THE SYNTHESES AND REACTIONS OF 3-AMINO-4,4-DIMETHYLSTEROIDS

BY

SUPA CHANTHARASAKUL

E.Sc. Hons, CHULALONGKORN UNIVERSITY, 1963

007019

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

IN

THE CHULALONGKORN UNIVERSITY GRADUATE SCHOOL

DEPARTMENT OF CHEMISTRY

APRIL, 1967

(B.E. 2510)

Accepted by the Graduate School, Chulalongkorn
University in partial fulfillment of the requirements for the
Degree of Master of Science.

7.		Vilanis	
			47
	+ ha	Canduato	Cabaal

Thesis Committee. T. Nilanidhi r Chairman

ABSTRACT

A study of the syntheses and reactions of 3-amino-4,4-dimethylsteroids by using cholesterol as starting material has afforded seven new compounds: 4,4-dimethylcholest-5-en-3-one oxime, the epimeric 3-amino-4,4-dimethylcholest-5-ene hydrochlorides, N-salicylidene derivatives of the epimeric 3-amino-4,4-dimethylcholest-5-enes, 4,4-dimethylcholestan-3g-ylamine hydrochloride, and an isomer of 4,4-dimethylcholest-5-en-30-ylamine. These 3-amino-4,4-dimethylsteroids were synthesized by reduction of the corresponding oximes which were obtained from cholesterol. Besides, 4,4-dimethylcholestan-3g-ylamine hydrochloride has also been prepared by catalytic hydrogenation, and an isomer of 4,4-dimethylcholest-5-en-3aylamine from catalytic hydrogenation of 4,4-dimethylcholest-5-en-3a-ylamine hydrochloride. These results could prove valuable in the steroidal chemistry. The steric course of the deamination of these amines should be determined in the future.

ACKNOWLEDGEMENT

The author wishes to express her deep gratitude to
Professor Stang Monkolsuk for giving her the opportunity to carry
out her studies at the Faculty of Medical Science, University of
Medical Sciences; to Dr. Kenneth Jewers, SEATO Professor of Organic
Chemistry, who has given her valuable assistance and quidance
until this thesis is completed.

It is a great pleasure that the author acknowledges the financial aid rendered by the Chulalongkorn University Graduate School, the Thai Airways International Limited, and the South-East Asia Treaty Organization. She is indebted to Dr. Dep Shiengthong, Assistant Professor of Chulalongkorn University, and Dr. Pradit Cheuychit, First Grade Lecturer of the Faculty of Medical Science, who gave useful advices in the absence of Dr. Kenneth Jewers.

She also wishes to express her indebtedness to the Department of Science, Ministry of Industry, for having given her assistance in accomplishing elemental analysis and Infra-red spectroscopy.

The author also acknowledges the help of the staff and undergraduates of the Faculty of Medical Science and friends.

TABLE OF CONTENTS

		Page
abstra	CT	iii
ACKNOW	LEDGETENT.	iv
LIST O	LEDGEIEPT.	ψå
LIST O	F FIGURES	v 11:
CHAPTE:	R	
ı.	INTRODUCTION	1
II.	DISCUSSION AND INTERPRETATION	18
III.	EXPERIMENTAL	53
IV.	SUMMARY ARD DISCUSSION	79
v.	BIBLIOGRAPHY	104

LIST OF TABLES

Table		Page
ı.	Hofmann Degradation of Axial Steroidal Bases	2
II.	Hofmann Degradation of Equatorial Steroidal Bases	3
III.	Approximate First Order Rate Constants for the Quaternisation of Epimeric 3.6 and 7 Dimethylamino-cholestanes (Kq), and the Degradation of the Corresponding Trimethylammonium Hydroxides to Steroidal Olefin (K _{hc}) and Tertiary Beses (K _b)	7
IV.	Nitrous Acid Deamination of Axial Amines	8
v.	Mitrous Acid Demaination of Equatorial Amines	9
VI.	The Nitrous Acid Deamination of 3α -and 3β -Anino- 5α -cholestanes	10
VII.	Comparison of Deamination of 3α -and 3β -Amino- 5α -cholestanes in 50% Acetic Acid	10
VIII.	Descripation of 3β -Amino-50-cholestane (3β -NH $_2$, eq.)	11
IX.	Desmination of 30-Amino-50-cholestane (30-NH2. ax.)	12
х.	Thin-Layer Chromatography of Reduction Products Of 4,4-Dimethylcholest-5-en-3-one Oxime	20
XI.	Quartities of the epimeric amines from the Reduction of the Corresponding 4,4-Dimethylcholest-5-en-3-one Oxime by Lithium Aluminum Hydride, and Sodium and Butanol-1	22
XII.	Nuclear Magnetic Resonance Results of 30 -and 3β -Amino, 4,4-Dimethylcholest-5-ene Hydrochlorides	28
XIII.	Nuclear Magnetic Resonance Results of Tertiary Methyl Protons in the Epimeric 3-Hydroxy and 3-Acetoxy-4,4-Dimethylcholest-5enes	31
XIV.	Chromatography of Sodium and Butanol-1 Reduction Product of 4,4-Dimethylcholest-5-en-3-one Oxime	.s 60
XV.	Chromatography of Lithium Aluminum Hydride Reduction Products of 4,4-Dimethylcholest-5-en-3-one Oxime	61

XVI.	Yields of 4,4-Dimethylcholest-5-en-30-ylamine Hydro-chloride from the Corresponding Oxime by Reduction with Lithhum Aluminum Hydride, and Sodium and Butanol-1 63
XVII.	Yields of 4,4-Dimethylcholest-5-cn-3 β -ylamine Hydro-chloride from the Corresponding Oxime by Reduction with Lithium Aluminum Hydride, and Sodium and Sutanol-1 64
.IIIVX	Chromatography of Hydrogenation Products of 4,4- Dimethylcholest-5-en-3-one
XIX.	Chromatography of Reduction Products of 4,4-Dimethyl-cholestan-3-one Oxime

LIST OF FIGURES

Figure		Page
1.	Infra-red Spectrum of 4,4-Dimethylcholest-5-en-3-one M.P. 170-172	81
2.	Infra-red Spectrum of 4,4-Dimethylcholest-5-en-3-one Oxime M.P. 227-229	82
3.	Infra-red Spectrum of 4,4-Dimethylcholest-5-en-30-ylamine Hydrochloride M.P. 255° dec	83
4.	Infra-red Spectrum of 4,4-Dimethylcholest-5-en-3\beta- ylmmine Hydrochloride M.P. 265° dec	84
5•	Infra-red Spectrum of N-Salicylidene Derivative of 4,4-Dimethylcholest-5-en-30-ylamine M.P. 117-118*	85
6.	Infra-red Spectrum of N-Salicylidene Derivative of 4,4-Dimothylcholest-5-en-3 β -ylamine M.P. 164-165*	86
7.	Infra-red Spectrum of 4,4-Dimethylcholest-5-en-3 β -ol M.P. $3^{h}h$ -146*	87
8.	Infra-red Spectrum of 4,4-Dimethylcholestan-3-one	88
9•	Infra-red Spectrum of 4.4-Dimethylcholestan-3-one Oxime M.P. 208-209	89
10.	Infra-red Spectrum of 4.4-Dimethylcholestan-36- ylamine Hydrochloride M.P. 285° dec	50
11.	Infra-red Spectrum of 4,4-Dimethylcholestan-3\beta-ylamine Hydrochloride M.P. 284 dec. Derived from 4,4-Dimethylcholest-5-en-3\beta-ylamine Hydrochloride	91
12.	Infra-red Spectrum of a Compound M.P. 64-66* Derived from 4,4-Dimethylcholest-5-en-30-ylamine Hydrochloride	92
13,	Infra-red Spectrum of 4,4-Dimethylcholest-5-en-5\beta- ylacetate M.P. 135-136.5	93

14.	Infra-red Spectrum of Isomerized Material Derived from $4,k$ -Dimethylcholest-5-en-3 β -ylacetate	94
15.	Nuclear Magnetic Resonance Spectrum of 4,4-Dimethyl-cholest-5-en-30-ylamine Hydrochloride M.P.255° doc	95
16.	Nuclear Hagnetic Resonance Spectrum of 4,4-Dimethyl-cholest-5-en-3pylamine Hydrochloride M.P. 265 dec	96
17.	Circular Dichroism Curve of N-Selicylidene Derivative of 4,4-Dimethylcholest-5-en-30-ylamine M.P. 117-118	97
18.	Circular Dichroism Curve of N-Salicylidene Derivative of 4.4 -Dimethylcholest-5-en-3 β -ylamine M.P. 164*-165*	98
19•	Ultraviolet Spectrum of 4,4-Dimethylcholest-5-en- 3α-ylamine Hydrochloride M.P. 255 dec	99
20.	Ultraviolet Spectrum of 4,4-Dimethylcholest-5-en- 3ρ -ylamine Hydrochloride M.P. 265° dec	10 0
21.	Ultraviolet Spectrum of N-Salicylidene Derivative of 4,4-Dimethylcholest-5-en-30-ylamine M.P. 117-118	101
22.	Ultraviolet Spectrum of N-Salicylidene Derivative of 4.4-Dimethylcholest-5-en-3 β -ylamine M.P. 164-165*	102
23.	Ultraviolet Spectrum of a Compound M.P. 64-66* Derived from 4,4-Dimethylcholest-5-en-30-ylamine Hydrochloride	103