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APPENDIX A

REVIEW OF PARAMETER ESTIMATION METHODS
FOR NONLINEAR MODEL

Introduction

Parameter estimation arises in fitting models
containing several unknown parameters to experimental
data through adjustment' of these parameters. Model
formaulation is not a unique proéesé; many different
formulations may be used to fit the data and optimize
model parameters. Of particular concern are formulations
that are sufficiently accurate to represent physical or
chemical phenomena.

Model formulation can be grouped into linear and
nonlinear. The term”nonlinear” as applied to models means
the model is nonlinear in the barameters (coefficients)
to be estimated. The nonlinear estimation problem abpears

as simply an optimization problem in parameter space.



Numerical Methods for Nonlinear Model

Suppose N data points(Xi,Yi) are being fitted with

a nonlinear model,
y=y (X;b) (A-1)

where b is vector of parameters to be estimated.

The objective is to minimize the sum of squares

function, f (b) to obtain the desired parameter estimates.

n
f®= 2 ~y;(x;,b)? (A-2)

i=

The nonlinear estimation problem apppears as
simply an optimization problem in parameter space. The
optimization techniques fall into two broad calsses: (1)
derivative-free = methods (direct method) and (2)
derivative methods (indirect method). If in the search
for a minimum of f(b),the partial derivatives of f(b)
must be calculated, then the method is derivative
type;otherwise, the method will be termed a derivative-
free method of estimation. There are five more effective

optimization techniques, namely:

1. Direct search method Direct method do not

require the use of derivatives in determining the search



direction. A direct search method simply selects a
starting vector b’ evaluates £(b° . Each b° is changed by
+Ab° and, if f(b) is improved, b°+Ab° is adopted as a new
estimate of b'. If f is not improved, b%-Ab® is tested. If
no improvement is experienced for either #Ab° ,b!=b°. This
process is continued to complete an “exploratory move”.
The new estimated parameters define a vector in parameter
space that represents a successful direction to reduce
f(b). A series of accelerating steps is made along this
vector as long as f(b) is reduced. The magnitude of the
pattern move in each coordinate derection is proportional
to the number of prior successful moves in that
direction. If f(b) 1is not improved by one of these
pattern moves, a new exploratory move is made in order to
define a new duccessful derection, the Ab are reduced
gradually until either a new successful direction can be
defined or each Ab  becomes smaller than some
predetermined tolerance. Failure to improve f(b) for a
very small Ab indicates that a local‘optimmn has been
reached. Two basic tests have been employed to determine
when the search should terminate. One test is made on the
fractional change in the individual éstimated parameters
on the step sizes. Minimum desirable valués of the
fraction change; in the variables are read into the
computer program, and the test is conducted after eaéh
exploratory search failure. Another test occurs after

each exploratory search or pattern move; the change in

83
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the value of f(b) is compared to a specified fraction
read into the computer program. If the value of f(b) has
not decreased from the value on the previous move by an
amount  greater than the specified fraction, and
exploratory search or pattern move is considered a
failure. The calculations terminate when both tests are
satisfied on a specified number of cycles. The
disadvantage of ‘direct search method is that they are
slow in comparison with derivative of simplex methods,

especially as the number of parameters becomes large.

2. Simplex method The second derivative-free
method of minimization of a nonlinear objective funétion
is by wusing of regular geometric patterns of search
involving simplexes. In the search for a minimum of the
sum of the squares of the deviations,f(b),trial values of
the model parameters can be selected at points in
parameter space located at the vertices of the simplex.
The sum of the squares of the deviations is evaluated at
each of the vertices of the simplex: a projection is made
from the point vyielding the highest value "of the
objective function, point A in Figure A-1 through the
centroid of the simplex. Point A is deleted vand a new
simplex, terméd a reflection,is formed composed of the
remaining old points and one new point, B, located aloﬁg
the projected line at the proper distance Ffrom the

centroid. Continuation of this procedure, always deleting
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the vertex that yields the highest value of the objective
function, plus rules for reducing the size of the simplex
and rules to prevent cycling in the vicinity of the
extremum, permits a derivative-free search in which the
step size is, in essence, fixed at successively reduced
levels but the direction of Search is permitted to
change.

Nelder and Mead (1965) described a more efficient
version of the simplex method called ‘Downhill simplex
method’ that permitted the geometric figures' to expand
and contract continuouély during the search. This method
minimized a function of n variables using (n+1) vertices
of a flexible polyhedron. vThe algorithm and stép of

calculation are summarized in Figure A-2,

Figure A-1 Regular simplexes of two and three
independent parameters. |
(a) two variable simplex

(b) three variable simplex
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Istartl

y

Calculate the initial b, and f(b,)
i=1,2,...,n+1, of the starting simplex

4,'Calculat:e b, and b; and cl

A
| Calculate b¥=(1+1)c-14b, |

v

lcalculate £(b*) |
lIs f(b')<f(b,)|-——No—;l£ EBY>E (b)), i#u? f—Yes—Ts £ (b%) >F (by) 2 l—No

Yes l
v
Lcal b¥=(142)b!-2¢c]

Yes  [Replace b, by b']
L T

[calculate £ (%] No [cal b= 0.5%byt+ (1-0.5) *c]

v

| .
[is f®*<E®n?]  No—>[Replace b, by b*| [Calculate £ M)

Yles Nlo s £(6")>f (b,) ]

|Replace b, by b"] | Replace b, by b¥ I Yels

JV J' J

y

|Replace all b, by 0.5 (b,+b,) |
: |

No —{1s VE(£ (b-£ (b) )3/n<-81'——7es

Figure A-2 Flow chart for downnhill simplex method

This techniques have proved very successful in
finding an extremum of and unconstrained objective
function, as well as a constrained extremum, and are

especially effective as the number of model parameters
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increases and also very effective and easily implemented
on a digital computer.

3. Newton’s methods. Newton’s method makes use of
the second-order approximation of f£f(b) at b¥ and thus
employs second-order information about f(b), that is,
information obtained from the second partial derivatives
of f(b) with respect to the independent variables.

The minimum of f£(b) in the direction of b* is
obtained by differentiating the approximation of £ib)
with respect to each of the components of b and equating

the resulting expressions to zero to give

VE (b¥)= V£ (b¥) +H (b5) Ab* = 0  (A-3)
or |

b**!-b* =  Ab* =-[H(b*) ] Vf (b¥) (A-4)

where (H(b“)]™' is the inverse of the Hessian

matrix H(b").

Note-thaf both the direction and step length are
specified as a result of Eq. (A-3). If f£(b) is actually
quadratic, only one step is required to reach the minimum
of f(b). However, for a general nonlinear objective
function, the minimum of f(b) will not be reached ig.one

step, so that Eq. (A-4) can be modified to

b**1-pb* = -A*[H(b¥) ] 'VE (b¥) | | (A-5)
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where A* is the step length. The search direction
s is given (for minimization) by |

s = - [H(b")] 'V (b¥) (A-6)

For the initial estimates of the parameters far
from the final estimates, it is a characteristically slow
method but converges rapidly near termination (in
contrast fo the' gradient method which cohverges very

slowly) .

4. Gradient Method This gradient (steepest-descent
/ascent) method uses only the first derivatives of the
f(b) in the calculations.

The gradient 1is the vector at‘ a point b that
gives the (local) direction of the greatest increase in
f(b) and is orthogonal to the contour of f(b) at b. For
maximization, the search direction is simply the gradient
(when used the algorithm is called steepest ascent); for
minimization, the search direction is the negative of the

gradient (steepest. descent).
s* = V£ (b*) ‘ (A-7)

In steepest descent at the kth stage, the tran-
sition from point b® to another point b*! can be viewed as

given by the following expression:

bkl o b*+Ab* = b¥ + Akgk o bk - AYVF (bk) (A-8)
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where Ab* = vector from b* to bk
s* = search direction, the direction of
steepest descent
A¥ = scalar that determines the step
length in direction s*
The negative of the gradient gives the direction
for minimization but not the magnitude of the step to be

taken, so that various steepest descent procedures are

possible, depending upon the choice of Ak,

5. Marquardt’s method Marquardt, Levenberg, and
others have suggested that the Hessian matrix of f(b) be
modified on each stage of the search as needed to ensure
that the modified H(b), H(b), is positive definite and
well-conditioned. The procedure adds elements to the

diagonal element of H(x)
H(b) = [H(b) + BI] (A-9)

where B is a positive constant large enough to
make H(b) positive definite when H(b) is not. Also it is

possible to usey
CE®T = w) sy - (a-9)

Marquardt’s method has been recommended as being

quite effective. It is definitely superior to either the
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Newton’s method or the method of steepest descent.
Because either analytical or numerical derivatives at the
minimum of f(b) are availabl, it is supérior to the
simplex method in that subsequent estimates of the
precisioh of the parameters are easy to make.On the other
hand, the simplex method has the advantage that the
partial derivatives of f(b) need not be caculated at all,
thus saving considerable computer time in estimation.
Moreover, it can more easily treat problems involving
functions with discontinuities, points of inflection, and
end points. For very complex models, the simplex method
has proved the more effective in estimating the
parameters in Simulation studies. |

The model in this study is too complex to use
Marquard’s method, because the model in this study are
compose of 7 simultaneous differential equations, 6
simultanious algebriac equations and an nonlinear-
algebraic equation to find the root of equation at every
step of the calculation. Thus the optimiéation method'to
be usedsin this study is the downhill simplex method
(William et.al (1992)).
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Step of Parameter Estimation

The models in this study consisting of 7
simultaneous differential equations, 6 simultaneous
algebraic equations and a nonlinear-algebraic equation as

can be shown in the general form:

d(As]l/dt = £(m,k,A;7, t) (A-10)
Ay = £(A,Ki Ay ' (A=11)
fm) =0 (A-12)

where d[A;]/dt = vector of derivatives of A;
f = vector of functions
t = independent variable
A; = vector of dependent variables
k = vector of parameters
Ki = vector of known constants
let A;" = vector of experimental observations of the
dependent variable
Ay = vector of calculated values of the dependent

variables obtained from integrating Eq.(A—lO)

(1) Assume initial guesses for the pafameter k

(2) Use the vector k and the initial condition to
integrate the differential equations by 4th order Rung-
Kutta and solve algebraic equétions by Newton-Raptson

(Constantinides, (1988)) to obtain the profiles of A;.
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(3) Let err is error between observation with

calcuiated value.
err;® = (A;-As")? (A-13)
(4) Let E is total error
Ei® = 3 err;? (A-14)

(5) The procedure from step (1) to (4) are called
objective function to calculate the sum of square error.
The main procedure to optimize the E value (objective
function, f£(k)) is downhill simplex method és the
algorithm described in the pPreceding section. All

problems are solved by writing program in MATLAB program.
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Table B-1 1Initial condition input used in the simulation

Phenol Formaldehyde NaOH Temperature
Case | (mole/1l) (mole/1) (mole/l) (°c)

| 1.003 2.119 0.03138 30
2 4.71 9.189 0.09369 30
3 0.9583 2.030 0.01250 57
4 4.68 9.456 0.09615 57
5 54375 5. 348 0.1000 40
6 54375 5¥315 0.1000 50
7 5:375 S F15 0.0500 60
8 $5.,375. . 5875 0.0500 70
9 0.600 0.100 0.0045 90
10 0.200 0.0500 0.0500 30
11 - 0.400 0.09602 0.200 31
12 4.770 8.4700 0.2860 . 30
13 4.694 7.2709 0.04388 57
14 4.680 9.4606 0.0953 L8
5 4.800 8.5300 0.0462 57
16 4.950 7.0100 0.0489 57
17 2.000 0.2000 0.1300 30
18 2.000 0.2000 0.6000 30
19 1.804 5.9400 1.8040 30
20 4.420 9.3000 0.0937 45




Table B-2 References of Each Case

Case Reference

1y d2,13,20 Zavitsas et.al (1968)
2,4 Zavitsas (1966)
3,14,15,16 Zavitsas et.al(1967)
5,6,7,8 Debing et.al (1952)

9 DeJong et.al(1956)

10 Dijkstra et.al (1962)
11 Dijkstra et.al (1957)
17,18 Peer et.al (1959)

19 Freeman et.al (1954)




APPENDIX C

EQUILIBRIUM CONSTANT

Appendix C-1 Equilibrium constant of phenolic'species

The equilibrium constant of all phenolic species
at each temperature can be calculated from the
relationship between temperature and equilibrium constant
which were determined by Sprengling et.al(1965) and
Zavitsas et.al(1966) individually. The results were in
good agreement that PKi of each species were linear with

temperature as the following equations:

pKi = -0.0108*temp+10.125 (c-1)
pK, = -0.0117*temp+10.1275 (c=2)
PK; = -0.0105*temp+9.9925 (c=3)
pKq = -0.0107*temp+9.8375 (c-4)
PKs = -0.0108*temp+9.95 =5}

PKe = -0.0105*temp+9.7125 (c~6)
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Appendix C-2 The equilibrium constant of formaldehyde

equilibrium

The constant value of Q; = 45 and Q, = 400 are
used to calculate the methylene glycol fraction at all
studied temperature as the average value found by
Zavitsas et.al (1968). Because from the studies of
Iliceto et.al (1951) and Zavitsas (1968) found that the
fraction of formaldehyde in methylene glycol form were
not affect by temperature from 20-100 °C and pH of the

solution as shown in Figure C-1

o
o

O
@
o

O
o
o

o
>
o

0.20

FRACTION IN HOCHZOH FORM

% FORMALDEHYDE

Figure C-1Fraction of formaldehyde vs. wt.% formaldehyde
in water: (-) curve calculated according to
equation of formaldehyde equilibrium ;

(o) experiment at 20 °C (Iliceto et.al(1951))
(A) experimental at 35 °C. (Zavitsas (1967))
(V) experimental at 100 °C. (Zavitsas (1967))
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Table C-1 Rate Constants Obtained from Zavitsas’ Model

(Zavitsas et.al (1968))

Temp., (°C) 30 57 30 57 30
(Plo , (M.) 1.003 | 0.9583 | 4.71 2.68 1.804
[Flo , (M.) 2.119 | 2.030 |9.189 9.456 | 5.94
[NaOH],, (M.) 0.03138 [ 0.0125 | 0.09369 | 0.09615 | 1.804
ks , (1/mole.min)x10° | 2.322 30.6 | 5.01 87.78 3
Kz, (1/mole.min)x10° | 1.65 20.34 | 2.847 16.68 1.98
ks, (1/mole.min)x10° | 2.892 29.7 | 5.088 81.06 3.3
ke, (1/mole.min)x10° | 2.094 21.6 | 4.656 61.32 3.18
ks, (1/mole.min)x10° | 2.49 33.48 | 4.608 80.7 3
ke, (1/mole.min)x10° | 6.174 64.68 | 9.318 128.04 7.5
Kz, (1/mole.mim)x10° | 1,476 15.96 | 3.714 50.58 2.7

Table C-2 Activation Parameters for the NaOH-Catalyzed

Hydroxymethylation from Zavitsas’ Model

Dilute Systems Concentrate.Systems
Rate Constant Ea, (kcal) | 1n A Ea, (kcal) lIn A

ki 19 . 25.45 21.% 9.7

k2 18. 2429 20.6 28.25
ks 17. 22.62 20.4 28.55
k¢ 17, 22.35 19.0 26.14
ks 19. 25.77 | 21.0 29. 61
ke 17. 23.62 19.3 27.35
ka 17. 22.58 19.2 26.32




APPENDIX D

COMPUTER PROGRAM WRITTEN BY USING MATLAB
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function [s]=downhill(p)

% The routine for finding the parameters which make the
% minimum of the objective function by downhill simplex
% method. The objective function named "object(p)"

% where p is the matrix of initial guess parameters.

mp=8;np=7; % mp are numbers of vectors which are the
% vertics of the starting simplex.
% np are numbers of parameter in a vector
% of vertic.
p=zeros (mp,np) ;
y=zeros (mp,1);
nmax=20;alpha=1;beta=0.5;gamma=2;itmax=500;ftol=0.01;
pbar=zeros(l,np);
pr=zeros(l,np):
prr=zeros(l,np);
mpts=mp;
iter=0;
for i=l:mp
g=p(i,:);
[al=object(q):
y(i)=a; % y is the vector of objective value
end
Y
ilo=1; :
ihi=1;
inhi=2;
else
ihi=2;
inhi=1;
end
for j=l:mp
if y(j)<y(ilo),ilo=j;end
if y(j)>y(ihi),inhi=ihi;ihi=j;
elseif y(j)>y(inhi)
if j"=ihi,inhi=j;end
end
end

%Compute the fractional range from highest to lowest
$and return if satisfactory.

%$rtol=2.*abs(y(ihi) y(llo))/(abs(y(lhl))+abs(y(1lo))),
rtol=abs(y(ihi)-y(ilo));

while (rtol>ftol) | (iter==itmax)
iter=iter+l
pbar=(sum(p)-p(ihi,:))/np;
pr=(l+alpha) *pbar-alpha*p(ihi,:);
[yprl=object(pr);
if ypr<=y(ilo)
prr=gamma*pr+(l-gamma) *pbar;
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[yprr)=object (prr);

if yprr<y(ilo)
p(ihi,:)=prr;
y(ihi)=yprr;
else
p(ihi, :)=pr;
y(ihi)=ypr;
end
elseif ypr>=yi(inhi)
if ypr<y(ihi)
"plihl,s)=pr;

y(ihi)=ypr; o
end : 4§§‘“
prr=beta*p(ihi,:)+(1l-beta) *pbar;

[yprrl=object (prr); 4
if yprr<y(ihi) '
p(ihi, :)=prr; W
y(ihi)=yprr;
else ,
for i=l:mp
if i"=ilo

pr=0.5*(p(i,:)+p(ilo,:));
p(i,:)=pr;
[cl=object(pr) ;
y(i)=c:
end
end
end
else ‘
p(ihi,:)=pr;
y{ihi)=ypr;
end ;

ilo=1;
if y(1)>y(2),
ihi=1;
inhi=2;
else
ihi=2;
inhi=1;
end
for j=l:mp
if v(j)<y(ilo),ilo=j;end
if y(j)>y(ihi),inhi=ihi;ihi=j;
elseif y(j)>y(inhi)
“if j"=ihi,inhi=j;end
end '
end

$rtol=2.*abs(y(ihi)-y(ilo))/(abs(y(ihi))+abs(y(ilo)))
rtol=abs(y(ihi)-y(ilo))

end

s=p(ilo,:);
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function [sumerr]=object302(p)

funtion to calculate the objective function

by using Rung-Kutta algorithm to solve differential
equation and Newton-Raptson to find the root of

m fraction in the model

This is the example of calculating objective function
of Simple model with Zavitsas data at 30 C at
concentrate run

3P P 9P o P P o°

(texp,yvexpl=dat302;
steps=1;y0=[4.71 0 0 0 0 O 9.189]"';
least=0;unit=ones(size(y0')):;
i=length(texp) ;

y=yO0;

t0=0;

count=0; tm=max (texp) ;

for t=t0:steps:tm
yold=y; count=count+l;
tl=t;
temp=feval('modell’',tl,yold,p);
bl=temp;
y=yold+0.5*steps*temp;
t2=t1l+0.5*steps;
temp=feval('modell’',t2,v,p);
b2=temp;
y=yold+0.5*steps*temp;
temp=feval('modell’' ,t2,v.p);
b3=temp; _
y=yold+steps*temp;
t3=tl+steps;
temp=feval('modell’',t3,y,p);
y=yold+steps* (bl+temp+2* (b2+b3))/6;
for j=1l:i
“%disp('t');disp(t);disp(texp(j));
if t3==texp(j) '
$disp(t3) ;disp(texp(j));
$a=(yexp(j,:)./y"'):
%b=(unit-a)."2;
b=(yexp(j,:)-y')."2;
err=sum(b) ;
least=least+err;
end
end
%$if count==100
Sfprintf('%8.2£%8.2£%8.2f\n"',t3,vy(1),v(2));
Scount=0;
%$end
end
sumerr=least;



102

function [tout,yout]=simnew(phe, f,oh, temp, time)
Function for simulating the simple model which
concern water concentration.

phe is initial phenol concentration

f is initial fomaldehyde concentration

oh is initial base concentration

temp is reaction temperature

time is a vector of reaction time

9 9P P R R o o

steps=1;y0=[phe 0 0 0 0 0 f]"';
least=0;unit=ones(size(y0'));
i=length(time) ;ho=h20(phe, f,o0h);
tout=zeros(i+l;1);
yout=zeros(i+l,length(y0));
y=y0;yout(l,:)=y0"';
t0=0.00;tout(1l)=t0;
count=0;tm=max(time) ;

% Calculate rate constant p which relate to
% water concentration as p=A*exp(b/[H20])
cl=46.9;c2=15;

kl=energyd(temp) ;

k2=energyc (temp) ;

ln=Kkl./k2;1lnk=log(1ln);
eel=1/cl;ee2=1/c2;

ee=eel-ee?2; ;

slop=1lnk/ee;
kO01l=kl./(exp(slop/cl));
1nkOl=log(kl./(exp(slop/cl))):;
p=exp(1lnkO0l+slop/ho)

for t=t0:steps:tm
yold=y; count=count+l;
tl=t;
temp=feval('modell',tl,yold,p);
bl=temp;
y=yold+0.5*steps*temp;
t2=t1+0.5*steps;
temp=feval('modell',t2,y,Dp);
b2=temp;
y=yold+0.5*steps*temp;
temp=feval('modell’',t2,y,p);
b3=temp; _
y=yold+steps*temp;
t3=tl+steps;
temp=feval('modell',t3,y,p);
y=yold+steps* (bl+temp+2* (b2+b3)) /6;
for j=1:i
if t3==time(j)

tout (j+l)=time(j);

yout(j+1,:)=y"';

end

end

end
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function [tout,yout]=zavnew(phe, f,NaOH, Temp, time)
Function for simulating Zavitsas model which
concern water concentration.

phe is injtial phenol concentration

f is initial fomaldehyde concentration

oh is initial base concentration

temp is reaction temperature

time is a vector of reaction time

0 P P P kP PP

steps=1;y0=[phe 0 0 0 0 0 f]"';
yion=[NaOH 0 0 0 0 O f]';oh=NaOH;
ho=h2o0 (phe, f,NaOH) ;
mf=raptson(f,f, ho,1);

% Calculate equilibrium constant

aa=[-.0108 -.0117 -.0105 -.0107 -.0108 =.0109] ;
cc=[10.125 10.1275 9.9925 9.8375 9.95 9.7125]} ;
dd=-1* (Temp*aa+cc) ;k=10."dd;

a=zeros(1,6);

tm=max(time) ;

i=length(time) ;

tout=zeros(i+l,1);

yout=zeros(i+l,length(y0));
y=y0O;yout(l,:)=y0"';

t0=0.00;tout(1)=t0;

count=0;d=1;option=2;

% Calculate rate constant p which relate to
% water concentration as p=A*exp(B/[H20])
+.cl=47;c2=21;

kl=parazd(Temp) ;

k2=parazc (Temp) ;
In=kl./k2;1lnk=log(1ln);
eel=1/cl;ee2=1/c2;
ee=eel-ee2;
slop=1lnk/ee;
kOl=kl./{exp(slop/cl)):
InkOl=log(kl./(exp(slop/cl))):
p=exp(1lnk0l+slop/ho)

%slope=(k2-kl)/(c2-cl);inter=k2-slope*c2;
$p=slope.*ho+inter
$ratio=p(1)/(p(1)+p(2))
for t=t0:steps:tm
yold=y; count=count+l;
tl=t;
temp=feval('model3',tl,yion,p,mf);
bl=temp;
y=yion+0.5*steps*temp;
t2=t1+0.5*steps;
temp=feval('model3',t2,y,p,mf);
b2=temp;
y=yion+0.5*steps*temp;
temp=feval('model3',t2,v,p.mf);
b3=temp;
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y=yion+steps*temp;
t3=tl+steps;

temp=feval('model3’',t3,y,p,mf);
y=yold+steps* (bl+temp+2* (b2+b3))/6;

if option==
for n=1:6 )
a(n)=[k(n)*y(n)1/[k(1)*y(1)];:
end ‘
vion(l)=oh/sum(a) ;
for m=1:6
yion(m)=[k(m)*y(m)*yion(l)]/[k(l)*y(l)];
end
end
if option==2
n=y(1l:6);
yi=rapt(l,n,oh,k);
for 1=1:6
yion(l)=(k(l)/k(l))*y(l)*yi/[(y(l)-yi)+yi*(
K(1)/k(1))];
end
end
vion(7)=y(7);
mf=raptson(y0(7),y(7) ,ho,1);

for j=1:1i
if t3==time(j)
tout (j+l1)=time(j);
yout (j+1,:)=y"';
end
end
end
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function [tout,yout]=zav(phe,f,NaOH,Temp,time)
Function for simulating Zavitsas model which
concern water concentration.

bhe is initial phenol concentration

f is initial fomaldehyde concentration

oh is initial base concentration

temp is reaction temperature

time is a vector of reaction time

L, 9P 30 &0 30 P P o

steps=1;y0=[phe 0 0 0 0 0 f]';
yion=[NaOH 0 0 0 0 O f]';oh=NaOH;
ho=h2o0 (phe, f,NaOH) ;
mf=raptson(f,f,ho,1l);

% Calculate equilibrium constant

aa=(-.0108 -.0117 -.0105 -.0107 -+0108 ~,.0105];:
ce=[10.125 10.1275 9.9925 9.8375 9.95 9.7128] :
dd=-1* (Temp*aa+cc) ; k=10, “dd;

a=zeros(1,6);

tm=max(time) ;

i=length(time);

tout=zeros(i+l,1);

yout=zeros (i+l,length(y0));
y=y0;:;yout(l,:)=y0"';

t0=0.00;tout(1)=t0;

count=0;d=1;option=2;

% Calculate rate constant P which relate to
% water concentration as p=A+B* [H20]
cl=47;c2=21;
kl=parazd(Temp) ;
k2=parazc (Temp) ;
slope=(k2-k1)/(02-cl);inter=k2-slope*c2;
p=slope. *ho+inter
$ratio=p(l)/(p(1)+p(2))
for t=t0:steps:tm
yold=y; courit=count+l;
tl=t; -
temp=feval('model3',tl,yion,p,mf);
bl=temp;
y=yion+0.5*steps*temp;
t2=t1+0.5*steps;
temp=feval('model3',t2,y,p,nf);
b2=temp;
y=yion+0.5*steps*temp;
temp=feval('model3',t2,y,p,mf);
b3=temp; f
y=yion+steps*temp;
t3=tl+steps;
temp=feval('model3',t3,y,p,mf);
y=yold+steps* (bl+temp+2* (b2+b3)) /6:

if option==1
for n=1:6
a(n)=[k(n)*y(n)1/[k(1)*y(1)];
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end

yion(l)=oh/sum(a);
for m=1:6
vion(m)=[K(m) *y(m) *yion(1)]1/[k(1)*y(1)];
end
end
if option==2
n=y(1l:6);
yi=rapt(l,n,oh,k);
for 1=1:6
vyion(1)=(k(1)/k(1)) *y (1) *xyi/[(y(1)-yi)+y
i*(k(1)/k(1))];
end
end
yion(7)=y(7);
mf=raptson(y0(7),y(7) ,ho,1);

for j=1l:i -
if t3==time(j)
tout(j+l)=time(j);
yout (j+1,:)=y"';
end
end
end
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function [tout,yout]=gennew(phe,f,NaOH,Temp,time,option)

% Main program for simulating all datas by inputting the
initial condition: phe is the input concentration of
phenol in mole/l; f is the input concentration of
formaldehyde in mole/l; NaOH is the input concentration
of base in mole/l; Temp is reaction temperature;

time is the vector of time in minute;

steps=1;y0=[phe 0 0 0 0 0O ] Vs

yion=[NaOH 0 0 0 0 0 f]';oh=NaOH;

ho=h2o0 (phe, f,NaOH) ;

% h20 is the function for calculating water concetration
mf=raptson(f,f,ho,1);

% raptson is the function for calculating fraction of

% formaldehyde in methylene glycol form.

9P d° P R R

% calculate equilibrium constant

aa=(-.0108 -.0117 -.0105 -.0107 -.0108 =+ 0105]
cc=[10.125 10.1275 9.9925 9.8375 9.95 9.7125] ;
dd=-l*(Temp*aa+cc):k=10.‘dd; :

a=zeros(1,6);

tm=max(time) ;
i=length(time);
tout=zeros(i+l,1);
yout=zeros (i+l,length(y0));
y=yO;yout(l,:)=y0';
t0=0.00;tout(1)=t0;
count=0;d=1;

% calculate rate constant which relate to water

% concentration as p=A*exp(B/[H20])

cl=47;c2=15; _

kl=energyzd(Temp); %calculate k at dilute concentration
k2=energyzc (Temp); %calculate k at high concentration
ln=kl./k2;1lnk=log(1ln); :

eel=1/cl;ee2=1/c2;

ee=eel-ee2;

slop=lnk/ee;

kOl=Kkl./(exp(slop/cl));

InkOl=log(kl./(exp(slop/cl)));

P=exp(1lnkOl+slop/ho)

% routine for calculating the profile of output
% concentration
for t=t0:steps:tm
yold=y; count=count+l;
tl=st;
temp=feval('mode13',tl,yion,p,mf);
bl=temp;
y=yion+0.5*steps*temp;
t2=t1+0.5*steps;
temp=feval(1mode13',t2,y,p,mf);
b2=temp;
y=yion+0.5*steps*temp;
temp=feval('model3',t2,y,p,mf);
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b3=temp;

y=yion+steps*temp;

t3=tl+steps;
temp=feva1('model3',t3,y,p,mf);
y=yold+steps*(bl+temp+2*(b2+b3))/6;

if option==]
for n=1:6
a(n)=[k(n)*y(n)]/[k(l)*y(l)];
end
vion(l)=oh/sum(a) ;
for m=1:6
yion(m)=[k(m)*y(m)*yion(l)]/[k(l)*y(l)]:
end
end
if option==
n=y(l:6);
yi=rapt(l,n,0h:k)7
for 1=1:6
yion(l)=(k(l)/k(l))*Y(l)*yi/[(y(l)-yi)+yi*(
K(1)/k(1))]1;
end
end
vyion(7)=y(7);
mf=raptson(y0(7),y(7),ho,1);

for j=1:i

if t3==time(j)

' tout(j+l)=time(j);
yout (j+l,:)=y"';
end

end
end
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Figure E-1 Reactant concentration vs. time at 30°C, (P]o=1.003 M.
(Flo = 2.119 M. ([NaOH].,=0.03138 M.: Curve calculated

with rate constants from Table 5-1 by Simple model.
Point: experimental data (Zavitsas (1966)).
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Figure E-2 Product concentration vs. time at 30°C, [P],=1.003 M.
[Flo = 2.119 M. [NaOH]),=0.03138 M.: Curve calculated
with rate constants from Table 5-1 by Simple model.
Point: experimental data (Zavitsas (1966)).
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Figure E-3 Formaldehyde concentration vs. time at 30°C,
[Plo= 2 M. [Fl, = 0.2 M. [NaOH]=0.13 M.:
Curve calculated compare between 6 models
described in Page 58 . Point: experimental data
(Peer et.al (1959)).
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Figure E-4 Formaldehyde concentration vs. time at 57°c,
(Plo= 4.8 M. [F], = 8.53 M. [(NaOH]= 0.0462 M. :
Curve calculated compare between 6 models
described in Page 58 . Point: experimental data
(Zavitsas et.al (1967)).
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Figure E-5 Formaldehyde concentration vs. time at 31°C,
[Plo= 0.4 M.[Fl, = 0.09602 M. [NaOH]=0.2 M.:
Curve calculated compare between 6 models
described in Page 58. Point: experimental data
(Dijkstra et.al (1959)).
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Figure E-6 Formaldehyde concentration vs. time at 57°c,
(Plo= 4.95 M.[F], = 7.01 M. [NaOH]=0.0489 M.
Curve calculated compare between 6 models

described in Page 58. Point: experimental data
(Zavitsas et.al (1967)).
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Figure E-7 Formaldehyde concentration vs. time at 57°C,
[Plo= 4.694 M. [F], = 7.27 M. [NaOH]=0.04388 M.:
Curve calculated compare between 6 models
described in Page 58 . Point: experimental data
(zavitsas et.al (1968)).
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Figure E-8 Formaldehyde concentration vs. time at 40°C,
[Plo= 5.375 M. [F], = 5.375 M. [NaOH]=0.1 M.:
Curve calculated compare between 6 models

described in Page 58 . Point: experimental data
(Dejong et.al (1952)).
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