CHAPTER IV

LINEAR TRANSFORMATIONS AS Γ-SEMIGROUPS

Let V be an infinite-dimensional vector space over a division ring, L(V) the semigroup under composition of all linear transformations on V and 1_V the identity map on V. The image of v under $\alpha \in L(V)$ is written by $v\alpha$. For $\alpha \in L(V)$, let ker α and im α denote the kernel and the image of α , respectively. The followings are linear transformation subsemigroups of L(V) and the details of the proof can be seen in [1] and [2]:

```
G(V) = \{ \alpha \in L(V) \mid \alpha \text{ is an isomorphism } \},
AI(V) = \{ \alpha \in L(V) \mid \dim(V/F(\alpha)) < \infty \}, \text{ where } F(\alpha) = \{ v \in V \mid v\alpha = v \},
M(V) = \{ \alpha \in L(V) \mid \ker \alpha = \{0\} \},
E(V) = \{ \alpha \in L(V) \mid \dim \alpha = V \},
AM(V) = \{ \alpha \in L(V) \mid \dim \ker \alpha < \infty \},
AE(V) = \{ \alpha \in L(V) \mid \dim(V/\operatorname{im}\alpha) < \infty \},
OM(V) = \{ \alpha \in L(V) \mid \dim(V/\operatorname{im}\alpha) < \infty \},
OE(V) = \{ \alpha \in L(V) \mid \dim(V/\operatorname{im}\alpha) \text{ is infinite } \},
for each k \in \mathbb{N}
K(V, k) = \{ \alpha \in L(V) \mid \dim \ker \alpha \geq k \},
K'(V, k) = \{ \alpha \in L(V) \mid \dim \ker \alpha > k \},
CI(V, k) = \{ \alpha \in L(V) \mid \dim(V/\operatorname{im}\alpha) \geq k \},
CI'(V, k) = \{ \alpha \in L(V) \mid \dim(V/\operatorname{im}\alpha) > k \},
```

$$I(V,k) = \{ \alpha \in L(V) \mid \dim \operatorname{im} \alpha \le k \},$$

$$I'(V,k) = \{ \alpha \in L(V) \mid \dim \operatorname{im} \alpha < k \}.$$

The following remarks are the facts which will be used later.

Remark 4.1. For any nonempty subset Γ of L(V), L(V) is a Γ -semigroup.

Remark 4.2. ([2]) The following statements hold.

- (i) OM(V) is a right ideal of L(V).
- (ii) OE(V) is a left ideal of L(V).

This chapter deals with linear transformation semigroups on V. We will find the necessary and sufficient conditions for a nonempty subset Γ of V which the linear transformation subsemigroups mentioned above are Γ -subsemigroups.

The following proposition is also necessary for our consideration in the next results.

Proposition 4.3. Let S be a subsemigroup of L(V) containing 1_V . Then S is a Γ -subsemigroup of L(V) if and only if $\Gamma \subseteq S$.

Proof. First, assume that S is a Γ -subsemigroup of L(V). Let $\alpha \in \Gamma$. Then $\alpha = (1_V)\alpha(1_V) \in S\Gamma S \subseteq S$.

Conversely, assume $\Gamma \subseteq S$. Then $S\Gamma S \subseteq SS \subseteq S$. Thus S is a Γ -subsemigroup of L(V).

By Proposition 4.3, the following subsemigroups of L(V) are Γ -subsemigroups of L(V) if and only if they contain Γ :

$$G(V) = \{ \alpha \in L(V) \mid \alpha \text{ is an isomorphism } \},$$

$$AI(V) = \{ \alpha \in L(V) \mid \dim(V/F(\alpha)) < \infty \}, \text{ where } F(\alpha) = \{ v \in V | v\alpha = v \},$$

$$M(V) = \{ \alpha \in L(V) \mid \ker \alpha = \{0\} \},$$

$$E(V) = \{ \alpha \in L(V) \mid \dim \alpha = V \},$$

$$AM(V) = \{ \alpha \in L(V) \mid \dim \ker \alpha < \infty \},$$

$$AE(V) = \{ \alpha \in L(V) \mid \dim(V/\operatorname{im}\alpha) < \infty \}.$$

Theorem 4.4. For all nonempty subsets Γ of L(V), OM(V) and OE(V) are Γ -subsemigroups of L(V).

Proof. This is obtained from Remark 4.2.

Theorem 4.5. For all nonempty subsets Γ of L(V), K(V,k) and K'(V,k) are Γ -subsemigroups of L(V).

Proof. Let Γ be a nonempty subset of L(V). Let $\alpha, \gamma \in K(V, k)$ and $\beta \in \Gamma$. Then $\ker \alpha \subseteq \ker \alpha \beta \gamma$. Thus $k \leq \dim \ker \alpha \leq \dim \ker \alpha \beta \gamma$ implies that $\alpha \beta \gamma \in K(V, k)$. Therefore K(V, k) is a Γ -subsemigroup of L(V), so is K'(V, k).

Theorem 4.6. For all nonempty subsets Γ of L(V), CI(V,k) and CI'(V,k) are Γ -subsemigroups of L(V).

Proof. Let Γ be a nonempty subset of L(V). Let $\alpha, \gamma \in CI(V, k)$ and $\beta \in \Gamma$. Then $\operatorname{im} \alpha\beta\gamma \subseteq \operatorname{im} \gamma$ and $\operatorname{dim}(V/\operatorname{im} \gamma) \le \operatorname{dim}(V/\operatorname{im} \alpha\beta\gamma)$. Thus $k \le \operatorname{dim}(V/\operatorname{im} \gamma) \le \operatorname{dim}(V/\operatorname{im} \alpha\beta\gamma)$ implies that $\alpha\beta\gamma \in CI(V, k)$. Therefore CI(V, k) is a Γ -subsemigroup of L(V), so is CI'(V, k).

Theorem 4.7. For all nonempty subsets Γ of L(V), I(V,k) and I'(V,k) are Γ -subsemigroups of L(V).

Proof. Let Γ be a nonempty subset of L(V). Let $\alpha, \gamma \in I(V, k)$ and $\beta \in \Gamma$. Then $\operatorname{im} \alpha \beta \gamma \subseteq \operatorname{im} \gamma$. Thus $\operatorname{dim} \operatorname{im} \alpha \beta \gamma \le \operatorname{dim} \operatorname{im} \gamma \le k$ implies that $\alpha \beta \gamma \in I(V, k)$. Therefore I(V, k) is a Γ -subsemigroup of L(V), so is I'(V, k).