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CHAPTER 5

THR EULER - LAGRANGE DIFFERENTIAT. FQUATION.

The problem discussed in chapters 2, 3 end U is that of
firding o curve ¥ = ¥(x} satisfying the econditicns }f{xo} = ¥,

y(xn] = ¥, which make the integral
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a minimum,

In the direct methed for solving this problem we coneider the
functional I for ergument functions which sre polygonal curves,
consleting of line segments whose vertices have the fixed abﬁcissﬁe
Koz Xypesenan xn. Along such polygonal curves the functional £
iz a function of ¥yr Ypreeases ¥ 15 which are the ordinateg of the

vertices of the pulygonnl curves, that is
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The functicnal I then becomes
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By constructing a sequence of polygons Pk using the method of
chapter 3 and 4 we obtain o monotomic deerensing sequence of values
o I. Then the required pclygon that makes the value of T o minipum

i= the polyecn 2 whose vertices have ordinates satisfying the
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satisfies The Euler - Logrange differentiel zguation
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Then in the limit as A x —3 O the equation {S.lL) has the form
(5.3)
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Example &4

8) In case of the shortest aprc Joining twe siven points,

where F = F (¥ ) = }.‘1 + (¥ }éd-.

The solution of this problem 1s the solution of the Euler -

Lagrange equotion
F 3l ( IF ) IS
Sy dx dy X

which is ¥ = c.x + ¢

1

In example I, choptor 2
vy} = o, y{n) = o.
Then the solution 1s
¥ = QO
which is the =ame result os that ohbtoined by the Airect method

in exomple 1.

b) In the case of the surface of revolution of ménimum area
x.,

I = 2x J y)}f L+ (¥)¥ ax,
Ao f
where F = F (y, y’} = 3}1"‘(1'!}2 .

The solution of this problem is the soluticn of the Fuler -

Lagrange equation

oF - d EE. = o
3y Ax | Ay’ *



LB
which is

i - i
¥ = b cosh (x. —_ ) .
12

In example 2, chapter 3 the polygons obtained in the direet method

converge Lo the curve ¥y = 2 gosh (x - 1) -
c
¢) In the case of the Brachistochrone problem,
Xt
1 & 1l + [:!,r )2
I = = | - 4
Jog Jy
)

f Y-
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and by = !

Y s
The solution of this problem is the sclution of the Euler -

Largonge equation.

= 0 -

x4 [
3y dx | 2y’

which is

x a {t - sint)}

n

¥ a {1 - gost) ,

This is o cycloid.
In example &, chapter 4. The palygons obtoined by the direst
method converge to the ourve
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APENDIY (see page 15 amd pPoge 36)
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