf{g} (\mathbf{x})$$

1.e.
$$D_{\mathbf{x}}^{\mathbf{h}} \left[\mathbf{f} (\mathbf{x}) + \mathbf{g} (\mathbf{x}) \right] = D_{\mathbf{x}}^{\mathbf{h}} \mathbf{f} (\mathbf{x}) + D_{\mathbf{x}}^{\mathbf{h}} \mathbf{g} (\mathbf{x})$$

.

To prove that $D_x^h \left[c f(x) \right] = c \cdot D_x^h f(x)$ Proof. Let $\oint (x) = c f(x)$ $\therefore \quad \oint (x+h) = c f(x+h)$

L.S. =
$$\oint \langle h \rangle + \left[D_x^h \phi (x) \right] x$$
 + terms in **higher** powers of x
R.S. = $c \left\{ f(h) + \left[D_x^h f(x) \right] x$ + terms in higher powers of x $\right\}$
= $c f(h) + c \left[D_x^h f(x) \right] x$ + terms in higher powers of x

. . By equating the coefficient of x, we have

$$D_{\mathbf{x}}^{\mathbf{h}} \oint (\mathbf{x}) = \mathbf{c} \cdot D_{\mathbf{x}}^{\mathbf{h}} \mathbf{f} (\mathbf{x})$$

i.e. $D_{\mathbf{x}}^{\mathbf{h}} \left[\mathbf{c} \mathbf{x} (\mathbf{x}) \right] = \mathbf{c} \cdot D_{\mathbf{x}}^{\mathbf{h}} \mathbf{f} (\mathbf{x})$
To prove that $D_{\mathbf{x}}^{\mathbf{h}} \left[\mathbf{f} (\mathbf{x}) \mathbf{g} (\mathbf{x}) \right] = \mathbf{f} (\mathbf{h}) D_{\mathbf{x}}^{\mathbf{h}} \mathbf{g} (\mathbf{x}) + \mathbf{g} (\mathbf{h}) D_{\mathbf{x}}^{\mathbf{h}} \mathbf{f} (\mathbf{x})$
Proof. Let $\oint (\mathbf{x}) = \mathbf{f} (\mathbf{x}) \mathbf{g} (\mathbf{x})$

.
$$\phi(x + h) = f(x + h) g(x + h)$$

L.S. =
$$\oint$$
 (h) + $\left[\begin{array}{c} h \\ D_x \\ \phi \end{array} \right] \mathbf{x}$ + terms in higher powers of x.
R.S. = $\left\{ \mathbf{f}$ (h) + $\left[\begin{array}{c} D_x^h \mathbf{f} \end{array} \right] \mathbf{x} + \dots \right\} \left\{ \mathbf{g}$ (h) + $\begin{array}{c} D_x^h \mathbf{g} \end{array} \right\} \mathbf{x} + \dots \right\}$

= f (h) g (h) +
$$\begin{bmatrix} f (h) D_{x}^{h} g (x) + g (h) D_{x}^{h} f (x) \end{bmatrix} x + \dots$$

By equating coefficient of x, we have

$$D_{\mathbf{x}}^{\mathbf{h}} \boldsymbol{\Psi} (\mathbf{x}) = \mathbf{f} (\mathbf{h}) D_{\mathbf{x}}^{\mathbf{h}} \mathbf{g} (\mathbf{x}) + \mathbf{g} (\mathbf{h}) D_{\mathbf{x}}^{\mathbf{h}} \mathbf{f} (\mathbf{x})$$

i.e.
$$D_{\mathbf{x}}^{\mathbf{h}} \left[\mathbf{f} (\mathbf{x}) \mathbf{g} (\mathbf{x}) \right] = \mathbf{f} (\mathbf{h}) D_{\mathbf{x}}^{\mathbf{h}} \mathbf{g} (\mathbf{x}) + \mathbf{g} (\mathbf{h}) D_{\mathbf{x}}^{\mathbf{h}} \mathbf{f} (\mathbf{x})$$

.

To prove that
$$D_{x}^{h} [f(x)]^{n} = n [f(h)]^{n-1} \cdot D_{x}^{h} f(x)$$

Proof. Let $\oint (x) = [f(x)]^{n}$
 $\cdot \quad \oint (x+h) = [f(x+h)]^{n}$
L.S. $= \oint (h) + [D_{x}^{h} \oint (x)] x + \text{terms in higher powers of } x$
R.S. $= \{f(h) + [D_{x}^{h} f(x)]\} x + \text{terms in higher powers of } x^{n}$

$$= \left\{ f(h) + \left[\frac{b}{x} f(x) \right] \right\}^{n} + \text{terms in higher powers of } x \right\}$$
$$= \left\{ f(h) + \left[\frac{b}{x} f(x) \right] \right\}^{n} + \text{terms in higher powers of } x$$
$$= \left[f(h) \right]^{n} + \left\{ n \left[f(h) \right]^{n-1} + \frac{b}{x} f(x) \right\} \cdot x + \text{terms in higher powers of } x.$$

. . By equating the coefficient of x, we have

$$D_{\mathbf{x}}^{\mathbf{h}} \oint (\mathbf{x}) = n \left[\mathbf{f} (\mathbf{h}) \right]^{\mathbf{n}-1} \cdot D_{\mathbf{x}}^{\mathbf{h}} \mathbf{f} (\mathbf{x})$$

i.e.
$$D_{\mathbf{x}}^{\mathbf{h}} \left[\mathbf{f} (\mathbf{x}) \right]^{\mathbf{n}} = n \left[\mathbf{f} (\mathbf{h}) \right]^{\mathbf{n}-1} \cdot D_{\mathbf{x}}^{\mathbf{h}} \mathbf{f} (\mathbf{x})$$

Theorem III.4

If a polynomial f(x) has a maximum or minimum value at x = h then the derivative of f(x) at x = h is zero.

Proof. f(x) has a maximum or minimum value at x = h, then evidently g(x) = f(x + h) has a maximum or minimum value at x = o.

Since
$$g(x) = f(x + h)$$

 $g(x) = f(h) + \begin{bmatrix} D_x^h f(x) \end{bmatrix} x + \dots$

.

By theorem II.6

$$D_x^h f(x) = 0$$

Example III.5

.

Find the maximum and the minimum values of the function $f(x) = x^3 - 6x^2 + 9x$

Let the function has a maximum or minimum value at x = hthen by theorem III.4

$$D_{x}^{h} \left[x^{3} - 6 x^{2} + 9 x \right] = 0$$

$$\therefore \quad 3 h^{2} - 12 h + 9 \qquad = 0$$

$$\therefore \quad 3 (h - 1) (h - 3) \qquad = 0$$

$$\therefore \qquad h \qquad = 1 \text{ or } 3$$

Let g(x) = f(x+1)

$$f(x) = x^{3} - 6x^{2} + 9x$$

$$g(x) = (x + 1)^{3} - 6(x + 1)^{2} + 9(x + 1)$$

$$= x^{3} - 3x^{2} + 4$$

By theorem II.7, since the coefficient of x^2 is negative, f (x) has a maximum value f (1) = g (o) = 4,

Again, let h (x) = f (x + 3)
f (x) =
$$x^3 - 6x^2 + 9x$$

. h (x) = $(x + 3)^3 - 6(x + 3)^2 + 9(x + 3)$
= $x^3 + 3x^2$

By theorem II.7, since the coefficient of x^2 is positive, f (x) has a minimum value f (3) = h (o) = o

Example III.6

Prove that the function $f(x) = x^3 + 3x^2 + 3x$ has no maximum or minimum value.

Suppose f (x) has a maximum or minimum value at x = h, then by theorem III.4 $D_x^h f(x) = o$ i.e. $D_x^h \left[x^3 + 3 x^2 + 3 x \right] = o$ $\therefore 3 h^2 + 6 h + 3 = o$ $\therefore 3 (h^2 + 2 h + 1) = o$ $\therefore (h + 1)^2 = o$ $\therefore h = -1$

Let
$$g(x) = f(x - 1)$$

= $(x - 1)^3 + 3(x - 1)^2 + 3(x - 1)$
= $x^3 - 1$

By corollary II.8 g (x) cannot have a maximum or minimum value at x = 0

. f (x) cannot have a maximum or minimum value.