THE THEORY OF NUCLEAR MAGNETIC RESONANCE AND

THE STUDY OF THE HOMOGENEITY OF A MAGNETIC FIELD

Thaveesakdi Keowsim

B. Sc. (Hons.), Chulalongkorn University, 1963

007033

Thesis

Submitted in partial fulfillment of the requirements for the Degree of Master of Science

in

The Chulalongkorn University Graduate School

Department of Physics

May, 1965

(B.E. 2508)

Accepted by the Graduate School, Chulalongkorn University in partial fulfillment of the requirements for the Degree of Master of Science.

		Dean of the Graduate School
Thesis	Committee	Bhyayo Parya-
		Supporte Kutudet

ABSTRACT

The basic theory of the nuclear magnetic resonance plays an important role in research about this field. The simple application of N M ${ t R}$ is a study of the homogeneity of the magnetic field. Its homogeneity was studied by measuring the magnetic field strengths at various positions in the magnetic pole gap. We used the nucleus of Glycerol with the oscillating field of the r.f. oscillator unit as a magnetic probe to determine the magnetic field. The resonant frequency was observed by the help of the Cathode Ray Oscilloscope and the magnetic field strength; were obtained. From the results, its homogeneity was discussed. It was found that the inhomogeneity of the magnetic field of the Tickford electromagnet, in the Electronics ILaboratory of the Physics Department, was about 1 in 5x103 over one c.c. volume. The relation between the magnetic field strengths and the d.c. current supply of the electromagnet was also measurad. The study of the performance of the storage batteries was also investigated. Further detail investigation of the battery performance is suggested.

ACKNOWLEDGMENT

The author wishes to express his deep gratitude to Assistant Professor Dr. Sippanondha Ketudat, of the Physica Department, Chulalongkorn University, the originator of the problems, under whose supervision and expert guidance this work was carried out.

High appreciation is extended to Mr. Bhiyayo Panyarjun, a Senior-Lecturer of the Physics Department, Chulalongkorn University, for his excellent experiences and help throughout this work.

He is grateful to Mr. Sho Salichan, his fellow graduate student, for the two fruitful years during which we shared a laboratory. He also wishes to thank Mr. Somehai Thayarnyong, his fellow graduate student, an instructor of the Physics Department. The comments and helpful suggestions of Mr. Somehai Thayarnyong on the problems are gratefully acknowledged.

The author is deeply grateful to the Ministry of Education for a fellowship for the fifteen years of the author's education from Mathayom class to graduate class.

He is also indebted for the financial support given by the Physics Department. It should also be mentioned that the author is indebted to Professor Peng Somanabhandhu, Head of the Physics Department, and Professor Charoen Dhamaphanija for their interests in this work.

TABLE OF CONTENTS

	430.00	Page
ABSTRACT ACKNOWLEDGRENT		iii
ACKNOWL	EDGRENT (())	iv
LIST OF	TABLES Trainer Turing	vii
LIST OF	ILLUSTRATIONS	viii
Chapter		
I	INTRODUCTION	1
	1.1 Survey of Nuclear Magnetic Resonance	1
	1.2 An Outline of the Investigation in this Thesis.	2
	1.3 Basic Theory of Nuclear Magnetic Resonance	2
īI	TSEORY	6
	2.1 Magnetic Properties of Nuclei	6
	2.1 s. Nuclear Magnetic Moments	6
	2.1 b. Nuclear Electric Quadrupole Moments	8
	2.2 Nuclear Energy Levels in a Magnetic Field	8
	2.3 Distribution of Nuclear Spins in a Magnetic	
	Fielā	10
	2.4 Magnetic Resonance Absorption	12
	2.4 a. Classical Treatment	15
	2.4 b. Quantum Mechanical Treatment	14
	2.4 c. Line Broadening	17
	2.5 Spin-Lattice Relaxation Time, T ₁	19
	2.6 Spin-Spin Interaction Time, T2	21
	2.7 Saturation	23
	2.8 Phenomena Dependent on Sweep Rate	26

		Page
	2.9 The Application of Nuclear Magnetic Resonance	
	in Measuring the Magnetic Field	26
III	EXPERIMENTAL EQUIPMENT AND PROCEDURE	28
	3.1 The Apparatus	28
	3.2 The Electromagnet	31
	3.3 The Modulation Coils and the Oscillating Field.	31
	3.4 Radio Frequency Oscillator Unit and RF Coils	34
	3.5 Chemistry of the Sample	38
	3.6 Frequency Measurement	40
	3.7 Experimental Procedure	40
IA	EXPERIMENTAL RESULT AND DISCUSSIONS	43
	4.1 Magnetic Field Mapping at various Positions	43
	4.2 Magnetic Field Strength Dependence on D.C.	
	Current Supply	53
	4.3 Dependence of the Battery Voltage after used	56
	4.4 Discussions	56
BIBLIOG	RAPHY	62
VITA	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	63

LIST OF TABLES

TABLE	
4-1 The Resonant Prequencies at various Positions	3
by Mapping with the R.F. Probe	46
4-2 Magnetic Field Strength at various Positions	
by Mapping with the R.F. Probe	47
4-3 To Observe the Field Homogeneity within 1 c.c	₹ •
Volume at the Central Region of the Gap	49
4-4 Magnetic Field Strength Dependence on D.C.	
Current Supply	54
4-5 Drift of Magnetic Field due to the Battery	
Voltage Supply	57

LIST OF ILLUSTRATIONS

Pigp:	r ș	Page
2.1	Zeeman Splitting of Nuclear Energy Lovels in a	
	Magnetic Field,,	9
2,2	Population Distribution among the Levels $\mathbf{E}_{\mathbf{m}}^{\prime}$	
	for I = 3/2	11
2.3	Precession of Magnetic Moment ${\cal M}$ in a Magnetic	
	Field Ho	13
2.4	The Populations at the Upper and Lower States	20
2.5	The Shape Function $g(y_{n^{\dagger}n})$ Anticipated for	
	Magnetic Resonance in Bulk Matter,	23
5.1	Block Diagram of the Appuratus	29
3.2	The Apparatus	30
3.3	The Tickford Electromagnet	32
3.4	The Modulation Coils	33
3.5	R.F. Oscillator Unit	35
3.6	Diagram of the Probe	36
3.7	The 3-Dimensional-Movable Frame of the R.F.	
	Oscillator Unit	37
3.8	Phase Shifter Circuit	41
4.1	The Planes of Observations	44
4.2	The Points of Observations	45
4.3	Observation of the Field Inhomogeneity	48

Figure	Page
4.4 Model for Studying the Homogeneity of the Magne	tic
Field	50
4.5 a. The Shape of the Homogeneity of the Magnetic	
Field	51
4.5 b. Region investigated in the Magnet Gap	52
4.6 Magnetic Field Strength vs. the D.C. Current	
Supply	··· 55
4.7 Magnetic Field Strength vs. Time (Run No.1)	58
4.8 Magnetic Field Strength vs. Time(Run No.2)	59
4.9 Magnetic Field Strength vs. Time(Run No.3)	60