HALL EFFECT IN BISMUTH THIN FILM

bу

RUNGSRI KUNAVONG

B.Sc. (Hons.), Chulalongkorn University, 1962

097003

Thesis

Submitted in partial fulfillment of the requirements for the

Degree of Master of Science

in

The Chulalongkorn University Graduate School

Department of Physics

December, 1965

(B.E. 2508)

Accepted by the Graduate School, Chulalongkorn University in partial fulfillment of the requirements for the Degree of Master of Science.

Dean of the Graduate School

Bhinjayo Pampiyin. Samerny Intomber ****** *********************************** Thesis Supervisor ... Bhungayo Panyonyin Date.....

Theois Title HALL EPISOT IN DISCUTS THIN FILL

Lone

RUDGSRI NUHAVOLIG

Lato

1969 20, 1969

ABSIBACT

Hall coefficient and Wall nobility is bismuth this films are necessarily for various values of film thickness. The Wall mobility is found to be smaller than the values reported for bulk material. This is consistent with theoretical expectation that the restativity of this film spectrum is larger than that of bulk material. The Hall coefficient changes sign from positive at smaller thickness to negative at larger thickness (about 1960 Å). The magnitude of the coefficients for films of all thickness lies between the two values for bulk material with the magnetic field pointing parallel or perpendicular to the principal axis of bismuth lattice as reported in the literatures. This and the changing of sign of the Hall coefficients are interpreted as due to the undetarmized orientation of the crystallites in the film resulting from the teamner of proparation of the films.

ABSTRACT

Hall coefficient and Hall mobility in bismuth thin films are measured for various values of film thickness. The Hall mobility is found to be smaller than the values reported for bulk material. This is consistent with theoretical expectation that the realistivity of thin film specimen is larger than that of bulk material. The Hall coefficient changes sign from positive at smaller thickness to negative at larger thickness (about 1960 Å). The magnitude of the coefficients for films of all thickness lies between the two values for bulk material with the magnetic field pointing parallel or perpendicular to the principal axis of bismuth lattice as reported in the literatures. This and the changing of sign of the Hall coefficients are interpreted as due to the undetermined orientation of the crystallites in the film resulting from the manner of preparation of the films.

ACKNOWLEDGEMENT

The author wishes to express her deep gratitude to Mr. Bhiyayo Panyarjun, who suggested the topics and closely supervised the work in this thesis. She thanks Mr. Samrerng Srisomboon for his kind assistance in using the x - ray diffractometer.

She is grateful to Mrs. Ravee Bhramanasutthi for her devotion of time in typing this thesis in a short time.

She also wishes to express her appreciation to Professor Peng Somanaphandhu, head of the Physics Department, Chulalongkorn University for his interest in this research.

TABLE OF CONTENTS

	Page
ΔBS TRACT	iii
ACKNOWLEDGEMENT	iv
ACKNOWLEDGEMENT	vii
LIST OF ILLUST & TIGNS	viii
CHAPTER CHAPTER	
I INTRODUCTION	l
IL THEORY	3
2.1 The Hall Effect	3
2.2 Theory of Hall Effect in Electron Gas Model	4
2.3 Hall Effect in Bismuth in Band Theory	7
2.4 Measurement of the Hall Effect	8
2.4a Galvanomagnetic and	
Thermomagnetic Effects	8
2.4b Methods of Measurement of Electrical	
Conductivity and Hall Coefficient	10
III EXPERIMENTAL PROCEDURE	13
3.1 Preparation of Bismuth Thin Films and	
Electrical Contacts	13
3.2 Measurement of Film Thickness	14
3.3 Measurement of Hall Coefficient and	
Conductivity	17

.

		Page
IV.	RESULTS AND DISCUSSIONS	
	4.1 Determination of Hall Coefficients	21
	4.7 Determination of Electrical Conductivity	
	and Hall Mobility	
	4.3 Discussions	27
	4.3a Measurement of Hall Mobility	27
	4.3b Measurement of Hall Coefficients	28
IBLIOGR/	РНҮ	33
		34

Page

LIST OF TABLES

TABLE					Page
4-1	Hall Voltage	and Hall	Coefficient	of Bi Thin Films	21
4-2	Conductivity	and Hall	Mobility_of	Bi Thin Films	26

LIST OF ILLUSTRATIONS.

.

FIGURE		Page
1	Conditions for Hall Effect for Electron Conduction	3
2	E vs k Diagram for Bi	8
3	Three-probe Circuit for Measuring the Hall Effect	12 -
4	Positions of Silver Paste Contacts	13
5	Coating Chamber	14.
6	Finished Bi Film with Electrical Leads	14
7	Setup for Measurement of Film Thickness	15
8	Multiple Beam Interferometry Technique	15 ·
9	Interference Fringes	16
10	Film on the Microscope Slide Attached to the	
	Plastic Plate for Mounting in the Magnetic Field	17
11	General Setup of the Experiment	18
12	Photograph of the "pparatus	20
13	Dependence of Hall Voltage on Magnetic Field for	
	Films of Different Thickness	31
14	Dependence of Hall Voltage on Film Current for	
	Films of Different Thickness	32