CHAPTER IV

LINEAR TRANSFORMATIONS AS Γ-SEMIGROUPS

Let V be an infinite-dimensional vector space over a division ring, $L(V)$ the semigroup under composition of all linear transformations on V and 1_{V} the identity map on V. The image of v under $\alpha \in L(V)$ is written by $v \alpha$. For $\alpha \in L(V)$, let ker α and $\operatorname{im} \alpha$ denote the kernel and the image of α, respectively. The followings are linear transformation subsemigroups of $L(V)$ and the details of the proof can be seen in [1] and [2]:

$$
\begin{aligned}
G(V) & =\{\alpha \in L(V) \mid \alpha \text { is an isomorphism }\}, \\
A I(V) & =\{\alpha \in L(V) \mid \operatorname{dim}(V / F(\alpha))<\infty\}, \text { where } F(\alpha)=\{v \in V \mid v \alpha=v\}, \\
M(V) & =\{\alpha \in L(V) \mid \operatorname{ker} \alpha=\{0\}\}, \\
E(V) & =\{\alpha \in L(V) \mid \operatorname{im} \alpha=V\}, \\
A M(V) & =\{\alpha \in L(V) \mid \operatorname{dim} \operatorname{ker} \alpha<\infty\}, \\
A E(V) & =\{\alpha \in L(V) \mid \operatorname{dim}(V / \operatorname{im} \alpha)<\infty\}, \\
O M(V) & =\{\alpha \in L(V) \mid \operatorname{dim} \operatorname{ker} \alpha \text { is infinite }\}, \\
O E(V) & =\{\alpha \in L(V) \mid \operatorname{dim}(V / \operatorname{im} \alpha) \text { is infinite }\},
\end{aligned}
$$

for each $k \in \mathbb{N}$

$$
\begin{aligned}
K(V, k) & =\{\alpha \in L(V) \mid \operatorname{dim} \operatorname{ker} \alpha \geq k\} \\
K^{\prime}(V, k) & =\{\alpha \in L(V) \mid \operatorname{dim} \operatorname{ker} \alpha>k\} \\
C I(V, k) & =\{\alpha \in L(V) \mid \operatorname{dim}(V / \operatorname{im} \alpha) \geq k\} \\
C I^{\prime}(V, k) & =\{\alpha \in L(V) \mid \operatorname{dim}(V / \operatorname{im} \alpha)>k\}
\end{aligned}
$$

$$
\begin{aligned}
& I(V, k)=\{\alpha \in L(V) \mid \operatorname{dim} \operatorname{im} \alpha \leq k\} \\
& I^{\prime}(V, k)=\{\alpha \in L(V) \mid \operatorname{dim} \operatorname{im} \alpha<k\}
\end{aligned}
$$

The following remarks are the facts which will be used later.

Remark 4.1. For any nonempty subset Γ of $L(V), L(V)$ is a Γ-semigroup.

Remark 4.2. ([2]) The following statements hold.
(i) $O M(V)$ is a right ideal of $L(V)$.
(ii) $O E(V)$ is a left ideal of $L(V)$.

This chapter deals with linear transformation semigroups on V. We will find the necessary and sufficient conditions for a nonempty subset Γ of V which the linear transformation subsemigroups mentioned above are Γ-subsemigroups.

The following proposition is also necessary for our consideration in the next results.

Proposition 4.3. Let S be a subsemigroup of $L(V)$ containing 1_{V}. Then S is a Γ-subsemigroup of $L(V)$ if and only if $\Gamma \subseteq S$.

Proof. First, assume that S is a Γ-subsemigroup of $L(V)$. Let $\alpha \in \Gamma$. Then $\alpha=\left(1_{V}\right) \alpha\left(1_{V}\right) \in S \Gamma S \subseteq S$.

Conversely, assume $\Gamma \subseteq S$. Then $S \Gamma S \subseteq S S \subseteq S$. Thus S is a Γ-subsemigroup of $L(V)$.

By Proposition 4.3, the following subsemigroups of $L(V)$ are Γ-subsemigroups of $L(V)$ if and only if they contain Γ :

$$
\begin{aligned}
G(V) & =\{\alpha \in L(V) \mid \alpha \text { is an isomorphism }\}, \\
A I(V) & =\{\alpha \in L(V) \mid \operatorname{dim}(V / F(\alpha))<\infty\}, \text { where } F(\alpha)=\{v \in V \mid v \alpha=v\}, \\
M(V) & =\{\alpha \in L(V) \mid \operatorname{ker} \alpha=\{0\}\}, \\
E(V) & =\{\alpha \in L(V) \mid \operatorname{im} \alpha=V\}, \\
A M(V) & =\{\alpha \in L(V) \mid \operatorname{dim} \operatorname{ker} \alpha<\infty\}, \\
A E(V) & =\{\alpha \in L(V) \mid \operatorname{dim}(V / \operatorname{im} \alpha)<\infty\} .
\end{aligned}
$$

Theorem 4.4. For all nonempty subsets F of $L(V), O M(V)$ and $O E(V)$ are Γ-subsemigroups of $L(V)$.

Proof. This is obtained from Remark 4.2.

Theorem 4.5. For all nonempty subsets Γ of $L(V), K(V, k)$ and $K^{\prime}(V, k)$ are Γ-subsemigroups of $L(V)$.

Proof. Let Γ be a nonempty subset of $L(V)$. Let $\alpha, \gamma \in K(V, k)$ and $\beta \in \Gamma$. Then $\operatorname{ker} \alpha \subseteq \operatorname{ker} \alpha \beta \gamma$. Thus $k \leq \operatorname{dim} \operatorname{ker} \alpha \leq \operatorname{dim} \operatorname{ker} \alpha \beta \gamma$ implies that $\alpha \beta \gamma \in K(V, k)$. Therefore $K(V, k)$ is a Γ-subsemigroup of $L(V)$, so is $K^{\prime}(V, k)$.

Theorem 4.6. For all nonempty subsets Γ of $L(V), C I(V, k)$ and $C I^{\prime}(V, k)$ are Γ-subsemigroups of $L(V)$.

Proof. Let Γ be a nonempty subset of $L(V)$. Let $\alpha, \gamma \in C I(V, k)$ and $\beta \in$ Γ. Then $\operatorname{im} \alpha \beta \gamma \subseteq \operatorname{im} \gamma$ and $\operatorname{dim}(V / \operatorname{im} \gamma) \leq \operatorname{dim}(V / \operatorname{im} \alpha \beta \gamma)$. Thus $k \leq$ $\operatorname{dim}(V / \operatorname{im} \gamma) \leq \operatorname{dim}(V / \operatorname{im} \alpha \beta \gamma)$ implies that $\alpha \beta \gamma \in C I(V, k)$. Therefore $C I(V, k)$ is a Γ-subsemigroup of $L(V)$, so is $C I^{\prime}(V, k)$.

Theorem 4.7. For all nonempty subsets Γ of $L(V), I(V, k)$ and $I^{\prime}(V, k)$ are Γ-subsemigroups of $L(V)$.

Proof. Let Γ be a nonempty subset of $L(V)$. Let $\alpha, \gamma \in I(V, k)$ and $\beta \in \Gamma$. Then $\operatorname{im} \alpha \beta \gamma \subseteq \operatorname{im} \gamma$. Thus $\operatorname{dimim} \alpha \beta \gamma \leq \operatorname{dim} \operatorname{in} \gamma \leq k$ implies that $\alpha \beta \gamma \in I(V, k)$. Therefore $I(V, k)$ is a Γ-subsemigroup of $L(V)$, so is $I^{\prime}(V, k)$.

