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FESTRACT

Thesis Title : SOME HYPERCCMPLEX NUMBER SYSTEMS

The alm of this thesis Is to study the proparties and

applicotions of some hypercomplex number systems. o hyperccmplex

pumber system is a vector space over a field of reel or rational

numbcr.  Let x, (i =0, 1, 2, viveans n) belong to & field of
real of rational numbers. Then a hypercomplex number of n
dimensionsl space can be wrltten H = E €q%y where e, {i
...... n) sre basis elements, If n = 1, H is a complex number;

ifn =3, His a quaternion} and if n = 7, H 1& a Cayley number,

Equality, additien and multiplication are defined as follows.

n n
Let Hl = g 8% and H? 3 g e,Y, ,whear 2= 1,
1. = :
Hl H2 iff curresponding xi are equal to yi
2 i o+ H z ¢ ' ( )
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3. Products of the basis elements are definsd in the table below,
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Two of the hypercomplex number systems can be represcnted

by matrices s follows:

A complex number = = X, + e e

1 A A 1 1
|
3 1— Xy X, J
A quaternian @ = X + )X+ X+ e:Xg [ % 1 % )
; el B R B
o
| %y % % Yy
i
LRy Xy X)Xy

Cayley Numbers cannct be represented by matrilces beceuse
in this case multiplication fails to be associative.
The hypercomplex number systems slise can be interprited

geometrically. 4 complex number is interpreted as a point of

f
Cartesian plane. The product of two complex numbers 2 = AZ,
here A a2 . ’
where = EU+Ef1,Z = xU+Ef1 ard Z = X, t €%y s
represents a rotation of Z about the orlgin: The product of tWao
i X the point
quaternions Q = AQ whers A = a + elal + o2, + eﬁaﬁ p
= X +& + I' a point
L o 1%t eXs + eixj ) represents & rotation1o pei

in four dimensicnal Carteslan space ahout the oripin, bui not

every rotetion can be represented in this lform. A general rotation
!

of § can be represented by the product of three guaternions @ = £4B.

&5 a physlcal application of this Lorentz transformations

i
f ' y ¢ ¢ 2V /
(e oo
S
# y. Lo ! 'y 1 ¥ 0 ! ¥
} z ! b o o 1 o {2
PO . i
L=F / \-%%31 o o % }/ \ {# ', can be
-
written in this form if we put & = DB = :ﬁ-EE;ﬁzz + ! }-:nﬁ_



Tais is an interesting applicaticn of quaternions. Another

epplication of hypesrcomplex numbers i1s to prove identities between

2

real numbers containing expressions of the type {ai + 3

+ ......ai}.
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