## CHAPTER III

## RESULTS

## 1.Physical Properties Determinations of Active Raw

## Materials

1.1 Size and Shape from Scanning Electron Microscope The particle morphology of various samples of active raw materials in this study were examined by scanning electron micruscope. The microscopic appearance of Tetracycline Hydrochloride I-III, Cimetidine I-V and Mefenamic Acid I-III are shown in Figures $5-15$ respectively.

Tetracycline Hydrochloride (Figures 5-7)
Tetracycline Hydrochloride powder composed of aggregates of thick rod-shaped particles. The powder characteristics for all samples were similar except Tetracycline II had thinner rod-shaped particle.

Cimetidine (Figures 8-12)
Cimetidine powder composed of irregular shape particles,most of them were rod-shaped microcrystals which were, different in size. More aggregation and pin-liked microcrystals of Cimetidine $I$ and $V$ were observed.

Mefenamic Acid (Figures 13-15)
The scanning electron photomicrograph of Mefenamic Acid I, II and III were different. Mefenamic Acid I composed


[^0]

Figure 6 Photomicrographs of Raw Material Tetracycline II (Key : A x 100 , B x 500 , C $x$ 2,000)


Figure 7 Photomicrographs of Raw Material Tetracycline III (Key : A x 100 , B x 500 , C $\mathrm{x} 2,000$ )


Figure $8 \quad \begin{aligned} & \text { Photomicrographs of Raw Material Cimetidine I } \\ & (\text { Key : A x } 100 \text {, } \mathrm{B} \times 500 \text {, C x } 2,000)\end{aligned}$


Figure 9 Photomicrographs of Raw Material Cimetidine II

$$
(\text { Key : A x } 100 \text {, B } \times 500 \text {, C } \times 2,000 \text { ) }
$$



Figure 10 Photomicrographs of Raw Material Cimetidine III (Key : A x 100 , B x 500 , C $x 2,000$ )


Figure 11 Photomicrographs of Raw Material Cimetidine IV (Key : A x 100 , B $x 500$, C $\mathrm{x} 2,000$ )


Figure 12 Photomicrographs of Raw Material Cimetidine V (Key : A x 100 , B x 500 , C $x 2,000$ )


Figure 13 Photomicrographs of Raw Material Mefenamic Acid I (Key : A x 100 , B x 500 , C x 2,000)


Figure 14 Photomicrographs of Raw Material Mefenamic Acid II (Key : A x 100 , B x 500 , C x 2,000)


Figure 15 Photomicrographs of Raw Material Mefenamic Acid III (Key:A A 100 , B x 500 , C $\mathrm{x} 2,000$ )
of irregular shape particles. These particle occurred in a single microcrystal which were different in size. Mefenamic Acid II composed of compacted irregular shape particles held together, unlike Mefenamic Acid III which containing agglomerate of many short rod microcrystals.
1.2 Particle Size Distribuption

Sieve analysis data of active raw materials from various sources are shown in Table 3 .

## Tetracycline Hydrochloride

Figures 16,17 , and 18 shows the particle size discribution of each Tetracycline Hydrochloride samples and Figure 15 shows the comparative particle size distribution of all samples. The particle size distribution of three sources were quite different. More than $60 \%$ of Tetracycline Hydrochloride I and II passed through a $150 \mu \mathrm{~m}$ sieve, while less than 60 \% of Tetracycline Hydrochloride III was bigger than $150 \mu \mathrm{~m}$ mesh.

## Cimetidine

Figures 20, 21, 22, 23, and 24 shows the particle size distribution of each Cimetidine samples and Figure 25 shows the comparative particle size distribution of all samples. The particle size distribution of five sources were not very different. Cimetidine IV had a significant number of particles smaller than $180 \mathrm{\mu m}$ mesh.

## Mefenamic Acid

Figures 26, 27, and 28 shows the particle size

Table 3
Sieve Analysis of Active Raw Material from Various Sources

| Active <br> Raw Materials | \% Weight Retained ${ }^{(a)}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sieve Size ( $\mu \mathrm{m}$ ) |  |  |  |  |  |
|  | 850 | 425 | 250 | 180 | 150 | Pan |
| Tetracycline I | 0.00 | 0.00 | 0.00 | 1.20 | 37.28 | 61.52 |
| Tetracycline II | 0.00 | 0.00 | 0.00 | 0.00 | 1.10 | 98.90 |
| TetracyclineIII | 0.00 | 0.00 | 0.00 | 19.02 | 43.73 | 37.25 |
| Cimetidine I | 68.27 | 29.13 | 2.05 | 0.32 | 0.12 | 0.10 |
| Cimetidine II | 84.05 | 11.82 | 1.95 | 0.92 | 0.48 | 0.78 |
| Cimetidine İI | 59.59 | 34.50 | 4.51 | 0.78 | 0.28 | 0.34 |
| Cimetidine IV | 77.70 | 13.09 | 0.62 | 2.63 | 3.72 | 2.23 |
| Cimetidine V | 88.78 | 9.06 | 1.80 | 0.28 | 0.08 | 0.00 |
| Mefenamic I | 63.13 | 26.59 | 3.07 | 1.60 | 4.37 | 1.24 |
| Mefenamic II | 93.68 | 6.10 | 0.22 | 0.00 | 0.00 | 0.00 |
| Mefenamic III | 88.55 | 8.97 | 1.70 | 0.58 | 0.14 | 0.06 |

(a) averaged from two determinations.

## Particle Size Distribution of

 Tetracycline Hydrochloride I

Figure 16 Particle Size Distribution of Tetracycline Fydrochloride I


## Particle Size Distribution of Tetracycline Hydrochloride II



Particle Size Distribution of Tetracycline Hydrochloride III



## Comparative Particle Size Distribution of Raw Mat. Tetracycline HCL I-III



Figure 19 Comparative Particle Size Distribution of Raw Material Tetracycline Hydrochloride I, II and III

## Particle Size Distribution of Cimetidine I



## Particle Size Distribution of Cimetidine II



Figure 21 Particle Size Distribution of Cimetidine II

Particle Size Distribution of Cimetidine III


Figure 22 Particle Size Distribution of Cimetidine III


## Particle Size Distribution of Cimetidine IV




จุนาลงกรณัมหาวิทยาลัย

## Particle Size Distribution of Cimetidine V



จุพาลงกรณณ์มหาวิทยาลัย

## Comparative Particle Size Distribution of Raw Mat. Cimetidine I-V



Clmetidine I

Clmetidine IV

## $\square$ CImetidine $V$

$$
\begin{array}{cl}
\text { Figure } 25 & \text { Comparative Particle Size Distribution of Raw } \\
& \text { Material Cimetidine I, II, III, IV and V }
\end{array}
$$

## Particle Size Distribution of Mefenamic Acid I



Figure 26 Particle Size Distribution of Mefenamic Acid I

## Particle Size Distribution of <br> . Mefenamic Acid II



Figure 27 Particle Size Distribution of Mefenamic Acid II


จุฬาลงกรณ์มหาวิทยาลัย

## Particle Size Distribution of Mefenamic Acid III



Figure 28 Particle Size Distribution of Mefenamic Acid III


จจฬาลงกรณึมหาวิทยาลัย
distribution of each Mefenamic Acid samples and Figure 29 shows the comparative particle size distribution of all samples. The particle size distribution of three sources were quite different. Mefenamic Acid II and III had more than $85 \%$ of particles bigger than $850 \mu \mathrm{~m}$ mesh while Mefenamic $I$ had a wide range of particle size distribution.
1.3 Bulk Density, Tapped Density and Compressibility Determination

Bulk density, tapped density and percent compressibility of samples from various sources are shown in Table 4.

Tetracycline Hydrochloride
Bulk density and tapped density were ranging from $0.53-0.58 \mathrm{~g} / \mathrm{ml}$ and $0.63-0.64 \mathrm{~g} / \mathrm{ml}$, respectively. The percent compressibility of Tetracycline Hydrochloride $I$ and III were slightly lower than Tetracycline Hydrochloride II.

It was noticed that all of samples had percent compressibility less than $21 \%$ with indicated good flowability (Fonner et al.,1980).

Cimetidine
Bulk density, tapped density and percent compressibility of Cimetidine $I$ - V were vary from $0.18-0.45$ $\mathrm{g} / \mathrm{ml}, 0.34-0.70 \mathrm{~g} / \mathrm{ml}$ and $34.85-48.24 \%$, respectively. tI was noticed that Cimetidine $I$ and $V$ had higher percent compressibility.

## Comparative Particle Size Distribution of Raw Mat. Mefenamic Acid I-III



Figure 29 Comparative Particle Size Distribution of Raw Material Mefenamic Acid I, II and III

Table 4
Physical Characteristics of Active Raw Materials


* averaged from two determinations
** averaged from three determinations
a flowed but could not be measured
b did not flow
dc decomposing occurred


## Mefenamic Acid

Bulk density and tapped density were ranging from $0.17-0.38 \mathrm{~g} / \mathrm{ml}$ and $0.34-0.67 \mathrm{~g} / \mathrm{ml}$, respectively. The percent compressibility of Mefenamic Acid I was lower than Mefenamic Acid II and III.
1.4 True Density Determination

True density of each active raw material samples are compared in Table 4 (use acetone, ether and absolute ethanol as the solvent for tetracycline hydrochloride, cimetidine and mefenamic acid, respectively). The true density of each kind of samples were similar.

### 1.5 Moisture Determination

Moisture content of different active raw material samples are calculated as percent loss on drying and given in Table 4. The moisture content of each kind of samples were very small, not very different and within the compendial limit.

### 1.6 Angle of Repose Determination

The results are shown in Table 4. They could be ranked as follow : Tetracycline Hydrochloride II > Tetracycline Hydrochloride III > Tetracycline Hydrochloride I, Cimetidine III > Cimetidine IV > Cimetidine II > Cimetidine I > Cimetidine $V$ and Mefenamic Acid III > Mefenamic Acid II > Mefenamic Acid I

It was noticed that all Tetracycline Hydrochloride samples had the values of lower than $40^{\circ}$ which indicated good

### 1.7 Flowability Determination

Most of the samples have very poor flowability and are unable to be determined by the flowmeter except Tetracycline Hydrochloride I and III. On the other hand Tetracycline Hydrochloride II had tendency to block the orifice of the flowmeter during the test.
1.8 Melting Range Determination

Results on the melting ranges of all samples are summarized in Table 4. The melting points data of Cimetidine I-V ranged from $138^{\circ}-144^{\circ} \mathrm{C}$ Mefenamic Acid I-III ranged from $222^{\circ}-227^{\circ} \mathrm{C}$ and the melting points of Tetracycline I-III could not be observed because decomposition occurred.
1.9 Solubility Determination

Results on the solubility of all active raw materials are summarized in Table 5. The solubility of Tetracycline Hydrochloride I-III were ranging from 122.15 $150.58 \mathrm{~g} / 1$ in water and $8.95-11.54 \mathrm{~g} / 1$ in ethanol. The results of Tetracycline Hydrochloride III showed the lowest solubility. The solubility of Cimetidine I-V were similar and ranging from 6.94-7.57 g/l in water and 38.47-41.91 in alcohol. The solubility of Mefenamic Acid I-III were also similar and ranging from $6.30-7.02 \mathrm{~g} / 1$ in ethanol.
1.10 The IR Spectroscopy

Comparative infrared absorption spectrum of Tetracycline Hydrochloride I-III, Cimetidine I-V and Mefenamic Acid I-III are shown in Figures 30,31 and 32 , respectively.

Solubility test of Active Raw Materials Used

| Active Raw Materials | Source | $\begin{gathered} \text { Solubility* } \\ \text { in } \\ \text { water }(\mathrm{g} / \mathrm{l}) \end{gathered}$ | $\begin{gathered} \text { Solubility* } \\ \text { in } \\ \text { Ethanol }(\mathrm{g} / 1) \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| Tetracycline I <br> Tetracycline II <br> TetracyclineIII | China | 150.58 | 11.54 |
|  | Germany | 139.04 | 9.23 |
|  | U.S.A. | 122.15 | 8.95 |
| Cimetidine I <br> Cimetidine II <br> Cimetidine III <br> Cimetidine IV <br> Cimetidine $V$ | Italy | 6.94 | 40.86 |
|  | Yugoslavia | 6.98 | 38.48 |
|  | Korea | 7.42 | 41.91 |
|  | Hurgary | 7.58 | 40.59 |
|  | Germany | 7.09 | 40.46 |
| Mefenamic I <br> Mefenamic II <br> Mefenamic III | Korea | insoluble | 6.32 |
|  | Taiwan | insoluble | 7.02 |
|  | U.S.A | insoluble | 6.31 |

* averaged from two determinations at room temperature ( $28^{\circ} \mathrm{C}$ )


Figure 30 Comparative IR Spectra of Tetracycline Hydrochloride I, II and III
Key : T1 - Tetracycline Hydrochloride I
T2 - Tetracycline Hydrochloride II
T3-Tetracycline Hydrochloride III


Figure 31 Comparative IR Spectra of Cimetidine I, II, III IV and V
Key : C1-Cimetidine I
C2 - Cimetidine II
C3 - Cimetidine III
C4 - Cimetidine IV


The results show that the position and relative intensity of the bands agreed in all respects, it indicates that all of the same drugs from various sources are identical.

## 2. Determination of \% Content of Active Raw Materials <br> The percent content of all samples are listed in

 Table 6 and none of the samples failed the test.2.1 Tetracycline Hydrochloride

The USP XXII states that all samples must contain not less than $90.0 \%$ Tetracycline Hydrochloride. Tetracycline Hydrochloride I-III contain over $95.0 \%$ tetracycline hydrochloride and conformed to this potency specification.

```
2.2 Cimetidine
The USP XXII claims that cimetidine must
``` contain not less than \(99.0 \%\) and not more than \(101.5 \%\). The cimetidine content of all samples were between \(99.38 \%\) \(99.77 \%\). All samples tested conformed to this specification.

\subsection*{2.3 Mefenamic Acid}

The BP 1988 states that the samples must contain not less than \(99.0 \%\) and not more than \(100.5 \%\). The mefenamic acid content of all samples ranged from \(99.61 \%\) \(100.25 \%\) and conformed to this specification.

Table 6
\% Assay of Active Raw Materials Used
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Active \\
Raw Materials
\end{tabular} & Source & \% Assay* & \% Official \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Tetracycline I \\
Tetracycline II \\
TetracyclineIII
\end{tabular}} & China & 95.31 & not less than \(90 \%{ }^{(a)}\) \\
\hline & Germany & 95.89 & not less than 90\% \\
\hline & U.S.A. & 96.46 & not less than 90\% \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
Cimetidine I \\
Cimetidine II \\
Cimetidine III \\
Cimetidine IV \\
Cimetidine V
\end{tabular}} & Italy & 99.50 & 99.00-100.50 \({ }^{(\mathrm{a})}\) \\
\hline & Yugoslavia & 99.77 & 99.00-100.50 \\
\hline & Korea & 99.38 & 99:00-100.50 \\
\hline & Hungary & 99.72 & 99.00-100.50 \\
\hline & German & 99.48 & 99.00-100.50 \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Mefenamic I \\
Mefenamic II \\
Mefenamic III
\end{tabular}} & Korea & 100.25 & \(99.00-100.50^{\text {(b) }}\) \\
\hline & Taiwan & 100.07 & 99.00-100.50 \\
\hline & U.S.A. & 99.61 & 99.00-100.50 \\
\hline
\end{tabular}

\footnotetext{
(a) averaged from two determinations.
(b) USP XXII

BP 1988
}
3. Preparation of Tetracycline Hydrochloride, Cimetidine and Mefenamic Acid Capsules

The actual formulas in Table 7 were used in preparing tetracycline hydrochloride, cimetidine and mefenamic acid capsules. The actual formulas for fixed amount of diluent are showed in Table 8. The quantities were for one capsule.
4. Evaluation of Tetracycline Hydrochloride, Cimetidine, Mefenamic Acid Capsules and its Fixed-diluent Capsules
4.1 Weight variation of experimental capsules
4.1.1 Tetracycline Hydrochloride (I-III) Capsules, Cimetidine (I-V) Capsules and Mefenamic Acid (I-III) Capsules

The average weight, standard deviation and relative standard deviation of all capsules were shown in Table 9. All capsule formulations of Tetracycline Hydrochloride (I-III) and Cimetidine (I-V) capsules exhibited average weight variation and percent of relative standard deviation within the USP XX requirement \(( \pm 10 \%)\) and all capsule formulations of Mefenamic Acid (I-III) capsules possessed the uniformity of weight in the limit of BP1988 requirement \(( \pm 7.5 \%\) if average weight of capsule content is 300 mg or more and \(\pm 10 \%\) if average weight of capsule content is less than 300 mg ).
4.1.2 The Fixed-diluent formulas of Tetracycline Hydrochloride (I,III) Capsules, Cimetidine (II-V) Capsule and Mefenamic Acid (I-II) Capsules

The average weight, standard deviation and relative

Table 7
The Actual Amount In The Formulas of Experimental Capsules
\begin{tabular}{|l|r|r|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l} 
Active Raw Materials \\
(mg/capsule)
\end{tabular}} & Lactose & \begin{tabular}{l} 
Magnesium \\
Stearate
\end{tabular} \\
\hline Tetracycline I & 250.00 & 220.00 & 9.40 \\
\cline { 2 - 4 } Tetracycline II & 250.00 & 206.67 & 9.13 \\
\cline { 2 - 4 } Tetracycline III & 250.00 & 213.33 & 9.27 \\
\hline Cimetidine I & 200.00 & 80.00 & 5.60 \\
\cline { 2 - 4 } \begin{tabular}{l} 
Cimetidine II \\
Cimetidine III \\
Cimetidine IV \\
\cline { 2 - 4 } \\
Cimetidine V
\end{tabular} & 200.00 & 193.33 & 7.87 \\
\cline { 2 - 4 } & 200.00 & 186.67 & 7.73 \\
\hline Mefenamic I & 200.00 & 220.00 & 8.40 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Mefenamic II \\
Mefenamic III
\end{tabular}} & 200.00 & 142.00 & 6.84 \\
\cline { 2 - 4 } & 200.00 & 33.33 & 4.67 \\
\hline
\end{tabular}

Table 8
The Fixed-Diluent Formulas of Experimental Capsules
\begin{tabular}{|l|r|r|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l} 
Active Raw Materials \\
(mg/capsule)
\end{tabular}} & Lactose & \begin{tabular}{c} 
Magnesium \\
Stearate
\end{tabular} \\
\hline Tetracycline I & 250.00 & 206.67 & 9.13 \\
\cline { 2 - 4 } TetracyclineII* & 250.00 & 206.67 & 9.13 \\
\cline { 2 - 4 } Tetracycline III & 250.00 & 206.67 & 9.13 \\
\hline Cimetidine I* & 200.00 & 80.00 & 5.60 \\
\cline { 2 - 4 } \begin{tabular}{l} 
Cimetidine II \\
Cimetidine III \\
Cimetidine IV \\
\cline { 2 - 4 } \\
Cimetidine V
\end{tabular} & 200.00 & 80.00 & 5.60 \\
\cline { 2 - 4 } & 200.00 & 80.00 & 5.60 \\
\hline Mefenamic I & 200.00 & 80.00 & 5.60 \\
\hline Mefenamic II & 200.00 & 100.00 & 6.00 \\
\cline { 2 - 4 } Mefenamic III* & 200.00 & 100.00 & 6.00 \\
\hline
\end{tabular}
* used as working standard

Table 9
Physical Properties of Experimental Capsules
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Experimen } \\
& \text {-tal } \\
& \text { Capsules } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { Weight } \\
\text { Variation } \\
(\mathrm{mg} \pm \mathrm{SD}) \quad \mathrm{n}=20 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\% \\
\text { RSD* }
\end{gathered}
\] & Content Uniformity (\% \(\pm\) SD) \(n=10\) & Disintegration Time (min. \(\pm\) SD) \(n=6\) \\
\hline Tetra I & \(472.33 \pm 10.51\) & 2.23 & \(95.99 \pm 3.58\) & \(4.04 \pm 0.51\) \\
\hline Tetra II & \(459.19 \pm 8.75\) & 1.91 & \(97.24 \pm 1.91\) & \(3.50 \pm 0.55\) \\
\hline Tetra III & \(464.92 \pm 14.67\) & 3.16 & \(96.50 \pm 3.22\) & \(3.83 \pm 0.75\) \\
\hline Cimet I & \(290.42 \pm 8.64\) & 2.98 & \(101.26 \pm 4.81\) & \(4.38 \pm 0.14\) \\
\hline Cimet II & \(410.96 \pm 11.05\) & 2.69 & \(99.27 \pm 4.71\) & \(3.33 \pm 0.26\) \\
\hline Cimet III & \(386.18 \pm 11.05\) & 2.86 & \(96.97 \pm 4.07\) & \(3.38 \pm 0.38\) \\
\hline Cimet IV & \(440.03 \pm 11.68\) & 2.65 & \(94.93 \pm 4.04\) & \(4.25 \pm 0.27\) \\
\hline Cimet V & \(294.69 \pm 12.21\) & 4.14 & \(96.92 \pm 4.11\) & \(4.33 \pm 0.41\) \\
\hline Mefen I & \(392.49 \pm 10.74\) & 2.74 & \(99.77 \pm 2.83\) & \(4.75 \pm 0.52\) \\
\hline Mefen II & \(269.63 \pm 12.40\) & 4.60 & \(96.75 \pm 1.81\) & \(18.83 \pm 1.60\) \\
\hline Mefen III & \(349.60 \pm 12.08\) & 3.46 & \(99.48 \pm 3.56\) & \(10.66 \pm 0.41\) \\
\hline
\end{tabular}
* Relative Standard Deviation
standard deviation of all capsules were shown in Table 10. The formulas of Fixed-diluent Tetracycline Hydrochloride (I, III) Capsules exhibited average weight variation and relative standard deviation within the USPXX requirement but the formulas of Fixed-diluent Cimetidine III exceeded the USP limit. The Fixed-diluent Cimetidine II, IV , V and the Fixeddiluent Mefenamic Acid (I, II) Capsules were still within the USP and the BP requirement, respectively.
4.2 Content Uniformity

The mean and standard deviation of content uniformity of all experimental capsules are illustrated in Tables 9 and 10. The results of Tetracycline Hydrochloride and Cimetidine Capsules were all within the range of USPXXII standard (90.0-125.0\% for Tetracycline Hydrochloride Capsules and \(90.0 \%-110.0 \%\) for Cimetidine Tablets) and the results of Mefenamic Acid Capsules were within the range of BP1988 standard (92.5-107.5\%). The fixed-diluent capsule formulations of all source exceeded the range of standard except Tetracycline Hydrochloride I and II fixed-diluent formulas exhibited within the USP requirement.
4.3 Disintegration Time of Tetracycline Hydrochloride Capsules, Cimetidine Capsules Mefenamic Acid Capsules and their fixed-diluent formulas were shown in Table 9 and Table 10, respectively.

The disintegration Time of all experimental capsules were slightly different except for Mefenamic Acid II and

Table 10
Physical Properties of Experimental Capsules
\begin{tabular}{|c|c|c|c|c|}
\hline Experimental Capsules & \[
\begin{gathered}
\text { Weight } \\
\text { Variation } \\
(m g \pm S D) \\
n=20 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { \% } \\
\text { RSD }
\end{gathered}
\] & Content Uniformity (\% \(\pm\) SD) \(\mathrm{n}=10\) & ```
Disintegra-
tion Time
    (min.\pmSD)
        n=6
``` \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Tetra I Fix \\
Tetra III Fix
\end{tabular}} & \[
460.02 \pm 10.09
\] & 2.19 & \(95.05 \pm 3.10\) & \(3.63 \pm 0.80\) \\
\hline & \(460.14 \pm 10.30\) & 2.24 & \(95.59 \pm 2.79\) & \(4.17 \pm 0.44\) \\
\hline \multirow[t]{4}{*}{```
Cimet II Fix
Cimet III Fix
Cimet IV Fix
Cimet V Fix
```} & \(273.80 \pm 26.54\) & 9.69 & \(103.28 \pm 13.66\) & \(4.58 \pm 0.20\) \\
\hline & \(271.83 \pm 31.74\) & 11.68 & \(94.32 \pm 14.90\) & \(3.75 \pm 0.45\) \\
\hline & \(281.86 \pm 17.45\) & \[
6.19
\] & \(97.20 \pm 9.81\) & \(4.00 \pm 0.32\) \\
\hline & \(291.36 \pm 13.75\) & 4.72 & \(97.00 \pm 7.72\) & \(4.29 \pm 0.56\) \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Mefen I Fix \\
Mefen II Fix
\end{tabular}} & \(351.08 \pm 17.91\) & 5.10 & \(104.72 \pm 9.96\) & \(10.63 \pm 0.38\) \\
\hline & \(259.92 \pm 17.08\) & 6.57 & \(93.04 \pm 9.43\) & \(19.83 \pm 0.41\) \\
\hline
\end{tabular}
fixed-diluent formulas of Mefenamic Acid II exceeded the BP limit (15 min.).
4.4 Dissolution Studies
4.4.1 Raw material of Tetracycline Hydrochloride and Tetracycline Hydrochloride Capsules

The dissolution behaviors of various raw material tetracycline capsules and experimental tetracycline capsules are shown in Figures 33 and 34 respectively. The dissolution profiles of raw material capsules are similar and exhibited \(70 \%\) tetracycline hydrochloride released within 5 minutes, unlike Tetracycline Hydrochloride I and II capsules exhibited \(70 \%\) release within 7 minutes and Tetracycline Hydrochloride III capsules exhibited \(70 \%\) release within 50 minutes. All of the experimental capsules meet the USP specification ( \(70 \%\) within 60 minutes). It was noticed that the dissolution of Tetracycline Hydrochloride III capsules took longer time to release the drug but still within the compendial limit.

Consideration through the data in Tables 11 and 12 , it was found that there were no statistically significant differences in percent and time for drug to release from raw material Tetracycline Hydrochloride capsules unlike the data in Tables 13 and 14 show that there were statistically significant differences in percent and time for drug to release from the experimental Tetracycline Hydrochloride Capsules.

\section*{Comparative Dissolution Profiles}
- of Raw Mat. Tetracycline I-III


Figure 33 Comparative Dissolution Profiles of Raw Material Tetracycline Hydrochloride I, II and III

\section*{Comparative Dissolution Profiles} of Tetracycline I-III Capsules


Figure 34 Comparative Dissolution Profiles of Tetracycline Hydrochloride I, II and III Capsules

Table 11
Analysis of Variance for percent drug released of various Raw Material Tetracycline Hydrochloride Capsules at 60 min.
\begin{tabular}{|l|c|c|c|c|}
\hline Source of Variance & \(\mathrm{DF}^{(\mathrm{a})}\) & \(\mathrm{SS} *\) & \(\mathrm{MS**}\) & \(\mathrm{~F} * * *\) \\
\hline Among Groups & 2 & 36.160 & 18.080 & 1.803 \\
Within Groups & 6 & 60.159 & 10.026 & 1.803 \\
\hline Total & 8 & 96.319 & 12.040 & \\
\hline \hline
\end{tabular}
(a) Degree of freedom
* Sum of squares
** Mean of squares
*** F ratio
Table \(F_{0.05(2,6)}=5.14\)

Table 12
Analysis of Variance for time of various Raw Material Tetracycline Hydrochloride Capsules at \(70 \%\) released.
\begin{tabular}{|l|c|c|c|c|}
\hline Source of Variance & DF & SS & MS & F \\
\hline Among Groups & 2 & 0.086 & 0.043 & 0.375 \\
Within Groups & 6 & 0.690 & 0.115 & 0.375 \\
\hline Total & & & & \\
\hline \hline
\end{tabular}
\[
F_{0.05(2,6)}=5.14
\]

Table 13
Analysis of Variance for percent drug released of Experimental Tetracycline Hydrochloride Capsule at 60 min .
\begin{tabular}{|l|c|c|c|c|}
\hline Source of Variance & DF & SS & MS & F \\
\hline Among Groups & 2 & 153.929 & 76.965 & 6.590 \\
Within Groups & 6 & 70.078 & 11.680 & 6.590 \\
\hline Total & 8 & 224.008 & 28.001 & \\
\hline
\end{tabular}
\[
F_{0.05(2,6)}=5.14
\]

Table 14
Analysis of Variance for time of Experimental Tetracycline Hydrochloride Capsule at \(70 \%\) released.
\begin{tabular}{|l|r|c|c|c|}
\hline Source of Variance & DF & \multicolumn{1}{|c|}{ SS } & \multicolumn{1}{c|}{ MS } & F \\
\hline Among Groups & 2 & 2783.874 & 1391.937 & 225.398 \\
Within Groups & 6 & 37.053 & 6.175 & 225.398 \\
\hline Total & 8 & 2820.927 & 352.616 & \\
\hline \hline
\end{tabular}
\[
F_{0.05(2,6)}=5.14
\]
4.4.2 Raw material of Cimetidine and Cimetidine Capsules

The dissolution behaviors of various raw material cimetidine capsules and experimental capsules are shown in Figures 35 and 36 respectively. The dissolution profiles of raw material capsules are slightly different and exhibited \(75 \%\) Cimetidine released within 10 minutes, unlike Cimetidine I-IV Capsules exhibited \(75 \%\) release within 7 minutes and Cimetidine V Capsules exhibited \(75 \%\) release within 15 minutes. All of the experimental capsules meet the USP specification ( \(75 \%\) within 15 minutes). It was noticed that the dissolution of Cimetidine \(y\) Capsules took longer time to release the drug but still within the compendial limit.

Consideration through the data in Tables 15 and 16 , it was found that there were statistically significant differences in percent and time for drug to release from raw material cimetidine capsules and the data in Tables 17 and 18 show that there were statistically significant differences in percent and time for the drug to release from the experimental Cimetidine capsules too.
4.4.3 Raw material of Mefenamic Acid and Mefenamic Acid Capsule

The dissolution behaviors of various raw material mefenamic acid capsules and experimental capsules are shown in Figures 37 and 38 respectively. The dissolution profiles of raw material capsules and experimental capsules

\section*{Comparative Dissolution Profiles}
of Raw Mat.Cimetidine I-V



\section*{Comparative Dissolution Profiles of Cimetidine I-V Capsules}

\(\begin{array}{cl}\text { Figure } 36 & \text { Comparative Dissolution Profiles of Cimetidine I, } \\ & \text { II, III, IV and V Capsules }\end{array}\)

Table 15
Analysis of Variance for percent drug released of various Raw Material Cimetidine Capsules at 15 min .
\begin{tabular}{|l|r|r|r|c|}
\hline Source of Variance & DF & \multicolumn{1}{|c|}{ SS } & MS & F \\
\hline \begin{tabular}{l} 
Among Groups \\
Within Groups
\end{tabular} & \begin{tabular}{r}
4 \\
\hline
\end{tabular} & \begin{tabular}{r}
425.037 \\
93.369
\end{tabular} & \begin{tabular}{r}
106.259 \\
9.337
\end{tabular} & \begin{tabular}{l}
11.381 \\
11.381
\end{tabular} \\
\hline Total & 14 & 518.406 & 37.029 & \\
\hline \hline
\end{tabular}
\[
F_{0.05(4,10)}=3.48
\]

Table 16
Analysis of Variance for time of various Raw Material Cimetidine Capsules at \(75 \%\) released.
\begin{tabular}{|l|r|c|c|c|}
\hline Source of Variance & DF & SS & MS & F \\
\hline Among Groups & 4 & 19.084 & 4.771 & 6.870 \\
Within Groups & 10 & 6.945 & 0.694 & 6.870 \\
\hline Total & 14 & 26.029 & 1.859 & \\
\hline \hline
\end{tabular}
\[
F_{0.05(4,10)}=3.48
\]

Table 17
Analysis of Variance for percent drug released of Experimental Cimetidine Capsules at 15 min .
\begin{tabular}{|l|r|r|r|c|}
\hline Source of Variance & DF & SS & MS & F \\
\hline Among Groups & 4 & 576.800 & 144.200 & 29.205 \\
Within Groups & 10 & 49.376 & 4.938 & 29.205 \\
\hline Total & 14 & 626.176 & 44.727 & \\
\hline \hline
\end{tabular}
\[
F_{0.05(4,10)}=3.48
\]

Table 18
Analysis of Variance for time of Experimental Cimetidine Capsules at \(75 \%\) released.
\begin{tabular}{|l|r|r|r|c|}
\hline Source of Variance & DF & SS & \multicolumn{1}{|c|}{ MS } & F \\
\hline Among Groups & 4 & 116.200 & 29.050 & 81.477 \\
Within Groups & 10 & 3.565 & 0.357 & 81.477 \\
\hline Total & 14 & 119.765 & 8.555 & \\
\hline \hline
\end{tabular}
\[
F_{0.05(4,10)}=3.48
\]

Comparative Dissolution Profiles of Raw Mat. Mefenamic I-III



\section*{Comparative Dissolution Profiles} of Mefenamic Acid I-III Capsules


Figure 38 Comparative Dissolution Profiles of Mefenamic Acid I, II and III Capsules
are very different. There was no compendial limit for dissolution in BP monograph and the only formula of Mefenamic Acid III capsules that exhibited more than \(50 \%\) mefenamic acid released within 40 minutes.

Consideration through the data in Tables 19 and 20, it was found that there were statistically significant differences in percent for drug to release from raw material capsules and the experimental capsules at 60 min .
\[
\begin{aligned}
& \text { 4.4.4 Fixed-diluent Capsules } \\
& \text { 4.4.4.1 Tetracycline Hydrochloride }
\end{aligned}
\]

The dissolution behaviors of Fixed-diluent tetracycline capsule samples are shown in Figure 39. The dissolution profiles of Fixed-Diluent Tetracycline Hydrochloride Capsules and the Working formula of Tetracycline Hydrochloride II are not similar. The Fixed-Diluent Formula of Tetracycline Hydrochloride I exhibited \(70 \%\) tetracycline hydrochloride released within 20 minutes, unlike the FixedDiluent Formula of Tetracycline Hydrochloride III Capsules exhibited \(70 \%\) release within 60 minutes while the Working formula of Tetracycline Hydrochloride II Capsules exhibited 70\% release within 10 minutes. All of the experimental capsules meet the USP specification ( \(70 \%\) within 60 minutes). It was noticed that the dissolution of Fixed-Diluent Formula of Tetracycline Hydrochloride III Capsules took longer time to release the drug but still within the compendial limit.

Table 19
Analysis of Variance.for percent drug released of various Raw Material Mefenamic Acid Capsules at 60 min.
\begin{tabular}{|l|c|c|c|c|}
\hline Source of Variance & DF & SS & MS & F \\
\hline Among Groups & 2 & 354.642 & 177.321 & 88.087 \\
Within Groups & 6 & 12.078 & 2.013 & 88.087 \\
\hline Total & 8 & 366.720 & 45.840 & \\
\hline \hline
\end{tabular}
\[
F_{0.05(2,6)}=5.14
\]

Table 20
Analysis of Variance for percent drug released of Experimental Merenamic Acid Capsules at 60 min .
\begin{tabular}{|c|c|c|c|c|}
\hline Source of Variance & DF & SS & MS & F \\
\hline Among Groups & 2 & 3230.360 & 1615.18 & 62.642 \\
\hline Within Groups & 6 & 154.706 & 25.78 & 62.642 \\
\hline Total & 8 & 3385.066 & 423.133 & \\
\hline
\end{tabular}

\section*{Comparative Dissolution Profiles of Tetracycline II, Fixed I,III Capsules}


Figure 39 Comparative Dissolution Profiles of Tetracycline Hydrochloride II, Fixed-diluent I and Fixed-diluent III Capsules


Table 21
Analysis of Variance for percent drug released of Tetracycline II, Fixed-diluent Tetracycline (I and III) Capsules at 60 min.
\begin{tabular}{|l|c|c|c|c|}
\hline Source of Variance & DF & SS & MS & F \\
\hline Among Groups & 2 & 188.516 & 94.258 & 8.625 \\
Within Groups & 6 & 65.574 & 10.929 & 8.625 \\
\hline Total & 8 & 254.090 & 31.761 & \\
\hline \hline
\end{tabular}
\[
F_{0.05(2,6)}=5.14
\]

Table 22
Analysis of Variance for time of Tetracycline II, Fixad-diluent Tetracycline (I and III) Capsules at \(70 \%\) released.
\begin{tabular}{|l|r|r|r|c|}
\hline Source of Variance & DF & \multicolumn{1}{|c|}{ SS } & \multicolumn{1}{c|}{ MS } & F \\
\hline \begin{tabular}{l} 
Among Groups \\
Within Groups
\end{tabular} & 2 & 2250.518 & 1125.259 & 74.275 \\
& 6 & 90.899 & 15.150 & 74.275 \\
\hline Total & 8 & 2341.417 & 292.677 & \\
\hline \hline
\end{tabular}
\[
F_{0.05(2,6)}=5.14
\]
it was found that there were statistically significant differences in percent and time for drug to release from the experimental Fixed-Diluent Formulas and Working Formula of Tetracycline Hydrochloride capsules.

> 4.4.4.2 Cimetidine

The dissolution behaviors of Fixed-diluent Cimetidine capsule samples are shown in Figure 40 . The dissolution profiles of Fixed-Diluent Formulas and the Working Formula of Cimetidine Capsules are slightly different and exhibited \(75 \%\) Cimetidine released within 7 minutes. All of the experimental capsules meet the USP specification ( \(75 \%\) within 15 minutes). Consideration through the data in Tables 23 and 24, it was found that there was a statistically significant difference in time for drug to release from the experimental Fixed-diluent and Working Formula of Cimetidine capsules but there was no statistically significant difference in 75 percent drug released.

> 4.4.4.3 Mefenamic Acid

The dissolution behaviors of Fixed-diluent Mefenamic Acid capsule samples are shown in Figure 41. The dissolution profiles of Fixed-diluent Formulas and Working Formula of Mefenamic Acid Capsules were very different. There was no compendial limit for dissolution in BP monograph and the only formula of Mefenamic Acid III capsules that exhibited more than \(50 \%\) mefenamic acid released within 40 minutes.

\section*{Comparative Dissolution Profiles of Cimetidine I, Fix II-V Capsules}


Table 23
Analysis of Variance for percent drug released of Cimetidine \(I\), Fixed-diluent Cimetidine (II,III,IV and V) Capsules at 15 min.
\begin{tabular}{|l|r|l|l|l|}
\hline Source of Variance & DF & \multicolumn{1}{l|}{ SS } & MS & F \\
\hline Among Groups & 4 & 2.560 & 0.640 & 4.754 \\
Within Groups & 10 & 1.346 & 0.135 & 4.754 \\
\hline Total & 14 & 3.907 & 0.279 & \\
\hline \hline
\end{tabular}

Table 24
Analysis of Variance for time of Cimetidine I, Fixed-diluent Cimetidine(II, III, IV and \(V\) ) Capsules at \(75 \%\) released.
\begin{tabular}{|l|r|c|c|c|}
\hline Source of Variance & DF & SS & MS & F \\
\hline Among Groups & 4 & 16.181 & 4.045 & 3.424 \\
Within Groups & 10 & 11.814 & 1.181 & 3.424 \\
\hline Total & 14 & 27.995 & 2.000 & \\
\hline
\end{tabular}
\[
\mathrm{F}_{0.05(4,10)}=3.48
\]



Figure 41 Comparative Dissolution Profiles of Mefenamic Acid III, Fixed-diluent I and Fixed-diluent III Capsules

Consideration through the data in Table 25, it was found that there were statistically significant differences in percent and time for drug to release from the experimental Fixed-diluent and Working Formula of Mefenamic Acid capsules.

Table 25
Analysis of Variance for percent drug released of Mefenamic Acid III , Fixed-diluent Mefenamic Acid (I and II) Capsules at 60 min.
\begin{tabular}{|l|c|c|c|c|}
\hline Source of Variance & DF & SS & MS & F \\
\hline \begin{tabular}{l} 
Among Groups \\
Within Groups
\end{tabular} & 2 & 3175.357 & 1587.67 & 26.652 \\
& 6 & 357.427 & 59.57 & 26.652 \\
\hline Total & 8 & 3532.784 & 441.598 & \\
\hline \hline
\end{tabular}```


[^0]:    Figure 5 Photomicrographs of Raw Material Tetracycline I (Key : A x 100 , B x 500 , C x 2,000)

