SURFACE OF REVOLUTION OF MINIMUM AREA.

If (x_0, y_0) and (x_n, y_n) are two given points, we want to find the curve y = y(x) joining them such that $y(x) \ge 0$ in the interval x_0 to x_n , and $I = 2\pi \int_{x_0}^{x_n} y \sqrt{1 + (y')^2} dx \dots (3.1)$ is a minimum.

functional I depends on the ordinates of vertices y_1, y_2, \dots, y_{n-1} of the polygons, or in other words the functional I is a function of y_1, y_2, \dots, y_{n-1} , say $I = \{y_1, y_2, \dots, y_{n-1}\}$.

For the polygonal curves we obtain from (3.1)

$$I = 2\pi \sum_{i=0}^{n-i} \int_{Y_i}^{X_{i+1}} y \sqrt{1 + (y')^2} dx$$

$$= 2\pi \sum_{i=0}^{n-i} \left(\frac{y_{i+1} + y_i}{2}\right) \sqrt{1 + \left(\frac{y_{i+1} - y_i}{\Delta x}\right)^2} \Delta x$$

$$= \bigvee_{i=0}^{n-i} \left(y_1, y_2, \dots, y_{n-1}\right).$$
Let $Y_i = \frac{y_i + y_{i+1}}{2}$
and $Y_i' = \frac{y_{i+1} - y_i}{\Delta x}$, for $i = 0, 1, 2, \dots, n-1$.

Then $\forall (y_1, y_2, \dots, y_{n-1}) = 2\pi \sum_{i=0}^{n-i} F(x_1, Y_1, Y_1') \Delta x$,

where $F(x_i, Y_i, Y_i) = Y_i \sqrt{1 + (Y_i)^2}$. Although x_i does not appear on the right hand side, it has been included in F so that the general result obtained later in chapter 5 may be applied here.

Let the initial polygonal curve joining (x_0, y_0) and (x_n, y_n) be P^0 with vertices P_1^0 (X_1, Y_1^0) , $i=0,1,2,\ldots,n$, and let I_0 be the value of the integral I along P^0 . Then

$$I_{o} = 2\pi \sum_{i=0}^{m-1} \left(\frac{y_{i}^{o} + y_{i+1}^{o}}{2}\right) \sqrt{1 + \left(\frac{y_{i+1}^{o} - y_{i}^{o}}{\Delta x}\right)^{2}} \Delta x$$

$$= 2\pi \sum_{i=0}^{m-1} P_{i}^{o} P_{i+1}^{o},$$

Where P_{i}° P_{i+1}° is the surface area generated by revolving the segment joining the consecutive vertices of the polygon P° about the x - axis.

Now by fixing y_0^0 and y_2^0 we can choose y_1^1 on $x=x_1$ to make the surface area

$$2\pi \left[\left(\frac{y_0^0 + y_1^1}{2} \right) \sqrt{1 + \left(\frac{y_1^1 - y_0^0}{\Delta x} \right)^2} \cdot \Delta x + \left(\frac{y_1^1 + y_2^0}{2} \right) \sqrt{1 + \left(\frac{y_2^0 - y_1^1}{\Delta x} \right)^2} \Delta x \right]$$

generated by the new polygonal curve from x to x_2 a minimum. This must be less than or equal to its previous value

$$2\pi \left[\left(\frac{y_0^0 + y_1^0}{2} \right) \sqrt{1 + \left(\frac{y_1^0 - y_0^0}{\Delta x} \right)^2} \Delta x + \left(\frac{y_1^0 + y_2^0}{2} \right) \sqrt{1 + \left(\frac{y_2^0 - y_1^0}{\Delta x} \right)^2} \Delta x \right].$$

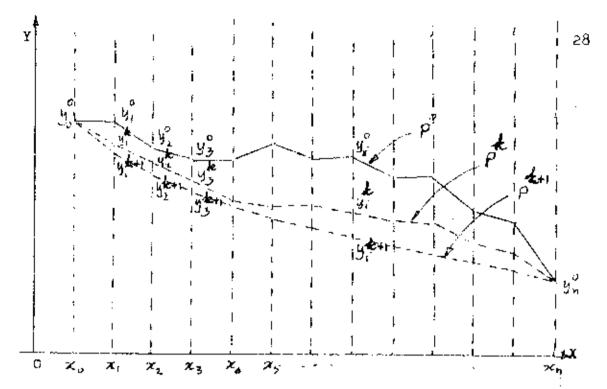


Fig. 8. Polygons constructed to find the minimum surface of revolution.

Then again by fixing y_1^1 and y_3^0 we can choose y_2^1 on $x = x_2$ to make the surface area

$$2\pi \left(\left(\frac{y_1^1 + y_2^1}{2} \right) \sqrt{1 + \left(\frac{y_2^1 - y_1^1}{\Delta_x} \right)^2} \cdot \Delta x + \left(\frac{y_2^1 + y_3^0}{2} \right) \sqrt{1 + \left(\frac{y_3^0 - y_2^1}{\Delta_x} \right)^2} \cdot \Delta x \right)$$

generated by the new polygonal curve from x_1 to x_3 a minimum. This must be less than or equal to its previous value

$$2\pi \left[\left(\frac{y_1^1 + y_2^0}{2} \right) \sqrt{1 + \left(\frac{y_2^0 - y_1^1}{\triangle x} \right)^2} \cdot \triangle x + \left(\frac{y_2^0 + y_3^0}{2} \right) \sqrt{1 + \left(\frac{y_3^0 - y_2^0}{\triangle x} \right)^2} \cdot \triangle x \right]$$

and so on. (see Fig.8)

Repeating the same process for the remaining intervals to get y_0^1 , y_1^1 , y_{n-1}^1 . we obtain a new polygon p^1 the ordinates of the vertices of which are $y_0^1 = y_0^0$, y_1^1 , y_2^1 , y_{n-1}^1 , $y_n^1 = y_n^0$.

Let the value of the integral I along P^1 be I_1 . Then

$$I_1 = 2\pi \left(\frac{y_1^1 + y_{1+1}^1}{2}\right) \sqrt{1 + \left(\frac{y_1^1 - y_1^1}{\Delta x}\right)^2} \cdot \Delta x.$$

Next applying the same process to F^1 we get the polygon P^2 , and by repeat the process again and again we obtain a sequence of polygons P^3 , P^4 , P^k , For the polygon P^k the ordinates of the vertices are $y_0^k = y_0^0$, y_1^k , y_2^k , y_{n-1}^k , $y_n^k = y_n^0$ and the value of the integral I is .

$$I_{\mathbf{k}} = 2\pi \sum_{i=0}^{m-i} \left(\frac{\mathbf{y}_{i}^{k} + \mathbf{y}_{i+1}^{k}}{2} \right) \sqrt{1 + \left(\frac{\mathbf{y}_{i+1}^{k} - \mathbf{y}_{i}^{k}}{\Delta \times} \right)^{L}} \Delta \mathbf{x}$$

By an argument similar to that in the proof of lemma 2, the sequence \mathbf{I}_0 , \mathbf{I}_1 , \mathbf{I}_2 , as defined in the preceeding section is monotonic decreasing, moreover it is bounded below by zero.

Therefore this sequence converges to a limit $I_{\mathfrak{m}}$, which is the greatest lower bound of the sequence .

In other words the polygonal curves converge to the polygon P^m that makes the value of the integral I minimum, or we may say that the ordinates of the vertices y_i^k of the polygon P^k converge in such a way that in the limit as $k \to \infty$ the equation

$$\frac{\partial \varphi}{\partial y_i} = 0 , i = 1, 2, \dots, n-1,$$

is satisfied.

Example 2.

Find a curve y(x), where y(0) = 2.2552, y(5) = 7.5244 that makes the integral

 $I = 2\pi \int_{0}^{5} y \sqrt{1 + (y')^{2}} dx \quad \text{a minimum. This particular end points are so chosen as to simplify comparison between the numerical approximation found below and the known analytical solution (see chapter 5).$

Choose the initial arbitrary polygonal curve P^0 with vertices (0,2.2552), (1, 4), (2, 4.5), (3,57), (4, 6.5), (5, 7.5244). Construct the polygons P^k , $k=1, 2, \ldots$ by the method in chapter 3.

Thus to construct y_1^1 we first note that the surface area generated between x_0 and x_0 by p^0 is

$$\pi \left((2.2552 + 4) \sqrt{1 + \left(\frac{4 - 2.2552}{1}\right)^2} \cdot 1 + \left(\frac{4 + 4.5}{1}\right) \sqrt{1 + \left(\frac{4.5 - 4}{1}\right)^2} \cdot 1 \right)$$

$$=$$
 22.0822 (π)

Next - choose $y_1^1 = 3.00$ the surface area is

$$\pi = \left((2.2552 + 3) \right) \sqrt{1 + \left(\frac{3.00 - 2.2552}{1} \right)^{2}} \cdot 1 + (3.00 + 4.5) \sqrt{1 + \left(\frac{4.5 - 3.00}{1} \right)^{2}} \cdot 1$$

$$= 20.0721 (\pi)$$

which is less than 22.0822 (π)

Next choose $y_1^1 = 2.0$ then the surface area is 21.8932 (7), which is greater than 20.0721 (7). Therefore we select $y_1^2 = 3.00$.

The results are given in table 2 together with the value of \mathbf{I}_k , and are illustrated in figure 8. It should be observed that to save labour \mathbf{y}_1^k is found only to a few significant figures of accuracy for small value of k, but for larger values of k the accuracy is increased. Figure 8 also shows the analytical solution (see chapter 5).

Table 2. Example 2. Values of y_1^k .

Σ				~~~~~~~	 		
k k	0	1	2	3	. 4	5	1,(1)
0	2.2552	4-0	4.5	5.70	6.5	7.5244	73.8460
; ; 1	2.2552	3.0	4.0	5.0	6.0	7.5244	69.3921
2	2.2552	2.8	3.5	4.5	5-7	7.5244	68.3061
3	2.2552	2.6	3-3	4.3	5.6	7.5244	67.7850
<u>.</u> 4	2.2552	2.5	3:1	4.0	5-4	7.5244	67.4969
: 5	i 2•2552	2.4	2.9	3 . 8	5.2	7.5244	67.3247
6	2.2552	2.3	2.7	3.6	5.1	7.5244	67.2091
7	2.2552	2.2	2.6	3•5	5.0	7.5244	67.1685
8	2.2552	2.19	2.55	3.4	4.95	7-5244	67.1543
9	2.2552	2.15	2.5	3-35	4.85	7.5244	67.1484
10	2,2552	2.14	2.45	3.3	4.84	7.5244	67,1419
11	2.2552	2,13	5• # ₇ +	3.28	4.83	7.5244	67.1399
12	2.2552	2.12	2.42	3.27	4.83	7.5244	67.1381
13	2.2552	2.10	2.41	3.26	4-83	44 7.52	67.1357
14	2.2552	2.09	2.40	3.24	4.82	7.5244	67;1349
15	2.2552	2.085	2.38	3.23	4.81	7-5244	67.13441
	••••	••••	••••			••••	••••
	••••	 į	• • • •			••••	
	, , ,				ļ j		
: : !	2.7552	2.0000	Analytic 2.2552	al soluti 3.0862;	on 4.7048	7:5244	66.9304

