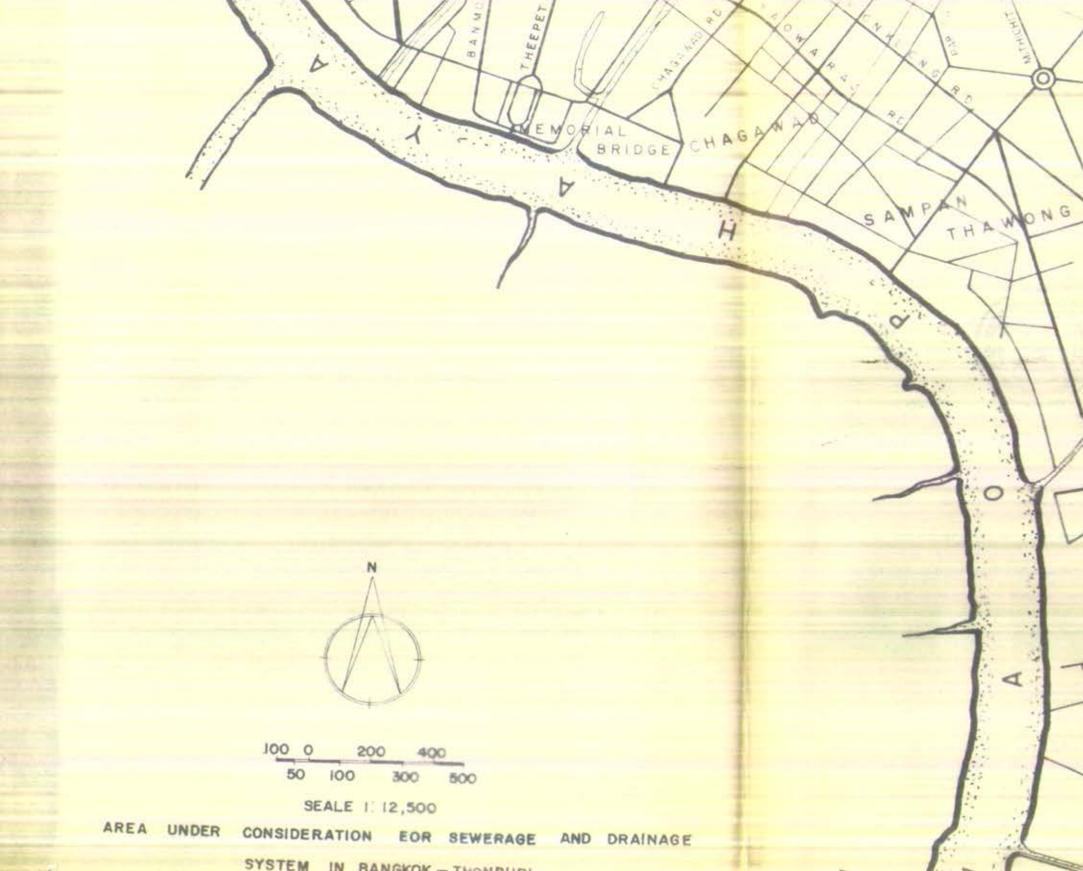
CHAPTER 9

DESIGN AND CALCULATION

Seperated system is adopted in this othere. The sewerage system would be laid at the edge of roads adjacent to the footpath. Some parts of existing system has still used for the drainage system by the storm water is drained to nearest main klongs. The drainage system would be placed under the footpath. By this way the traffic congestion is climinated. A lot of money has to spend in these works consequently the area under consideration would be smaller. The area for this scheme, 33 km² is considerationough for the community needed which is shown in Figure 17. The septic tank has still utilized in the outside of sewerage area.

SANITARY SEVERS

According to following the Litchfield concept that the population in the actropolitan area would hold in the limit of 4.5 million people. The Land Use prepared by Litchfield for 4.5 million people is brought for design in this echeme. Nigure 18 shows the separated area of commercial, institution etc. Population intensity can be found from Table 4.


Site of Treatment Plant

It would be located at the end of Klong Chong Monsi end near Chao Phraya River. This site considered very suitably which the reasons are as following:-

 It is close to the community about 5.5 kilometres from the centre of the city.

2

GKASEN

A

M

R

S

NARES

R

TARAM

RD

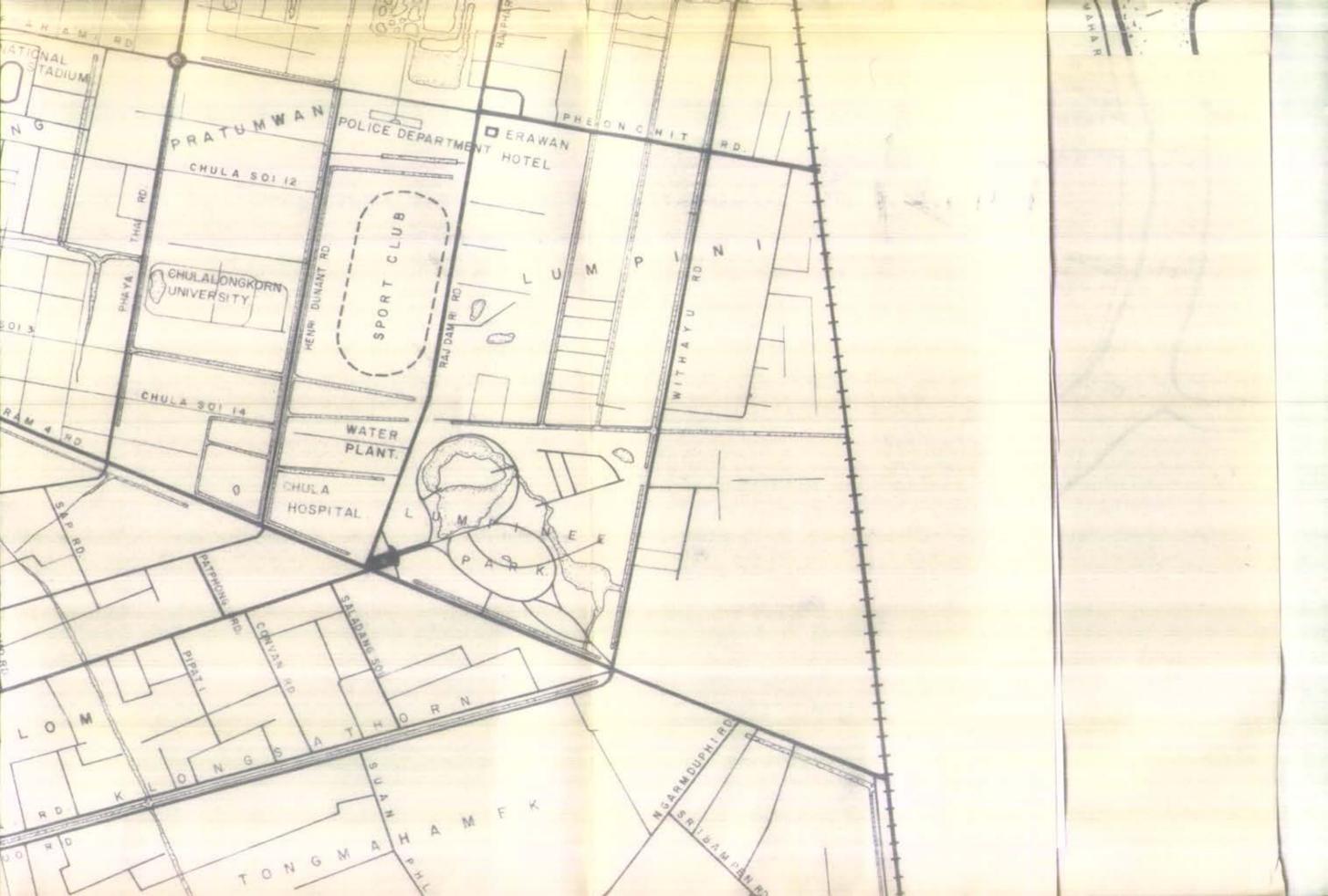
PRAMUAN RD

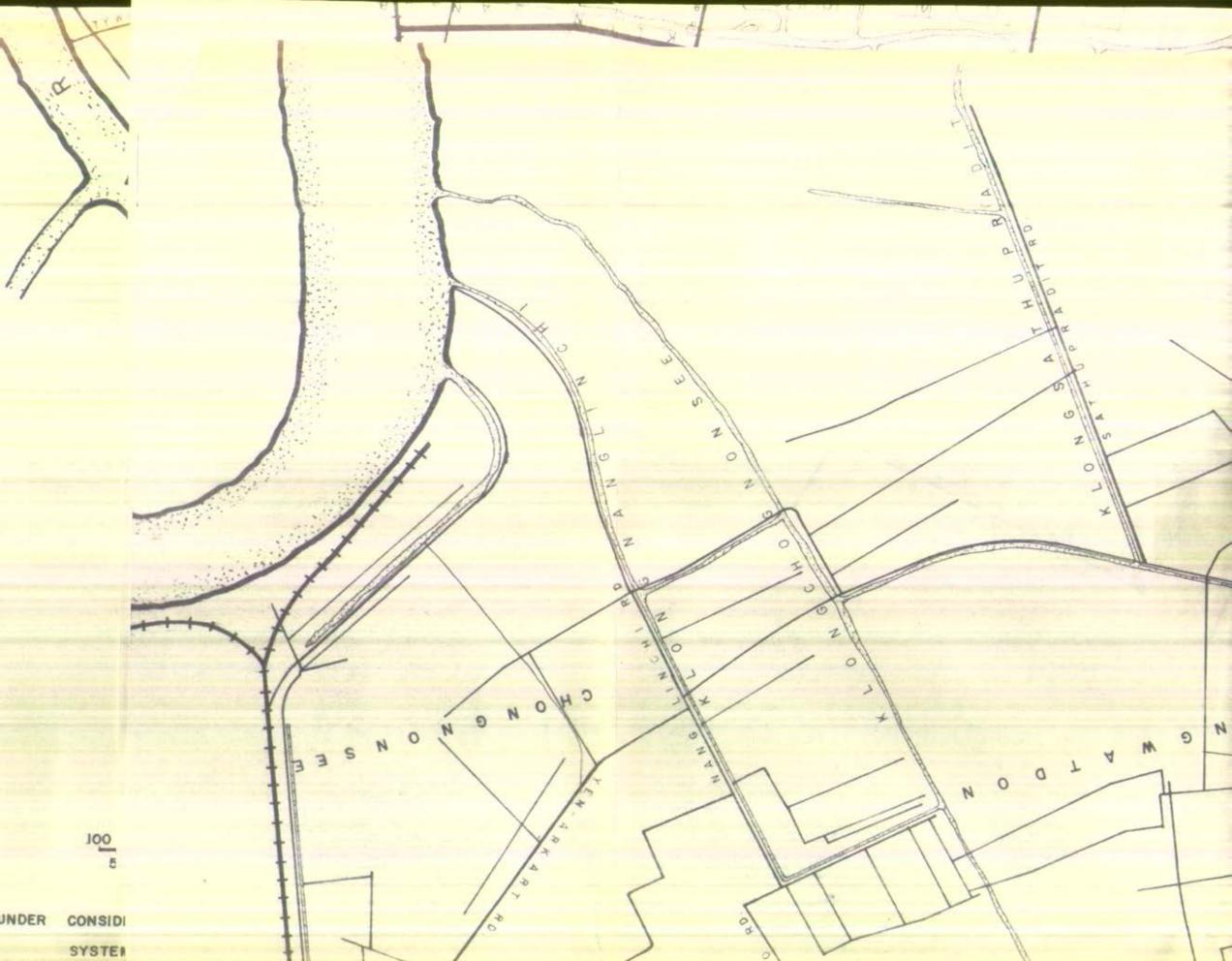
RD

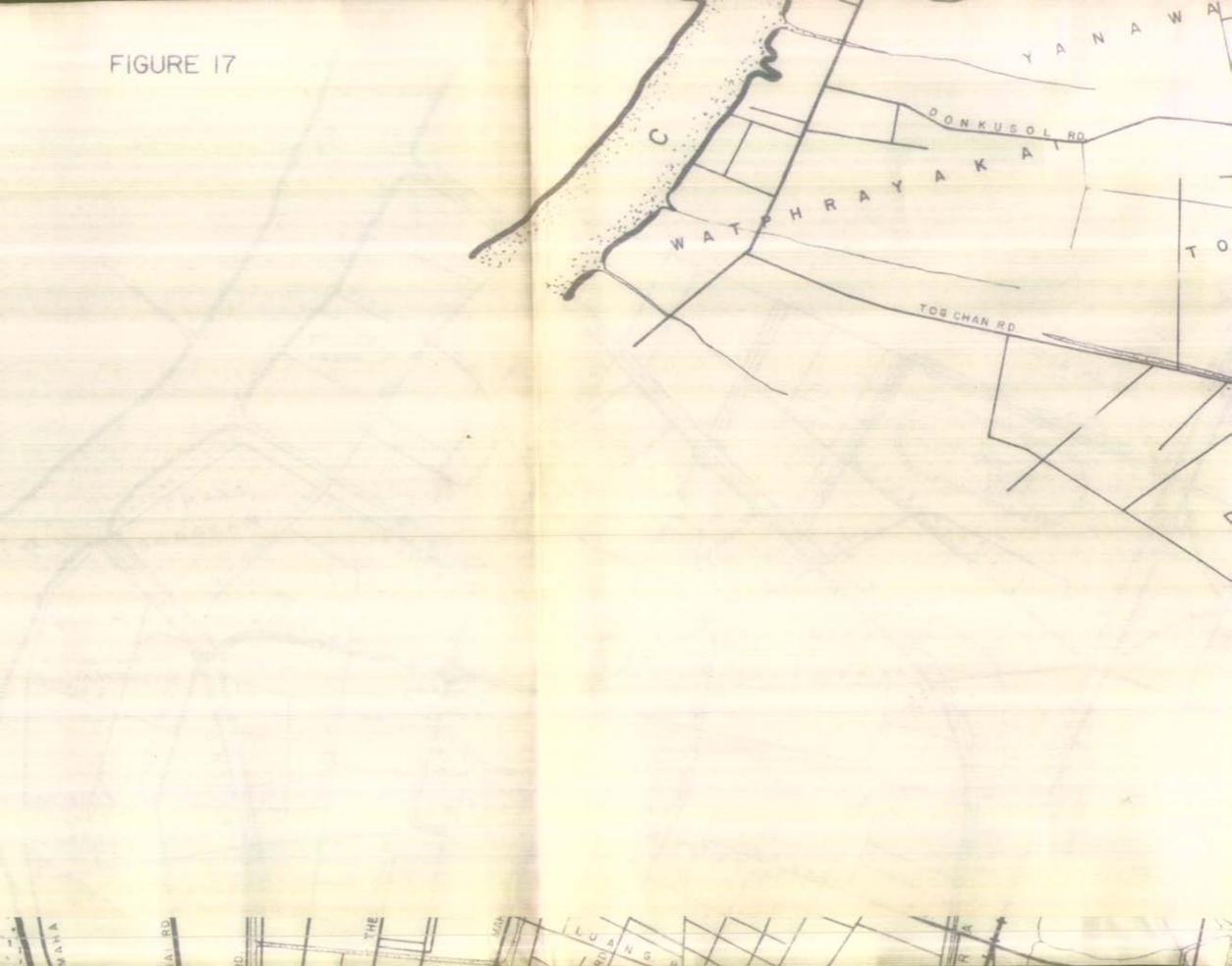
SIPRAYA

RD

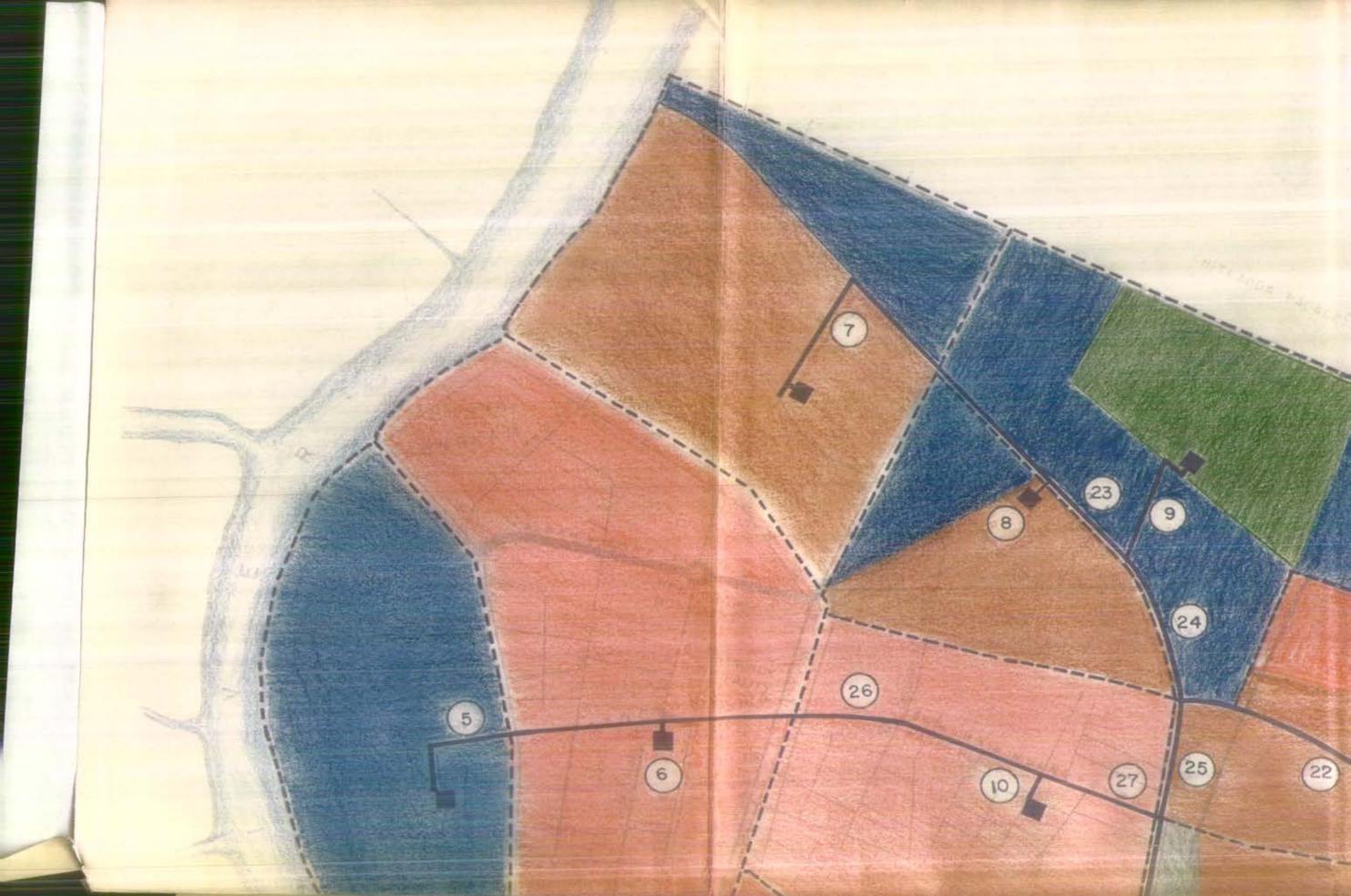
×

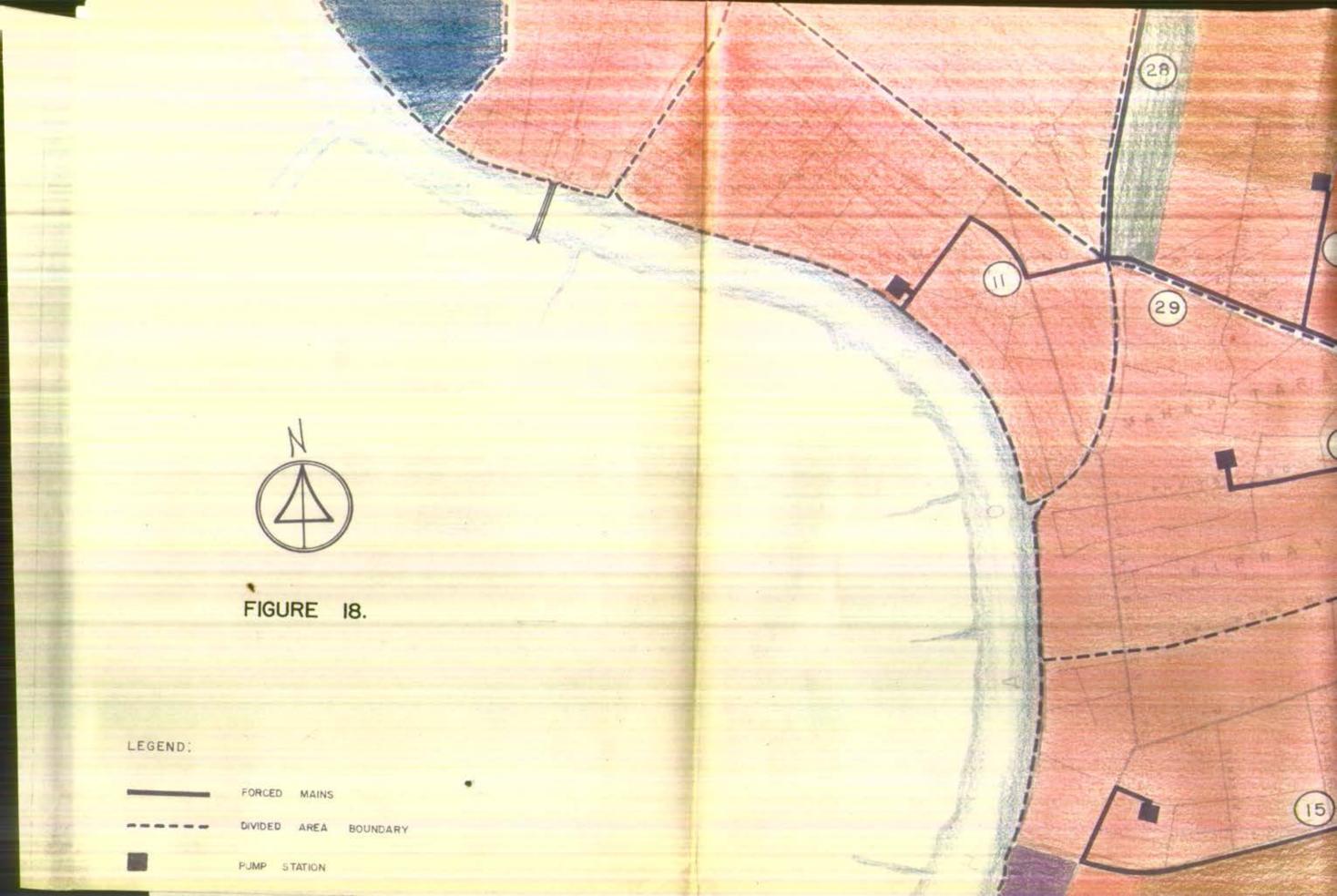

RD

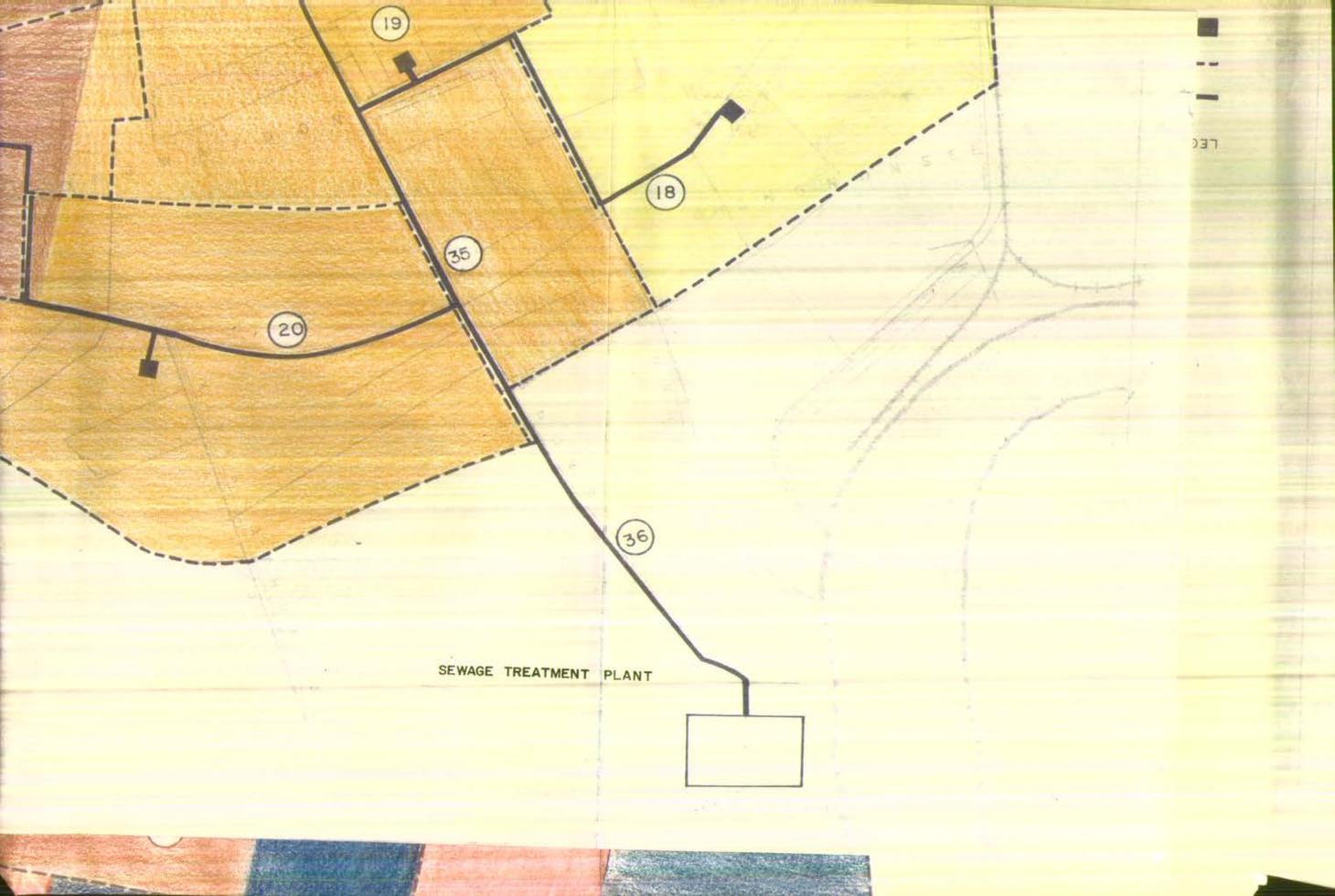

OM


RAIKWAY

MAHAP


d





NUMBER OF FORCED MAINS

COMMERCIAL

INSTITUTIONAL

UTILITY

1

HIGH RESIDENTIAL

MEMIUM RESIDENTIAL

LOW RESIDENTIAL

LOCATIONS OF FORCDED MAINS

17

100 0 200 400 50 100 300 500 SCALE 112500 2. It gives minimum nuisance for that site is in the plantation area.

3. Due to selected area being in the plantation area so the land cost is rather cheap.

4. The caline water does not influence in dumping the treated sewage because it is far away from the sea. The distance from the community along the river is very far about 18 kilometres from Memorial Bridge.

Design Of Foreed Main

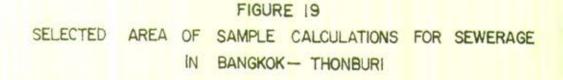
The general principle concept required to convey the Waste water to selected sumps with pumps by gravity flow as possible as it can. The pump will convey the waste water into the forced main and continually bring it to treatment plant. It is very difficult to limit the boundary of divided areas. If the divided area is very large the sumps and seware must be deep. On the other hand the small area required many pumps and the later is its difficult to select the site of various pamp. The divided areas are shown in map is about 2 06, kilometre. The location of pumps was selected by going be deep it and considering it would be possible to lay out. The forced main are usually laid at the main roads and at the edge of main klongs. Figure 18 is shown various pumps and forced main severs.

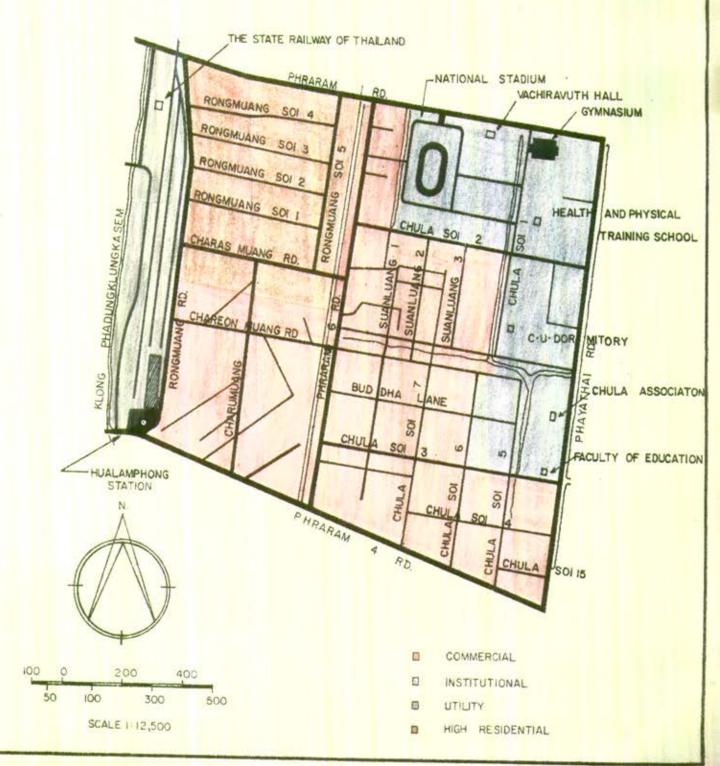
1 Deveraine the depired Domestic Severe

sverage water consumption = 65 gopd unskimum doily flows = 2xaverage daily flow

86

	= 2x65 = 130 gcpd
extreme maximum flows	= lixmax. daily flow
	= 1.5x130 = 195 gcpd
for industrial plus 15 %	= 195x1.15 = 214 gepd


Pactors due to wrong connections of storm water, fluctuation of the population which do not follow the land use of city planning and other factors plus 20 %= 214x1.20 = 269 gepd domestic sewage = 70 % of water consumption = .70x269 = 188 gepd 2 infiltration plus 10 % = 188x1.10 = 207 gepd so that designed domestic sewage = 207 gepd approximately =.4.55xD.W.F.


Low to delect the Area for Calculation

delected area for the calculation that is shown in idgume 19 is very ouitable to represent all of sewerage area because it includes commercial area, institutional area, residential erea and utility. Moreover this service area is considerably saturated in the peroid of forecast. Lanes,

¹Cordon L. Soir and John C. Geyer, <u>Water Supply and</u> <u>Wastepater Disposal</u> (New York: John Wiley & Sons, Inc., 1954), p. 425.

²Vichai Pakdeodinden, <u>Report on Severage and Drainage</u> <u>Disposel in Bunckok</u> (Singinsering Division, Department of Town & Country Planning)

wonds and buildings are up to standard and the alignment of wond seems to be under the planning by Bangkok Municipality for the similarity of their lengths such as the length of edgecomb wonds are nearly equal.

BRAMPLE OF STLEULATIONS FOR FORCE MAINS Nosler of Gaung Mo.1 Scotion of sever Phraram 6 road Hae length of sever = 500 netres Borvico amena 1, Utility = 146 rais 2. Institutional = 287 11 5. Commercial = 524 21 4. Residential = 300Ħ Botal population = (146x4+287x12+524)x46+300x50) persons a = 43124 Designod domestic sewage = 207 gpd Wotel domestic scutze $= 43124 \times 207$ н = 8,940,000 41 For sever under pressure using Hazen-Williams Formula $v = 1.313 \text{ cr}^{0.63} \text{ s}^{0.54}$ $Q(mgd) = 0.279 \text{ cD}^{2.63} \text{e}^{0.54}$

³Gordon M. Mair and John C. Geyer, <u>Water Supply and</u> <u>Westowater Disposal</u> (New York: John Wiley & Sons, Inc., 1934). p. 305.

- Q = rate of discharge in mgd.
- D = disactor of conduits in ft.
- v = average velocity of flow in fps.
- s = hf/l = slope of hydraulic gradient, or loss
 of head, hf in ft in a conduit of length l in
 ft.
- C = the Hazen-Williams coefficeint.

In disign used the value of ${}^{4}C = 130$ for uncertain concrete conduits (asbostos cement). Assuming that the subsetos cement sowers can receive with high resistance even the velocity in the sewers is in range ${}^{5}\theta$ -10 fps (depend on the recommendation of sswer). Consequently design criteria of velocity must be in the range 8 -10 ft per sec.

when	Q	= 8.94 gpd
try	¢ 16"	
	Q	$= 0.279 \text{ CD}^{2.63} 0.54$
	8.94	$= 0.279 \times 130 \left(\frac{16}{12}\right)^{2.63} 0.54$
	s ^{0.54}	= <u>8.94</u>
		≖ .115
	0	01 8

⁴ibid p. 306. ⁵źbid p. 62. So that head loss in pipe 550 metres = $\frac{.018 \times 550}{1000}$ = 9.90 m. = 0.018 $\times 550$ V = 1.318 $\operatorname{cr}^{0.63}_{8}^{0.54}$ = 1.318 $\times 130\frac{(16)}{12 \times 4}^{0.63}$ (.018)^{0.54} = 1.318 $\times 130 \times 50 \times 115$ = 9.85 fps. = 2.99 mps.

Illustrative computation for forced main are shown in Cable 16,17,13.

⁶EXAMPLE OF CALCULATION IN SELECTED AREA Design of Sever ala2

> Length of sewer: = 150 metres Service grea (commercial) = 8.5 rais Equivalent population of commercial area = person/rai Total population = $8.5 \times 46 = 391$ rersons The designed domestic sewage = 207 gcpd Total sewage which the sewer received = 391x207 gpd = $\frac{391x207}{7.48x24x50x60}$ efs

⇒ .125

<u>Manning's Formula</u>

$$v = \frac{1.486 r^{2/3} r^{1/2}}{n}$$

v = velocity

51024 p. 399.

NO. OF	LOCATION OF -	COMMER-	NSTITU-	(HIGH RE-	UTILITY	OF PLANION	NOU P	SENSE:	- a li	- 100 - 11	MALCO "
SEWER	SEWER	CIAL	TIONAL.	SIDENTIAL (91	FGi	• · · · • • • •	: ::::::::::::::::::::::::::::::::::::	m	in		ភាពន
I 	PHRARAM 6 RD.	524	287	300	146	43,124	8.96	550	16	9.90	2.98
2	KLONG WAHANAK	210	480	620	—	46,420	9-65	1400	- - 18)	14.70	2-48
3	PHRAYATHAI RD.	80	523	430		31,456	6-55	1200	- 15	15- 60	2.50
4	KLONG MAHANAK		140	940	-	48,680	10:15	200	15	4 00	3.04
5	PHRAMERU GROUND		790		—	9,500	1.98	1050	IQ	; 10:50	1.65
6	SAO CHING CHA	1455	-		· · · ·	6,700	13-90	150	20	2·00	2 90
7	PHRACHATHIPOK RD		277	792 :	_ !	22,330	4.64	1450		14.50	2-05
8	KRUNG KASEM RD		143	307 7 3	-	9,120	t•90	150	8	4.05	2.47
9	KLONG PHADUNG - KRUNGKASEM RD	-	549	-	455	8,061	168	550	8	12-10	2.22
IO	SAO PHA RD	1115	-		-	51,300	10.65	150 1	18	1.89	2 69
11	YAOWARAJ RD	815	-	_		37,500	7 80	1100	×6	14-30	2.54
12	KLONG PHASINGTO	_	1475	_	330	18,840	3·9i	1200	12	18-00	2.34

REMARKS

m = mechen residentiet.

icw residential.

7 = 227 Mightan

TABLE 17 BLUGGERAUME ODMERSTER DUR BER HER MERST

0 OF	LOCATION OF	COWMER	li⊽S™TU≁	ใหเดิม หยะ/	UTILITY	POPULATION	Vot. o H	1.EXT at 1	SEZE	-READ COSS	ASTOCA
SEWER	SEWER	CIAL roi	n'ioMAL rei	SIDENTIAL I ^{roi}	roi		SEWACE mgd	m	in	n i	mps
13	KLONG PHAISINGTO	150	605	(250	14,910	3-10	110 0	12	-00 	1.05
14	SIPHRAYA RD	1035	. —		_	47,600	9-90	1050	I Đ	11:00	2.50
15	KLONG NORTH SATHRON	1230	—	—		56,600	11- 75	2100	20	20:00	2-46
16	KLONG CHONGNONSI	985	_		—	45,000	9.33	150	16	2.63	2.95
17	TOX DONKUSOL	—	—	752	-	31,60 0	6-55	1500	15	20-01	2-50
18	YEN ARKARD RD	_		1550		18,600	3 87	1650	14	. LI-60 .	1.75
19	KLON CHONGNONSI			1130		27,200	5-65	150	4	2.02	2.43
20	TOK CHAN RD	-		1240 ⁰¹	· :	3 0, 000	6.24	1150		19 -0 0	2-65
21	KLONG MAMANAK	5 80	1003	1050		77,875	16 20	600	22	G-36	2.8
22	KLONG MAHANAK	290	1143	1990	F	126,556	26-35	1100	28	9.90	2.98
23	KLDNG PHADUNG KRUNGKASEM	-	420	1095		31,41 6	6-54	400	. 14	7-40	2.64
24	KLONG PHADUNG		, 969 i	1099 ^m	455	39,824	8-22	550	. 15	11.00	2.75

REMARIES: m - medium residential.

t a low residentiels.

7 - - 720/202000.

TABLE 18 FILURTRACIVE COMPUTATIONS FOR FORDED MAINS

NO OF	LOCATION OF-	COMMER-	INSTITU-	HIGH RE-	UTILITY	POPULATION	Vo⊾. c.∺-	LENCTH	\$17 K	850L CABR	VELCON:
SEWER	SEWER	CIAL rai	TIONAL rei		701	······································	SEWACE mgd	, m	in .	, , , , , , , , , , , , , , , , , , , ,	
25	KLONG PHADUNG KRUNG KASEM	290	2112	1088 1880	455	186,101	34.57	500	30	, 4·6	: 3-16 (
26	BAMRUNGMUANG RD	1455	750	-	: !	76,500	. 15-86	0 0	22	11/5	2.70
27	BAMRUNGMUANG RD	2570	790	_	; 	127 ,800	26-53	550	28	4-S7	2:03
26	KLONG PHADUNG KRUNG KASEM	2350	2902	1990 1099	435	293,90	6 1411	1250	42	3-25	2.39
29	phrazam 4 rd	3675	2902	1990 1099 ^m	455	331,401	68-91	700	42	: 4 55	5.7
30	PHRARAM 4 RD	41 9 9	3189	2290 1099 ^m	146, 455	3 74,52.5	77:87	900	48	4·C3	2.77
31	KLONG CHONGNONSI	4349	5289	2290 1095	146 455	408,275	84 68	250	48	1-52	3-08
32	KLONG CHONGNONSI	5384	5269	2290 1099 ⁿ	146 455	455,905	94,78	700	48	454	3-27
33	KLONG CHONGNONSI-	6369	6269	2290 1099	146 455	500,905	104-13	500	54	2-65	2:39
34	KLONG CHONGNONSI	7699	5269	2230 1099 ^m	146 465	357,505	(15-86	1050	54	5·46	3 20
35	KLONG CHONGNONSI	7599	5269	2290 2229 ^m 1550 ¹	145 455	603,305	125-40	800	60	2.80	5 03
36	KLONG CHONGNONSI	7589	5269	2290 3469 ^m 1550	148 j 455 j	633,275	138 19	2500	80 80		3-03

REMARKS (m = not from residential.

Filley readominal.

in a restoration

r	= hydraulic radius
	= area wetted perimeter
n	= kutter coefficient of friction

For velocity flowing full would be full in the range of 2-3 fps, and the ⁷minimum actual velocity would be 2 fps. Using the kutter coefficient of friction is .015 fro fair interview surface of concrete cover or asbestor cenent sever. $\neq 10^{n}$ -sever is required for minimum severs to protect clogging in severe due to the garbage did not grind such as behann's leaf, paper, branches etc. and decreasing the slope in placing powers.

For flowing full
$$v = \frac{1.486 r^{2/3} s^{1/2}}{n}$$

Try $d = \frac{10^3}{10^3}$, $v = .004$
 $r = \frac{77}{4} d^2 \frac{77}{4} = \frac{1}{4}$
 $= \frac{10}{12} x \frac{1}{4} = .206$
 $n = .015$
 $v = \frac{1.486(.208) \cdot \frac{667}{(.004) \cdot 5}}{.015}$ fps.
 $= \frac{1.486x.351x.065}{.015}$ fps.
 $= 2.19$ fps.
 $Q = v4(velocity x eross-sectional area)$

7. Joint Constitute of the American Society of Civil Unginouse and the later Pollution Control Federation, <u>Design</u> <u>194 Construction of Sanitary and Storm Sewers</u> (The American Cociety of Civil engineers and The Water Pollution Control Federation 1960), p. 135.

95

$$= 2.19 \times \frac{27}{4} \left(\frac{10}{12}\right)^2 = 1.195 \text{ ft3}$$

$$\frac{9}{4} = \frac{125}{1.195} = .105$$

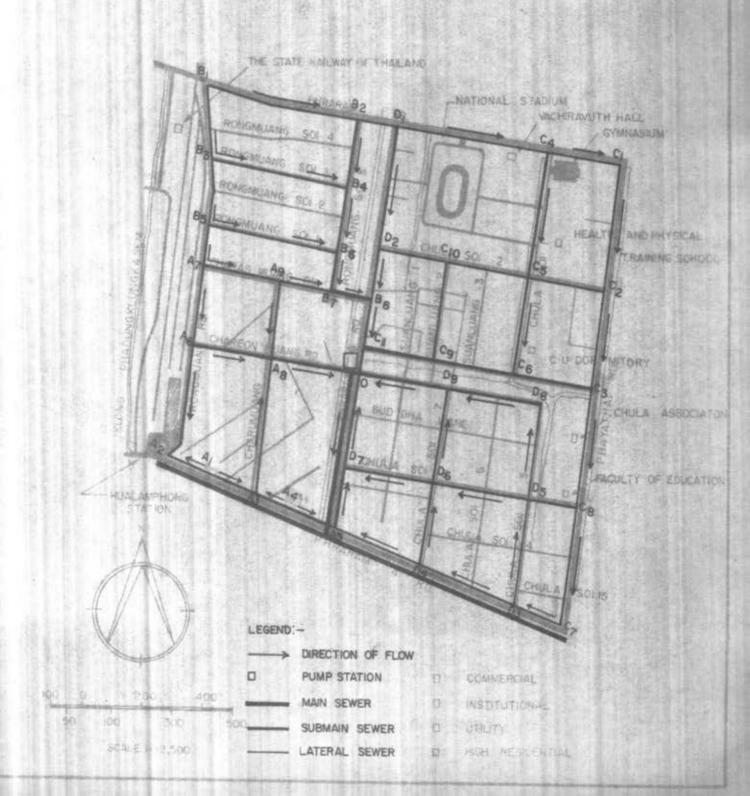
$$9 = \text{discharge of flowing full}$$

$$4 = \text{discharge of partial flow}$$

From Figure 15-1, page 400 of the bood "Water Supply and Uasto Vetor Disposel" by MAIR and GEZEA

 $\frac{d}{d} = .23, \frac{v}{V} = .67$ d = depth in sever of partial flow
<math display="block">v = velocity in cover of partial flow
<math display="block">D = diadotor of cover $V = velocity of flowing full
<math display="block">v = .67x2.19 = 1.47 \text{ approx. } 1.5, \text{ Use dia. } = 610^{\circ}, \text{ alogo } = .004$

Pigure 20 shows the layout of sewers and direction of flow of semitery powers in selected area and illustrative computations for a syrbem of semitery sewers are shown in Fable 19 to 27. Digure 21 theyed the section and length of semitery severe and Figure 22 sewers added being omitted in calculation.


SEPORT SACARS

The purpose of design for the drainage system requires such blongs using for holding basins and open channels. Main blongs are concldered for using in design in this scheme remely Theory Dok, Idon; Ong-Ang, Blong Phadungkrungkasem, Theng deshots and Klong Ghong Konsi. The main severs which had been constructed instead of Thong Hun Lamphong is combined

FIGURE 20

SELECTED AREA OF SAMPLE CALCULATIONS FOR SEWERAGE

LAYOUT AND DIRECTION OF FLOW OF SANITARY SEWERS

TABLE 19 ILLUSTRATIVE COMPUTATIONS FOR A SYSTEM OF SANITARY SEWERS

SEWER	LOSATI	ON OF	4	DJACENT	AREA (RA	AIS)	TOTAL	TRIBUTAR	Y AREA	(RAIS)	
	SEW	ER	COMMER-	INSTITU-	HIGH RE-	UTILITY	COMMER	INSTITU-	HIGH RE-	UTILITY	POPULATION
4142, A143 4443, A445	PHRARAM	4 RD	8.5	_	_	_	8.5	_	_	-	391
A2A6	RONGMUAN	S RD	8.5	-	-	-	34.1	-	-	42	1345
A 6 A7	RONGMUAN	RD.	-		13	50	-	_	13	50	850
A6 A8	CHAREON	MUANG RD.	34.1		13	92	47.7	-	26.6	92	3910
A3 A8	CHARUMUAN	G RD.	17.0			-	71.0	_	_	_	3262
	VOLUME OF					DESIGN	N PROFILE				
SE WER	SE WAGE	SIZ E	SL.OPE	CAPACITY	VELOCIT	Y, fps	DEPTH	LENGTH	INVERT	ELEVATION	AVERAGE OF
	ofs	in		cfs	FULL	ACTUAL	OF FLOW	m	UPPER END	LOWER END	CUT
142, A143 443, A445	.125	ю	.004	1.20	2.19	1.50	2.76	150	.75	135	- L05
A2 A6	430	10	0035	1. 12	2.06	194	4,40	380	1.35	2.68	2.02
46 A7	270	10	0035	L.12	2.06	1.72	3.40	250	.75	1.61	1,18
8A 9A	1.255	2-12	0025	1.54	1.97	1.68	5.50	250	2.68	3.31	2.99
43.A8	1.046	2-12	0025	1.5.4	197	1.79	4.93	420	135	2.40	1.88

TABLE 20 ILLUSTRATIVE COMPUTATIONS FOR A SYSTEM OF SANITARY SEWERS

1.1010

VI VER	COLATIO	N OF	۵	DJACENT 4	AREA (RA	AIS)	TOTAL	TRIBUTARY	Y AREA	(RAIS)	
an nga	SEWE	R	COMMER- CIAL	INSTITU	HIGH RE-	UTILITY	COMMER-	INSTITU- TIONAL	HIGH RE-	UTILITY	POPULATION
A9 A8	CHARUMUAN	G	-	-	13	-	-	-	13	-	650
0 84	CHAREONMU	ANG RD.	118 7	-	39.6	92	132.7	-	58.6	92	8458
BI B2 A7 B7	PHRARAM CHARAS M	I RD UANG RD	-	-	30	_	-	-	30	-	1500
B) B3 B3 B5	LONGMUANG	RD.	_	-	10	24	_ ~	-	· 10	24	596
B3 B4 84 B5	LONGMUANG	1.2.1	_	-7	10	24	_	_	34	24	2796
	ME OF -					DESIGN	N PROFILE				
$\chi : \omega$	MANNE ME	SIZE	SLOPE	CAPACITY	VELOCI	TY, fps	DEPTH	LENGTH	INVERT	ELEVATION	AVERAGE OF
	ts.	in.		cfs	FULL	ACTUAL	OF FLOW	m	UPPER END	LOWER END	CUT
49 A8	208	10	004	1.20	2.19	1.64	2.85	250	.75	175	1. 25
A8 0	2 717	2 -15	002	2 50	2.05	2.16	8.86	300	88	t. 48	i.18
BI B2	482	12	0025	1.54	l. 97	L 65	4.08	550	.88	1.48	1.49
8 83 83 85	192	10	0035	1.13	2.07	1.57	2.80	250	. 75	1.63	1,19
B3 B4 B5 B6	950	2-12	0025	1.54	1.97	1.70	4.45	470	1.63	2.80	2.22

TABLE 21 ILLUSTRATIVE COMPUTATIONS FOR A SYSTEM OF SANITARY SEWERS

C 1 C 2	(OCAT)	ON OF		ADJACENT A	REA (RA	us)	TOTAL	TRIBUTARY	AREA	(RAIS)	DODUL ATION
EWER	SE #	ER		INSTITU-	HIGH RE-	UTILITY	COMMER CIAL	INSTITU- TIONAL	HIGH RE-	UTILITY	POPULATION
82 B4	RONGMUANO	s sol 5	-	-	30	-	-	-	53	-	2650
8486	RONGMUANO	SOI 5	-	-	87	24	-	-	105	24	6346
86 B7	RONGMUANG	SOI. 5	-	-	169	39	-	-	178	39	9460
87 Bð	CHARAS N	UAMG RD.			178	39	-	-	185	39	9710
C) C2	PHAYATHA	ROAD	-	33.7	-	-	-	33.7	-	-	404
	VIE ME F					DESIGN	PROFILE				
	E AAGE	SIZE	SLOPE	CAPACITY	VELOCI	TY, fps	DEPTH	LENGTH	INVERT	ELEVATION	AVERAGE OF
	45	in		cfs	FULL	ACTUAĻ	OF FLOW	m	UPPER END	LOWER END	CUT
B2 B4	85	15	002	2.50	2.05	1.74	6.3	220	2.18	2.62	2.40
84 86	2.04	18	.0015	3.52	2.00	2.08	9.9	, 200	2.80	3.10	2.95
B6 B7	3.04	21	0012	4.80	2.00	2.12	12.4	100	1.16	1.28	1.08
87 88	3.1	21	0012	4-80	2.00	2.12	12.4	100	L16	1.28	1.22
Ci C2	.132	10	.004	1.20	2.19	1.50	2.3	400	0.75	2.35	1.55

1

TABLE 22 ILLUSTRATIVE COMPUTATIONS FOR A SYSTEM OF SANITARY SEWERS

	LOCATIO	N OF	1	ADJACENT A	AREA (RA	AIS)	TOTAL	TRIBUTAR	Y AREA	(RAIS)	
E NER	SEWE		COMMER-	INSTITU - TIONAL	HIGH RE-	UTILITY	COMMER-CIAL	INSTITU- TIONAL	HIGH RE-	TTTH TTO	POPULATION
02 03	PHAYATHAI	RO	1 -	33.7	-	-	-	59.7	-	-	716
C 4 C5	CHULA SO	11	-	56.0	-	-	-	56.0	-		672
C5 C6	CHULA SC	0 1			-	-	30	30	_	-	1740
Ç7 C8	ΡΗΔΥΑΤΗΔΙ	RD.	18		-	-	18	-	-	-	830
C8 C3	PHAYATHA	RD.	18	-	-	-	18	18	-		902
	ALL ME OF-					DESIG	N PROFILE				
$[-\lambda] \in$	E WAGE	SIZE	SLOPE	CAPACITY	VELOCI	TY, fps	DEPTH	LENGTH	INVERT	ELEVATION	AVERAGE OF
	sifs	75.	1.5	cfs	FULL	ACTUAL	OF FLOW	m	UPPER END	LOWER END	CUT
C2 C3	232	10	0035	1.13	2.07	1.64	3.1	320	2.35	3.47	2.91
C 4 C 5	.218	10	004	1.20	2.19	1.64	2.9	400	- 75	2.35	1.55
C3 C6	.556	10	.0035	1.13	2.07	2_07	5.0	320	.75	1.87	1. 31
C 7. C8	266	10	.0035	L13	2.07	E70	3.3	400	.75	1 63	1, 24
cs c3	295	10	0035	1.13	2.07	1.78	3.6	350	1.63	2.75	2.19

TABLE 23 ILLUSTRATIVE COMPUTATIONS FOR A SYSTEM OF SANITARY SEWERS

a visit and some default

SEWER	LOCAT	ION OF		ADJACENT	AREA (RA	AIS)	TOTAL	TRIBUTAR	Y AREA	(RAIS)	
ounch.	SEW	/ER	COMMER- CIAL	- INSTITU- TIONAL	HIGH RE- SIDENTIAL		COMMER-CIAL	INSTITU-	HIGH RE-	A LONG LA LANDA LA	POPULATION
C3 C6	SUANLUAN	G	18	77.7	-	-	18	110.7	_	-	2231
C6 C9	SUANGLUAN	G	48	196.7	_	-	53	196.7	_	_	4800
00 09	SUANGLUAN	G 2	36	-	-	-	36	_	_	-	1660
C9_C1	SUANGLUNG		89	196.7	-	-	94	196.7	-	_	6680
C) C4	PRARAM	RD		30	-	-	_	30	_		360
	VOLUME OF					DESIG	N PROFILE				
SEWER	SEWAGE	SIZE	SLOPE	CAPACITY	VELOCIT	Y, fps	DEPTH	LENGTH	INVERT	ELEVATION	AVERAGE OF
	cfs	in		cfs	FULL	ACTUAL	OF FLOW	m	UPPER END	LOWER END	CUT
03 06	0 7(5	15	:002	2.50	2.05	. 1.76	5.56	260	.88	1.40	1, 14
C.6 C9	1.535	18	.0015	3.52	2.00	1.94	8.35	280	1.40	1.8.2	1-61
CIQ 09	0.530	12	.0025	154	1.97	1.79	4.92	320	. 80	1.60	120
9 CI	2 140	21	.0012	4.80	2.00	1.90	9.80	250	1.82	212	197
0 04	0.115	10	004	120	2.19	1.40	2.20	240	.75	1.71	1.23

TABLE 24 ILLUSTRATIVE COMPUTATIONS FOR A SYSTEM OF SANITARY SEWERS

SEWER	LOCATI	ON OF		ADJACENT A	REA (RA	ais)	TOTAL	TRIBUTAR	Y AREA	(RAIS)	000 1 47101
	SEW	ER	COMMER-	and the second second second	HIGH RE- SIDENTIAL	1.	COMMER-	INSTITU- TIONAL	HIGH RE-	UTILITY	POPULATION
C4 D)	PHRARAM	I RD.	-	30	-	-	5	69	-	-	1060
DI D2	PHRARAM	6 RD.	5	69+56	-	_	7.4	96+56	-	-	2160 + 670
02.05	CHULA SC	2	-	30	-	-	_	30	_	_	360
C5CIO -	CHULA S	0 2		30	-	-	29	35	_	-	1752
CO D2	CHULA S	01 2	29	35		-	52	35	-	- 1	2812
	VOLUME OF					DESIG	N PROFILE				
SEWIR	SEWAGE	SIZE	SLOPE	CAPACITY	VELOCI	TY, fps	DEPTH	LENGTH	INVERT	ELEVATION	AVERAGE OF
	cts	in		cfs	FULL	ACTUAL	OF FLOW	m	UPPER END	LOWER END	GUT
C4 D2	.340	12	.0025	1.54	1.97	1.50	3.36	540	1.71	3.06	2.38
0) D2	692	15	002	2.50	2.05	1.72	5.50	400	.88	1.68	L 28
C2 C5	0,115	10	.004	1.20	2.19	1,80	2.20	250	75	1.75	1.25
C5 CIO	780	12	0.025	1.54	1.97	197	6.00	280	2.35	3.05	2.70
0002	. 902	15	.002	2.50	2.05	188	6.30	250	.88	138	1.13

TABLE 25 ILLUSTRATIVE COMPUTATIONS FOR A SYSTEM OF SANITARY SEWERS

EV.ER	LOCATION OF SEWER		ADJACENT AREA (RAIS)				TOTAL TRIBUTARY AREA (RAIS)				
			COMMER- CIAL	INSTITU- TIONAL	HIGH RE-	UTILITY	COMMER- CIAL	INSTITU- TIONAL	HIGH RE-	UTILITY	POPULATION
D288	PHRARAM 6 RD		59-4	10.4	-	-	60.9	104	-	-	4050
B 8 C II	PHRARAM 6 RD		60.9	104	185	39	60-9	104	195	39	-
C7D3 C8D5	PHRARAM 4 RD- PHRARAM 4 RD- PHRARAM 4 RD- CHULA SOI 3		6-0	5	-	-	6-0	5	-	-	336
D3D4			6·0	5	-	-	27.0	5	-	-	1306
D 4 A5 D 6 D 7			-	-	-	-	2.0	-	-	_	920
- WIR	JOLUME OF										
	SEWAGE	SIZE	SLOPE	CAPACITY	VELOCI	TY, fps	DEPTH	LENGTH	INVERT	ELEVATION	AVERAGE OF
	cfs.	in		cfs	FULL	ACTUAL	OF FLOW	m	UPPER END	LOWER END	сит
0288	1-300	18	·0015	3-520	2.00	1-86	5.16	170	1-68	1-94	1-81
B8 CH	4-570	24	001	6 250	2.00	2.14	15-00	170	1.94	2:11	2.03
C703 C8D5	0-108	10	00.4	1195	2.19	1-45	2.00	170	-75	143	1-09
0304	0·418	12	0025	1-540	197	1-68	4.32	340	1.43	2.28	1-86
D4 A5 0607	295	10	.0035	1.13	2.07	ŀ78	3.6	320	.75	1.67	1-31

540 H

TABLE 26 ILLUSTRATIVE COMPUTATIONS FOR A SYSTEM OF SANITARY SEWERS

T WEF	CATI _E N OF SEWER		ADJAGENT AREA (FAIS)				TOTAL TRIBUTARY AREA (RAIS)				DODLE ATION
an in Dee			COMMER-	INSTITU- TIONAL	HIGH RE	UTILITY	COMMER-	INSTITU- TIONAL	HIGH RE SIDENTIAL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	POPULATIO
D305	CHULA SOI 5		39	-	-	-	39		-	-	1792
D508	CHULA SOL5 CHAREON MUANG RD CHAREON MUANG RD		-		-	-	18 36	15 15	-	-	1010 1840
D8 D9			18								
D9 0			72	15	-	-	90	15	-	-	4320
A5D7	PHRARAM 6 RD		20	-	-	-	39	-	-		1790
	DESIGN PROFILE										
$-(X_{i})$	NA/SE	SIZE	SLOPE	CAPACITY	VELOC	TY, fps	DEPTH	LENGTH	INVERT	ELEVATION	AVERAGE O
	11	in l	111	cfs	FULL	ACTUAL	OF FLOW	m	UPPER END	LOWER END	CUT
C3D5	-575	2 -10	·00 35	1.13	2.07	1.78	3.6	370	.75	2.05	1.40
0508	-32.4	2 -10	-0035	1-13	2:07	1-50	2.6	300	-75	1.80	1.28
0809	-590	12	0025	154	1-97	1-83	5-15	300	1.80	2.55	2.18
09.0	1.40	18	0015	3.52	2.00	1.90	6.0	300	2.55	2.94	2.80
4507	- 574	12	0025	1.54	1.97	1.82	5.15	220	1.87	2.42	245

TABLE 27 ILLUSTRATIVE COMPUTATIONS FOR A SYSTEM OF SANITARY SEWERS

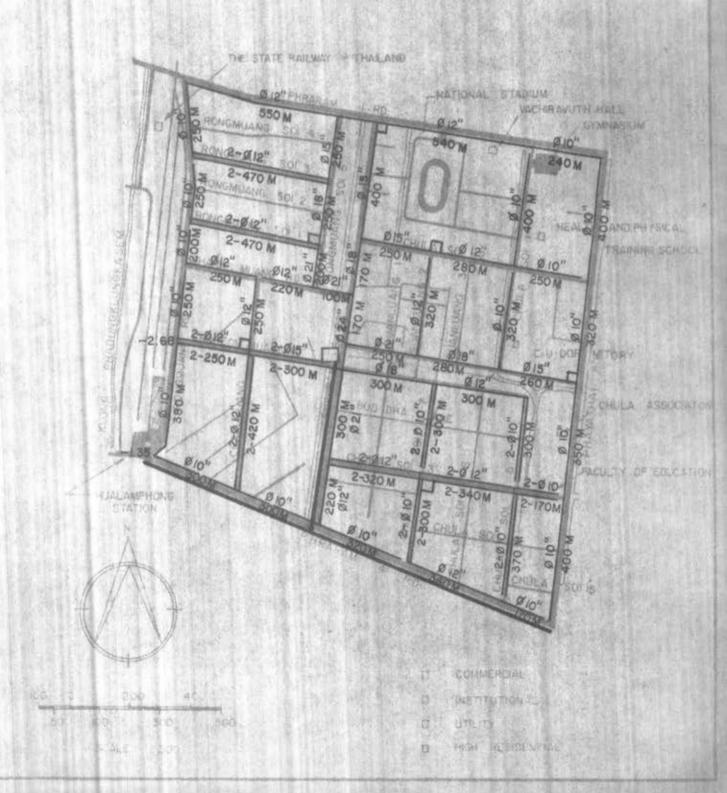
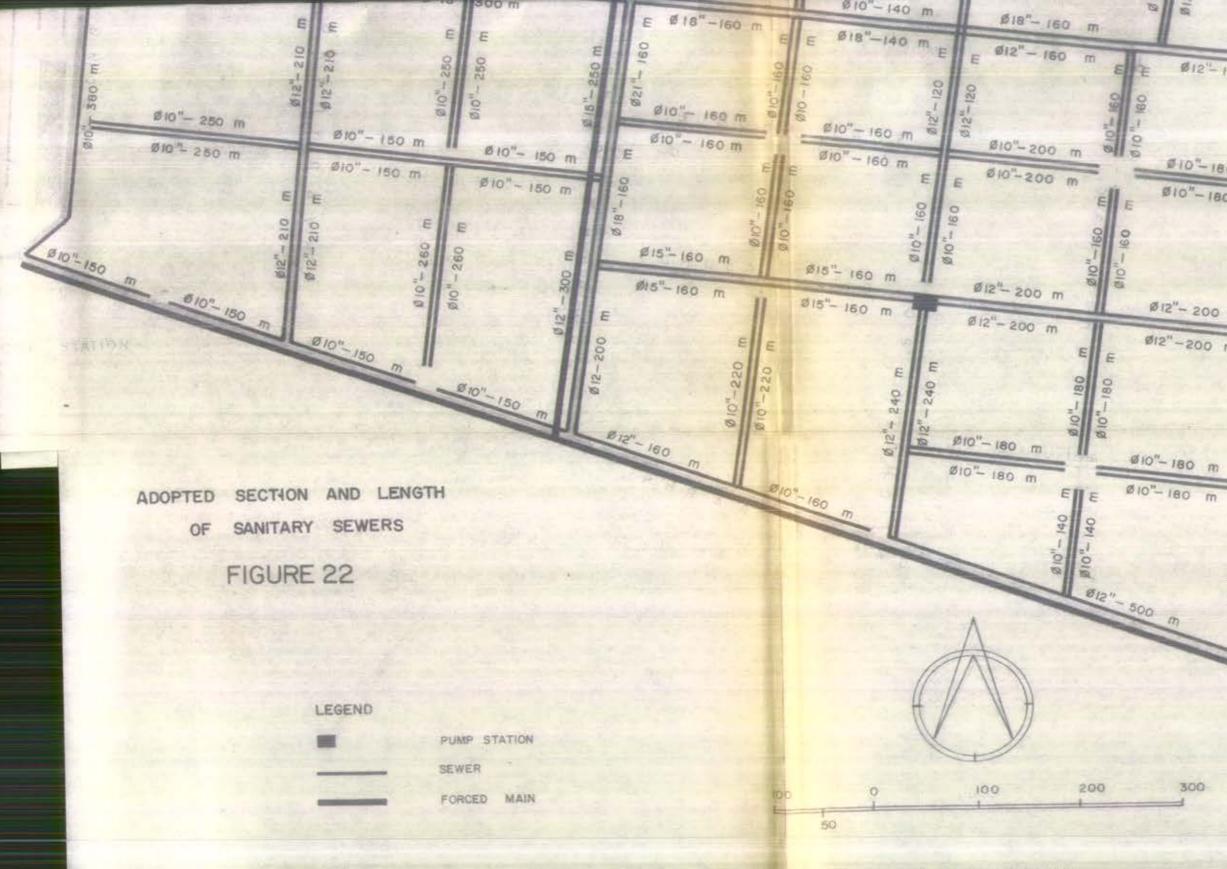

LOCATION OF		ADJACENT AREA (RAIS)				TOTAL	(RAIS)			
		COMMER-			V. Lobelli Lobelly	COMMER- CIAL	INSTITU- TIONAL	HIGH RE-	UTILITY	POPULATION
PHRARAM	6 RD.	159	5	-	1	194	5	-	-	9060
PHRARAM 6 RD.		154.9	300.7	195	39	154.9	300.7	195	39	20736
CHULA SOI 3		6+39	5	-	-	48+39	5	-	-	4060
CHULA SOL 3		120	5	-	-	160	5	-	-	-
		<u>-</u>			DESIG			1		
VOLUME OF - SEWAGE		SLOPE	CAPACITY	VELOCI	VELOCITY, fps		LENGTH	INVERT	ELEVATION	AVERAGE O
cfs	in		cfs	FULL	ACTUAL	OF FLOW	m	UPPER END	LOWER END	CUT
2.88	21	.0012	4.80	2.0	2.10	12.3	300	2.42	2.78	2.60
6 65	24	.0009	8.0	2.02	2.27	18.6	70	2.11	2.17	2.13
). 30	2-12	.0025	1.54	1.97	189	5.7	340	2.05	2.90	2.48
2 38	2-15	.002	2.50	2.05	1.97	7.2	340	.75	1.43	1.09
	PHRARAM PHRARAM CHULA SO CHULA SO CHULA SO VOLUME OF SEWAGE cfs 2.88 6.65 1.30	PHRARAM 6 RD. PHRARAM 6 RD. CHULA SOI 3 CHULA SOI 3 CHULA SOI 3 VO.LUME OF SIZE SEWAGE SIZE cfs in 2.88 21 6.65 24 1.30 2-12	SEWER CIAL PHRARAM 6 RD 159 PHRARAM 6 RD 154.9 CHULA SOI 3 6+39 CHULA SOI 3 120 VOLUME OF SIZE SLOPE cfs in .0012 6 65 24 .0009 1. 30 2-12 .0025	SEWER CIAL TIONAL PHRARAM 6 RD. 159 5 PHRARAM 6 RD. 154.9 300.7 CHULA SOI 3 6+39 5 CHULA SOI 3 120 5 CHULA SOI 3 120 5 CHULA SOI 3 120 5 VOLUME OF SEWAGE SIZE SLOPE CAPACITY cfs in cfs 2.88 21 .0012 4.80 6 65 24 .0009 8.0 1.54 1.54	SEWER CIAL TIONAL SIDENTIAL PHRARAM 6 RD. 159 5 - PHRARAM 6 RD. 159 5 - PHRARAM 6 RD. 154.9 300.7 195 CHULA S01 3 6+39 5 - CHULA S01 3 120 5 - CHULA S01 3 120 5 - VOLUME OF SIZE SLOPE CAPACITY VELOCIT Cfs in 20012 4.80 20 6 65 24 .0009 8.0 2.02 1. 30 2-12 .0025 1.54 1.97	SEWER CIAL TIONAL SIDENTIAL UTILITY PHRARAM 6 RD 159 5 - - PHRARAM 6 RD 154,9 300.7 195 39 CHULA SOI 3 6+39 5 - - CHULA SOI 3 6+39 5 - - CHULA SOI 3 120 5 - - CHULA SOI 3 120 5 - - VOUME OF SIZE SLOPE CAPACITY VELOCITY, fps SEWAGE SIZE SLOPE CAPACITY VELOCITY, fps cfs in .0012 4.80 2.0 2.10 6 65 24 .0009 8.0 2.02 2.27 1. 30 2-12 .0025 1.54 1.97 189	SEWER CIAL TIONAL SIDENTIAL UTILITY CIAL PHRARAM 6 RD 159 5 - - 194 PHRARAM 6 RD 154.9 300.7 195 39 154.9 CHULA SOI 3 6+39 5 - - 48+39 CHULA SOI 3 6+39 5 - - 160 CHULA SOI 3 120 5 - - 160 VOLUME OF SIZE SLOPE CAPACITY VELOCITY, fps DEPTH VOLUME OF SIZE SLOPE CAPACITY VELOCITY, fps DEPTH 2.88 21 0002 4.80 2.0 2.10 12.3 6 65 24 0009 8.0 2.022 2.27 18.6 1.30 2-12 0025 1.54 1.97 189 5.7	SEWER CIAL TIONAL SIDENTIAL UTILITY CIAL TIONAL PHRARAM 6 RD 159 \$ - - 194 \$ PHRARAM 6 RD 154.9 300.7 195 39 154.9 300.7 CHULA SOI 3 6+39 \$ - - 48+39 \$ CHULA SOI 3 6+39 \$ - - 48+39 \$ CHULA SOI 3 120 \$ - - 160 \$ CHULA SOI 3 120 \$ - - 160 \$ CHULA SOI 3 120 \$ - - 160 \$ VOLUME OF SIZE SLOPE CAPACITY VELOCITY, fps DEPTH LENGTH Cfs in Cfs FULL ACTUAL 0F FLOW m 2.88 21 0012 4.80	SEWER CIAL TIONAL SIDENTIAL UTILITY CIAL TIONAL SIDENTIAL PHRARAM 6 RD 159 5 - - 194 5 - PHRARAM 6 RD 154.9 300.7 195 39 154.9 300.7 195 CHULA SOI 3 6+39 5 - - 48+39 5 - CHULA SOI 3 6+39 5 - - 160 5 - CHULA SOI 3 120 5 - - 160 5 - VOLUME OF SIZE SLOPE CAPACITY VELOCITY, fps DEPTH OF FLOW in LENGTH INVERT cfs in 2 00/2 4.80 20 2.10 12.3 300 2.42 6 64 24 .0009 8.0 2.02 2.27 18.6 70 2.11 1.30 2-12 .0025 1.54 1.97	SEWER CIAL TIONAL SIDENTIAL UTILITY CIAL TIONAL SIDENTIAL UTILITY PHRARAM 6 RD 159 5 194 5 PHRARAM 6 RD 154.9 300.7 195 39 154.9 300.7 195 39 CHULA SOI 3 6+39 5 48+39 5 CHULA SOI 3 6+39 5 48+39 5


FIGURE 21


SELECTED AREA OF SAMPLE CAEQULATIONS FOR SEWERAGE

SECTION AND LENGTH OF

SANITARY SEWER

SCALE 1: 4,000

Ø15"-260 m Ø12-160 m Ø10"-180 m Ø10"-180 m Ø12"- 200 m Ø10"-120 m.w н Ø12"-200 m Ø10"-120 m 🚆 2 101 Ø10"-120 m Ø10"-120 m 10 300

in design for this drainage work also. These main Klongs are solveded because of their widths are very large and the necessity to keep them for water transport. Horeover some klongs have the retaining wall to protect the bank. Gates and parp are provided at the end of klongs to take storm water out during rainy hours. It necessitates to find out klongs whether they can receive the storm water or not.

the Samueity of Pirct Storn

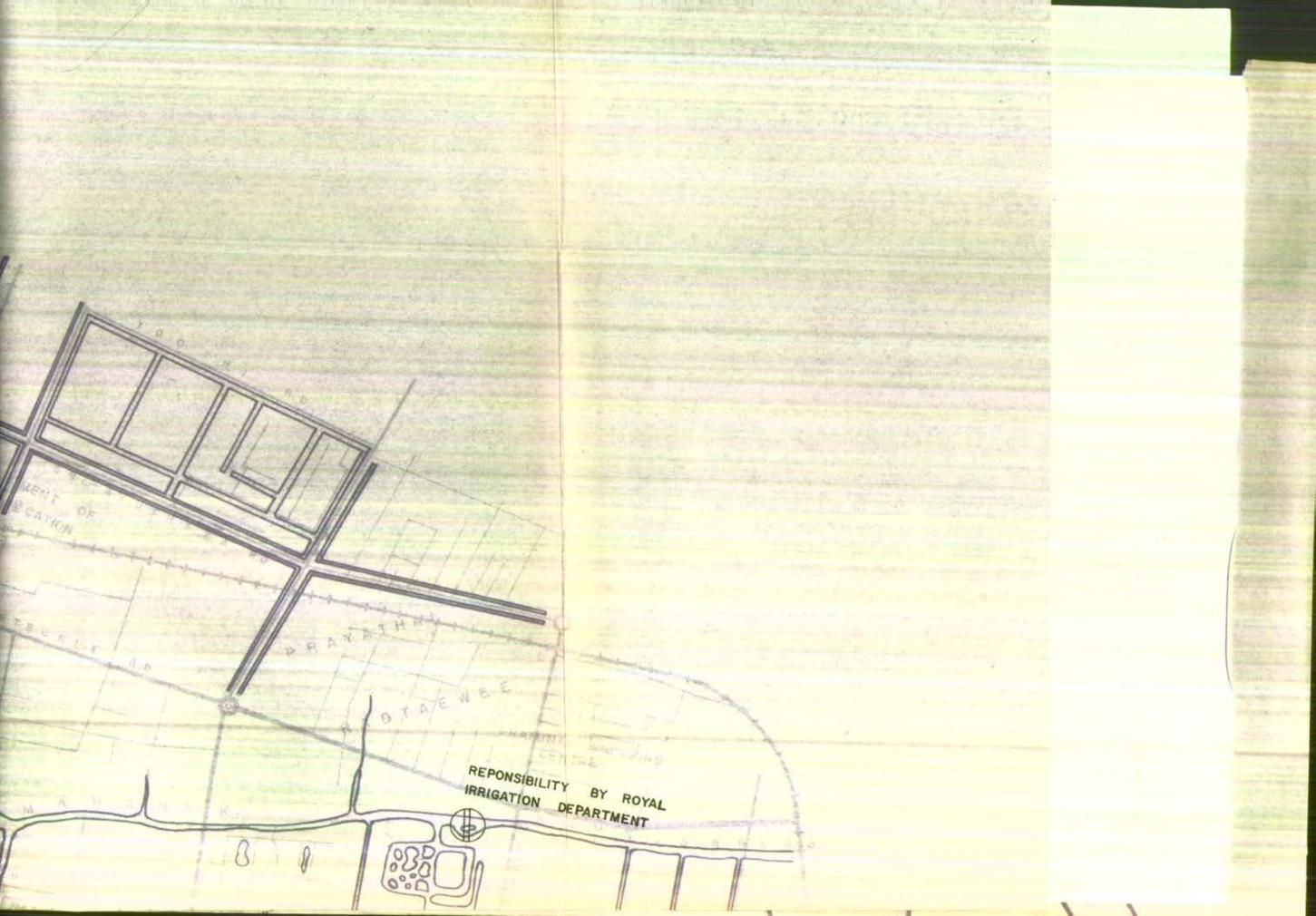
The "retional method" is applied in this scheme. UnExpedence has shown that to yield satisfactory results may be obtained then properly applied. More than 90 % of the angineering offices throughout the United States that copidial to questionnines on storm-sewer design practice and andicated the add of the rational method with satisfactory mesukte for urban drainage area. Though the basic principles of the rational method are applicable to large drainage areas, but free the report of practice point of view, generally Claits its use to urban area of less than 5 sq. miles".

Q = Cia Q = Saminum rate of runoff in efs. c = runoff coefficient i = the average rainfall intensity in in/hr a = the drainage area in acre

Sibid pp. 31-32.

109

Assume the first storm is in the area of 3 sq. miles and the average runoff coefficient throughout the area is 0.5 From Figure 5 the intensity for 20 minute duration is 3.27 inches.


Q = .5x3.27x640x3	ofs
= 3140	71
or = 1,410,000	gal per min

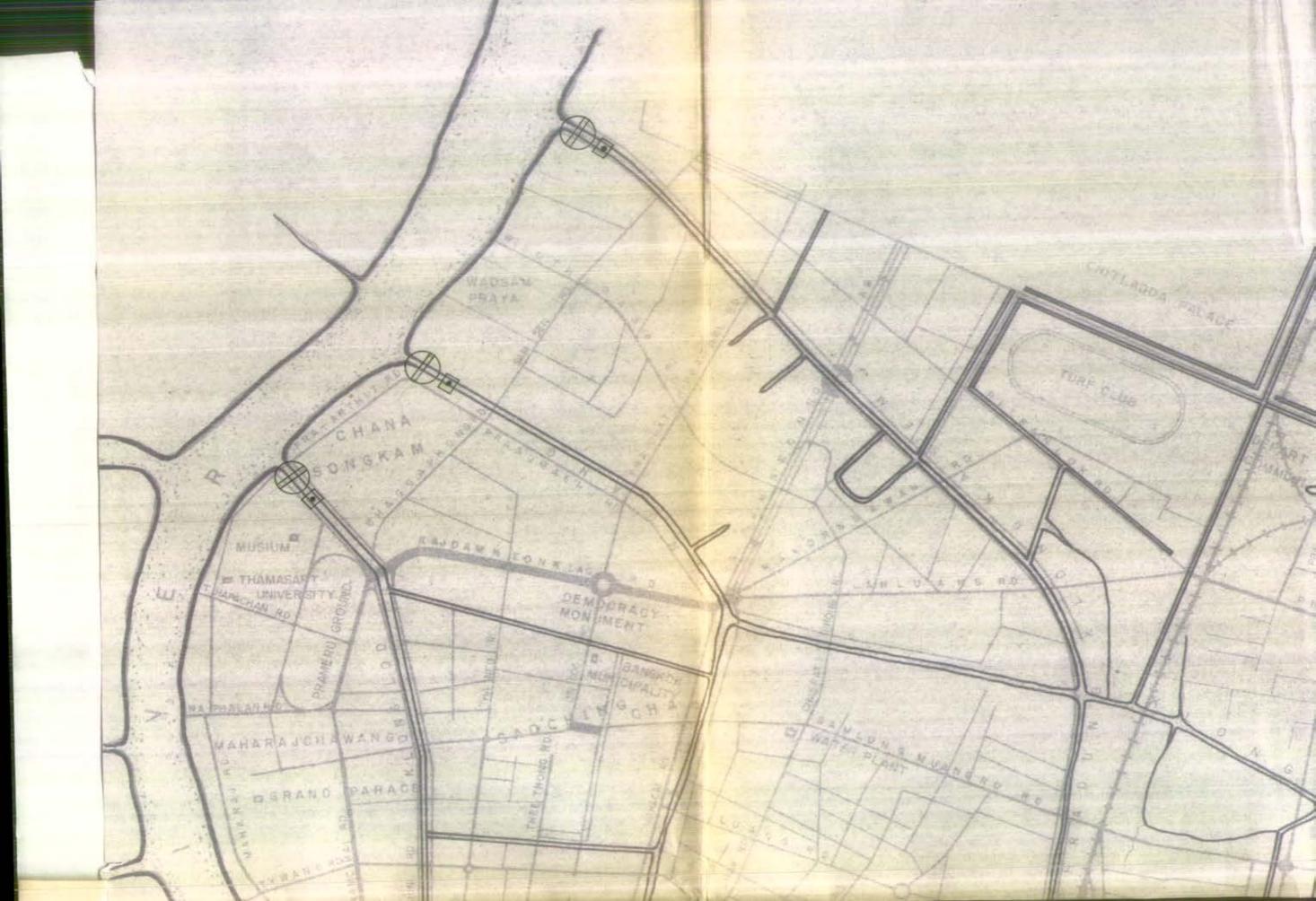
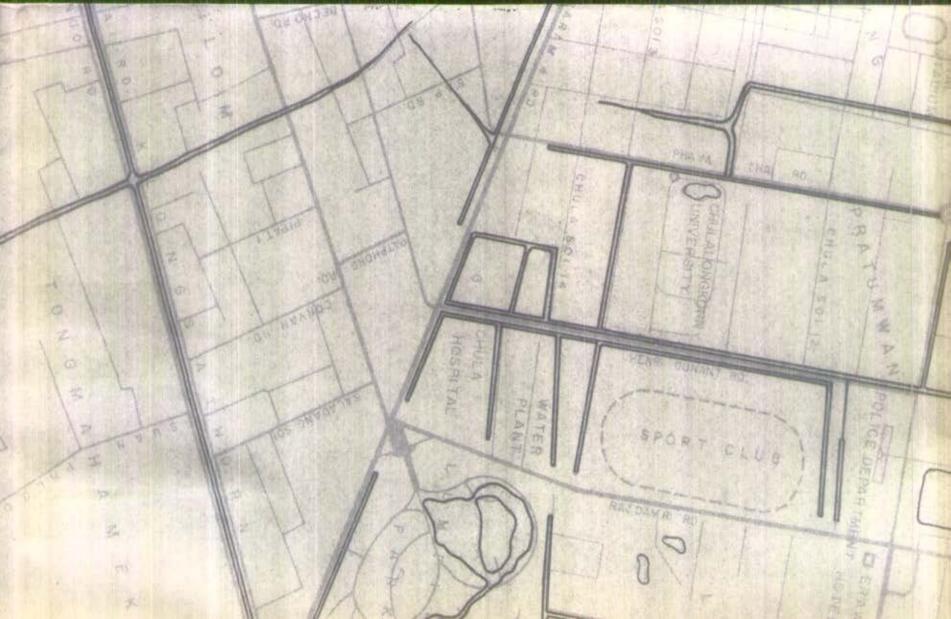
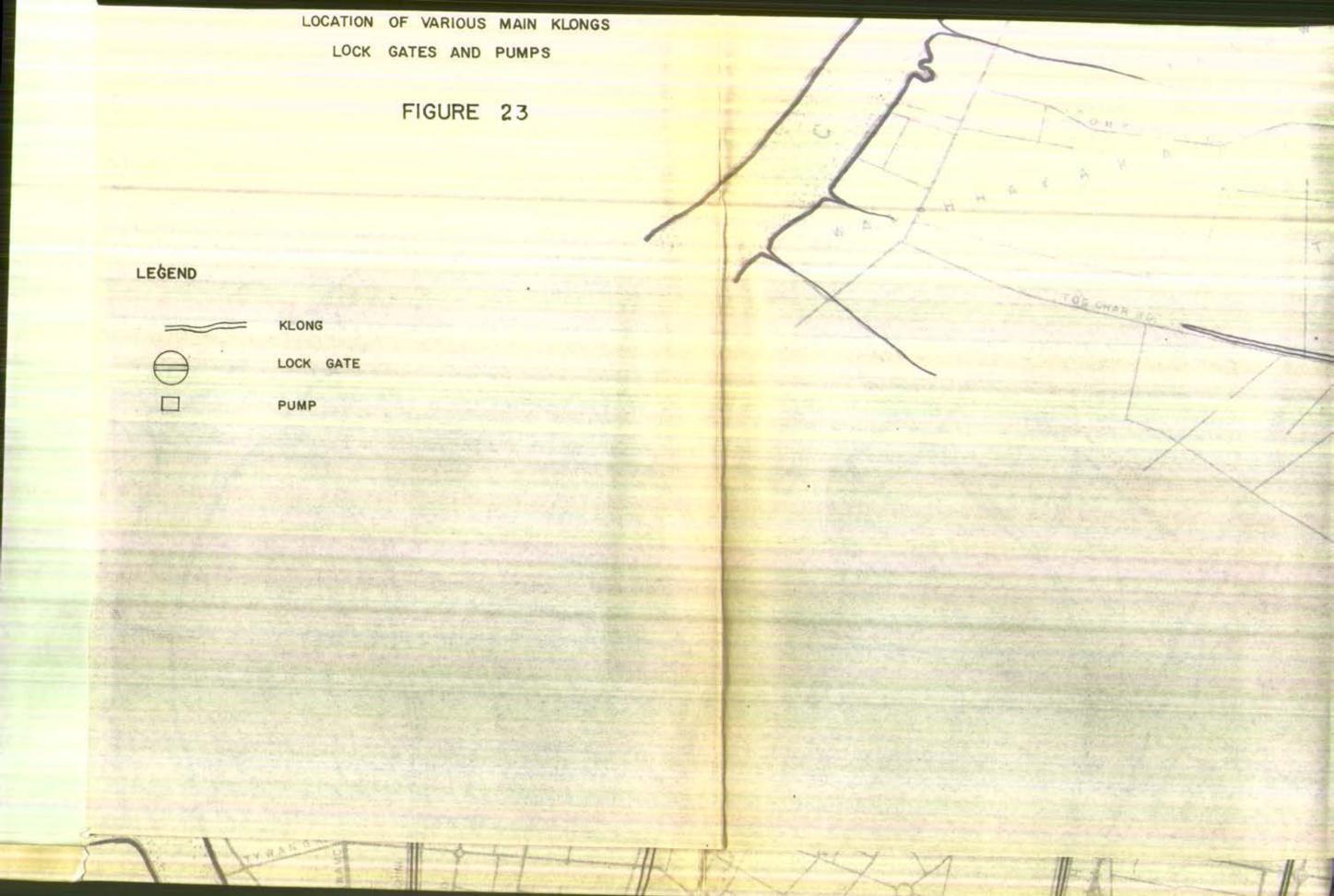
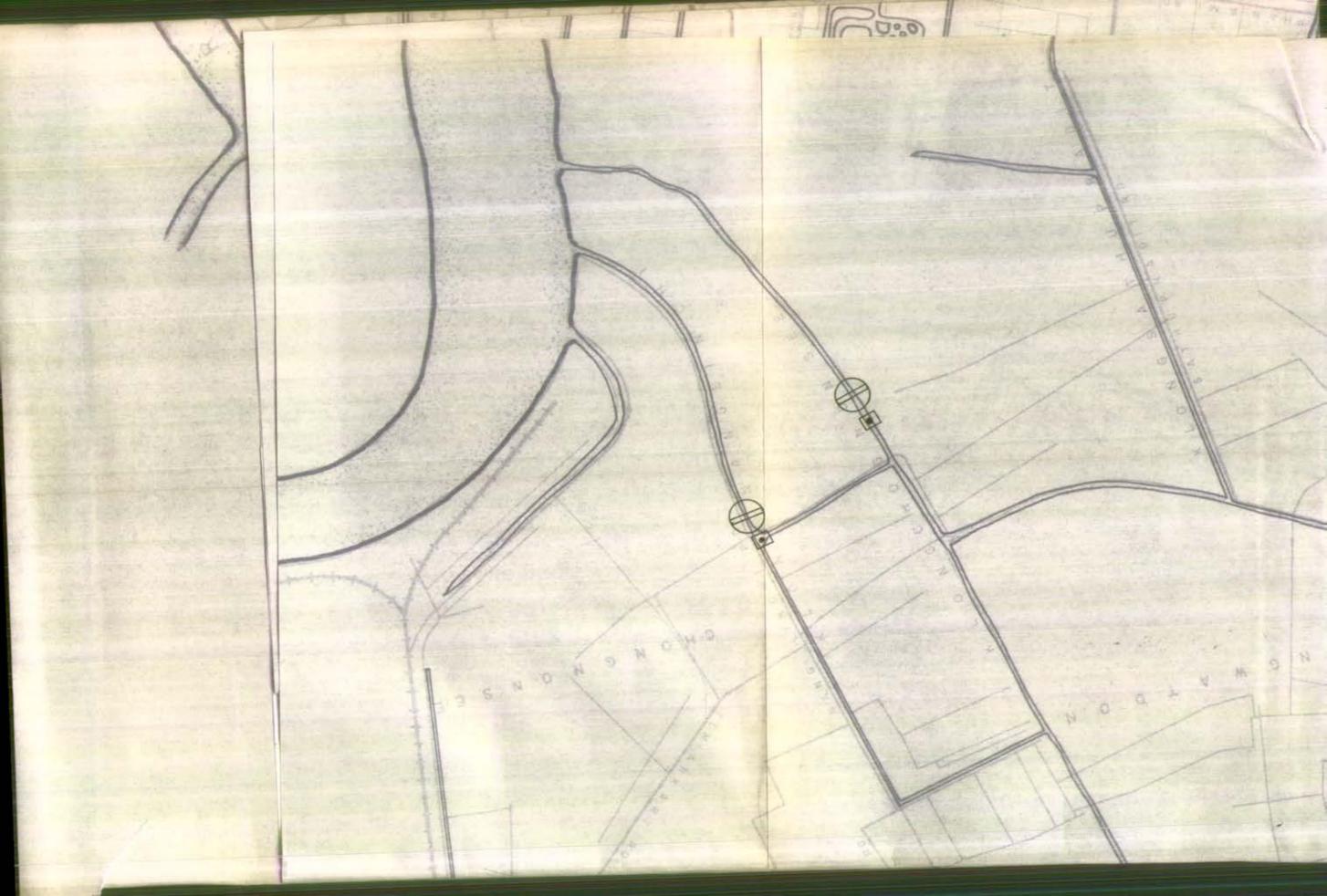
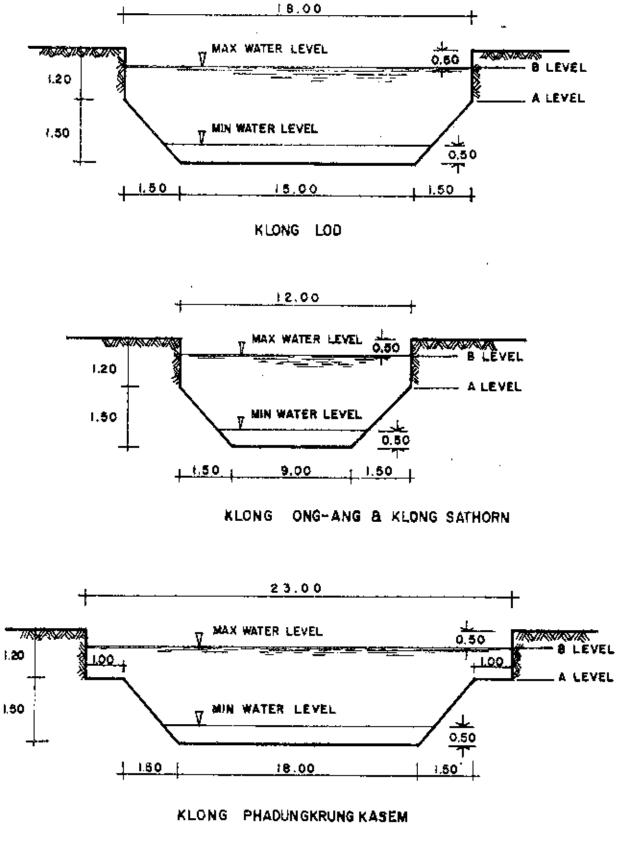

THE VOLUME OF HAIN RLONGS

Figure 23 phows the various klongs in area under condidensition and the crossectional area of klong Lod, Klong Ong-Ang, Klong Phradungkrungkasen, Along Sathorn are shown in Figure 24.


ZLONG LOD		
The longth	= 2350	metres
Gross-sectional area	= (18x1-2 ¹ / ₂ x1x1)+:	18x,70 m ²
	= 29.6	<mark>ہ</mark> 2
Volume	≃ 69 600	m ³
	= 69600x35.3 = 2	,460,000 ft ³
READER ONG-ALIG		
The length .	⇒ 3400	metres
Crossectional area	= (12x1-2x 1/2x1x1)	+12x.70 m ²
	= 11+8.4 ≃ 19.4	m ²
Volume	= 3400x19.4 = 670	000 m ³
	= 2,380,000	ft ³
KLONG PHADUNGDRULGDASEM		


Cho length	= 5350	metres
------------	--------	--------





Cross-sectional area	$= (21x1 - 2x\frac{1}{8}x1x1)$	
	= 20+16.1 = 36.1	 ∎ ²
Volume	= 5350x36.1 = 193,000	<u></u> ∎ ³
	= 193,000x35.5	ft3
	= 6,810,000	ft ³

KLONG SATHORN

÷

= 3500 p	etres
= (12x1+2x ¹ / ₂ x1x1)+12x7	л 2
= 11+8.4 = 19.4	<u></u> _2
= 3500x19.4 = 68000	m ³
= 2,410,000	ft ³
	= (12x1+2x2x1x1)+12x7 = 11+8.4 = 19.4 = 3500x19.4 = 68000

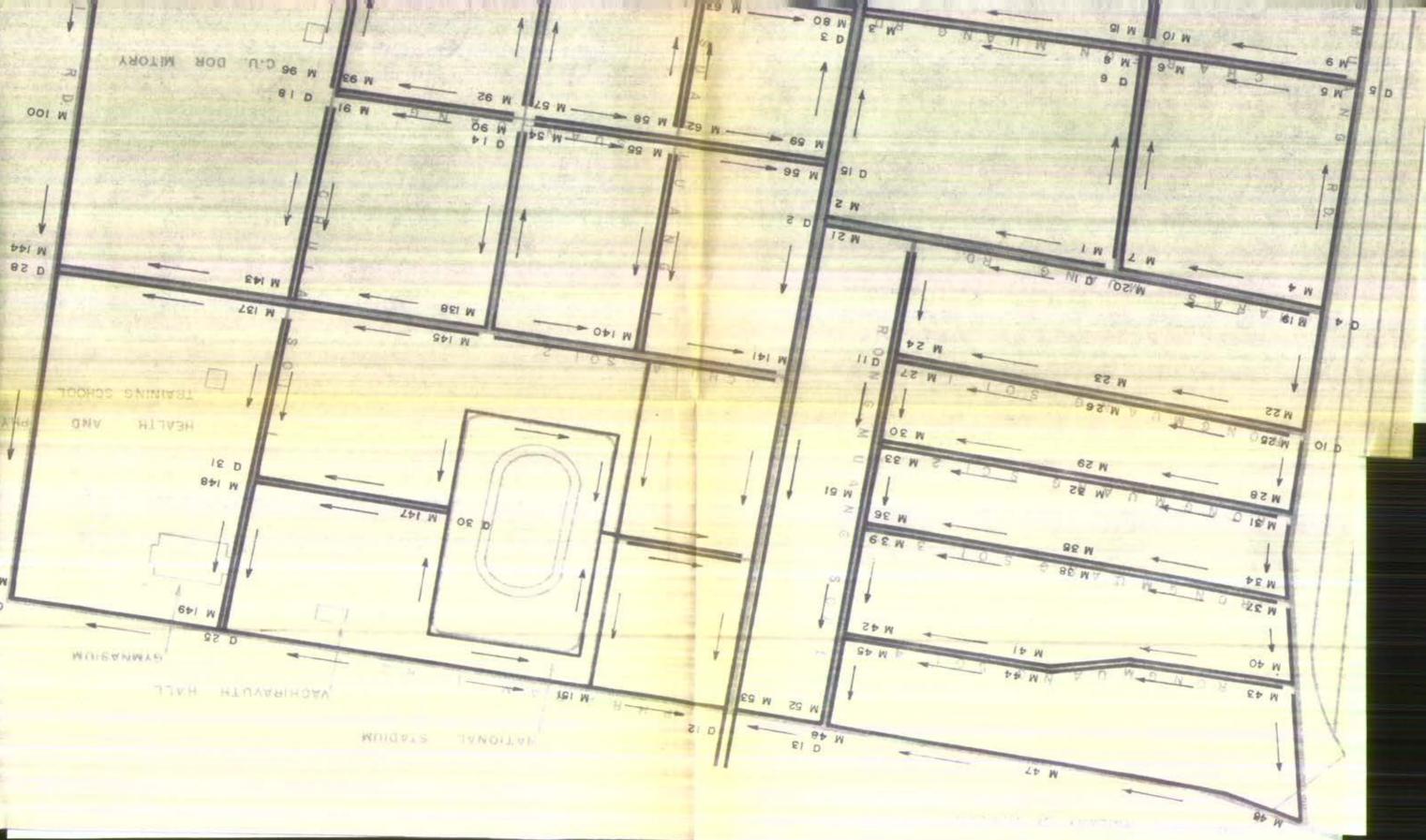
Volume of main klongs in Bangkok That cove first storm area

Klong Lod	2,460,000	ſt ³
Klong Ong-Ang	2,380,000	м
Klong Phadungkrungka	ве т 6, 810,000	Ħ
Total volume	= 11,650,000	ft ³

If using the pumps during the storm peroid at the end of klongs it assumes that these main klongs would store the storm water about 1 hour.

Total volume/hr	= 11,650,000	ft ³ hr
	$=\frac{11,650,000x7.4}{60}$	8 gal per min
	= 1,460,000 1,4	10,000

9 SAMPLE OF CALCULATION FOR STOPM SEWERS


Layout of severo and direction of flow shows in Figure 25. The location of lock gates and pumps for drainage system are shown in Figure 23. The sample area select for storm drain is at the same place of severage work.

Design of Sever at Praras 6 rd.

Column 1 indicated the alignment of sewer, a2a3

- Column 2 identify the location of newer, PRARAM 6 RD.
- Column 3-4 showed the direction of sever, from M2 to M3
- <u>Column 5</u> recorded the area tributary to the street inlets that discharge into the manhole at the upper and of the line 5.80 acres.
- <u>Column 6</u> gives the cumulative area tributary to a line for example in line a_2a_3 , Column 6 is the sume of Column 6, Line a_1a_2 and Column 5, line a_2a_3 , or (5.30+3.8) = 9.10 acres
- <u>Column 7-3</u> record the times of flow to the upper end of the drain and in the drain. For example, the inlet time to Manhole M_1 is estimated to be 20 minute, and the time of flow in line a_1a_2 is calculated to be $\frac{300x_3.28}{50x_3} = 5.5$ minutes. From Column 15/(60xcol 14)

⁹Gordon H. Fair and John C. Geyer, <u>Water Supply and</u> <u>Newtowater Disposel</u> (New York: John Miley & Sons, Inc., 1954), p. 440-441.

LAYOUT AND DIRECTION OF FLOW OF STORM SEWERS

QB

M 13 M 16

M 14

STATION

FIGURE 25

100

M 69 M 65

68

D M 70

M 85 H

M 88

M 83

0 19 M 71 -

79

M 18

MB

78

M 94

M GIN MIOI

M 72 M 107

M113

M 120

128

M BP

M 82

9016

M 95

MITT

MIGB MIIS

MIL

M 122

M 123

200

300

Hence the time of flow to the upper end of $\frac{12^3}{2}$ is (20+5.5) = 25.5 m.

c = .65 (commercial area)

- i = 75 mm = 2.96 inches (from Fig 5 use 25.5 min duration)
- Column 10 column 9 x column 6 for example, the runoff entering line a_2a_3 is 1.92 x 9.10 = 17.50 cfs.
- <u>Column 11-14</u> record the schoren size and resulting capacity and velocity of flow of the drains forthe tributary runoff and available or requived grade. For example in line apen

Hanning Formular $V = \frac{1.486 \text{ R}^{2/3} \text{s}^{1/2}}{n}$ V = velocity, the minimum velocity for storm sewer is 3 ft/sec R = $\frac{\text{crossectional area}}{\text{vetted perimeter}}$ S = slope of hydraulic gradient n = Kutter Coefficient of Friction Try S = .0009, D = \not 1.00 metre and using C = .2B R = $\frac{77}{4} \text{ d}^2 / 77 \text{ D} = \frac{D}{4}$ D = \not 1.00 = 3.23* V = 1.486 x (3.28) \cdot 667(.0009)^{1/2} $= \frac{1.480 \times .876 \times .03}{.013} = 3.00$ ft/sec.

$$= 3 \times \frac{77}{4} (3.28)^2$$

= 3 x 8.445 = 25.4 ft²

<u>Column 15</u> is taken from the plan or profile of the street; 300 metres

<u>Column 16</u> equal Column 15 x Column 12: For example, 240 x .0009 = .21 metres.

Column 17 is obtained from

 $\begin{aligned} \text{hi} &= (d+h_{\psi}) + k \quad h_{\psi} \\ \text{he} &= 4(d+hr) + \cdot 24 \quad \text{hr} \\ \text{A(d+hr)} &= (d_{\star} - hr_{\star}) - (d_{2} - hr_{2}) \\ &= (1 \cdot 00_{\pi} \frac{\sqrt{2}}{2g}) - (\cdot 80_{\pi} \frac{\sqrt{2}}{2g}) \\ &= 2g \quad 2g \quad 2g \\ \text{but } \nabla_{1} = \nabla_{2} = 1 \cdot 00 - \cdot 80 + \frac{\sqrt{2}}{2g} - \frac{\sqrt{2}}{2g^{2}} = \cdot 20 \\ &\cdot 24 \quad \text{hr} = -\frac{\sqrt{2}}{2g} + \frac{\sqrt{2}}{2g} = 0 \end{aligned}$

 $h_{i} = .20$

metres.

<u>Column 18</u> is dentify the invert elevation; For example the level for the ground elevation to the sewer is about .50 metres and the diameter of sewer .80 metres, so that the upper end of invert level is .5+.80 = 1.30 and lower end is 1.30+300 = 1.66 in the line a_2a_3 plus drop in manhole is 1.66+.20 = 1.82

The description of pumps at the end of klong illustrated in Boble 28. Figure 26 shows the section and length of storm newers. Illustrative computations for a system of storm drains are shown in Fable 29 to 41.

TABLE 26 ILLUSTRATIVE COMPUTATIONS FOR A SYSTEM OF STURM IFAMIL

		LOCATION	OF DRAM	·····	TREAMANY A CANADAR	AREA	The second se	F104	-1.0% 1.0%	
UNE (1)	ST	RHIT (2)	MANISCI I PROX		12018-08-01 (8)		an sate an sate		1258 A.F.S.	
0 02	CHARASMUA	NG RD.	ि रहा	M2	5.52	5.32	20.00	5.5	3.2	11 3 11
62 03	PRARAM6 R	0.	¥12	MZ.	3.80	9.10	25.50	4.3	• 32	1731
a4 a5	RONGMUANG	A D.	 ∭4	· ···	3.92	3.92	20.00	4.75	2.2	3 32
¢5 06	CHAREONICU	ang R.D.		Ma	320	7,12	24.70	4.00	:.95	- 2.90
04 al	CHARASKU	X6 8 D.		\$77 -	3.25	320	20.00		22	n.30
		DESIGR		uninu ne rom milj s	un grandi si di		AS(6012	11. T. T.		·
LINE (1)	SECTICA ia CO	PLOPE por 1000 (12)	САРАСТТҮ с(в (18)	VELCOAR fui			TBAN			
c! a2	Ø.60	.00iR	6.2	3.00	100	.3(5 .O	0	1.30	.35
@2 a3	Ø 1.00	.0003	25.4	3.01	246	.21	.20	,	.55	.73
u4 o5	ø.60	.0018	5.2	3,02	260	.4		5	E(2)	147
ରହି ହେଉ	\$.80	.0012	15.2	300	330		.20	···· - ····	· _ · · · -· · - ;77	
04 6l	\$.60	OC :3	9.2	3.02		.43	 	· · · · · · · · ·		

.

-

TABLE 25 ILLUSTRATIVE COMPUTATIONS FOR A SYSTEM OF STUDE DRAINS

 _,	L	OCATION	OF DRAIN		TRIBUTARY core,	0	11862 C.5 1015		1 -	2
LINE (1)		REEY (2)	MANHOLZ FRCM (3)	T NEM SER TO (\$)	(IXTRE (\$26) (6)	(a)		DEAIN	988 AGR (2)	
al 05	CHARUMUAN	RD	M7	1 M6	3.92	7.12	24.00	4.40	1.94	05.8)
ol 06	CHARUMUANC	RD.		MS	3.92	3.92	20.00	4,40	2.12	8.32
06 QJ	CHAREONMUA	NG R.D.		M3	18.16	23.48	28.40	5.45	. 1.64	43.30
a5 a6	CHAREONMU4				3.20	3.20	20.00	400	2.12	6.7B
a6 a3	CKAREONMU	ANG R.D.		. <u> </u>	3.20	8.96	24.00	5.45	1.94	i7.40
	<u></u>	DUSIGN			······		PROFILE			
 (1)	SECTION in (11)	SEGPE per 1000 (12)	CAPACITY Cis (10)	VELOCITY fps (14)		FALL 6 Cits	. TRAN	S TION S TION N	onverit Ex Griper 250 (19)	
ol 46	ø.80	.0012	15.2	3.02	240	.29		20	1,70	1.99
al a6	Ø_60	.0018	9.2	3.02	240	.43		00	I. 10	
as 03	CT 1.20X1.20	.0009	55.0	3.40	300	.27	·	ю	2.43	2.70
05 05	Ø.60	0010	9.2	3.02	220	.4(00	C	: :50
a6 a3	ØI.00	.0009	25.4	3.01	300	.2	7	40	. i.9 0	8.17

TABLE 30

ELECTRATIVE COMMUNICES FOR A CYENER OF STANK CLEANS

			LOCATION	OF DRAIR		TREFAR	e .	70 - 1880 - 074 Jake		0 0 7 (254) 224	n on the NG27 No gai
	NE L)	STREET		MANWOLE FROM		INIMERIANY (5)	(G)?9. (G)	16 <u>0</u> 9843 (7)			€1 (0500)
٥3	o17	CHAREONNU	JANG RD.	MS4	M95	2	4.60	22.92	3.65	1.99	9.15
٥ð	al7	CHAREONMU	JANG RD.	M 97	M99	11.4	16.53	26.57	5.10	i. 15	15.20
٥3	a)7	CHAREONINU	IANG RD.	NIOS	M103	1.7	3.6	22.92	3.28	1.99	7.13
a 20	02f	CHULA SOI		MIOG	Mi05	3.6	3.6	20.00	5.10	1.14	4.10
a22	a23	CHULA SOL	3	M 113	ivii 11-46	3.4	5.1	22.92	2.92		10.01
			CESIGN					PROFILE			
	NE 1)	SECTION in (11)	SLOPE per 1000 (12)	CAPACITY cfs (13)	VELOCITY 125 (13)	LENGYH 13 (16)	MAL I. m (16)	. TRAN : m	Sectors	UPPER 2ND	LOWER END
a 3	710	øco	.0018	<u>\$.2</u>	3.02	200	.36)4	1 1.50	1.80
٩3	o17	ø1.00	.0012	29.2	3.49	280	.33		0	2.26	2.59
٥3	a f7	Ø.60	6100.	5.2	3.02	180	.32	۰ 	00	.39	L71
o 20	a21	ø.60	.0018	9.2	3.02	2.80	. 50	.0	0	1.10	1.60
022	a23	ø.80	.0012	16.2	3.00	:60	.i9	.2	c	1.70	1.89

REMARKS - MS3 M95, designed vs. M 54 M95

ми мена, киоть маста, маста марти среда среда стору сред, на следна на стур, на марта.

-

LINE	1		OF DRAIN		TREUTARY 6070	min	TIME OF FLOW min		RUNOFF cts_Q	
()) ())	STREET		MANHOLA FROM (3)	NUMBER [2]	INCHEMENT (5)	1017AL (8)	TO UPPER	DHAN	PER ACH	E 101A. 101
a4 aID	RONGMUANG	R D.	M19	M22	1.32	1.32	20.00	2.55		2.50
alQ all	RONGMUANG	SO:	W22		1 32	4.56	22.55	4.00	1,84	8.40
alQ all	RONGMUANG	SO: I	M23	\$M24	4.56	0.80	26.55	4.00	1.72	15.20
ai2 ali	RONGMUANG	\$94.5	M2S	M27	1.32	1.32	20.00	2.55	.96	2.58
all al3	RONGMUANG	SOI 5		MSO	12.40	13.19	30.55	1.82	1.63	21.50
	<u>.</u>	DESIGN				·	PROFILE			
- 1018**		0.080	R EDECUSTA		·		i		! .	EVATION 2
	SECTION ia (11)	GLOPS per 1000 (12)	CAPACITY cfs (15)	VELCCHTY Ýps LLG)	LENGTH TH (13)	FALL 61 (10)		ISETION D 171	UFPER END	LOWER EN
a4 alQ	ø.60	. 0018	9.2	3.02	140	.25		0	1.10	1.35
alQ all	g .60	.0018	9.2	3.02	220	4	0 .(04	1 39	1.79
alD ali	Ø.80	.0012	15.2	3.00	210	.25		20	26.1	2.24
el2 all	ø .60	.0015	S.2	3.02	140	.23		20	L10	1.35
61) et3	Ø 1.00	.0005	25.4	3.0I	100	. 0	9	20	2.44	2.50

M25 M28 128 M36 M37 M40 M43 H48 designed as M19 M22, M25 M25 M28 M28 M35 M31 M32 M34 M36 M35 M37 M33 REMARK : 1440 N.4. 1145 N.4. Casellar deligned of MSE 1120, NRC 2007 1340 Materials Materials Materials and the second of the second of the second s Readined of MPG MPA,

FLUSTRATIVE COMPUTATIONS FOR A SYSTEM OF STORM DRAINS

	ļ i	OCATION	OF DRAIN		acre, c		TOME OF min		HUNOFF 618,9	
LINE (1)	ST	REET (2)			(3)(3)	CONAL]	TO UPPER	CRAN	1928 ASR (c)	E) TOTATI L. Upi .
o5 o7	RONGMUANG	R D.	M 9	Mi 12	5 .60	6,60	20.00	6.40	2.12	14.00
a7 a8	PRARA# 4	ጽወ.	₩HZ	iiii4	6.60	11,00	26.40	5.45	. .89	20.60
06 08	CHARUMUAN	G R D.	мо	MIB	5.52	5.52	20,00	4,40	2.12	סקון
a6 a8	CHARUMUAN	G R D.			5.52	8.00	24.40	2.92	1,94	15,50
06 a8	CHARUMUAN	G RD.	M15	MI6	6.36	6.36	20.00	4,40	2.12	13.40
		DESIGN			Y		PROFILE			**************************************
								.0958,	INVERT EL	EVATION 45
	SECTION ia (11)	SF055 561 1000 (15)	CAPACITY cfs (13)	VELOCITY fps (14)	LENGTH m (13)	FAL: 11: (16)	į.	1517ION 10 171	UPPER END (13)	LOWER EXC ((2)
a5 a7	Ø.80	.0012	16.2	3.00	350	.42	2(00	1.30	1.72
a7 a8	Ø 1.00	.0009	25.4	3.01	300	.27	· ,	20	1.92	2.19
06 a8	Ø.80	.0012	, 16.2	3.C0	240	.29		00	1.30	1.39
a 6 a8	Ø1.00	.0009	25.4	3.01	160	.15	· · · · · · · · · · · · · · · · · · ·	20	1.79	1.94
0G 08	Ø.80	.0012	15.2	3.00	240	.2	9	.00	1.30	1.59

TABLE 32

.

TABLE 33 HILUSTRATIVE COMPUTATIONS FOR A SYSTEM OF BUDDAD (RAINS

<u></u>	Ĺ	OCATION	OF DRAIN			5 .		ie 01 71,5₩ 105	:* :	
L(NE 	\$7i	NEEY (2)		TRACION CO	INGENER LEO	70'.%. (a)		999/- N.) 2	(<u>s)</u> (<u>s)</u>	2 7 1898)
o6 o8	CHARUMUANG	6 R D.	MI S	M17	6.36	9.60	24	.40 2.92	1,94	19:00
08 09	PRARAM 4	R D.	M17	MLB	28.60	34.73	, 3I	.85 5.45	1.73	\$ 0.02
a3 a9	PRARAM S	RD.	(vill	,MIS	40.44	49.20	33.	.85 8.57	1.69	83.00
ç4 αl	CHARUSMUA	NG R D.		M20	3.68	3.68	20	.00 4.00	. 156	7.20
oi a2	CHARUSMUA	NG R D.		M2I	3.68	7.75		.00 5.45		14.10
.		DESIGN			1	1. 11. A FR A - AN 21		un ni an sian. Nillis	··· <u>;</u> ;;:: <u>:</u> ::'';	17. i. . . i
LINE (<u>1</u>)	SECTION in (11)	SLOPE per 1000 (12)	CAPACITY cis	VELOCITY firs (A)	LELATH H	(16)		KANARANA TRANSHI'ON (17)	017514 END 017514 END 01702	
80 80	Ø 1.00	.0009	23.4	3,01	160	.15	5	. 20	1.79	1.94
08 b9	□ 1.20x1.40	.0008	60.B	3.30	300	.2	4	. 40	2.59	i 2.63
o3 o9	[] 1.40XI.60	.0007	83.0	3 40	470	.3	3	. 40	3.10	5.43
04 al	Ø.60	.0016	9.2	3.02	220	. 4	0	.00	1.10	1.50
al a2	Ø.80	.0012	16.2	3.00	300		36	.20	: 1.70	2.05

TABLE 34 USTRATIVE COMPUTATIONS TORIA SYSTEMS OF GYORE DRAINS

. INC		OCATION	of Orain		TRIEUTARY acre,	9	5 E.I	NE SELOIS In	· ·	80151 683, 9
ιιν ε _ (ι)	\$។	RE:ET (2)	MANNCLE HOM (s)	. राष्ट्रहराज्ञ (१)	1 KCRO 22AN (1 (11)	(6) (6)	10 (1272) (ND (7)		(8)) (8)	
all al3	RONGMUANG	SOI 5	M33	M36	23.j9	23. 79	32.37	1.82		38.2
all a13	RONGMUANG	SOI 5	M39	₩42	33.79	34 39	34,19	1.82	I. 56	53.7
al2 al3	RONGMUANG	SOI 5	M51	 ₩52	2.80	5.60	25.45	5.45	i. 1.77	10.0
a2 a12	PRARAM 6	RD.	M2I	M 33	10.50	13.00	25.45	5.45	-} 1,77	23.0
o13 o12	PRARAMI	RD.	M48	M53	51.59	60.00	37.33	1.82		90.5
		DESIGN					nin in			
					 	·		41. F.C. (14)	in in vality (E) - IN vality (E)	 SVALSSS I.S.
Liχε (+)	אסSECTION in (11)	SLOPE por 1000 (12)	CAPACITY cfs (13)	VELOCITY fps (14)	UENSTH m (41)	PAL 60 (10	1	NSCHON A (17)	UP PER END	
oli ol3	🔲 1.20X1.20	.000.9	55.0	3.40	100	.0	9 	.20	2.37	2.46
oli ol3	[] 1.2 0%1.20	.0009	55.0	3.40	100	.0	9	.10	2.56	3.65
ol2 al3	Ø.80	.0012	16.2	3.00	300	.3	5	.20		2.20
02 al2	Ø I.CO	e000.	25.4	3.01	600	.5	4	.20	2.26	2.80
013 012	[] 40XI 60	.2008	89.6	3.79		.0	0	. 10	3,93	4.05

.

TABLE 35 ILLUSTRATIVE COMPUTATIONS FOR C SYSTEME DE ESDATE TRALLE

•

LINE		LOCATION	OF DRAIN		ot/e,	c,	1 710 3386°C 640		· c	SOMP ≥o, Q
(1)	ST	REE7 (2)	MANKOLI PROM (3)		INCREMENT (5)		TO UN EX END (7)	ist - 71 - 1 - 3	1993 - 5 55 	i
al4 ol6	CHULA	501 7	i∆ BI	M82	3.68	3.68	20.00	4.90	2 12	7.80
al6 a9	PHRARAM	4 RD	W 82	W194	366	5.48	24.90	2.92	: 1.94	10.65
016 09	PHRARAM	4 RD.	MISS	M87	11.78	13.58	27.80	2 92	1.84	25.00
ol9 a9	PHRARAM	6 RD	M 89	M87	51.14	53.78	30.72	365	1.74	93.60
al4 al3	SUARLUAN	IG RD.	M 92	M 93	2.40	2.40	20.00	3.65	1.12	5.1
		DESIGN					PROFILE			
LINE	SECTION	SLOPE	CAPACITY	VELOCITY	LENGTH	FALL.	-	oes, Heion	INVERT EL	EVATION m.
(1)	4) (11)	per 1000 (12)	CÝS (13)	(16)	(18)	ំ ((ទ)	(17)	(13)	(10)
a14 a 16	Ø .60	8100.	9.2	3.02	. 270	. 48	0.00		1.10	1.58
al6 o9	ø .80	.0012	16.2	3.00	160	. 19	.20		1.78	1.97
al6 aS	ø1.00	.0012	292	3.45	160	.19	.20		2.17	2.36
al9 65	CI1.40X1.60	8000.	89.6	3.70	200	.16	.00		2.93	3.09
eM sis	Ø .60	.00:8	92	3.02	200	.36	.00		1.i0	í. 4 6

WEMARKS -- MSS MG4, MSS MG5, Costgues co MO1 MG2

\$200 Motel 2008/0106; USP 207, 4000 Task and adding 1003

TABLE 36 ILLUSTRATIVE COMPUTATIONS YOR A SYSTEM OF STYRM . RULES

() SI 🗖		LOCATION	OF DRAIN		TRIFUTARY 0078 ;	e	40 BWF			1000000 1000000 100000
LINE (1)	ST	REET (2)	MANKOL2 F300 (3)	NUROEN O (4)	(a)	10772L (3)	TOD FREE END CZ	EFAN	(PAR AU (9)	
a14 ol5	SUANLUANO	5 RD.	M54	M55	1.52	1.52	20.00	2.92	2.12	3.22
al4 al5	SUANLUANG	R.D.	M55	₩56	1.5 2	3.04	22.92	2.92	1.99	6.05
oi4 al6	CHULA SO	7	ivt57	M60	2.00	2.00	2.00	2.92	2.12	4.25
a3 ol7	CHAREONM	UANG RD.	MeO	ivi 61	2.00	4.00	22.92	2.92	1.99	7.95
al5 o3	PRARAM 6	R 0.	i¥59	M\$0	7.04	9.04	25.84	2.92	1.92	17.50
		DESIGN					PROFILE			
						·		. <u>005</u> ,	NVERT E.	EVATION IS
LINE (1)	SECTION in (11)	SLOPE per 1000 (12)	CAPACITY cfs (15)	VELOCITY fps (14)	LENGTH M (13)	FALL 70 (16)			UPPER END	LOWER END (19)
al4 al5	Ø.60	0018	9.2	3.02	031	.29	.c	0	t, FO	 1.39
ol4 ol5	Ø.60	0018	9.2	3.02	160	.29	. 0	0	1.39	168
a14 a16	Ø.,60	.0018	92	3.02	160	.29	.c	0	1.10	1.39
03 ol7	Ø.60	.0018	9.2	3.02	160	.29		04	1.43	1.72
al5 a3	Ø1.00	. 00 09	25.4	3.01	i60	.14		40	2.12	2.25

REMARK 1 M64 M67 M65 M68 M69 M70 M57 %53 M64M65 (28)good os 1084 %55, M58 M89 M66 M66 decumente M88M86, M55 M81 904 M63 decumente d

÷

TABLE 37 ILLUSTRATIVE COMPUTATIONS FOR A SYSTEM OF STORM PRAIME

	Ļ	KOITADO.	OF DRAIN		TRIGUTARY	÷.	TIME OF	<u>門</u> 道筆		NER BUC
())		REET (2)	MAR'HOLE FROM (3)		TRC:55:MENT (0)	TO (A) (c)	CCCPFER SND (7)	ORAN	(9)	
¢18 ¢25	CHULA SOI	I	សទា	i# !3 7	3.60	3.60	20.00	4.30	2.12	7.80
a17 o26	РНАҮАТНАІ	R D.	M100	ivil44	3.20	8.60	22.92	4 30	.95	3.10
o27 o28	CHULA SOI	2	wi143	ist 14.4	17.60	22.60	24.30	4.65	1.35	30.4
o28 o26	PHAYATHA	R.D.		N/s1446	30.00	38.80	28.95	8.60	1.30	50.5
a30 a31	SNAMKILA		ivi147	iii 148	3.28	8.08	20.00	3.65		93.0
		DESIGN			 		PROFILE			
							ſ	1008	AVENY EL	EVALION 7
LINE	SECTION in (11)	SLOPE per 1000 (12)	CAFACITY cfs (15)	VELOCITY *ps [14]	LENGTH D (15)	FACi m (16)		S:TICN 1 7)	UFPER END (13)	LOWER EAC
ol8 o25	¢7.60	9100.	9.2	3 02	240	.43	.0	0	1.10	1.53
ol7 a26	Ø.80	CO12	16.2	3.00	240	. 29	.2	с	1.59	1.68
a27 a28	□ 20X1.20	.0008	51.4	3.18	280	.23	.4	o	2.37	2.5B
o28 o26	DI.20XI.40	.0009	64.2	3.56	390	.34		•	2.79	3.12
a30 a31	ø. 60	. 0013	9.2	3.02	200	. 36		1 4 ;	1.36	! 72

REMARKS : M99 M100 1137 M165 M90 M130 M 54 M139 M65 M160 M55 M161 M162 2003 Contigood es - 200 M 64

TABLE SO ILLUSTRATIVE COMPUTATIONS FOR A SYSTEM OF STORM DRAINS

• • • • • • • •	ι. ι	OCATION	OF DRAIN		TRISUTARY , stop		с Г	OF FLOW	0	義 戦の行行 つYs,Q	
LINE (1)	ST	RZSIT (2)	MANKOLE FROM (3)		INCRE MENT	10 (AL (6)			(25 SER 1403 (5)	स्थिति 106%। (* <u>c</u>)	
810 B10	BUODHA LA	NE	M 67	N 68	1.5	3.1	22.92	2.92	. 1.99	6.18	
ol8 ol9	BUDDHA LA	NE	M 70	N71	6.1	7.7	25.84	2.92	1.92	14.80	
ol7 o3	CHAREONMU	ANG RD.	M 63	M80	8.0	10.0	25.84	2.92	ſ .9 2	19.20	
a3 al9	PHRARAM 6	RD	M 68	N71	22.54	24.04	28.76	2.19	1.94	44.40	
019 d9	PHRARAM 6	RD.	M 70	M79	35.54	37.54	30 95	2.92	1.74	85.4C	
		DESIGN					PHOFI	1.2			
									I W/ERT E.	2 WHON S	
LIME (()	SECTION in (III)	SLOPE por 1000 (12)	CAPACITY cis (IS)	VELOCITY fps (10)	LENGTH M (18)	(AL) m (ic)		ANS (TION 01 (17)	CONSTRACTION	1:0WER E! (10)	
018 al9	ø.so	.0018	9.2	3.02	160	.29		.04	1.43	1.72	
alis alis	¢∄.60	.0012	16.2	3.00	160	.19		.20	F.92	2.11	
a 7 o3	Ø1.00	.0009	25.4	3.0)	160			.20	1.92	2.96	
03 619	01.20×1.20	.0006	52.0	3.40	051	.09	, , , , , , , , , , , , , , , , , , ,	.20	2.26	2.46	
al9 a9	01.20X1.60	.0 008	72.0	3.50	160	.13		40	! : 277	2.90	

REMARKSH M72 M73, 072 M74, M73 M75, M76 H77, Coolgood of M67 M60

2016 M70, 1274 1970, 10, iq 54 (x 12,00, 120)

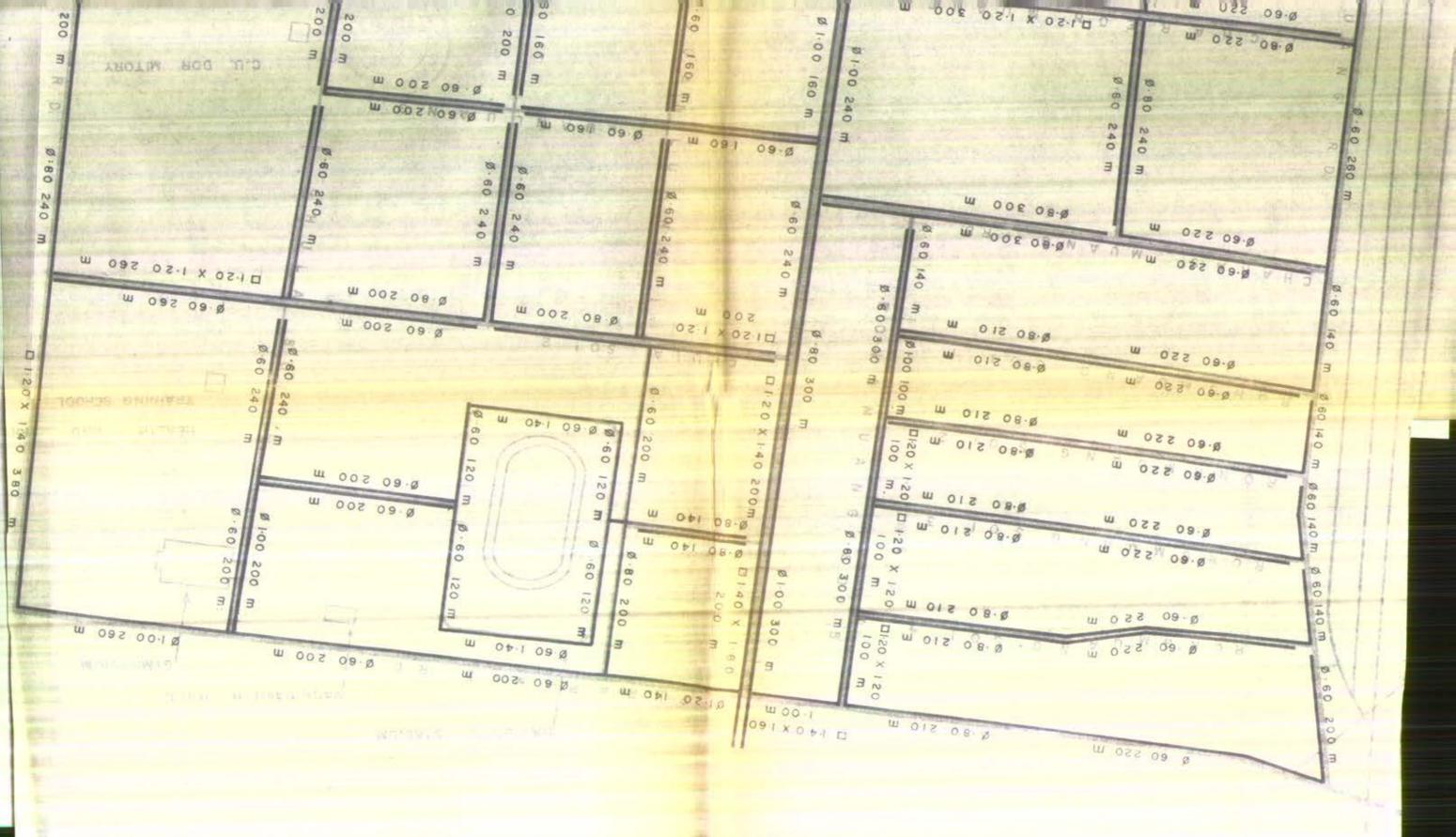
3277378. Alexandres 109-1095

.

50 BL @ 36	0.110 7 15 1500		<i></i>			
1405,5 09	TELEOS I MATTIVE	COMPUTATIONS	7 G. C. 24	SYSTER	OF STORY	- DRANKE

		LOCATION	of Drain		TRIUUTARY Gore ,		VINE OF	FLOW		NG2 4 NG2 4
LINE (1)	S۲	R227 (2)	MANNOLE PROM	TRUNSER L (8)	ENCRESHNT (9)	(s)	TU UPPER SND (P)	DRAIN	(s) (s)	
022 023	CHULA SO	3	M 117	Na 15	10.74	12.54	25.84	. 328	1.10	13.95
a22 a23	CHULA SO	3	€ 105	80%	22.16	23.36	29.12	2.37	1.10	23.80
ol7 o23	РНАУАТНА	RD.	M104	MIG	21.35	24.93	31.67	5.28	:.00	24.93
023 024	PHAYATHAI	RD.	W154	៳៲៶ទ	52.89	54.89	36.95	2.92	.95	52.00
o23 o24	рнауатка	RD.	WF32	M135	63.09	66.09	3987	400	1.00	66.09
		DESIGN	·····				PROFILE			
LINE (1)	SECTION in ()))	S4013 0001 / 99 (121)	GAPACITY cfs (13)	VELOCITY fpc (14)	LENGTR m (.c)	PA).) m (13)		UCCS, SITION 7)	UNVERT E. UPPER ZND (10)	E VANCAL HE HOWER END LOUIS
a22 o23	ø 1.00	.0005	25.4	3.0!	180	1	.2	0	2.09	2.25
022 023	Ø 1.00	.00 09	25.4	3.01	130	.11	-	_	2 2 5	2.36
ol7 o23	∮ I.00	6000.	25.4	3.01	290	.26		-	2.59	2.35
o23 c24	0120X120	3000.	104.0	340	160	.16		-	3.00	3.16
o23 o24	D120X1.60	. 0008	72.0	3.50	220	.17	4	0	5.46	3,83

.


REMARKS - CHOSEMBS, Sosigned of WHY MHS, MERDING, MEDICIPAL CLEVER OF LUXSWERP, MAY 2050, P.V., SUME, S.

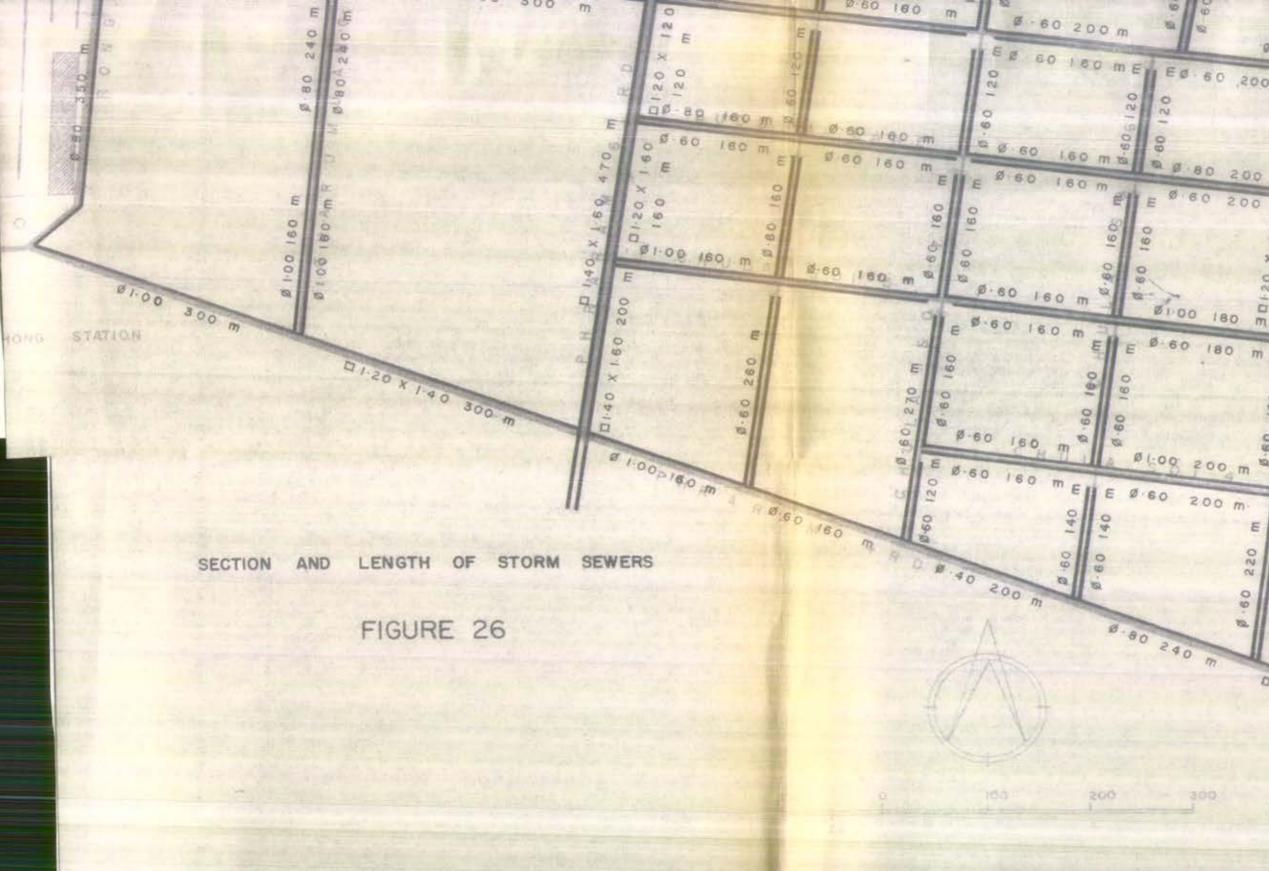

STROMENTAL REPORT OF A STROMENT OF A S STROMENT OF A STROMENT STROMENT OF A STROMENT A STROMENT OF ASTROMENT OF A STROMENT OF

TABLE 40 BLUSTRATIVE COMPUTATIONS FOR A SYSTEM OF STORE LEGE

	(l	OCATION	OF DRAIN		NRS NEART ABS NEART		NARE AF			가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가
3%i2 (1)	S۲	R221 (2)	MANNOLE From (3)		273.64 (5726) (41)	1 (03255) (3)			5,28 I.05 430 I.CO 430 I.CO 430 I.CO 430 I.CO 430 I.CO 430 I.CO 430 I.CO 430 I.CO 430 I.CO 430 I.CO	
a31 a25	CHULA SOF	I	M148	⊮i49	14.04	20.04	23.65	3,28		21.6
025 026	PRARAM II	RD.	M149	M145	23 34	26 94	26.93	430	: 	23.34
										• • • • • •
						· ····· ··· ··			. • • • .	,
<u> </u>	<u>_ </u>								: 	
		DESIGN		·····	• • • •		PROPER			
					 		i			EVENON M
LINE (1)	SECTION in (11)	SLOPE per 1000 (12)	CAPACITY cfs (15)	VELOCITY fps (16)	E2680134 m <u>(18)</u>	(A).). m (10)	រោ រុ		jur per end	LOWER EN: (10)
022 023	ø.e0	.0009	25.4	3.01	130	.16	.2	0	1.92	2.03
a25 a26	ø t 00	.0009	25.4	3.01	240	.21	Ì		2.08	2.29
									1 1 1	
				ļ	 				:	:

MIAO MIAI designed os MIAS MIAS MIAS MIAI MISO designed es 1944 mias, MISI 1990 designed ou 1946 MIAS, REMARK :

5 Ø1.00 280 m E Ø 60 160 m E EØ 60 200 m E Ø 80 120 m 0 \$ \$ 80 200 m 80 50 200 m E 240 28 1-00 60 Ξ 8 24 FACH 0 01.00 180 Dm Ø1.00 120 m 0 80 120 4.2 - 20 E 20 01-20 × 1-20 12 120 D m Ø.80 120 m F 60 20 85 20 QI. D 05.1 × 05.10 120 m

STATE THE DOM