COMMELATION OF CAPACITY AND BATES OF DISCHARGE

of Lead — acid battery

Ruenrom ilhongsaldin

B.Eng., Chulalongkorn University, 1962

007001

Theste

Submitted in partial fulfillment of the requirements for the Degree of Haster of Engineering

in

The Chulalongkorn University Graduate School
Department of Blactrical Engineering

March, 1966

(B.B. 2509)

Accepted by the Graduate School, Chulalengkorn University in partial fulfillment of the requirements for the Degree of Master of Engineering.

Dean of the Graduate School.

Thosis Consittee P. Pathalonge Chairman.

Car. B. Vinyasin:

J. Padruckewit.

Thesis	Supervisor	(dr. D. Wingain.
		(Commander Renyat Virayasiri R.T.K.)
Date		**********

Thesis Title. Correlation of Capacity and Eates of Discharge of Lead - Aoid Battery.

Name Ruenrom Khongsaisin. Department of Electrical Engineering.

Date 24th May 1965

<u>ABSTRACT</u>

Many automotive batteries of lead - acid type generally rated its capacities at 20 Hr - Rate, as the result, when they are used in other higher rates of discharge its capacities will decrease but not linearly.

The scope of this experiment is to evaluate the relatious of some variables that are very important to the capacity of hattery such as rate of discharge, time, etc., at some range of temperature generally at ambient temperature and study the characteristics of the battery at various rates of discharge.

The experiment will concern only automotive battery of Lead-Acid type both 6 V and 12 V.

ACKNOWLEDGEMENT.

The author has the very agreeable task of expressing his thanks to the persons who have lent their assistance in the preparation of this thesis.

I gratefully acknowledge my indebtness to the many friends who contributed to the manuscript, especially the appendicies. Particularly mention are the staff of Research and Development Division, THAI Battery Organization., who contributed to the whole experiments.

TABLE OF CONTENTS

	Fago.
ACKNOVLEDGE: ENTS	111
LIST OF TABLES	VL
LIST OF ILLUSTRATIONS	vii
Chapter	
1. FUNDAMENTAL OF THE STORAGE BATTERY	1
Lord - Acid Storage Cells	
Charical Reaction of Lead-Acid Estteries	
Classification of Storage Betteries	
2. STORAGE BATTERY CONSTRUCTION AND DESIGN	8
Portable Lead-Acid Battery Construction	
Grida	
Plates	
Separators	
Contolners	
Sealing Compound	
3. PACTORS AFFECTING CAPACITY	14
The Amount of Active Material within the Cell	
Design of call	
Concentration of the Electrolyte	
Proctical Limit of Final Voltage	
Temperature	
The Rate of Discharge	

	Page
Chapter	
4. CORPELARION OF CAPACITY AND RATE OF DISCHARGE	25
Equations to relate Current and Time	
Conditions	
Tests	
Conclusion	
PRINCIPAL SYMBOLS AND ABENEVIATIONS	39
BATTERY TEREMINALOGY	40
APPENDIX I	52
APPENDIX II	63
PRINCIPLE OF AUTO - PIL DEVICE	68
SILICON CON-TROLLED RECTIFIERS	69
STANDANDS FOR METOR VEHICLE BATTERIES	70
HILTARI STANDARD	73
BIRLIC-CRAPHY	77

LIST OF TABLES

Tobl	e e	Page.
1.	Relation of Discharge Current and Time	
	at Various Hates of Discharge	32
2.	Average Cell Temperature and Mean Voltage	
	at Various Rates of Discharge	33
з.	Capacity at Call Temp and Capacity at 30°C	33
4.	Comparison of Percentage Capacity Mean Voltage	
	and Percent Wett-hour Capacity of Bettery Type 2Hand	
	Ш	34
5.	Comparison of Percentage Capacity Hean Voltage and	
	Percent Watt-hour Capacity of Battery Type 4D and 60	35
6.	Correlation of Capacities of Automotive Batteries	
	at Various Rates of Dischargo	36
7.	Compurison of Calculated Discharged Current, Using	
	Peukort's Formula, with Observed Values	37
6.	Maits of Texarities in the /cid	54
9.	Requirements for Sulphuric Acid	56
10.	Three Grades of Fig Leed, according to the Standard of	
	The American Society for Testing Meterials	60
u.	Limits of Impurities in Lead Oxides	61
12.	Musite of Expurities in Water for use in Secondary	
	Putteries	62

LIST OF ILLUSTRETEONS

Figure		Page
1.	Charical Reactions within the Lead-Acid Cell during Discharge and Charge	5-A
2.	Various Types of Grid	8-4
3.	Car Battery Plate	8- 8
4.	Rine Plate Slamont	3 -6
5.	Verious Separators for Automotive Batteries	10-A
6.	Various Mds	12-A
7•	Verious Connector for Automotive and Traction Batteries	13 - A
g.	Discharge Characteristics of Battery Type 28, 48, 40, and 60	37- A
9.	Graph of Discharge Current vs Time of Discharge	37-3
10.	Principle of Auto-Fil Device	68
••	Californ Controlled Posticing Charging	69