COUNTER STUDIES OF HARD COMPONENT

OF COSMIC RAYS

bу

Somehai Thayarnyong

B.Sc. (Hons.), Chulalongkorn University, 1963

Thesis

Submitted in partial fulfillment of the requirements for the Degree of Master of Science

in

The Chulalongkorn University Graduate School

Department of Physics

March, 1965

(B.E. 2508)

307016

Accepted by the Graduate School, Chulalongkorn University in partial fulfillment of the requirements for the Degree of Master of Science.

f the Graduate School	
•	
Chainman	Thesis Committee
· · · · · · · · · · · · · · · · · · ·	

aphamfa	C. D.
V	

aphamfi	Thesis Committee

Thesis Supervisor Charoen Dharmaphamiji
Date 30 L March 1965

ABSTRACI

The hard component of cosmic rays at latitude 13.46'(M) was detected by using three-fold coincidence G.M. counter. Attempts were made to determine the thickness of lead absorber and study the circuits for such a method. The three-fold coincidence circuit was used with two trains of G.M. tubes, which were set horizontally and parallel to the magnetic meridian. The three-fold coincidence count rates were recorded by scaler and recorder. At the same time two-fold coincidence between the upper and the lower tubes was counted by another scaler for determining the efficiency of the circuits. The count sates were corrected for baremeter, temperature effect, showers and sceidental counts. The results at ground level at latitude 13.46'(N) were in agreement with those of other workers. The hard component was also found to be 70% of the total intensity.

ACKNOWLEDGEMENT

The author wishes to express his sincere appreciation to Professor Charcen Dharmaphanija and Mr. Vichitnarong Bugga-kupta for their advice and guidance given throughout the course of research, and to Dr. Sippanondha Ketudat for giving helpful suggestion. The author is also indebted for the financial support given by the National Research Council of Thailand. It should also be mentioned that the author is indebted to Professor Peng Somanabhandhu, Head of the Physics Department for his interest in the subject.

Somehai Thayarnyong.

The Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.

TABLE OF CONTENTS

	Page
ABSTRACT	.iii
ACKNOWLEDGEMENT	.iv
LIST OF TABLES	.vii
LIST OF ILLUSTRATIONS	, viii
Chapter	
I HISTORICAL INTRODUCTION	. 1
II. THE NATURE OF COSMIC RAYS	. 6
2.1 Origin of Cosmic Rays	. 6
2.2 Particle Interaction	. 7
2.3 Energy Spectrum of Cosmic Rays	. 12
2.4 Components of Cosmic Rays	. 13
2.5 Geomagnetic Effect	. 13
2.6 Radiation Belts	. 15
2.7 The Variation of Cosmic Rays	. 18
III THE APPARATUS AND ITS CHARACTERISTICS	. 21
3.1 The Apparatus	. 21
3.2 Adjustments and Measurements of the	
Characteristics of the System	. 27
3.2.1 Adjustment of Resolving Time	
of Coincidence	. 27
3.2.2 Determination of the Accidental	
COUNTE	28

Page	
3.2.3 Determination of the Efficiency	
of Coincidence	
3.2.4 Determination of Active Volume	
of Counters	
IV RESULTS AND CONCLUSION	IV
4.1 Determination of Absorption Curve of	
Cosmic Rays	
4.2 Determination of the Diurnal Variation	
of Hard Component of Cosmic Rays 39	
4.3 The Intensity of Cosmic Rays at Latitude	
13'46' (N) 40	
4.4 Conclusion 40	
ENCES 43	REFERENCES
-	

LIST OF TABLES

TABLE									Pa	ıge
	3-1	The	Active	Diamet	er De	terminati	ion .	• • • • • •		34
	3 - 2	The	Active	Length	Dete	rminatio	1			35
	4-1	The	Thickne	ess and	the	Intensity	of	Cosmic	•	
		Rays	5							3 8

LIST OF ILLUSTRATIONS

Figure

-	The Nuclear Reaction of Cosmic Rays	0
ź	Counter Arrangement and Absorption Curve	13
	The Geomagnetic Latitude Effect	14
ì	+ Pioneer III data of the Count Rates vs.	
	Radial Distance	15
:	The Structure of the Radiation Belts	16
é	5 The Belts and the Magnetosphere Change caused	
	by the Solar Wind	17
7	7 Block Diagram of the Apparatus	21
ŧ	8 G.M. Tubes Arrangement	22
•	9 Amplifier	23
1	O Imput Multivibrator	23
1	l Shaper	24
1	2 Coincidence Circuit	25
1	3 Two-Pulse Oscillator	27a
1	4 Determination of Active Volume	3 2
1	5 The Arrangement of the Active Volume Deter-	
	mination	33
1	6 The Graph of N _t /N _d versus s	35
1	7 Counter Arrangement for Absorption Curve De-	
	termination	37
1	8 Relative Intensity versus Thickness	38
1	9 The Intensity of Hard Component versus the	
	Local Time	3 9