#### "PERFORMANCE OF A VIBRATORY CONVEYOR"

by

Sirichart Tamnarnchit

B.Eng., Chulalongkorn University, 1957



# 007011

Thesis

Submitted in partial fulfillment of the requirements for the

Degree of Master of Engineering

in

The Chulalongkorn University Graduate School

Department of Mechanical Engineering

March, 1966

(B.E. 2509)

Accepted by the Graduate School, Chulalongkorn University in partial fulfillment of the requirements for the Degree of Master of Engineering.

Dean of the Graduate School

Thesis Committee ... Pret Pattabonge Chairman laikun Chalithan

Thesis Supervisor

15/3/66.

#### ABSTRACT



A small vibratory conveyor of the variable reaction type is constructed. Provision is made for the variation and measurement of amplitude of vibration, frequency of vibration and the angle of the supporting links. The mean velocity of a small cement block is measured for a series of values of the above parameters.

A theoretical analysis of the vibratory cycle is carried out and theoretical values of mean velocity are computed and compared with the experimental values.

Further experimental work is carried out using dry sand fed from a hopper in the place of the cement block.

The velocity is again measured in relation to the discharge and the thickness of sand on the trough.

General conclusions are drawn regarding the operation of the conveyor and suggestions for further work are put forward.

#### ACKNOWLEDGEMENTS



The experimental work of this thesis was carried out in the Department of Mechanical Engineering, College of Engineering, Chulalongkorn University, under the supervision of Dr. R.C. Skelton between February 1, 1965 and March 1966.

I wish to express my sincere gratitude towards
Dr. R.C. Skelton for his valuable help, advice, guidance
and supervision throughout this work; without him this
thesis would not be possible.

I am greatly indebted to Dr. Vaikun Chalitbhan and Mr. Phinai Sukhawarn for their valuable suggestions concerning the thesis preparation.

Finally, I also wish to thank Mr. Chalerm Kong-im and his colleagues, who made the main part of the apparatus.

### TABLE OF CONTENTS

|                              | Page |
|------------------------------|------|
| TITLE                        | i    |
| APPROVAL                     | ii   |
| ABSTRACT.  ACKNOWLEDGEMENTS. | iii  |
| ACKNOWLEDGEMENTS             | iv   |
| TABLE OF CONTENTS.           | v    |
| LIST OF TABLES               |      |
| LIST OF ILLUSTRATIONS        | vii  |
| INTRODUCTION                 | 1    |
| THEORETICAL ANALYSIS         | 6    |
| DESCRIPTION OF APPARATUS     | 12   |
| EXPERIMENTAL PROCEDURE       | 18   |
| RESULTS                      | 21   |
| CONCLUSIONS                  | 40   |
| SUGGESTIONS FOR FUTHER WORK  | 42   |
| PREPRENCES                   | 43   |

### LIST OF TABLES

| Table |                                                 | Page   |
|-------|-------------------------------------------------|--------|
| I.    | Mean Velocities of Cement Block at Angle of     | rage   |
|       | Inclination of 10 Degrees                       | 22     |
| II.   | Mean Velocities of Cement Block at Angle of     |        |
|       | Inclination of 20 Degrees                       | 23     |
| III.  | Mean Velocities of Cement Block at Angle of     | 100.51 |
|       | Inclination of 30 Degrees                       | 24     |
| IV.   | Mean Velocities of Cement Block at Angle of     |        |
|       | Inclination of 40 Degrees                       | 25     |
| V.    | Mean Velocities of Cement Block at Angle of     |        |
|       | Inclination of 50 Degrees                       | 26     |
| VI.   | Theoretical Velocities of Cement Block at Angle |        |
|       | of Inclination of 10 Degrees                    | 27     |
| VII.  | Theoretical Velocities of Cement Block at Angle |        |
|       | of Inclination of 20 Degrees                    | 28     |
| VIII. | Theoretical Velocities of Cement Block at Angle |        |
|       | of Inclination of 30 Degrees                    | 29     |
| IX.   | Theoretical Velocities of Cement Block at Angle |        |
| II 59 |                                                 | 30     |
|       | Theoretical Velocities of Cement Block at Angle |        |
|       |                                                 | 31     |
| XI.   | Crank Speeds Where the Block Starting to Leave  |        |
| VTT   |                                                 | 32     |
| XII.  | Mean Velocities and Rates of Discharge of Sand  |        |
|       | Conveying                                       | 33     |

## LIST OF ILLUSTRATIONS

| Figure |                                                       | Page |
|--------|-------------------------------------------------------|------|
| 1.     | Arrangement of the main components of the             |      |
|        | apparatus                                             | 13   |
| 2.     | The conveyor and its instrumentation                  | 14   |
| 3.     | General view of the apparatus                         | 14   |
| 4.     | Front view of the apparatus                           | 15   |
| 5.     | The adjustable eccentric unit                         | 15   |
| 6.     | Mean velocities of cement block at $\alpha = 10$ deg. | 34   |
| 7.     | Mean velocities of cement block at $\alpha = 20$ deg. | 35   |
| 8.     | Mean velocities of cement block at $\alpha = 30$ deg. | 36   |
| 9.     | Mean velocities of cement block at $\alpha = 40$ deg. | 37   |
| 10.    | Mean velocities of cement block at $\alpha$ = 50 deg. | 38   |
| 11.    | Relationship between mean velocities and rates        |      |
|        | of discharge of sand conveying                        | 39   |