ผลของโลหะออกไซด์ต่อกัมมันตภาพและเสถียรภาพของตัวเร่งปฏิกิริยาเซิงไฟฟ้าแพลทินัม-โคบอลต์/คาร์บอนสำหรับรีดักชันของออกซิเจนในเซลล์เชื้อเพลิงพีอีเอ็ม

นางสาวณภาภัช ไชยทรัพย์อนันต์

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาเคมีเทคนิค ภาควิชาเคมีเทคนิค คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2558 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย EFFECTS OF METAL OXIDE ON ACTIVITY AND STABILITY OF Pt-Co/C ELECTROCATALYSTS FOR OXYGEN REDUCTION IN PEM FUEL CELLS

Miss Napapat Chaisubanan

CHULALONGKORN UNIVERSITY

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Program in Chemical Technology Department of Chemical Technology Faculty of Science Chulalongkorn University Academic Year 2015 Copyright of Chulalongkorn University

Thesis Title	EFFE	ECTS OF M	ETAL OXIDE ON ACTIVI	FY AND S	STABILITY
	OF	Pt-Co/C	ELECTROCATALYSTS	FOR	OXYGEN
	RED	UCTION IN	I PEM FUEL CELLS		
Ву	Miss	Napapat (Chaisubanan		
Field of Study	Cher	mical Tech	nology		
Thesis Advisor	Profe	essor Mali I	Hunsom, Ph.D., Dr. de l'	INP	
Thesis Co-Advisor	Asso	ociate Profe	essor Kejvalee Pruksatho	rn, Dr. d	le l'INP
	Assis	stant Profe	ssor Hugues Vergnes, D	r. de l'IN	IP

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the

Requirements for the Doctoral Degree

_____Dean of the Faculty of Science

(Associate Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE Chairman (Associate Professor Somkiat Ngamprasertsith, Dr. de l'INP) Thesis Advisor (Professor Mali Hunsom, Ph.D., Dr. de l'INP) Thesis Co-Advisor (Associate Professor Kejvalee Pruksathorn, Dr. de l'INP) (Associate Professor Kejvalee Pruksathorn, Dr. de l'INP) Examiner (Assistant Professor Hugues Vergnes, Dr. de l'INP) Examiner (Assistant Professor Kunakorn Poochinda, Ph.D.) Examiner (Assistant Professor Nisit Tantavichet, Ph.D.) (Associate Professor Terdthai Vatanatham, Ph.D.) ณภาภัช ไชยทรัพย์อนันต์ : ผลของโลหะออกไซด์ต่อกัมมันตภาพและเสถียรภาพของ ตัวเร่งปฏิกิริยาเชิงไฟฟ้าแพลทินัม-โคบอลต์/คาร์บอนสำหรับรีดักชันของออกซิเจนใน เซลล์เชื้อเพลิงพีอีเอ็ม (EFFECTS OF METAL OXIDE ON ACTIVITY AND STABILITY OF Pt-Co/C ELECTROCATALYSTS FOR OXYGEN REDUCTION IN PEM FUEL CELLS) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ศ. ดร. มะลิ หุ่นสมPh.D., Dr. de l'INP, อ.ที่ ปรึกษาวิทยานิพนธ์ร่วม: รศ. ดร. เก็จวลี พฤกษาทรDr. de l'INP, ผศ. ดร. อุ๊ก แวงฝDr. de l'INP, 127 หน้า.

งานวิจัยนี้ศึกษาผลของโลหะออกไซด์ต่อกัมมันตภาพและเสถียรภาพของตัวเร่งปฏิกิริยา เชิงไฟฟ้าแพลทินัม-โคบอลต์/คาร์บอน ตัวแปรในการศึกษา คือ ชนิดของโลหะออกไซด์ (TiO, MoO2 และ CeO2) ปริมาณโลหะออกไซด์ (0.03-0.45 มิลลิกรัมต่อตารางเซนติเมตร) และศึกษา เปรียบเทียบผลของ TiO, ที่เตรียมจากวิธีการพอกพูนด้วยไอเคมี (Chemical vapor deposition) กับ TiO, เชิงพาณิชย์ จากผลการทดลองพบว่าชนิดและปริมาณไม่ส่งผลต่อโครงสร้างผลึกและ สัณฐานวิทยาของตัวเร่งปฏิกิริยาเชิงไฟฟ้าแพลทินัม-โคบอลต์/คาร์บอน ในส่วนของการทดสอบกัม มันตภาพและสมรรถนะของตัวเร่งปฏิกิริยาในเซลล์เชื้อเพลิง พบว่าการเติม CeO, และ MoO, ให้ผลในเชิงลบ ในขณะที่การเติม TiO, เชิงพาณิชย์ในปริมาณตั้งแต่ 0.03-0.06 มิลลิกรัมต่อตาราง เซนติเมตร สามารถเพิ่มกัมมันตภาพของตัวเร่งปฏิกิริยาและสมรรถนะของเซลล์เชื้อเพลิงให้สูงขึ้น ได้ โดยค่าความหนาแน่นกระแสไฟฟ้าทางจลนพลศาสตร์และความหนาแน่นกระแสไฟฟ้าในเซลล์ เชื้อเพลิงที่ 0.6 โวลต์ ของตัวเร่งปฏิกิริยาเชิงไฟฟ้าแพลทินัม-โคบอลต์/คาร์บอนมีค่าสูงสุด (8.05 และ 435 มิลลิแอมแปร์ต่อตารางเซนติเมตร ตามลำดับ) ที่ปริมาณ TiO₂ เท่ากับ 0.06 มิลลิกรัมต่อ ตารางเซนติเมตร ส่วนค่าดังกล่าวสำหรับ TiO, ที่เตรียมโดยวิธีการพอกพูนด้วยไอเคมีจะมีค่าสูง กว่าเล็กน้อย คือ 20.24 และ 454.80 มิลลิแอมแปร์ต่อตารางเซนติเมตร ตามลำดับ ในส่วน การศึกษาผลของโลหะออกไซด์ต่อเสถียรภาพของตัวเร่งปฏิกิริยาเชิงไฟฟ้าแพลทินัม -โคบอลต์/ คาร์บอน พบว่า CeO₂ และ MoO₂ ไม่สามารถส่งเสริมเสถียรภาพของตัวเร่งปฏิกิริยาได้ ในขณะที่ TiO₂ ให้ผลในเชิงบวกต่อเสถียรภาพของตัวเร่งปฏิกิริยา

ภาควิชา	เคมีเทคนิค	ลายมือชื่อนิสิต
สาขาวิชา	เคมีเทคนิค	ลายมือชื่อ อ.ที่ปรึกษาหลัก
ปีการศึกษา	2558	ลายมือชื่อ อ.ที่ปรึกษาร่วม
		ลายมือชื่อ อ.ที่ปรึกษาร่วม

KEYWORDS: PLATINUM-COBALT ALLOY CATALYST / ORR ACTIVITY / CATALYST STABILITY / PEM FUEL CELL

NAPAPAT CHAISUBANAN: EFFECTS OF METAL OXIDE ON ACTIVITY AND STABILITY OF Pt-Co/C ELECTROCATALYSTS FOR OXYGEN REDUCTION IN PEM FUEL CELLS. ADVISOR: PROF. MALI HUNSOM, Ph.D., Dr. de l'INP, CO-ADVISOR: ASSOC. PROF. KEJVALEE PRUKSATHORN, Dr. de l'INP, ASST. PROF. HUGUES VERGNES, Dr. de l'INP, 127 pp.

This work was carried out to study the effect of metal oxide (MO_2) on activity and stability of Pt-Co/C electrocatalyst. The investigated parameters were types of the metal oxides (TiO_2 , MoO_2 , and CeO_2) and the loadings of the metal oxide ($0.03 - 0.45 \text{ mg/cm}^2$) and also compared the effect of TiO_2 prepared by chemical vapor deposition and commercial TiO_2 . The experiment reported that the types of the metal oxide, quantity did not influence to the structure and the morphology of Pt-Co/C electrocatalyst. For the test of ORR activity in acid electrolyte and in PEM fuel cell, it was found that the addition of CeO_2 and MoO_2 provided the negative result, while adding the commercial TiO_2 by 0.03 up to 0.06 mg/cm² could increase the ORR activity test. The kinetic current density and current density at 0.6 V of the Pt-Co/C electrocatalyst were around 8.05 mA/cm² and 435 mA/cm², respectively when approximately 0.06 mg/cm² of TiO_2 were added. For the TiO_2 prepared by the chemical vapor deposition technique, it provided a higher rate up to 20.24 and 454.80 mA/cm², respectively. Regarding the stability, the CeO_2 and MoO_2 could not improve the stability of the Pt-Co/C electrocatalyst, while the TiO_2 gave the positive effect.

Department:	Chemical Technology	Student's Signature
Field of Study:	Chemical Technology	Advisor's Signature
Academic Year:	2015	Co-Advisor's Signature
		Co-Advisor's Signature

ACKNOWLEDGEMENTS

I would like to express the deepest appreciation to my advisor, Prof. Dr. Mali Hunsom, and my co-advisors, Assoc. Prof. Dr. Kejvalee Pruksathorn and Asst. Prof. Dr. Hugues Vergnes, who have the attitude and the substance of a genius: they continually and convincingly in regard to teaching. Without their guidance and persistent help this dissertation would not have been possible.

I would like to acknowledge Assoc. Prof. Dr. Somkiat Ngamprasertsith, Asst. Prof. Dr. Kunakorn Poochinda, Asst. Prof. Dr. Nisit Tantavichet, and Assoc. Prof. Dr. Terdthai Vatanatham for serving as chairman and member of the dissertation committee, respectively.

I would also like to express my gratitude to the Royal Golden Jubilee Ph.D. Program of the Thailand Research Fund (Grant No. PHD/0338/2552) and the Embassy of France in Thailand for financial support.

I wish to extend my sincere appreciation to Dr. François Senocq of CIRIMAT laboratory, ENSIACET for his suggestions and persevering help.

I am thankful to scientists, supporting staff, technicians and the member of the laboratoire de Genie Chimique and laboratoire CIRIMAT for their kindness and supporting me every conveniences during 14 months in INP-ENSIACET, Toulouse, France.

My heartfelt thanks to staff and the member of the Department of Chemical Technology for their kind support.

Finally, I would like to express my deep gratitude to my family for their support and love.

CONTENTS

Page
THAI ABSTRACT iv
ENGLISH ABSTRACTv
ACKNOWLEDGEMENTS vi
CONTENTSvii
LIST OF TABLESx
LIST OF FIGURESxii
CHAPTER 1 Introduction
1.1 Motivation
1.2 Objectives
1.3 Scopes of the dissertation2
1.4 Anticipated benefits
CHAPTER 2 Theory and Literature Review
2.1 History and characterization of fuel cell [16, 17]4
2.2 Types of fuel cell [17]
2.3 Proton exchange membrane (PEM) fuel cell [18, 20]9
2.4 Membrane electrode assembly [22-27]12
2.5 ORR mechanism [5]20
2.6 Pt-M alloy22
2.7 PEM fuel cell degradation [36]24
2.8 Metal oxide
2.9 Catalyst and metal preparation [62-63]35
2.10 Literature Reviews

	Page
CHAPTER 3 Experimental and Characterization	42
3.1 Chemical and material	42
3.2 Laboratory instrument	43
3.3 Catalyst and MEA preparation	43
3.4 Electrode physical characterization	47
3.5 Electrode chemical characterization	47
3.6 ORR activity test	48
3.7 Electrochemical impedance spectroscopy	49
3.8 Corrosion measurement	50
3.9 Internal contact resistance	50
CHAPTER 4 Results and Discussion	51
4.1 Morphology of MO ₂	51
4.2 Morphology of MO ₂ -PtCo/C electrodes	53
4.3 Effect of MO_2 types and loadings	56
4.4 Effect of TiO ₂ phase	70
4.5 Stability of MO ₂ -PtCo/C catalyst	74
CHAPTER 5 ORR activity of PtCo/C catalyst in the presence of TiO_2 layer prepared	
by CVD	77
5.1 Effect of preparing condition on morphology of TiO ₂	77
5.2 Morphology of TiO _{2,CVD} -PtCo/C catalyst layer (electrode)	80
5.3 Electrochemical property of TiO _{2,CVD} -PtCo/C catalyst layer	83
5.4 ORR activity of TiO _{2,CVD} -PtCo/C	85
CHAPTER 6 ORR activity and stability of TiO ₂ -PtCo/C catalysts in PEM fuel cell	91

6.1 Morphology of TiO ₂ -PtCo/C electrode	91
6.2 Electrochemical property of prepared TiO $_{\rm 2,CVD}$ and TiO $_{\rm 2,com}\mbox{-PtCo/C}\ c$	atalysts95
6.3 Activity of TiO ₂ -PtCo/C catalysts	96
6.3 Stability of TiO ₂ -PtCo/C catalysts	97
CHAPTER 7 Conclusions and Recommendations	105
7.1 Conclusions	105
7.2 Recommendations	107
REFERENCES	
REFERENCES	120
Appendix A	121
Appendix B	123
Appendix C	125
VITA	127

Page

ix

LIST OF TABLES

Page
Table 2. 1 Fuel cell characteristics. [15]9
Table 2. 2 Technical targets of electrocatalyst. 13
Table 2. 3 Technical targets of membrane. 14
Table 2. 4 Technical targets of bipolar plate. 15
Table 2. 5 Exchange current density of metal electrocatalyst for reaction in proton
exchange membrane fuel cell at standard condition (300 K and 1 atm). [5]
Table 2. 6 Major failure modes of different components in PEM fuel cells [41]26
Table 2. 7 Physical property of TiO ₂ [50]31
Table 4. 1 Morphology of the metal oxides, Pt/C- and PtCo/C-catalyst layer at
different MO ₂ types
Table 4. 2 Electrochemical properties of the PtCo/C-catalyst layer at different MO_2
loadings
Table 4. 3 Electrode kinetics and mass transport parameters, obtained from fitting
the polarization data of Eq. (4.3), for the different types of supported PtCo/C
catalysts
Table 4. 4 Morphology of the PtCo/C-catalyst layer at different TiO_2 phases and
loadings72
Table 5. 1 Preparation conditions of TiO ₂ coated by CVD at 20 torr78
Table 5. 2 Morphology of the PtCo/C-catalyst layer at different TiO $_{\rm 2}$ loadings
prepared by CVD
Table 5. 3 Summary of the electrochemical evaluation on all $TiO_{2, CVD}$ -PtCo/C
catalysts

Table 6. 1 Morphology of fresh PtCo/C, TiO $_{2,COM}$ -PtCo/C and TiO $_{2,CVD}$ -PtCo/C	
catalysts	.93
Table 6. 2 Morphology of PtCo/C, TiO _{2,COM} -PtCo/C and TiO _{2,CVD} -PtCo/C catalysts after	
stability test by repetitive LSV for 2,000, 3,500 and 8,000 cycles, respectively	103

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Page

LIST OF FIGURES

Page
Figure 2. 1 Scheme of proton exchange membrane (PEM) fuel cell [18]5
Figure 2. 2 Summarized chart of the fuel cell applications and advantages [19]5
Figure 2. 3 Current / voltage characteristic of fuel cell [21]
Figure 2. 4 Schematic of triple phase boundary (TPB) in PEM fuel cell [24]15
Figure 2. 5 Cross sectional SEM micrograph of membrane electrode assembly [25] 16
Figure 2. 6 SEM image of two different types of GDL; (a) carbon cloth and (b)
carbon paper. [26]
Figure 2. 7 Activity of different metals for the reduction of oxygen [28]
Figure 2. 8 Structural features of cubo-octahedral structure of platinum [5]
Figure 2. 9 (a) Average mass distribution, and (b) Distribution by the average
surface [5]
Figure 2. 10 Nafion® membrane structure [30]20
Figure 2. 11 Activity versus the experimentally measured d-band centre relative to
platinum. The activity predicted from DFT simulations is shown in black, and the
measured activity is shown in red. [28]24
Figure 2. 12 Schematic illustrating the basic principles involved in the conceptual
dissolution mechanisms for Pt in acid media and classified into Ostwald ripening
and particle agglomeration [37]25
Figure 2. 13 Measured equilibrium concentration of Pt wire in 0.57 M perchloric acid
at 23 °C [36]
Figure 2. 14 (a) O and (b) O_2 adsorption energies as a function of d-band center.
[44]29

Pa	age
Figure 2. 15 TiO ₂ structure [48]	. 30
Figure 2. 16 Structure of molybdenum dioxide (MoO ₂) [56]	. 32
Figure 2. 17 Pourbaix diagram of Mo-H ₂ O system at 25 °C [57].	. 33
Figure 2. 18 Structure of Ceria dioxide (CeO ₂) [59]	. 33
Figure 2. 19 Pourbaix diagram of Ce-H ₂ O system at 25 °C [61]	. 34
Figure 2. 20 Process steps of impregnation method	. 35
Figure 2. 21 Process steps of sol-gel method.	.36
Figure 2. 22 Reaction of the electrodeposition process	.37
Figure 2. 23 Steps of chemical vapor deposition [66]	. 38
Figure 3. 1 Schematic diagram of the vertical CVD reactor	.46
Figure 3. 2 Schematic diagram of the single cell test station	.49
Figure 4. 1 Representative XRD patterns of CeO ₂ , MoO ₂ , TiO ₂ , commercial Pt/C	. 52
Figure 4. 2 SEM micrographs (x 10,000) of (a) CeO_2 , (b) MoO_2 , and (c) TiO_2	. 53
Figure 4. 3 SEM micrographs of crystalline particles (a - d), and X-ray images used	
to map the location of the elements dispersion of (a) $PtCo/C$, (b) CeO_2 - $PtCo/C$, (c)	
MoO ₂ -PtCo/C and (d) TiO ₂ -PtCo/C catalysts.	.54
Figure 4. 4 (a) Cyclic voltammograms of MO_2 -PtCo/C in 0.5 M H_2SO_4 at the scan rate	
of 20 mV/s and (b) The comparison of electrochemical surface area of $\mathrm{MO_2} ext{-PtCo/C}$	
electrodes with different types and loadings of MO ₂	. 57
Figure 4. 5 Interfacial contact resistance for PtCo/C catalyst in the presence of	
different MO ₂ loadings	. 58
Figure 4. 6 Example plot of voltammogram for the ORR of TiO_2 -PtCo/C catalyst in 0.5	
M H_2SO_4 (O_2 -Sat.) at scan rate of 10 mV/s	.60

xiv

Figure 4. 7 Kinetically controlled ORR at 0.375 V versus SCE electrode for PtCo/C	
catalyst in the presence of different MO ₂ loadings	62
Figure 4. 8 Voltammograms of MO ₂ -PtCo/C at the same rotating speed of 2000 rpm	62
Figure 4. 9 Polarization curves of a single H_2/O_2 PEM fuel cell of the as-prepared	
MO_2 -PtCo/C catalyst at MO_2 loadings of (\blacktriangle) 0.0, (\blacksquare) 0.03, ($ullet$) 0.06, (X) 0.15,	
(O) 0.30 and (\blacklozenge) 0.45 mg/cm ² ; (a) CeO ₂ -PtCo/C, (b) MoO ₂ -PtCo/C, and (c) TiO ₂ -	
PtCo/C	65
Figure 4. 10 Comparison between contact angle and current density at 0.6 V of the	
as-prepared MO ₂ -PtCo/C catalyst at MO ₂ loadings of (O) Contact angle and (\blacktriangle)	
Current density at 0.6 V; (a) CeO_2 -PtCo/C, (b) MoO_2 -PtCo/C, and (c) TiO_2 -PtCo/C	66
Figure 4. 11 Variation in the (\diamondsuit) m, (\square) n and (\bigtriangleup) R parameters, as estimated	
from Eq. (4.3), and the (O) current density at 0.6 V (j $_{\rm 0.6v}$) for the TiO2-PtCo/C catalyst	
at different TiO ₂ loadings	69
Figure 4. 12 Representative XRD patterns of the as-prepared PtCo/C catalysts in the	
absence or presence of $TiO_2(AR)$ or $TiO_2(R)$ at TiO_2 loading of 0.15 mg/cm ²	71
Figure 4. 13 Current density-potential curves of a single H_2/O_2 PEM fuel cell with the	
as-prepared PtCo/C catalyst in the ($lackslash$) absence of TiO ₂ , and in the presence of	
(\bullet, O) TiO ₂ (R) or $(\diamondsuit, \blacklozenge)$ TiO ₂ (AR) at a loading of (\bullet, \blacklozenge) 0.06 and (O, \diamondsuit) 0.15	
mg/cm ²	73
Figure 4. 14 (a) Cyclic voltammogram of TiO ₂ -PtCo/C catalyst after the cycle	
numbers of repeated potential cycling in 0.5 M H_2SO_4 at a scan rate of 20 mV/s and	
(b) variation of normalized ESA	75
Figure 4. 15 Potentiodynamic polarization for corrosion of PtCo/C and MO ₂ -PtCo/C	
catalysts in 0.5 M H_2SO_4	76
Figure 5. 1 SEM micrographs of TiO $_2$ particle with different reactant concentrations	
of TTIP at (a) 0.01 M, (b) 0.025, and (c) 0.05 M	78

Page
Figure 5. 2 SEM micrographs of TiO_2 particle with different deposition temperature of
(a) 550 C and (b) 450 C
Figure 5. 3 Thermo-gravimetric analysis (TGA, blue) and the differential temperature
curves (DTG,Red) of carbon cloth with sublayer substrate
Figure 5. 4 X-ray diffraction patterns of (a) PtCo/C, (b) $TiO_{2,CVD}$ and $TiO_{2,CVD}$ -PtCo/C
catalysts at different TiO_2 contents: (c) 0.03, (d) 0.06, (e) 0.15, (f) 0.3, (g) 0.45
mg/cm ²
Figure 5. 5 EDX spectra of elements (a1 and b1), SEM micrographs of crystalline
particles (a2 and b2), and X-ray images used to map the location of the elements
dispersion (Pt, Co and Ti) of (a) PtCo/C and (b) $TiO_{2, CVD}$ -PtCo/C catalysts at $TiO_{2, CVD}$
loading of 0.15 mg/cm ² 82
Figure 5. 6 Cyclic voltammetry of the as-prepared TiO _{2, CVD} -PtCo/C catalyst at
different TiO _{2, CVD} loadings in 0.5 MH_2SO_4 (N ₂ sat.) at scan rate 20 mV/s
Figure 5. 7 Comparison of electrochemical surface area and interfacial contact
resistance of TiO _{2,CVD} -PtCo/C electrodes with different loadings of TiO _{2,CVD} 84
Figure 5. 8 Linear sweep voltammograms for the ORR in 0.5M H_2SO_4 (sat.O ₂) with
scan rate 10 mV/sec of the TiO $_{\rm 2,CVD}$ -PtCo/C catalyst at different TiO $_{\rm 2,CVD}$ loadings of
(a) 0.0, (b) 0.03, (c) 0.06, (d) 0.15, (e) 0.30, and (f) 0.45 mg/cm ²
Figure 5. 9 Kinetically controlled ORR at 0.375 V versus SCE electrode for PtCo/C
catalyst in the presence of different TiO _{2, CVD} loadings
Figure 5. 10 Current density-potential curves of a single H_2/O_2 PEM fuel cell of the
as-prepared TiO _{2, CVD} -PtCo/C catalyst at different TiO ₂ loadings of ($ullet$) 0.0, (\Box)
0.03, (\blacktriangle) 0.06, (\blacklozenge) 0.15, (\triangle) 0.30 and (O) 0.45 mg/cm ²
Figure 6. 1 Representative XRD patterns of $\text{TiO}_{2,\text{COM}}$ and $\text{TiO}_{2,\text{CVD}}$
Figure 6. 2 XRD patterns of fresh PtCo/C and TiO ₂ -PtCo/C catalysts93

Figure 6. 3 SEM micrographs of crystalline particles and EDX spectra of fresh catalysts: (a) PtCo/C, (b) TiO_{2.COM}-PtCo/C and (c) TiO_{2.CVD}-PtCo/C catalyst......94 Figure 6. 4 Representative cyclic voltammetery of PEM fuel cells with pure TiO₂ and fresh TiO₂-PtCo/C catalysts in 0.5 M H₂SO₄ (N₂ sat.) at scan rate of 20 mV/s.95 Figure 6. 5 Current density-potential curves of the as-prepared (●) PtCo/C, (\blacklozenge)TiO_{2.com}-PtCo/C and (\blacksquare)TiO_{2.cvD}-PtCo/C catalysts in a single H₂/O₂ PEM fuel cell...96 Figure 6. 6 Example plot of stability test for TiO_{2 CVD}-PtCo/C catalyst obatined from (a) Figure 6. 7 Variation of (a) limiting current (j_1) , (b) ohmic resistance and (c) ESA of (●) PtCo/C, (◆)TiO_{2.COM}-PtCo/C and (■)TiO_{2,CVD}-PtCo/C catalysts during the stability Figure 6. 8 Tafel plot of PtCo/C and TiO₂-PtCo/C catalysts in 0.5 M H₂SO₄......101 Figure 6. 9 XRD patterns of PtCo/C, TiO_{2.com}-PtCo/C, and TiO_{2.cvD}-PtCo/C catalysts after stability test by repetitive LSV for 2,000, 3,500 and 8,000 cycles, respectivel..... 103 Figure 6. 10 SEM micrographs and EDX spectra of crystalline particles of catalyst after stability test: (a) PtCo/C, (b) TiO_{2.COM}-PtCo/C and (c) TiO_{2.CVD}-PtCo/C catalysts....104

xvi

CHAPTER 1 Introduction

1.1 Motivation

Proton exchange membrane (PEM) fuel cells are currently recognized as the most competitive candidate to replace traditional forms of power conversion devices due to their various advantages, including their zero emissions, high efficiency and relatively simple design and operation [1, 2]. They are able to meet the transportation and stationary power requirements owing to their low operating temperature, quick start, light weight and high power density [3]. Although the PEM fuel cells have various advantages, their commercialization and utilization are still not currently widespread because of two major technical gaps: their high cost and low reliability and durability [4].

Theoretically, the cell potential of PEM fuel cell is 1.23 V/SHE. However, in actual application, there are many losses in fuel cell including activation-, ohmic- and concentration losses. The fuel cell voltage is directly proportional to the exchange current density which is the electrical properties of the electrocatalyst. The exchange current density for the hydrogen oxidation reaction (HOR) is greater than that of the oxygen reduction reaction (ORR), resulting in a fast reaction rate of HOR in comparison to that of ORR. The alloying between Pt and other metal was selected to improve the catalytic activity. The exchange current density of Pt-M alloy for ORR is higher than that of pure platinum [5]. This is because the composite metal (M) in Pt-M alloy electrocatalysts can modify the geometrical structure of the Pt metal via decreasing the Pt-Pt bond distance [6], dissolution of the more oxidizable alloying component [7], and changing the surface structure [8] or the electronic structure by increasing the Pt *d*-electron vacancy [9].

The loss of PEM fuel cells stability has been explained by the loss of active surface area due in part to various factors including *(i)* metal coalescence, the growth of particles due to dissolution/precipitation process (Ostwald ripening), *(ii)* metal cluster migration and coalescence [10], *(iii)* metal loss by dissolution into the electrolyte [11] and *(iv)* support

corrosion associated with a loss of electrical contact of metal nanoparticles [12]. It has been found that the solubility of Pt is proportional to potential, pH of acid solution as well as reciprocal of particle size. It is crucial to find corrosion resistant (highly stable) electrocatalysts for improving the durability of PEM fuel cell. Recently, metal oxide such as CeO_2 , ZrO_2 were introduced to a Pt/C electrocatalyst resulting in higher sintering resistance and corrosion resistance for PEM fuel cells [13, 14].

This research studies the effect of metal oxide on activity and stability of PtCo/C electrocatalyst to get a highly effective catalyst and to reduce the amount of platinum used, which can reduce the cost of fuel cells for commercialization and utilization.

1.2 Objectives

- 1. To investigate the effect of MO_x on the activity and stability of PtCo/C electrocatalyst
- To optimize the MO_x- PtCo /C preparation conditions for the oxygen reduction reaction (ORR)

จุฬาลงกรณมหาวทยาลย Chulalongkorn University

1.3 Scopes of the dissertation

- 1. Literature review for involved publications from both national and international journals
- 2. Prepare all tools, equipments and chemical reagents required for the experiments
- Prepare MO_x-PtCo/C electrocatalyst by the combined process of impregnation and seeding technique
- 4. Prepare TiO₂ on gas diffusion layer by chemical vapor deposition (CVD) technique

- Investigate the effect of MO_x on the morphology of PtCo/C electrocatalysts, such as particle size, metal dispersion, crystal structure, electrochemical surface area (ESA)
- 6. Investigate the effect of as-prepared MO_x on the activity of PtCo/C electrocatalysts for ORR under H_2/O_2 condition and in acid electrolyte
- Study the stability of as-prepared MO_x-PtCo/C electrocatalysts in acid electrolyte by using cyclic voltammetry (CV)
- 8. Analyze the experimental results, make conclusions and write the dissertation

1.4 Anticipated benefits

- Know the effect of the metal oxide on morphology, activity and stability of PtCo/C electrocatalyst
- Obtain the MO_x-PtCo/C electrocatalystes that have high activity, stability and suitable for using in PEM fuel cell

CHAPTER 2

Theory and Literature Review

Fuel cells can converts the chemical energy contained in hydrocarbon materials into thermal energy (heat), mechanical energy, and finally to electricity via an electric generator. Each stage has its own efficiency, with the overall efficiency up to over 30%. In addition, they allow a direct conversion of chemical energy to electricity, to ensure a high yields up to 50% [15]. This conversion process can be realized by different technologies depending on the intended applications.

2.1 History and characterization of fuel cell [16, 17]

The fuel cell principle was first demonstrated in 1801 by Humphry Davy. In 1839, William Grove fabricated a gas voltaic battery, which justified that an electric current could be generated from an electrochemical reaction between hydrogen and oxygen. In 1889, Charles Langer and Ludwig Mond discovered fuel cells by using coal gas as a fuel. The electrochemical process that presented the heart of each is summarized by the equation below:

$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O + Heat$$
 (2.1)

The combination of a mole of hydrogen with a half mole of oxygen allows the production of water and heat. The chemical energy contained in the reagents is converted into electric energy as well as heat as showed in Figure 2.1. The operation of the fuel cell may appear relatively simple.

Figure 2. 1 Scheme of proton exchange membrane (PEM) fuel cell [18].

Tursiand	Portable electronics	Car, boats, and	Distributed power	
I ypical	equipment	domestic combined	generation, combined	
applications		heat and power	heat and power, also	
			buses	
Power in Watts	1 10 100	1k 10k	100k 1M 10M	
Main advantages	Higher energy density than batteries Faster recharging	Potential for zero emissions Higher efficiency	Less pollution quiet Higher efficiency	
Range of application of the different types of fuel cell			SOFC PAEC	

Figure 2. 2 Summarized chart of the fuel cell applications and advantages [19].

The fuel cells have many advantages, such as higher efficiency than diesel or gas engines, eliminate pollution or greenhouse gases, hydrogen (fuel gas) can be produced anywhere where there is water as a source of power, operating times are much longer than batteries, and etc.[19]. The advantages of each fuel cells are summarized as shown in Figure 2.2.

Although the fuel cell has a lot of advantages, it is still not popular in commercial and utilization because of the costly demanded, low reliability and durability [19].

2.2 Types of fuel cell [17]

Many fuel cell technologies are distinguished either by their fuel used (hydrogen, methanol, ethanol, biomass etc.), temperature range (40 to 800 °C) or type of electrolyte (polymer, ceramic, alkaline solution, acid solution). In this section, we will classify the fuel cells by the type of electrolyte.

2.2.1 Alkaline fuel cell

The alkaline fuel cell (AFC) has been developed since 1932. The ion carrier is potassium hydroxide (KOH), it contains the highest ions carrier ability compared with the other hydroxide groups. The cell temperature is approximately 200 °C. The reactions for AFC are shown below:

Anode	:	$H_{2(g)} + 2OH_{(aq)}^{-} \longrightarrow 2H_2O_{(l)} + 2e^{-}$	(2.2)
		1	(0,0)

$\frac{1}{2}O_{2(g)} + H_2O_{(g)} + 2e^- \longrightarrow 2OH_{(aq)}^ H_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow H_2O_{(g)}$ Cathode (2.3)

Total (2.4)

2.2.2 Phosphoric acid fuel cell

The phosphoric acid is the ion carriers used in the phosphoric acid fuel cell (PAFC). The operating temperature is 170-200 °C, the temperature at which a substance also causes the charge carriers stable. The catalyst used is a noble metal. The reaction for AFC are shown below:

Anode :
$$H_{2(g)} \longrightarrow 2H_{(aq)}^{+} + 2e^{-}$$
 (2.5)

Cathode :
$$\frac{1}{2}O_{2(g)} + 2H^{+}_{(aq)} + 2e^{-} \longrightarrow H_{2}O_{(g)}$$
 (2.6)

Total :
$$H_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow H_2O_{(g)}$$
 (2.7)

2.2.3 Molten carbonate fuel cell

A mixture of salt, lithium carbonate and potassium carbonate salt on lithium alumina (LiAlO₂) are used as carriers in this fuel cell. The operating temperature is 500-700 °C.

Anode :
$$H_{2(g)} + CO_3^{2-} \longrightarrow CO_{2(g)} + H_2O_{(g)} + 2e^-$$
 (2.8)

Cathode :
$$\frac{1}{2}O_{2(g)} + CO_{2(g)} + 2e^{-} \longrightarrow CO_{3}^{2-}$$
 (2.9)

Total :
$$H_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow H_2O_{(g)}$$
 (2.10)

2.2.4 Solid oxide fuel cell

Solid oxide fuel cell (SOFC) is suitable for the large power stations because it produces little electricity. Meanwhile, it can produce steam at high temperature, which could be used to fabricate a gas turbine to generate electricity as well. However, this fuel cell has to work at high temperature up to 1000 °C. The reactions are described as following.

Anode :
$$aH_{2(g)} + bCO_{(g)} + (a+b)O^{2-} \longrightarrow aH_2O_{(g)} + bCO_{2(g)} + 2(a+b)e^{-}$$
 (2.11)

Cathode:

$$\frac{1}{2}(a+b)O_{2(g)} + 2(a+b)e^{-} \longrightarrow 2(a+b)O^{2-}$$
(2.12)

Total:
$$aH_{2(g)} + \frac{1}{2}(a+b)O_{2(g)} + bCO_{(g)} \longrightarrow aH_2O_{(g)} + bCO_{2(g)}$$
 (2.13)

2.2.5 Direct methanol fuel cell

The direct methanol fuel cell (DEMFC) is one type of fuel cell that get a lot of attention in development. The principle of DEMFC is similar to the one of PEM fuel cell. The difference is that the methanol is used instead of H_2 . The advantage is that methanol can be stored easily, portable and secure than using hydrogen gas as fuel as PEM fuel cells. The reactions are shown as following:

Anode :
$$CH_3OH_{(1)} + H_2O \longrightarrow CO_{2(g)} + 6H^+ + 6e^-$$
 (2.14)

Cathode:
$$\frac{3}{2}O_{2(g)} + 6H^+ + 6e^- \longrightarrow 3H_2O_{(1)}$$
 (2.15)

Total:

$$CH_{3}OH_{(1)} + \frac{3}{2}O_{2(g)} \longrightarrow CO_{2(g)} + 2H_{2}O_{(1)}$$
 (2.16)

2.2.6 Proton exchange membrane fuel cell

The proton exchange membrane (PEM) fuel cell is consisted of two electrodes; anode and cathode. The oxidation of H_2 to produce electrons and protons from hydrogen gas occurs on the anode side (Reaction (2.17)) while the reduction of oxygen to produce heat and water occurs on the cathode side (Reaction (2.18)). The total reaction is summarized as reaction (2.19).

Anode :
$$H_{2(g)} \longrightarrow 2H_{(aq)}^+ + 2e^-$$
 (2.17)

Cathode:

Total:

$$\frac{1}{2}O_{2(g)} + 2H^{+}_{(aq)} + 2e^{-} \longrightarrow H_{2}O_{(l)}$$
(2.18)

$$H_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow H_2O_{(g)}$$
(2.19)

The characteristics of different types of fuel cells are summarized in Table 2.1.

Fuel cell	Charge carrier	Operating temperature (°C)	Fuel	Electrode material	Efficiency
AFC	OH	50-200	Pure H_2	Metal or carbon	60 - 70%
PAFC	H^{+}	170-200	H ₂ +CO ₂	Pt on carbon	36-42%
MCFC	CO3 ²⁻	500-700	H ₂ +CO ₂	Li-doped NiO_2	60%
				Ni/Y ₂ O ₃ -ZrO ₂ , Sr-	
SOFC	O ²⁻	500-1000	H ₂ +CO ₂	doped LaMnO ₃	60%
DMFC	H^+	90	CH ₃ OH	Pt-Ru alloy	60%
PEMFC	H^+	50-100	Pure H ₂	Pt on carbon	50 - 60%

Table 2. 1 Fuel cell characteristics. [15]

2.3 Proton exchange membrane (PEM) fuel cell [18, 20]

The basic phenomena of the PEM fuel cell must be described as the transportation of electron and ionic charges transport (reactants and products) via electrochemical reactions. Each of them can be described by their own law, such as Ohm's law, the Navier-Stokes or kinetics Tafel. In the operating process, hydrogen gas (H_2) is fed at anode side of fuel cell through the electrocatalyst layer. Then, it splits into two H⁺ ions and two electrons (e⁻), which is so-called hydrogen oxidation reaction (HOR). The e⁻ and H⁺ are respectively conducted to the cathode side by the external circuit and membrane. The e⁻ and H⁺ also react with oxygen (O_2) fed on the cathode side, which is so-called oxygen reduction reaction (ORR). The fuel cell reactions are summarized in the Equation (2.19).

The work output and/or fuel cell efficiency can be determined by thermodynamics analyzing in term of the free energy change of the reaction [19]. The Gibb's free energy of the fuel cell is expressed by the Eq. (2.20)

$$\Delta G = -nFE_r \tag{2.20}$$

Where ΔG is the changed free energy, *n* is the number of electron, E_r is the reversible potential, and *F* is Faraday's constant.

The enthalpy (ΔH) for the fuel cell reaction reveals the released heat from the reaction at the constant pressure. The fuel cell potential correspondence with ΔH is defined as Eq. (2.21).

$$\Delta H = -nFE_t \tag{2.21}$$

Where E_t is the thermos-neutral potential.

Another equation that usually use to determine the fuel cell performance is Nernst equation. It can present the fuel cell potential related to reversible potential ($E_{r,T,P}$) and actual potential (E_{cell}) in term of temperature, pressure, and concentration of reactants and products as demonstrated in Eq. (2.22).

$$E_{cell} = E_{r,T,P} - \eta_{act} - \eta_{ohm} - \eta_{con}$$
(2.22)

Where η_{act} is the activation polarization, η_{ohm} is the ohmic polarization, and η_{con} is the concentration polarization.

Theoretically, the cell potential of PEM fuel cell is 1.23 V/SHE. However, in actual application, there are many losses in fuel cell including activation-, ohmic- and concentration losses. According to Eq. (2.22), the fuel cell voltage is directly proportional to the exchange current density which is the electrical properties of the electrocatalyst. It connects the current from the fuel cell to the voltage measured at its terminals, as indicated by the Figure 2.3. Experimentally, this measure is the most commonly performed, it provides the operating characteristics of the fuel cell depending on the operating conditions (reagents flow, temperature, humidity, etc.) [20].

 The potential loss in the high potential zone is called activation loss or activation polarization. It concerns the high potential, typically between 1.0 and 0.8 V, or current densities of less than 100 mA/cm². The activation polarization can be expressed as Equation (2.23). This scheme is controlled by the reaction kinetics which causes most of the losses.

$$\eta_{act} = \frac{RT}{\alpha nF} \left(\frac{j}{j_0}\right)$$
(2.23)

Where *R* is gas constant, *T* is absolute temperature, α is the mass transfer coefficient, *F* is the Faraday's constant, *j* is the current density, *j*₀ is the exchange current density.

2. The ohmic loss concerns the intermediate potential range between 0.8 and 0.4 V (around 500 mA/cm²). This loss is relatively linear as shown in Eq. (2.24).

$$\eta_{ohm} = jR_i \tag{2.24}$$

Where R_i is the internal resistance.

All electrochemical phenomena, ohmic, and diffusion of the reactants have an influence. Indeed, the slope of the polarization curve is often attributed by the single membrane resistance. Furthermore, this zone is generally chosen for the nominal operation of fuel cell. This is also the maximum power area.

 The last part shows the collapse of the fuel cell voltage of 0.4 to 0.0 V or low potential zone. The loss in this zone is called the concentration loss or mass transfer loss, coming from the limiting mass transfer of fuel gas as represented in Eq. (2.25).

$$\eta_{con} = \frac{RT}{nF} \left(\frac{j_L}{j_L - j} \right)$$
(2.25)

Where j_L is the limiting current density.

This operating area should be avoided because it usually leads to irreversible damage such as heating of the fuel cell, membrane perforation, deterioration of the catalyst, and etc.

Figure 2. 3 Current / voltage characteristic of fuel cell [21].

2.4 Membrane electrode assembly [22-27]

Generally, the PEM fuel cell consists of gas diffusion layer (GDL), catalyst layer and electrolyte as shown in Figure 2.4 and a cross sectional photograph of MEA is shown in Figure 2.5. The left-hand side electrode is called an anode, which is enable the dissociation of the hydrogen molecule to electrons and protons. The electron go to the external load while the protons pass through the membrane to cathode and react with oxygen and other electrons from the external circuit to form water and heat. The contact area between electrolyte, electrode, and fuel gas is called triple phase boundary (TPB). The TPB density is one significant factor for PEM fuel cell performance. The TPB should contain high porosity to well disperse the fuel gasses and high ion with electron conductivity to promote the reaction rate [24]. The technical targets of the U.S. Department of Energy for each component of MEAs for transportation applications are shown in Table 2.2-2.4.

Table 2. 2 Technical targets of electrocatalyst.

Characteristic	Linita	2011	2017	2020	
Characteristic	Offits	Status	Targets	Targets	
Platinum group metal total	a //// (rotad)	0.10	0 105	0 105	
content (both electrodes)	g/kw (rated)	0.19	0.120	0.125	
Platinum group metal	ma PCM/cm^2	0 15	0 125	0 125	
(pgm) total loading	ing P Gim/cm	0.15	0.125	0.125	
Loss in initial catalytic	% mass activity loss	18	<10	<10	
activity	/0 111233 2011/11 1033	40	~40	~40	
Electro catalyst support	% mass activity loss	< 10	<10	<10	
stability	/0 111233 2011/11/ 1033	< 10	<10	<10	
Mass activity	$A/mg_{_{Pt}}$ at 900 $mV_{_{IR\text{-}free}}$	0.24	0	0	
Non-Pt catalyst activity per					
volume of supported	A/cm ³ at 800 mV _{IR-free}	60	300	300	
catalyst					

Table 2.	3	Technical	targets	of	membrane	
			<u> </u>			

		0044.01.1	2017	2020
Characteristic	Units	2011 Status	Targets	Targets
Maximum oxygen cross-over	mA/cm ²	<1	2	2
Maximum hydrogen cross-	$m\Lambda/cm^2$	~1.9	2	2
over	IIIA/CIII	<1.0	Z	Z
Area specific proton				
resistance at:				
Maximum operating				
temperature and water	$Obm cm^2$	0.023 (40 kPa)	0 02	0 02
partial pressure from 40-	Onin Chi	0.012 (80 kPa)	0.02	0.02
80 kPa				
80 °C and water partial	$Ohm \ cm^2$	0.017 (25 kPa)	0 02	0 02
pressures from 25-45 kPa	Onin Chi	0.006 (44kPa)	0.02	0.02
30 °C and water partial	$Ohm cm^2$	0.02 (3.8 kPa)	0.03	0.03
pressures up to 4 kPa	Onin on	0.02 (0.0 Kr d)	0.00	0.00
-20 °C	Ohm cm ²	0.1	0.2	0.2
Operating temperature	°C	< 120	<u><</u> 120	<u><</u> 120
Minimum electrical	$\Omega hm cm^2$	_	1 000	1 000
resistance	Onin on		1,000	1,000
Cost	\$/m ²	-	20	20

Ob ana ata viatia	Linita	2011	2017	2020	
Characteristic	Units	Status	Targets	Targets	
Cost	\$/kW	10-May	3	3	
Plate H ₂ permeation	$(1 + 1)^{3}$	N1/A	<1.0.10 ⁻¹⁴	<1 0 10 ⁻¹⁴	
coefficient	Sid cm /(sec cm Pa)	N/A	<1.3X10	<1.3X10	
Corrosion, anode	µA/cm ²	<1	<1	<1	
Corrosion, cathode	µA/cm ²	<1	<1	<1	
Electrical conductivity	S/cm	>100	>100	>100	
Areal specific	$Ohm om^2$	0.02	0.00	0.00	
resistance	Onn-cm	0.03	0.02	0.02	
		>34			
Flexural strength	MPa	(carbon	>25	>25	
		plate)			
Forming elongation	%	20-40	40	40	

Table 2. 4 Technical targets of bipolar plate.

Figure 2. 4 Schematic of triple phase boundary (TPB) in PEM fuel cell [24].

Figure 2. 5 Cross sectional SEM micrograph of membrane electrode assembly [25].

2.4.1 Gas diffusion layers

While approaching the center of the fuel cell, there will be the diffusion layers called gas diffusion layer (GDL). It is a gas-permeable and porous material for dispersing the reactants from the flow channel to the catalyst layer and having high electricity conductivities. The GDL is usually made from carbon fibers such as carbon cloth or carbon paper as shown in Figure 2.6.

Figure 2. 6 SEM image of two different types of GDL; (a) carbon cloth and (b) carbon paper. [26]

The GDL are generally coated by hydrophobic material such as polytetrafluoroethylene (PTFE), which help to drain water presented in the electrode to the channels of the bipolar plate. In recent years, research is mainly carried out on this aspect through the addition of a micro porous layer (MPL) between the active layer and the GDL, in order to improve the water management in the heart of fuel cell and promote the electrical and thermal contact between GDL and catalyst layer [27].

2.4.2 Catalyst layer [5]

Many studies have been conducted to identify the best catalyst for ORR in PEM fuel cell. It is essential for reducing oxygen at the cathode and thereby maximizing the conversion of chemical energy while avoiding hydrogen peroxide formation that may degrade the utilized catalyst as well as fuel cell components. As showing in Figure 2.7, the most effective catalyst for ORR in PEM fuel cell is platinum. Therefore, the platinum is often used, in particular, in nanoparticle form.

Figure 2. 7 Activity of different metals for the reduction of oxygen [28].

- Nanostructure of catalyst [5]

Nanostructure is one of the ways envisaged to reach the objectives of the Department of Energy (DOE) on catalysts for the fuel cell with increasing activity and

reducing the amount of noble metals. It allows us to get a better control of the ORR and an increase in the platinum utilization in the catalysts. More geometries and/or different compositions might lead to improve the electrocatalytic activity and the amount of noble metals used.

- Catalyst structure [5]

The activity of the catalyst in the ORR also depends on the structure of the catalyst. This kind of reaction is so-called the structure-sensitive reaction. It has been reported that the ORR are more active on the (111) and (100) crystal facets of Pt catalyst [29]. The proper structure of platinum suit for ORR is the cubo-octahedral structure (COS) as shown in Figure 2.8, which will feature a platinum structure with crystal planes (crystallographic faces) form [111] of 8 plane and [100] of 6 planes, each plane are welded together by atoms at the corners and the edges. The distribution of crystal planes can be displayed in two ways.

1. The distribution compared to the number of atoms inside. This is called the mass averaged distribution (MAD) which can be calculated from Eq. (2.26),

$$MAD(100) = \frac{N(100)}{N(t)}$$
(2.26)

where N(t) shows the number of atoms inside the particles and N(100) shows the number of atomic planes is [100].

2. The distribution compared to the number of atoms at the surface. This is called the surface-averaged distribution (SAD). It can be calculated from Eq. (2.27), where N(s) shows the number of atoms on the surface of the particle itself.

$$SAD(100) = \frac{N(100)}{N(s)}$$
(2.27)

Figure 2. 8 Structural features of cubo-octahedral structure of platinum [5].

Figure 2.9 shows the dispersion trend of MAD and SAD as a function of particle size. It shows that the platinum with particle size of 2 to 3 nm is consisted of the most of a crystalline atomic planes [111] and [100] or structure of cubo octahedron (Figure 2.9(a)). In case of SAD (Figure 2.9(b)), the SAD[111] and SAD[100] dramatically increased with an increase in particle size in the range of 1-10 nm. The increasing SAD can suggest to the increasing of an active site. Then, the size of the platinum particle which is suitable for ORR is about 2-3 nm.

lalongkorn University

Figure 2. 9 (a) Average mass distribution, and (b) Distribution by the average surface

2.4.3 Membrane [19]

Membrane is the most important component of PEM fuel cell because it allows the motion of the ion species from anode to cathode. It looks like a sheet of clear plastic, fabricated by a polymer. The main compound of a Nafion® membrane is sulfonated fluoro - Roberto polymer (sulphonated fluoropolymers) or fluoroethylene. The structure of Nafion membrane is represented in Figure 2.10.

Figure 2. 10 Nafion® membrane structure [30].

2.4.4 Bipolar plate

It is designed to enable the delivery of reagents to the diffusion layers. Therefore, it is necessary to be a waterproof to prevent the leakage of gases to the outside. It can work as a current collector or the neighboring cell in the case of a stack, enable the heat dissipation generated by the reaction. Finally, it should have a high mechanical integrity for the cell. The popular materials used for fabricate bipolar plate are graphite or metals (stainless steel type aluminum, titanium or nickel). Both materials are the good electronic and thermal conductive, and can be machined to the route of the supply channels. Although, graphite is less economy than metal, it is more resist to the corrosion.

2.5 ORR mechanism [5]

The PEM fuel cells is usually operated at low working temperature. This causes an excess voltage (overpotential) for the ORR at the cathode side. The catalytic reduction of
oxygen at the cathode is generally slower than the HOR at anode side. Therefore, the performance of the fuel cell is controlled by the reaction rate of ORR at cathode side. The kinetics and reaction mechanism of ORR are depending on various variables such as type of catalyst, operating condition, and type of charge carrier substance.

The reduction of oxygen can be divided into two pathways. The first pathway is the 4-electron pathway which directly reduce oxygen to a hydroxide ions (OH) or water, as shown in Eqs. (2.28) and (2.29). The intermediate peroxide are adsorbed on the surface, but do not change to peroxide in solution. This pathway can also occur on more electrochemical catalyst such as platinum, noble metal palladium or silver metal oxides.

In alkaline media

 $\begin{array}{rcl} O_2 + & 2H_2O + & 4e^- \longrightarrow & 4OH^- & E_0 = 0.401 \text{ V/NHE} & (2.28) \end{array}$ In acid media $O_2 + & 4H^+ + & 4e^- \longrightarrow & 2H_2O & E_0 = 1.229 \text{ V/NHE} & (2.29) \end{array}$

The second pathway is the 2-electron or peroxide pathway, as demonstrated as Eqs. (2.30) to (2.35).

จหาลงกรณ์มหาวิทยาลัย

In alkaline media

$O_2 + H_2O + 2e^- \longrightarrow HO_2^- + OH^-$	$E_0 = -0.065 \text{ V/NHE}$	(2.30)
$HO_2^- + H_2O + 2e^- \longrightarrow 3OH^-$	$E_0 = 0.867 \text{V/NHE}$	(2.31)
$2HO_2^- \longrightarrow 2OH^- + O_2$		(2.32)

In acid media

$$O_2 + 2H^+ + 2e^- \longrightarrow H_2O_2 \qquad E_0 = 0.67 \text{ V/NHE} \quad (2.33)$$

$$H_2O_2 + 2H^+ + 2e^- \longrightarrow 2H_2O \qquad E_0 = 1.77 \text{ V/NHE} \qquad (2.34)$$

$$H_2O_2 \longrightarrow H_2O + \frac{1}{2}O_2$$
 (2.35)

The peroxide formation is generally undesirable in the PEM fuel cell since they contain the highly aggressive radicals HO and HO_2 , which can damage the vital components.

2.6 Pt-M alloy

To reduce the amount of the platinum used without degrading the cell's performance, catalysts type associated with platinum metal, designated as Pt-M (where M is usually a transition metal) have been developed. The idea is to partially replace the platinum metal transition of the first series which, although less stable in corrosive environments, has catalytic properties. In recent years, the Pt₃M systems (M = Co, Ni, Fe) have been extensively studied. In most cases, the bimetallic Pt-M shows the catalytic performance for ORR better than platinum alone. As demonstrated in Table 2.5, the exchange current density for the HOR is greater than that of ORR, suggesting a fast reaction rate of HOR in comparison to ORR. In addition, the exchange current density of Pt-M alloy for ORR is higher than that of pure platinum [6]. This is because the composite metal (M) in PtM alloy electrocatalysts can modify the geometrical structure of the Pt metal via decreasing the Pt-Pt bond distance [7], dissolution of the more oxidizable alloying component [8], and changing the surface structure or the electronic structure by increasing the Pt d-electron vacancy [9].

Some researches reported that the nanostructure of Pt-M alloy catalyst is easy to modify to obtain some designed properties. It is possible to obtain a platinum-backbone structure, to enrich their surface platinum, and thus to optimize their performance for the ORR [9]. This is because platinum-based alloy has less strong bonds with oxygen compared with pure platinum, which can improve the catalytic performance of the ORR as shown in Figure 2.11.

Reactions	Metal	$\log j_0$	Metal	$\log j_0$	Metal	log j ₀
$2H^{+} + 2e^{-} \rightarrow H_{2}(g)$	Pd	1	Nb	-2.8	Au	-1.4
	Pt	0.9	Ti	-4.2	W	-1.9
	lr	0.3	Cd	-6.6		
	Ni	-1.2	Pb	-8		
$O_2 + 4H^2 + 4e^2 \rightarrow 2H_2O$	Pt	-7	lr	-10	Pt-Co	-6.23
	Ni	-7.45	PtCr	-6.01	Pt-Ni	-6.31
	Со	-6.62	PtFe	-6.16		

Table 2. 5 Exchange current density of metal electrocatalyst for reaction in proton exchange membrane fuel cell at standard condition (300 K and 1 atm). [5]

Thus, to promote the commercial viability of fuel cells, the development of a costeffective, active and stable electrocatalyst is needed. A number of different Pt based electrocatalyst concepts, such as Pt monolayer electrocatalysts, Pt alloys, and de-alloyed Pt-M alloy core-shell nanoparticles, have been developed in the last decade in order to improve the catalytic activity as well as stability. Some demonstrated that platinum alloys with transition metals, such as V, Cr, Co, Ti and Ni, as well as ternary alloys, exhibit significantly higher ORR electrocatalytic activities than Pt alone [28-29, 31-33]. The search for more active and less expensive ORR electrocatalysts with better stability than Pt based electrocatalysts has led to the development of binary and ternary Pt alloys. The Pt-Co alloy has been the most extensively studied [9, 34-35]. The Pt loading in the electrocatalysts at the cathode can be reduced if Pt-Co alloys are used as electrocatalysts for the ORR since the catalytic activity of the Pt-Co alloys for the ORR, based on the mass of Pt, is higher than that of pure Pt.

Figure 2. 11 Activity versus the experimentally measured d-band centre relative to platinum. The activity predicted from DFT simulations is shown in black, and the measured activity is shown in red. [28]

2.7 PEM fuel cell degradation [36]

The degradation of PEM fuel cell is generally caused by the degradation of fuel cell components such as membrane, catalyst, flow field plate, etc., or the presence of impurity in reactant gas. The major failure modes of PEM fuel cell component are summarized in Table 2.6.

2.7.1 Membrane degradation

The degradation of membrane can be divided into three types: mechanical degradation, thermal degradation, and chemical/electrochemical degradation.

- The mechanical degradation includes membrane cracks, tears, punctures, and pinholes due to the presence of foreign particles (*ex.* catalyst particle) or fibers introduced during the MEA fabrication process that might perforate the membrane. Besides, it can be caused by a non-uniform press pressure or inadequate humidification resulting in the fluoride loss.

- The thermal degradation occurs when the membrane becomes dehydrated due to the high-temperature operation, low humidity, and other causes, leading to the loss of proton conductivity.

- The chemical/electrochemical degradation originates from the trace metals (ex. Ca²⁺, Fe³⁺, Cu²⁺, Na²⁺, K⁺, Mg²⁺) or the radicals (ex. peroxy and hydroperoxy) resulting in the breakage of the membrane's backbone and side-chain groups and subsequent loss of mechanical strength and proton conductivity.

Figure 2. 12 Schematic illustrating the basic principles involved in the conceptual dissolution mechanisms for Pt in acid media and classified into Ostwald ripening and particle agglomeration [37].

Component	Failure mode	Causes
Membrane	Mechanical degradation	Mechanical stress due to non-uniform
		press pressure, inadequate
		humidification
	Thermal degradation	Thermal stress; thermal
		cycles
	Chemical/electrochemical	Contamination; radical attack
	degradation	
GDL	Decrease in mass	Degradation of backing material
	transport	
	Decrease in water	Mechanical stress; Change in the
	management ability	hydrophobicity of materials
	Conductivity loss	Corrosion
Catalyst/ catalyst	Loss of activation	Sintering or dealloying of
layer		electrocatalyst
	Conductivity loss	Corrosion of electrocatalyst
		support
	Decrease in mass	
	transport rate of reactants	
	Loss of reformate	Contamination; radical attack
	tolerance	
	Decrease in water	Change in hydrophobicity of materials
	management ability	to Nafion or PTFE dissolution
Bipolar plate	Conductivity loss	Corrosion; oxidation
	Fracture/deformation	
Sealing gasket	Mechanical failure	Corrosion; mechanical stress

Table 2. 6 Major failure modes of different components in PEM fuel cells [41]

2.7.2 Catalyst degradation

The loss of PEM fuel cell stability has been explained by the loss of active on the surface area due in part to various factors including the dissolution of catalyst, catalyst growth, and carbon corrosion [38-39] as shown in Figure 2.12.

- Electrocatalyst dissolution [40-41 - 48]

The oxide species on the surface of Pt is important not only to facilitate the understanding of the kinetics of the ORR but also the dissolution of Pt. The Pt can match with oxygen and dissolution into an electrolyte because PtO is a mobile species and capable for moving to energetically preferring sites, that may result in more bare Pt being exposed to the electrolyte on the surface leading to facile dissolution. Figure 2.13 illustrates the experimental results of oxide growth and hypothesis. The dissolution of Pt can be classified into three potential ranges. The first range occurs during the potential of 0.85-1.15 V/SHE, Pt is not completely passivated with oxides. The second range occurs during the potential of 1.15-1.2 V/SHE [49], the surface is still not covered with a monolayer of oxide due to the place exchange mechanism. The last range occurs at high potential of 1.3-1.5 V/SHE, the surface is completely passivated with PtO and continues to dissolve at a lower rate.

- Crystallite growth

Many previous works reported on the crystallite growth of the metals on the supports. The mechanisms have been proposed for metal transport on the surface of the supports as shown in Figure 2.12. The small catalyst particles may migrate on the surface of the support in a manner similar to Brownian motion and collision coalesce with larger metal particles leading to particle growth. Besides, the particles may evaporate or diffuse as adatoms on the support surface and condense on larger ones similar to Ostwald ripening (dissolution-diffusion-re-deposition) in solutions.

Figure 2. 13 Measured equilibrium concentration of Pt wire in 0.57 M perchloric acid at

23 °C [36].

- Carbon corrosion

The carbon black has high attractive for use as catalyst support because it has low cost, high surface area for dispersing the active species, and easy to modify the porous structure [38]. However, the carbon black can be oxidized to carbon dioxide (CO_2) and carbon monoxide (CO) at the potential higher than 0.2 V vs SHE, according to Eqs. (2.36) or (2.37);

$$C_{(s)} + 2H_2O \rightarrow CO_2 + 4H^+ + 4e^-$$
 (2.36)

$$C_{(s)} + 2H_2O \rightarrow CO + 2H^+ + 2e^-$$
 (2.37)

Some of the factors influencing the carbon corrosion are:

- The carbon structure: some kind of carbon black such as Vulcan has an amorphous structure which could result to different corrosion kinetic rates [39].
- ii) Oxide coverage and the presence of water can increase the oxidation of carbon to CO_2 [5].

The all of major failures were summarized in Table 2.6.

2.7.3 Gas diffusion layer degradation

The degradation in this part causes by carbon oxidation, PTFE decomposition, and mechanical degradation as a result of compression, causing the loss of hydrophobicity and GDL conductivity.

2.8 Metal oxide

Recently, the metal oxide such as SiO_2 , CeO_2 , ZrO_2 and TiO_2 were introduced to a Pt/C catalyst in order to reduce the oxygen adsorption energy, the catalyst sintering and the corrosion of catalyst for PEM fuel cells. Many studies reported that the adsorption energy of oxygen affects the ORR activity in PEM fuel cell and the 5*d* transition metals are interested to use as the alloy with Pt or the catalyst for ORR in PEM fuel cell. Since, the increased of 5*d* vacancies on the catalyst surface induces an increasing link with the oxygen 2*p* states [42-43]. This leads to the decreased bond strength of the O-O bonds [42]. Figure 2.14 showed that the 5*d* metal had the lower oxygen adsorption energy than 3*d* and 4*d* metals. Then, the 5*d* metal such as Ti, Mo, and Ce become the interesting metal to improve ORR activity and stability of Pt or Pt-based catalyst in PEM fuel cell.

Figure 2. 14 (a) O and (b) O_2 adsorption energies as a function of d-band center. [44]

2.8.1 Titanium dioxide [45-46]

The titanium compounds are widely used in many fields because it has useful physical properties such as high refractive index and dielectric constant, high chemical stability and biocompatibility. Then, titanium dioxide (TiO_2) is involved in a wide range of industrial processes.

- Structural properties

TiO₂ is usually found in three different phases including rutile, anatase and brookite as shown in Figure 2.15. The transformations reversibility of anatase and brookite phases to rutile phase is the last phase and is the stable phase. The phase transformation of anatase to rutile occurs at 610 \pm 10 ° C. Each crystallographic form consists of octahedral TiO₆ or each Ti⁴⁺ anion is surrounded by an octahedron of six O²⁻ cations. According to the structure, Ti-O and O-O distances are different and Ti-O apical bond and equatorial distances are slightly different as shown in Table 2.7. The rutile structure is based on body-centred tetragonal unit which shares two edges of the octahedral Ti atom with other octahedral of oxygen atom. For anatase, the octahedral shares four edges and the four fold axis. They form the eight faced tetragonal double pyramids. Finally, the structure of brookite is <u>orthorhombic</u>. At the center, a <u>titanium ion</u> is surrounded by <u>oxygen</u> ions at each of the six vertices and shared three edges with adjoining octahedral. Each octahedral shares three edges with closed other octahedral to create an <u>orthorhombic</u> structure. Brookite is often discovered compared to anatase and rutile, but it has been studied to be a <u>photocatalyst</u> [47].

Figure 2. 15 TiO₂ structure [48].

In the acid electrolyte TiO_2 can dissolve into the solution and form the Ti^{3+} ions [31], according the following reactions:

$$\mathrm{TiO}_{2}+4\mathrm{H}^{+} \longrightarrow \mathrm{Ti}^{4+}+2\mathrm{H}_{2}\mathrm{O} \tag{2.38}$$

Equation mention above is consisted of two elementary steps. First, after the protecting TiO_2 layer is dissolved from the electrode into acid electrolyte, the active state of titanium is promoted and Ti^{3+} ions are created as displayed in Eq. (2.39). When hydrogen evolution occurs, the Ti^{3+} is oxidized and Ti(IV) species, which is colorless, are created (Eq. (2.40)) [49]:

$$\mathrm{Ti}+3\mathrm{H}^{+} \longrightarrow \mathrm{Ti}^{3+}+3\mathrm{H}_{\mathrm{ads}}$$
(2.39)

$$4H^{+}+4Ti^{3+}+O_{2} \rightarrow 4Ti^{4+}+2H_{2}O$$
(2.40)

K34/		2462/1	
Property	Rutile	Anatase	Brookite
Form weight	79.89	79.89	79.89
Molar volume	18.693	20.156	19.377
Density	4.2743	3.895	4.123
Crystal system	Tet	Tet	Orth
Unit cell			
a (Å)	4.5845	3.7842	9.184
b (Å)	5.447	5.447	5.447
c (Å)	2.9533	9.5146	5.145
Cell volume	62.07	136.25	257.38
Molar volume	18.693	20.156	19.377
Density	4.2743	3.895	4.123

Table 2. 7 Physical property of TiO₂[50]

2.8.2 Molybdenum dioxide[51]

Molybdenum is wildly used as alloying element in steel technology to improve the corrosion resistance. Although, it has many oxidation states, the stable states are Mo (IV) and Mo (VI). The reduction of MoO_2 is expressed in Equation (2.41)

$$MoO_2 + 4H^+ + 4e^- \rightarrow Mo + 4H_2O$$
 (2.41)

The crystal defects can shear planes compose nucleation sites for the formation and growth of MoO₂ since the lattice oxide is consisting of MoO₆ octahedron connected by edges (deformed rutile structure) as shown in Figure 2.16. Under low hydrogen pressure, the direct formation is observed of MoO₂ [52]. Unlike trioxide, a state density at the Fermi level is observed by UPS and XPS for the reducing oxides [53-54]. It is attributed to the 4*d* electrons molybdenum MoO₂ in the compound with metallic properties of its structure particular. The metallic character dioxides MO₂ (M = Mo, W) has been demonstrated by UPS high resolution analyzes [55]. The metal-metal bonding doubles band 4*d* conduction into two components corresponding to the binder states **G** and **π** states.

Figure 2. 16 Structure of molybdenum dioxide (MoO₂) [56]

The Pourbaix diagram of Mo in $Mo-H_2O$ system is shown in Figure 2.17. The molybdenum is stable between two dash lines and corrodes in strongly acidic and alkaline solutions.

Figure 2. 17 Pourbaix diagram of Mo-H₂O system at 25 °C [57].

2.8.3 Ceria oxide [58]

Cerium is a metal belonging to the group lanthanides (rare earths). The electronic structure of cerium is [Xe] $6S^24F^{1}5d^{1}$. It has two degrees of stable oxidation: + III + IV and can therefore form the two stoichiometric oxides CeO_2 (Ce^{4+}) and Ce_2O_3 (Ce^{3+}). CeO_2 can use as an oxygen donor by the following reaction.

$$2\text{CeO}_2 \leftrightarrow \text{Ce}_2\text{O}_3 + \frac{1}{2}\text{O}_2 \tag{2.42}$$

Figure 2. 18 Structure of Ceria dioxide (CeO₂) [59].

Cerium dioxide (CeO₂), also known as ceria, crystallizes in a cubic structure fluorite-type (CaF₂) (Figure 2.18). The structure of CeO₂ is a face-centered cubic structure wherein all of the tetrahedral sites is occupied by $O^{2^{-}}$ anions. Each vertex and each face of the cubic cell are occupied by Ce⁴⁺ cation, while each tetrahedral site is occupied by an anion O₂. Each Ce⁴⁺ cation is linked to 8 O²⁻ anions. The CeO₂ has a lattice parameter of 0.541 nm.

As demonstrated in Figure 2.19, in the range of potential and pH between dash line 1 and 2, CeO₂ can be reduced to form Ce³⁺ and give the oxygen vacancy. The decomposed oxygen from CeO₂ can also be reached to produce the water [60-61].

Figure 2. 19 Pourbaix diagram of Ce-H₂O system at 25 °C [61]

From above information, TiO_2 , MoO_2 , and CeO_2 represent their oxygen donation property and strong stability in acid environment. These are their advantages for promoting the ORR activity in PEM fuel cell.

2.9 Catalyst and metal preparation [62-63]

The catalyst and metal preparation method are consisted of two main stages.

1. Impregnation of the active species onto the supports by adsorption, impregnation, drying and precipitation

2. Removal of unwanted elements to keep only a catalyst

2.9.1 Impregnation method

The impregnation is a simple method widely used for metal preparation. The steps of impregnation are shown in Figure 2.20. It is consisted by mixing a solution of the active phase species precursor - mainly nitrates and metal acetates, as well as nanoparticles colloidal, previously prepared, stabilized by surfactants - and a carrier. The dissolved metal ions or colloids stabilized penetrate the pores of the support in the impregnation step. After the impregnation step performed, reducing, drying, and calcining are necessary to obtain the final catalyst.

Figure 2. 20 Process steps of impregnation method.

2.9.2 Sol gel method

It is a simple process for the synthesis of many metals and ceramics. It is consisted of a hydrolysis of a metal precursor and followed by condensation. A colloidal suspension is then formed and then observed a transition to a solid gel after loss of solvent and full cure. After adjusting the reaction conditions (pH, solvent, addition of amines), several nanostructures can be formed. The advantages of this method are the purity of the products, uniformity, flexibility, ease of implementation, the possibility of introducing dopant concentration and easy operation to make deposits on large and complex surfaces. The methods of micelles and inverse micelles may also be cited for the formation of nanoparticle size tightly control. The summarized sol gel process is demonstrated in Figure 2.21.

Figure 2. 21 Process steps of sol-gel method.

2.9.3 Electrodeposition [64]

Electrodeposition is the one of metal coating method (Figure 2.22). The thickness of the metal layer (or loading) and structure are modified by physical, chemical, and electrical parameters such as temperature, pH, metal precursor concentration, and current density. It is operated at low temperature, non-vacuum technique, and easily applied on different scales from micrometric to macroscopic areas. It also allows a good control of the amount of electrocatalyst, and can be used for depositing films or particles of metals, alloys and compound. The oxidation at anode side and the reduction and cathode side are shown in Eqs. (2.43) and (2.44), respectively.

Anode:	H ₂ O	\rightarrow	$\frac{1}{2}O_2 + 2H^+ + 2e^-$	(2.43)
				()

Cathode: $Me^{Z^+} + Ze^- \longrightarrow Me(s)$ (2.44)

Figure 2. 22 Reaction of the electrodeposition process.

2.9.4 Chemical vapor deposition (CVD) [65]

The metal ion can deposit on the substrate by using chemical reaction of reactants in the gas phase. The reactant gases (precursors) are pumped into a reaction chamber (reactor). Under the suitable conditions. The products of the reaction, metal particle, deposites on the substrate. The by-products are pumped out. The significant parameters are reaction rates, gas transport, and gas diffusion. This method can be used continuously and is employed to form adherent coating on many substrates, films, and fiber, or to develop composite materials by filtration. Thus, MO_2 thin films with a controlled grain size, nanoparticles or nanorods are synthesized. The CVD process is consisted of several steps as shown in Figure 2.23:

- 1. Diffusion of reactant to the reaction zone
- 2. Change of reactant phase from liquid to gas phase
- 3. Transportation of reactants to the substrate surface
- 4. Chemical and/or physical adsorption
- 5. Surface reaction form the metal film
- 6. Desorption of volatile by- products

Figure 2. 23 Steps of chemical vapor deposition [66].

The film growth is determined by adsorption and reaction rates. The deposition rate is affected by the distance of the gas inlet, specification of the reaction, and radial variance. In order to improve film uniformity, it can be done by inclining substrate into gas flow direction and increasing the substrate temperature.

2.10 Literature Reviews

Wu et al. [31] showed that Ni can facilitate the desorption of the oxygenate species (e.g., -OH) from the surfaces of alloy particles because Ni had a lower electronegativity than Pt. This resulted in the change of the electronic properties of Pt. The cathodic current peaks associated with the reduction of platinum oxide positively shifted more than 5 mV for the Pt_3Ni/C and Pt_2Ni/C electrocatalysts, and about 15 mV for the PtNi/C electrocatalyst compared to the pure Pt electrocatalyst. This implied that the desorption of the oxygenate species from the surfaces of Pt alloy was easier than from the surface of pure Pt.

Toda et al. [33] reported that the electrocatalytic activity was depending on Pt-Fe alloy compositions. A dramatic reduction of the ORR overpotential was achieved by the presence of Fe in Pt structure. A maximum kinetic current density (j_k) of 4 mA/cm² was obtained at 50% Fe content, which was greater than that of pure Pt of around 25-fold at 0.8 V. Also, it was almost constant at less positive potentials as long as the O₂ was sufficiently supplied.

Takenaka et al. [35] investigated the ORR activity of SiO₂/Pt-Co/CB compared with Pt/C and Pt-Co/C electrocatalysts. The catalytic activity of SiO₂/Pt-Co/CB was high even in the region of a low cell voltage. The thickness of silica layers, which was wrapped around Pt-Co alloys, was very thin. Thus, the silica layers in the SiO₂/Pt-Co/CB electrocatalysts would not prevent the diffusion of oxygen molecules and protons onto Pt-Co alloy surface. For the stability test, they reported that the intensity of the peaks in the CVs for the PtCo/CB which temperature treatment at 773 K and 973 K decreased with the number of the potential cycling. The decrease in peak intensity was also observed in the CVs of SiO₂/Pt-Co/CB during the accelerated durability test. In contrast, the peak intensity due to Pt metal in the CVs for SiO₂/Pt-Co/CB did not change appreciably during the potential cycling experiments. The silica loading and the treatment temperature for SiO₂/Pt-Co/CB (773 K) were not high enough to improve the durability of the electrocatalyst during the potential cycling experiment. In contrast, dense silica layers in SiO₂/Pt-Co/CB (973 K) prevented the diffusion of Pt and/or Co species from Pt-Co alloys out of the electrocatalysts. Thus, the coverage of the Pt-Co electrocatalysts with dense silica layers further improved the durability of the electrocatalysts.

The results of different tests on the stability of PtM alloy electrocatalysts under fuel cell conditions and the consequences on the electrocatalytic activity and cell performance have been reviewed by Hector et al. [67], they pointed out that the Pt/C and Pt-Co/C electrocatalysts showed the similar stability both in acid electrolyte and in the fuel cell. A reduction on the hydrogen under potential desorption (HUPD) peak is observed for all electrocatalysts because during the CV measurements, the electrocatalysts were exposed to extremely corrosive conditions. By polarizing the electrocatalyst in acidic

media, the corrosion of the carbon support resulted in a loss of the active surface area due to particle sintering then the reduce of HUPD peak indicating an increase in the metal particle size.

A contradictory result was reported by Zignani et al. [68]. That is, a high loss of Pt-Co/C ORR activity and durability tests was observed in comparison to those of Pt/C. The low stability of the Pt-Co/C electrocatalyst during repetitive potential cycling was not ascribed to Co loss, but to the dissolution-redeposition of Pt, forming a surface layer of non-alloyed pure Pt. The result showed that the thermal treatment at 550 °C increased the particle size for both Pt/C and Pt-Co/C electrocatalysts. The increase was 82% for Pt-Co and of 138% for Pt with respect to the as-prepared electrocatalysts. After thermal treatment, the presence of alloying increased the electrocatalyst particle size and decreased of the electrochemical surface area resulting in a low ORR activity of Pt-Co/C compared with Pt/C electrocatalyst.

Elezovic et al. [69] investigated the catalytic activity of MoO_x/Pt/C toward the activity of ORR. They pointed out that the presence of MoO_x on platinum surface can reduce the active surface area of such electrocatalyst. The surface area of Pt particles would be decreased of about 95% and even more in the presence of the monolayer of MoO_x because the MoO_x can agglomerate on the surface of Pt nanoparticle. However, the presence of MoO_x can increase the limiting current densities as well as the ORR catalytic activity of Pt/C electrocatalyst. This can be explained by the synergetic effects and spillover between the platinum and oxide materials.

Fugane et al. [70] pointed out that the ORR activity observed from home-made Pt/CB was almost constant during 1000 cycles test. Alternatively, the ORR activity observed from CeO_x/Pt/CB slightly decreased during 1,000 cycles test but the ORR activity on CeO_x/Pt/CB was still higher than home-made Pt/CB electroelectrocatalyst. This is because the Pt surface was covered by the amorphous cerium oxide (Ce³⁺, Ce⁴⁺) layer that can be prevented the dissolution of Pt into the acid solution during the long cycle CV experiment. Although small amount of amorphous cerium oxide (Ce³⁺, Ce⁴⁺) layer was

partially peeled off from the Pt surface during CV experiment, the loss of activity was still lower than that of Pt/C.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

CHAPTER 3

Experimental and Characterization

3.1 Chemical and material

- Hexachloroplatinic acid hydrate (H₂PtCl₆. 6H₂O, Sigma-Aldrich)
- Cobalt (II) chloride (CoCl₂·6H₂O, Kanto Chemical)
- Sodium borohydride (NaBH₄, Labchem)
- Sulfuric acid (98%wt H₂SO₄, QReC)
- Nitric acid (65%wt HNO₃, QReC)
- Hydrochroric acid (37%wt HCl, Carlo Erba)
- Deionized water
- Nafion[®] perfluorinate resin solution (5%wt, Fluka)
- Nafion[®] membrane 115 (Electrochem)
- *i*-sopropanol (99.99 % C₃H₇OH, Fisher)
- Ethanol (C₂H₅OH, Merck)
- Titanium(IV) isopropoxide (97%wt Ti(OCH(CH₃)₂)₄, Sigma-Aldrich)
- Titanium (IV) dioxide (P25 Degussa, Sigma-Aldrich)
- Titanium (IV) dioxide (TiO₂, Sigma-Aldrich)
- Molybdenum (IV) oxide (MoO₂, Sigma-Aldrich)
- Cerium(III) nitrate hexahydrate (Ce(NO₃)₃ · 6H₂O, Sigma-Aldrich)
- Polytetrafluoroethylene (60%wt PTFE, Sigma-Aldrich)
- Hydrogen peroxide (30%wt H₂O₂, Carlo Erba)
- Hydrogen gas (99.999% H₂, Praxair)
- Oxygen gas (99.999% O₂, Praxair)
- Nitrogen gas (99.99% N₂, Praxair)
- Carbon powder (Vulcan® XC-72, Cabot)
- Pt/C (20 %wt, ETEK)

- Carbon cloth (ETEK)

3.2 Laboratory instrument

- Spray gun (Crescendo, Model 175-7[™])
- Pressure controller (Fujiyama)
- Oven (UFB 500, Memmert)
- Hot plate and stirrer (Ceramag midi, IKA)
- Compression mould (Model LP20, Laptech engineering)
- PEM single cell hardware (area 5 cm², Electrochem)
- Rotating disk electrode (Metrohm)
- Saturated calomel electrode (REF421, Radiometer)
- Ultrasonic water bath (NXPC-1505P, Koda)

3.3 Catalyst and MEA preparation

3.3.1 Treatment of the carbon support

Vulcan XC-72 was treated by mixed acid to remove the impurity before use as support. 12 M H_2SO_4 and 12 M HNO_3 were mixed at a volume ratio of 1:1. Vulcan XC-72 and mixed acid were added into a flask with the volumetric ratio of 70:30 and shaken at 120 rpm for 12 h. The treated Vulcan was filtrated and washed by de-ionized water until pH equal to de-ionized water's pH.

3.3.2 Membrane treatment

Nafion[®] membrane 115 was washed with 500 mL hot de-ionized water (80 °C) to clean the membrane surface. Then, it was boiled with 500 mL of 3%wt H_2O_2 in the shaker bath at 80 °C for 1 h to remove the organic impurity. Next, the obtained membrane was boiled again with 500 mL of 0.5M H_2SO_4 at 80 °C for 1 h to protonate the sulfonate site in

the membrane. Finally, the membrane was washed three times with hot de-ionized water (80 °C) and stored in de-ionized water.

3.3.3 Preparation of the PtCo/C catalyst

During the preparation of each electrocatalyst, the two elementary steps of seeding and impregnation were performed. Initially, 0.1 g of treated carbon black (Vulcan XC-72) was dispersed in 3 mL of deionized water, sonicated at 70 °C for 1 h and then the solution pH was adjusted 2 with 13.3 M HCI. The PtCo precursor was prepared by mixing the PtCo precursor 2.844 mL of 20 g/L H₂PtCl₆·6H₂O and 4.324 mL of 20 g/L CoCl₂·6H₂O.

The seeding step was conducted by mixing the 0.7168 ml (10 % (v/v)) of PtCo precursor with the above carbon black slurry and sonicated at 70 °C for 30 min. The metal ions in the aqueous solution were then reduced to PtCo metal by the addition of 20 mL of 0.12 M NaBH₄ and sonicated for 30 min at 70 °C. The insoluble fraction was harvested by filtration and rinsed several times with de-ionized water to eliminate the excess reducing agent.

The impregnation step was performed by dispersing the obtained carbon powder covered by the seeded PtCo metal in de-ionized water, sonicating for 1 h and then adding to the remaining PtCo precursor (90 % (v/v)) solution to obtain the required electrocatalyst loading on the carbon support (30 % (w/w)). The mixture was reduced by the addition of 20 mL of 0.12 M NaBH₄ and sonicated for 30 min to obtain the catalyst powder, which settled out of the solution/suspension. The electrocatalyst suspension was filtered, and the filtrate was washed thoroughly with hot de-ionized water and dried for 2 h at 110 °C.

3.3.4 Preparation of the sublayer, catalyst ink and catalyst-coated membrane

The sublayer was prepared by mixing 0.5 mL of distilled H_2O with 1.334 µL of 60 % (w/w) polytetrafluoroethylene and sonicating at room temperature (~30 °C) for 30 min. The mixed solution was added to 1.0 mL of *i*-propanol and sonicated again at room temperature for 30 min. Next, 18.0 mg of treated carbon was added and sonicated at room temperature for 30 min to obtain the carbon ink, which was then coated onto a 2.25 × 2.25 cm carbon cloth as a gas diffusion layer (GDL) by brushing and then dried at 80 $^{\circ}$ C for 2 min to eliminate the excess solvent. The carbon ink coating was repeated as required until the sublayer loading was ~2.0 mg/ cm², and then the sublayer ink-coated GDL was dried at 300 $^{\circ}$ C for 1 h at atmospheric pressure (~101.3 kPa).

The catalyst ink was prepared by mixing 0.1 g PtCo/C catalyst powder with 0.4 mL of distilled H_2O and then sonicated at room temperature (~ 30 °C) for 30 min. The obtained mixture was added into 0.916 mL Nafion solution sonicated at the same temperature for 1 h and then 3.2 mL of *i*-propanol was added and the solution was sonicated for 1 h.

The membrane electrode assembly (MEA), with a 5 cm² active surface area, was prepared as the catalyst-coated membrane by direct spraying with a spray gun onto the pretreated membrane (Nafion 115) at 80 °C. For the cathode, the PtCo/C catalyst ink was sprayed slowly and then left at room temperature for 3-5 min to obtain a dry layer. The coating process was repeated several times to reach a catalyst loading of 0.15 mg/cm² and then dried at 80 °C for 10 min. This procedure was repeated for the anode side but using only the commercial Pt/C at a loading density of 0.15 mg/cm².

3.3.5 Preparation of MO₂ layer on the layer of PtCo/C catalyst

The commercial TiO₂, MoO₂, and prepared CeO₂ were used in this study. The CeO₂ powder was prepared by calcined Ce[NO₃]₃.6H₂O at 500 °C for 90 min [71].

To incorporate commercial TiO₂ and CeO₂ on catalyst layer, 6 mL of *i*-propanol was mixed with 0.4, 0.8, 1.5, 3.0 and 5.0 mg of either TiO₂ or CeO₂ and sonicate at room temperature of 15 min. For MoO₂ layer, the obtained MoO₂ weights similar to TiO₂ and CeO₂ were dispersed in 6 mL of ethanol and then sonicated at room temperature for 30 – 60 min. Sequentially, the MO₂ slurry was applied on PtCo/C layer by direct spray at different loadings in the range of 0.03 – 0.45 mg/cm².

For the coating of TiO_2 by CVD technique, the titanium tetraisopropoxide (TTIP) was used as a precursor. Initially, the 1.15 mL of 97 %(w/w) TTIP was mixed with 118.85 mL of *i*-propanol and stored in the stainless steel tank and maintained in N₂ atmosphere

as showed in Figure 3.1. Then, it was loaded into an evaporator and heated to 120 °C in flowing N₂ carrier gas at a flow rate of 267 sccm. The obtained TTIP gas are mixed with N₂ gas (N₂/TTIP), heated to 120 °C to prevent the condensation of the TTIP vapor and delivered to the reactor at a flow rate of 200 sccm. The vaporized precursor was transferred to a CVD reactor containing 2.5 x 2.5 cm carbon cloth coated sublayer as the substrate. The reactor temperature was raised from room temperature to 350 °C while its pressure was maintained at 0.26 atm. The CVD process was operated about 30 min to get the TiO₂ loading of 0.06 – 0.45 mg/cm².

Figure 3. 1 Schematic diagram of the vertical CVD reactor.

3.4 Electrode physical characterization

The morphology of all as-prepared catalysts, including the evaluation of the crystalline size and *d*-spacing together with the metal content, was analyzed by X-ray diffractometer (XRD, D8 Discover-Bruker AXS) and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX) on a JSM 6400 machine, respectively. Evaluation of the in-plane conductivity of the catalyst layer was performed with a fully-hydrated specimen using a 4-probe apparatus (RM3-AR).

3.5 Electrode chemical characterization

The electrochemical surface area (ESA) was estimated from the H₂ stripping method in N₂-saturated 0.5 M H₂SO₄. Initially, the catalyst ink prepared as described in section 3.3.4 was coated on the GDL substrate and cut as a square sheet with a dimension of 1×1 cm² and mounted with a home-made measuring template. The asprepared catalyst-coated GDL, a Pt gauze and saturated calomel electrode (SCE, +0.2444 V vs SHE) were used as working-, counter- and reference electrodes, respectively. The potential was varied between -0.24 to +1.00 V vs SCE at a scan rate of 20 mV/s using a Potentiostat/Galvanostat (DEA332, Radiometer). The ESA of catalyst can be estimated from the hydrogen desorption peak according to Eq.(3.1) [43]:

$$ESA = \frac{Q_H}{[M] \times 0.21} \tag{3.1}$$

where Q_H is the charge for hydrogen desorption, 0.21 is the charge required to oxidize a monolayer of H₂ on bright Pt and [M] is the metal loading of Pt on the electrode.

3.6 ORR activity test

The ORR activity test of as-prepared electrocatalysts was carried out in two procedures including the activity tested in single PEM fuel cell under the H_2/O_2 environment and in O_2 -saturated 0.5 M H_2SO_4 using a rotating disk electrode (RDE).

3.6.1 Activity test in PEM fuel cell

For the first test, the catalyst coated membrane (section 3.3) was assembled between two sheets of sublayer ink-coated GDL and pressed together by a compression mould under 65 kg/cm² in hot pressed at 137 °C for 2.5 min and cool pressed at room temperature for 2.5 min. The obtained MEA of each catalyst with a constant active surface area of 5 cm² was mounted on commercial single-cell hardware and tested in a singlecell test station (Figure 3.2). Prior to testing the cell performance, the run-in stage was performed under atmospheric pressure (~101.3 kPa) with a cell temperature of ~60 °C by feeding H₂ and O₂ at 100 sccm each (100 % humidity). The current was drawn at a high density (> 700 mA/cm²) for a period of 6-12 h. Subsequently, the performance of the single cell was evaluated in the form of current-density-potential curves, monitored by an electronic load at 60 °C and ambient pressure.

Chulalongkorn University

3.6.2 Activity test in acid electrolyte

The catalyst ink prepared as described in section 3.3.4 was coated on the GDL and a 1 cm diameter circular sheet and assembled with the rotating disk substrate. Subsequently, it was connected with the Potentiostat/ Galvanostat (Metrohm) as the working electrode. A Pt gauze and SCE reference electrode were used as the counter and reference electrodes, respectively. The 0.5M H_2SO_4 was bubbled by O_2 gas for 1-2 h before test. The ORR activity of the MO₂-PtCo/C catalyst was determined by linear sweep voltammetry under GPES program, at 25 °C and ambient pressure. The potential was varied from -0.20 to 0.70 V vs SCE, at different rotation rates ranging from 500-2,000 rpm and a constant sweep rate of 10 mV/s.

Figure 3. 2 Schematic diagram of the single cell test station.

3.7 Electrochemical impedance spectroscopy

หาลงกรณ์มหาวิทยาลัย

The electrochemical impedance spectroscopy (EIS) was performed to measure the electrolyte resistance (R_{Ω}). The electrode preparation and the experimental set up were conducted as same as section 3.6.2. A multichannel potentiostat (Bio-Logic, France) was used and monitored with EC-Lab V10.32 software (Bio-Logic, France) using a computer. The frequency was varied in the range of 10 mHz-10 kHz at constant potential of 0.4 V vs SCE.

3.8 Corrosion measurement

The corrosion test was measured by using the linear sweep voltammetry technique in $0.5 \text{ M H}_2\text{SO}_4$. The electrode preparation and the experimental set up were conducted as same as section 3.6.2. The Potentiostat/Galvanostat (Metrohm) was used and monitored with GPES software using a computer. The potential was varied in the range of -0.2 - 0.8 V vs SCE with scan rate1 mV/sec [72].

3.9 Internal contact resistance

A 1-cm by 1.5-cm of electrode as prepared in section 3.6.2 was cut and placed between the two copper sheets (the thickness of electrode was measured by micrometer). They were pressed by bench vise at 40 lb_f-ft. The potential was applied through the copper sheets and varied between 0-0.5 V and collected the current data. The plot of potential and current were fitted to find the internal contact resistance by using Ohm's law as showed in Eq. 3.2.

$$V = IR \tag{3.2}$$

where V is the potential (V), I is the current (A) and R is the resistance (Ω).

CHAPTER 4

Results and Discussion

ORR activity and stability of MO₂-PtCo/C catalyst in PEM fuel cell

In this work, the PtCo/C electrocatalyst is used as a candidate catalyst for improving the ORR in PEM fuel cell because it is cheaper than pure Pt/C catalyst which can reduce the amount of platinum catalyst in the cathode side of PEM fuel cell. Although the PtCo/C catalyst can increase the ORR activity, it is not stable in acid electrolyte. The corrosion of this catalyst reduces the stability of PEM fuel cell. To enhance the stability of PtCo/C catalyst, the addition of strong acid resistance metal into catalyst layer will be explored. Many metal oxides are studied and show the high sintering and corrosion resistances in acid media. In this chapter, we will evaluate the effects of different commercial metal oxides (CeO₂, MoO₂, and TiO₂) and their loadings on the ORR activity and stability of PtCo/C electrocatalyst. The physical characterizations, electrochemical results and activity are reported here.

หาลงกรณ์มหาวิทยาลัย

4.1 Morphology of MO₂

The XRD patterns of the CeO₂, MoO₂, and TiO₂ are shown in Figure 4.1. The diffraction patterns of CeO₂ showed peaks at 2 Θ values of 28.59°, 33.03°, 47.31°, 56.03°, 59.18° assigned to [111], [200], [220], [311], and [222] crystalline planes, respectively, of cubic CeO₂. The XRD patterns of MoO₂ exhibits peak at 26.1°, 37.1°, 53.6° and 60.1°, corresponding respectively to the [011], [211], [022] and [031] lattice planes of the monoclinic MoO₂ crystal and TiO₂ showed the characteristic peaks at about 25.28°, 37.80° and 48.05° corresponding to the [101], [004], and [200] diffraction planes of anatase phase, respectively. Besides, the TiO₂ diffraction peaks also showed the peak at 27.5°, 62.3°, and 68.9°, representing the [110], [002], and [301] planes of rutile phase,

respectively. Then, it can conclude that the commercial TiO_2 is mixed phase between anatase and rutile. The crystalline size of CeO_2 , MoO_2 , and TiO_2 were calculated by Debye-Scherrer equation (Appendix A) and the results were shown in Table 4.1. The crystalline size of CeO_2 , MoO_2 , and TiO_2 were 44.21, 41.61, and 11.59 nm, respectively. Moreover, the SEM image (Figure 4.2) can clearly confirm the big size of CeO_2 and MoO_2 particles, while TiO_2 had small and uniform particle size.

Figure 4. 1 Representative XRD patterns of CeO₂, MoO₂, TiO₂, commercial Pt/C.

(ETEK) and the as-prepared PtCo/C catalysts in the absence and presence of MO_2 at different loadings.

Figure 4. 2 SEM micrographs (x 10,000) of (a) CeO₂, (b) MoO₂, and (c) TiO₂.

4.2 Morphology of MO₂-PtCo/C electrodes

Representative XRD patterns of the commercial Pt/C (ETEK) electrocatalyst exhibited four main peaks as demonstrated in Figure 4.1. The first peak at a 2θ value of about 24.67° was due to the presence of the carbon support in the hexagonal structure [73]. The other three peaks are the characteristic peaks for the diffraction pattern of face-centered cubic (FCC) Pt [73], corresponding to the [111], [200] and [220] planes at a 2θ of 39.67°, 45.80° and 67.78°, respectively. The diffraction peak of the as-prepared PtCo/C catalyst still demonstrated the characteristic FCC crystalline Pt. However, compared with the diffraction of the bulk Pt, its diffraction peaks were shifted slightly to higher 2θ values (40.6°, 47.04° and 68.40°). In addition, the *d*-spacing value for the as-prepared PtCo/C catalysts (Table 1) was smaller than that of the commercial Pt/C catalyst. Both parameters indicated the formation of a PtCo alloy due to the particle substitution of Pt by Co in the FCC structure [74].

Figure 4. 3 SEM micrographs of crystalline particles (a - d), and X–ray images used to map the location of the elements dispersion of (a) PtCo/C, (b) CeO_2 -PtCo/C, (c) MoO_2 -PtCo/C and (d) TiO_2-PtCo/C catalysts.

Although no characteristic peaks of metallic Co or its respective oxides were detected in the XRD plots of the PtCo/C catalysts, their presence could not be formally excluded because they may be present in a very small amount and/or in an amorphous form.

When identical loading of metal oxides (MO₂) of 0.15 mg/cm² were incorporated onto the electrode surface between gas diffusion layer and PtCo/C catalyst layer, their XRD patterns also exhibited the characteristic Pt peaks of a FCC structure. The addition of MO₂ on PtCo/C catalyst layer led to a decrease in intensity of PtCo peaks and it cannot observe the MO₂ peaks, indicating a low degree of crystallinity of PtCo and MO₂ on GDL. Nevertheless, the *d*-spacing values of all MO₂-PtCo/C catalysts were still lower than that of the commercial Pt/C and were broadly similar to that of the PtCo/C catalyst, indicating that the incorporation of MO₂ on the surface of PtCo/C had no effect on the alloy property of the PtCo/C catalysts. By using the Debye-Scherrer equation (Appendix A), the crystalline size for the PtCo particles in the PtCo/C catalyst was determined to be 7.67 nm, which was 2.75-fold larger than that of the commercial Pt/C catalyst (Table 1). The incorporation of MO₂ had no significant influence on the crystalline size of PtCo/C catalysts. They deviated in the range of 7.41-7.67 nm (Table 4.1).

To confirm the presence of metal on the electrode, the EDX analysis was used. It exhibited the uniform distribution of metal particles along the GDL surface (Figure 4.3). The presence of Pt particles was slightly denser than that of Co, referring the presence of a higher quantity of Pt particles than Co. Quantitatively, the Pt:Co ratio in the PtCo/C catalyst was around 58.5: 41.5.

Turpo of optobuot	d-spacing	Crystalline size	
Type of catalyst	(nm)	(nm)	
CeO ₂	0.951	44.26	
MoO ₂	0.519	41.61	
TiO ₂	0.351	11.59	
Pt/C (ETEK)	0.226	2.78	
PtCo/C	0.223	7.67	
CeO ₂ -PtCo/C	0.225	7.65	
MoO ₂ -PtCo/C	0.222	7.64	
TiO ₂ -PtCo/C	0.224	7.41	

Table 4. 1 Morphology of the metal oxides, Pt/C- and PtCo/C-catalyst layer at different MO_2 types.

4.3 Effect of MO₂ types and loadings

4.3.1 Electrochemical property

In this part, the ESA of all MO₂-PtCo/C catalysts were then determined by the cyclic voltammetry (CV) under nitrogen atmosphere with different potentials in the range of -0.35 to 1.2 V/SCE at 20 mV/s. The proton adsorption/desorption on the platinum surface can be observed at potentials lower than 0.4 V (Figure 4.4(a)). As demonstrate in Figure 4.4(b), the addition of CeO₂ and MoO₂ impacted negatively. The increase of CeO₂ and MoO₂ loading resulted to the decreasing ESA, probably attributed to a large particle of CeO₂ and MoO₂ that can cover the available active area of PtCo catalyst [75-76]. However, the presence of TiO₂ provided both positive and negative impacts on the ESA of PtCo/C catalyst.

Figure 4. 4 (a) Cyclic voltammograms of MO_2 -PtCo/C in 0.5 M H_2SO_4 at the scan rate of 20 mV/s and (b) The comparison of electrochemical surface area of MO_2 -PtCo/C electrodes with different types and loadings of MO_2

The increase of TiO₂ from 0 to 0.06 mg/cm² resulted to the increasing ESA.Further raising the TiO₂ loading up to 0.45 mg/cm² led to the decreasing ESA. The increasing ESA at low TiO₂ content might be attributed to the increase of electrode roughness. Overloading of TiO₂, particularly at 0.3 and 0.45 mg/cm² induced the blockage of percolating electron-conducting network in the electrode, resulting in a decreasing electronic conductivity as well as ESA.

Figure 4. 5 Interfacial contact resistance for PtCo/C catalyst in the presence of different MO₂ loadings.

With regard to the effect of MO_2 type and loading on the interfacial contact resistance (ICR) of PtCo/C catalyst, as shown in Figure 4.5, it can be seen that the increase of MO_2 loading resulted in the increase of ICR with the order of $CeO_2 > MoO_2 > TiO_2$ because CeO_2 and MoO_2 had the large particle size and the CeO_2 and MoO_2 had the sheet or plate shape, then they can more coverage and blockage the electron transfer over the GDL and catalyst layer, that differs from TiO_2 . The TiO_2 had a small particle and spherical shape, which can connect between carbon particle and had lower effect on ICR than CeO_2 and MoO_2 . Moreover, the increase of MO_2 loading as well as the MO_2 thickness

also affected the increasing ICR. Furthermore, the oxygen molecule on the electrode surface will reduce the electron mobility along carbon surface and other element [69, 77-78]. Nonetheless, the proper amount of TiO_2 (0.06 mg/cm²) could show a higher ESA and the lower ICR than other catalysts. This indicated that TiO_2 at loading of 0.06 mg/cm² has a high potential to promote the catalytic activity of PtCo/C catalyst.

4.3.2 ORR activity

The ORR activity of all MO₂-PtCo/C catalysts were first tested in O₂-saturated 0.5 M H₂SO₄ using RDE at rotation rates between 500-2,000 rpm during a varying potential of -0.20 to 0.70 V and a constant sweep rate of 10 mV/s. The similar pattern of the voltammogram for the ORR was obtained for all catalysts as demonstrated in Figure 4.6. The curve can be divided into three distinct regions. The first region (0.7 to 0.5 V) is a kinetics-controlled region, where the current density was not affected by the rate of mass transfer, and it is independent of the rotation rate (\mathcal{O}). The second region (0.5 to 0.2 V) is an intermediate region of mixed control where the current is partially controlled by mass transport and partially by the kinetics of electron transfer. The current increases with \mathcal{O} , but not as a linear function of $\mathcal{O}^{1/2}$. The last region (0.2 to -0.2 V) is a diffusion-controlled region, which showed a well-defined limiting current plateau that increased linearly with $\mathcal{O}^{1/2}$. The relation between the current density and the rotation rate can be expressed by the Koutecky-Levich equation (Eq.(4.1)).

Figure 4. 6 Example plot of voltammogram for the ORR of TiO_2 -PtCo/C catalyst in 0.5 M $H_2SO_4(O_2$ -Sat.) at scan rate of 10 mV/s.

This equation is valid for a first order process with respect to the diffusion species [79].

$$\frac{1}{j} = \frac{1}{j_{\rm k}} + \frac{1}{B\omega^{1/2}}$$
(4.1)

and where B is estimated by Eq. (4.2),

$$B = 0.62n_{\circ}FD^{2/3}v^{-1/6}C \tag{4.2}$$

Here, j_k is the kinetic current density, \mathcal{O} is the rotation rate, n_e is the number of involved electrons, *F* is the Faraday's constant (96,485 C/mol), *D* is the diffusion coefficient of oxygen in solution (1.9 × 10⁻⁵ cm²/s), \mathcal{V} is the kinematics viscosity (0.01 cm²/s) and *C* is the oxygen concentration in the bulk solution (1.1 × 10⁻⁶ mol/cm³).

The plot of f^1 vs. $\boldsymbol{\omega}^{-1/2}$ provided straight lines with the intercepts corresponding to the kinetic current density (j_k). Figure 4.7 shows the plot of kinetic current density of all MO₂-PtCo/C catalysts versus MO₂ loadings. The ORR activity or j_k was found to depend on the loading of MO₂. The presence of CeO₂ and MoO₂ showed the low ORR activity of PtCo/C catalyst because the large size of them provided the electron blocking layer

between GDL and catalyst layer. These resulted to slow and less oxygen reduction reaction on electrodes. However, the activity of PtCo/C catalyst in presence of TiO2 increased with the increase of TiO₂ loading of 0.03 to 0.15 mg/cm². Further, raising of TiO₂ loading greater than 0.15 mg/cm² decreased the j_k because the high loading of TiO₂ could form the insulating layer onto the electrode similar to the case of CeO_2 and MoO_2 . In addition, the onset potential of PtCo/C catalyst increased with the present of MO₂, suggesting that the ORR occurred easier when compare to the pure PtCo/C catalyst as showed in Figure 4.8. Consider the effect of MO_2 on the limiting current density (j_1) of electrodes, it was found that j_L increased with presence of MO₂. This indicated that mass transport of O₂ on PtCo/C was enhanced because MO₂ can increase the local oxygen concentration on the catalyst surface [15, 80-81]. The j_L of MO₂-PtCo/C with the order of TiO_2 -PtCo/C > MoO_2-PtCo/C > CeO_2-PtCo/C > PtCo/C. The obtained j_L of MoO_2-PtCo/C and CeO2-PtCo/C were small compared to that of the TiO2-PtCo/C because the MoO2 and CeO₂ had larger particle size, higher ICR and less ESA than TiO₂-PtCo/C. Also from plot of j^1 vs. $\boldsymbol{\omega}^{-1/2}$, the number of electrons involved in the ORR on the as-prepared catalysts can be estimated. From the calculation, the number of transferred electron in the process via MO₂-PtCo/C catalysts were between 3.84 and 3.97 with an average value of 3.91, suggesting that the ORR reaction occurred via the four-electron pathway and the addition of MO₂ onto PtCo/C catalyst layer had no effect on electron pathway.

Figure 4. 7 Kinetically controlled ORR at 0.375 V versus SCE electrode for PtCo/C catalyst in the presence of different MO_2 loadings.

Figure 4. 8 Voltammograms of MO_2 -PtCo/C at the same rotating speed of 2000 rpm.

4.3.3 ORR activity in PEM fuel cell

Besides the activity in acid solution, the activities of the as-prepared PtCo/C and MO_2 -PtCo/C catalysts in the ORR were tested in a single PEM fuel cell at 60 °C and atmospheric pressure (~101.3 kPa) under a H_2/O_2 condition. As demonstrated in Figure 4.9, the major reason for the power performance difference was the differences in ohmic resistance and mass transport resistance. The inclusion of MO_2 in the PtCo/C catalyst layer did not significantly affect the open circuit potential of the single cell, but significantly affected the cell performance, particularly at medium-to-high current densities.

The ORR activity of PtCo/C catalyst under the activation-controlled region or activation loss can be determined in terms of the current density at a potential of 0.9 V ($j_{0.9}$) and under a medium-to-high region or ohmic loss, the PEM fuel cell performance was compared at 0.6 V. The results showed that the presence of CeO₂ and MoO₂ negatively affected the ORR activity of PtCo/C catalyst and PEM fuel cell performance. Consider with the previous results, the decrease of ORR activity in PEM fuel cell is probably due to the presence of the large CeO₂ and MoO₂ size that had the negative effect on ESA of PtCo/C catalyst. However, the presence of TiO₂ enhanced the activity of the PtCo/C catalysts.

Nevertheless, the performance of fuel cells at 0.6 V increased as the increase of TiO_2 loading from 0.03 to 0.06 mg/cm² of around 1.19-fold (Table 4.2 and Figure 4.9(c)). Further increase the TiO_2 loading from 0.06 to 0.45 mg/cm² resulted to the decrease of cell performance by approximately 1.18-fold. This demonstrated that the presence of proper loading of TiO_2 can reduce the ohmic- as well as the mass transfer losses. The alternation of ohmic resistance in a medium to high current density in the presence of MO₂ is probably due to the changing of hydrophobic/hydrophilic property of GDL and catalyst layer. From Figure 4.10, the contact angle of CeO_2 -PtCo/C and MoO_2 -PtCo/C were greater than 90°, indicating that CeO_2 and MoO_2 promoted the hydrophobic property of GDL. The water will be rapidly removed from the electrode resulting in the dry out of Nafion membrane as well as the loss of proton conductivity. In case of TiO_2 , the contact angle increased as the increase of TiO_2 loading during 0.03 to 0.06 mg/cm² which is able to enhance the current density at 0.6 V of single-cell tests. This is because addition of TiO₂

to the catalyst layer bring the catalyst to improve the hydrophilic property of GDL and catalyst layer to avoid fast dryout of PEM at low current densities. Otherwise, the over loading of TiO₂ to 0.45 mg/cm² induced a diminished fuel cell performance because it functioned as an insulating phase in the catalyst layer, resulting in the increasing of the ICR of the catalyst layer (Figure 4.5). In addition, a high TiO₂ content can induce a high mass transport limitation because it could combine or adsorb a large quantity of water molecules and so hinder the accessibility of the fuel gas/oxidant to the reaction site. Another possible reason might be that, under an oxygen atmosphere, TiO₂ can adsorb oxygen molecules, which then capture electrons from the conduction band and the donor states of TiO₂ to form O₂⁻ and so cause a decreased dark conductivity [82-83]. Although the presence of TiO₂ at 0.03 to 0.45 mg/cm² reduced the electrical conductivity of the TiO₂-PtCo/C catalyst 1.78- to 5.40-fold, the cell performances at 0.6 V were still 1.14- to 1.36-fold higher than that of the PtCo/C catalyst (Table 4.2). This indicates that the hydrophilic property of TiO₂ plays an important role in the performance of the fuel cell, particular at a medium-to-high current density.

To further understand the effect of the TiO_2 loading on the kinetic and mass transport parameters of the electrode, the relationship between the cell potential and current density for the entire current density range was evaluated using a non-linear least squares approach, as expressed by Eq. (4.3) [84];

$$E = E_0 - b\log j - jR - m \exp(nj)$$
(4.3)

where $E_0 = E_r + b \log j_0$; E_r is the reversible potential for the cell; *b* is the Tafel slope for the ORR; *R* is the all resistances due to the ohmic resistance contributed from the proton transfer through membrane and the electron transfer through the fuel cell components, and the mass-transport resistance in the intermediate current density region; *j* is the current density; j_0 is the exchange current density, and *m* and *n* are the parameters related to the mass transport limitation and mass-transport overpotential, respectively. The *m* value affects both the slope of the linear region of the current density-potential plot and the region where the current density departs from linearity, whereas the *n* value has a major effect on the dependence of the current density-potential curve after the linear region [84]. High values of m and n indicate a high mass transport limitation and mass-transport overpotential in the system, respectively.

Figure 4. 9 Polarization curves of a single H_2/O_2 PEM fuel cell of the as-prepared MO_2 -PtCo/C catalyst at MO_2 loadings of (\blacktriangle) 0.0, (\blacksquare) 0.03, (\bigcirc) 0.06, (\times) 0.15, (\bigcirc) 0.30 and (\blacklozenge) 0.45 mg/cm²; (a) CeO₂-PtCo/C, (b) MoO₂-PtCo/C, and (c) TiO₂-PtCo/C.

Figure 4. 10 Comparison between contact angle and current density at 0.6 V of the asprepared MO₂-PtCo/C catalyst at MO₂ loadings of (O) Contact angle and (\blacktriangle) Current density at 0.6 V; (a) CeO₂-PtCo/C, (b) MoO₂-PtCo/C, and (c) TiO₂-PtCo/C.

Type of	Loading of	OCV	j _{0.9 V}	j _{0.6 V}
catalyst	metal oxide (mg/cm²)	(V)	(mA/cm ²)	(mA/cm ²)
PtCo/C	-	1.012	10.8	321.2
	0.03	0.991	2.6	101.9
	0.06	0.982	2.6	84
CeO ₂ -PtCo/C	0.15	0.991	2.2	82.2
	0.3	0.99	2	72.4
	0.45	0.958	0.8	30.6
	0.03	0.983	6.8	315.6
MoO ₂ -PtCo/C	0.06	1.003	6.4	286.4
	0.15	1.008	5.6	264.6
	0.3	1.011	3.4	217.4
	0.45	1.01	3	199.6
	0.03	1.002	15.2	366.2
TiO ₂ -PtCo/C	0.06	1.004	12.4	437.6
	0.15	1.017	20.2	435.8
	0.3	1.013	21.6	412.4
	0.45	1.008	19.2	371.4

Table 4. 2 Electrochemical properties of the PtCo/C-catalyst layer at different MO_2 loadings.

The fitted results, together with the coefficient of determination (R^2), are summarized in Table 4.3. The R^2 values for all catalysts were greater than 0.9992, indicating that the fitted model was adequate to predict the experimental data. Within the fitting error, the intrinsic Tafel slopes (*b*) for the ORR varied between -63.4 to -69.9 mV/dec under identical testing conditions. These changes might be attributed to the variation in the interphase conditions in the presence of different loadings of TiO₂. Theoretically, a Tafel slope of -60 mV/dec indicates an ORR mechanism involving an initial fast chargetransfer step followed by the rate-determining chemical step [85]. A higher Tafel slope value is found at low O_2 concentrations due to mixed activation/mass-transport control. The exchange current density (j_0) was found to increase as the TiO₂ loading increased up to 0.15 mg/cm² and remained essentially constant thereafter with further increases in the TiO₂ loading. This is consistent with the ORR activity estimated at 0.9 V ($j_{0.9V}$) as reported in Table 4.2.

Table 4. 3 Electrode kinetics and mass transport parameters, obtained from fitting the polarization data of Eq. (4.3), for the different types of supported PtCo/C catalysts.

Type of catalyst	Activation loss		Ohmic loss	Mass transport loss		R^2
	-b	$j_0 (\text{mA/cm}^2)$	$R(\Omega-cm^2)$	<i>m</i> (mV)	п	-
	(mV/dec)				(cm²/mA)	
PtCo/C	67.0	7.19 × 10 ⁻⁴	0.7000	0.0015	0.0062	0.9992
TiO ₂ (0.03)-PtCo/C	69.5	8.78×10^{-4}	0.5572	0.0008	0.0060	0.9994
TiO ₂ (0.06)-PtCo/C	69.9	9.61 × 10 ⁻⁴	0.5050	0.0005	0.0052	0.9995
TiO ₂ (0.15)-PtCo/C	66.4	9.93×10^{-4}	0.5100	0.0015	0.0047	0.9997
TiO ₂ (0.30)-PtCo/C	63.4	9.92×10^{-4}	0.5860	0.0029	0.0043	0.9999
TiO ₂ (0.45)-PtCo/C	66.1	9.93 × 10 ⁻⁴	0.5890	0.0052	0.0045	0.9992

The variation of the resistance (*R*) and mass transport limitation parameters (*m* and *n*) as a function of the TiO₂ loading are plotted in Figure 4.11. The incorporation of TiO₂ at a loading of between 0.03 to 0.06 mg/cm² resulted in a 1.10-, 1.60- and 1.15-fold decrease in the *R*, *m* and *n* parameters, respectively. Further increasing the TiO₂ loading on the PtCo/C catalyst from 0.06 to 0.45 mg/cm² slightly decreased *n* by 1.16-fold, but increased *R* and *m* by 1.17 and 10.4-fold, respectively. Thus, a high TiO₂ content induced a high mass transport limitation, which, as mentioned previously, may be because a high quantity of TiO₂ particles can combine or adsorb a large quantity of water molecules and so hinder the accessibility of the fuel/oxidant to the reaction site. In addition, the TiO₂

particles can absorb water molecules from the membrane layer and so decrease the proton conduction of the membrane [86].

A decreased proton conductivity with increasing TiO_2 loadings has been reported previously for the addition of a nano- TiO_2 film onto the membrane surface [87]. The high TiO_2 content increased the interfacial contact resistance of the catalyst (Table 1) because it functioned as an insulating phase, as mentioned previously. In addition, a high TiO_2 content can adsorb a high quantity of oxygen from the reactant feed, resulting in a loss of electrons from the conduction band and donor state and so a decreased conductivity [83-84]. Accordingly, the addition of an appropriate quantity of TiO_2 on the PtCo/C catalyst can help to decrease the mass transport limitation as well as the ohmic resistance of the catalyst layer.

Figure 4. 11 Variation in the (\diamondsuit) m, (\Box) n and (\triangle) R parameters, as estimated from Eq. (4.3), and the (O) current density at 0.6 V ($j_{0.6V}$) for the TiO₂-PtCo/C catalyst at different TiO₂ loadings.

4.4 Effect of TiO₂ phase

From the previous results, the TiO_2 showed the highest potential to promote the fuel cell performance by improve the water management in medium to high current density range. However the TiO_2 has 3 main phases: anatase, rutile and brookite. Anatase and rutile phase have been interested in many research field because their excellent mechanical and high corrosion resistance in both acid and alkaline environment [88], then the next study will explore the effects of the TiO_2 phase on the performance of the PEM fuel cell.

The PtCo/C catalyst incorporated with two types of commercial TiO₂ were studied. The first is PtCo/C with the presence of the mixed phaseTiO₂ between anatase and rutile in the ratio of 4:1, TiO₂(AR)-PtCo/C, while the second is PtCo/C with the presence of the pure rutile phase, TiO₂(R)-PtCo/C. Figure 4.12 shows typical XRD patterns of the TiO₂(AR), TiO₂(R), TiO₂(AR)-PtCo/C and TiO₂(R)-PtCo/C catalysts with TiO₂ loadings of 0.06 and 0.15 mg/cm². As shown in this figure, the diffraction patterns of commercial TiO₂(AR) and TiO₂(R) are observed at 25.28°, 37.80° and 48.05° corresponding to the TiO₂ anatase diffraction, [101], [004], and [200], respectively. The TiO₂ diffraction peaks of rutile structures also showed the peak at 27.5°, 62.3°, and 68.9° represent to [110], [002], and [301] planes, respectively. When TiO₂(AR) or TiO₂(R) was incorporated onto the surface of PtCo/C catalyst, their XRD patterns also exhibited the characteristic Pt peaks of a FCC structure.

Figure 4. 12 Representative XRD patterns of the as-prepared PtCo/C catalysts in the absence or presence of $TiO_2(AR)$ or $TiO_2(R)$ at TiO_2 loading of 0.15 mg/cm².

However, the XRD features for TiO_2 were not observed which might be attributed to the presence of TiO_2 in a very small amount and/or in an amorphous form. The *d*spacing values of all TiO_2 -PtCo/C catalysts were still lower than that of the commercial Pt/C and were broadly similar to that of the PtCo/C catalyst, indicating that the incorporation of TiO_2 on the surface of PtCo/C had no effect on the alloy property of the PtCo/C catalysts. By using the Debye-Scherrer equation, the crystalline size for the PtCo particles in the PtCo/C catalyst was determined to be in the range of 7.41-7.84 nm (Table 4.4). The incorporation of either $\text{TiO}_2(\text{AR})$ or $\text{TiO}_2(\text{R})$ had no significant influence on the crystalline size of PtCo/C catalyst.

	d-	Crystalline	FSΔ	i	i	
Type of catalyst	spacing	size	ESA	J _{0.9 V}	J _{0.6 V}	
	(nm)	(nm)	(m²/g)	(mA/cm ²)	(mA/cm ²)	
PtCo/C	0.2231	7.67	47.3	14.4	321.2	
TiO ₂ (0.06AR)-PtCo/C	0.2237	7.44	72.2	18.4	437.6	
TiO ₂ (0.15AR)-PtCo/C	0.2235	7.41	71.8	20.2	435.8	
TiO ₂ (0.06R)-PtCo/C	0.2235	7.68	43.7	13.2	309.2	
TiO ₂ (0.15R)-PtCo/C	0.2227	7.51	36.9	12.6	301.8	

Table 4. 4 Morphology of the PtCo/C-catalyst layer at different TiO_2 phases and loadings.

The activities of the as-prepared PtCo/C-, TiO2(AR)-PtCo/C- and TiO2(R)-PtCo/C catalysts in the ORR were tested in a single PEM fuel cell at 60 °C and atmospheric pressure (~101.3 kPa) under a H₂/O₂ condition. As demonstrated in Figure 4.13, the major reason for the power performance difference was the differences in ohmic resistance and mass transport resistance. The inclusion of either TiO₂(AR) or TiO₂(R) in the PtCo/C catalyst layer did not significantly affect the open circuit potential of the single cell, but significantly affected the cell performance, particularly at medium-to-high current densities. Under the activation-controlled region, the presence of TiO₂(R) slightly changed the ORR activity, determined in terms of the current density at a potential of 0.9 V ($j_{0.9 \text{ V}}$), of the PtCo/C catalysts. However, the presence of TiO₂(AR) enhanced the activity of the PtCo/C catalysts. Under a medium-to-high current density, the inclusion of TiO₂(AR) into the PtCo/C catalyst layer provided a higher current density compared to that in the presence of TiO₂(R) at the same loading. For example, at a loading of 0.06 mg/cm², replacing the TiO₂(R) by TiO₂(AR) increased the current density at 0.6 V ($j_{0.6 V}$) of some 1.42-fold from 309 to 438 mA/cm² (186 to 263 mW/cm²). To understand the effect of TiO₂ phase, it is necessary to take into account the composition and property of TiO₂. The electrical conductivity of a TiO2(R)-based mixed oxide was reported to be higher than a

non-crystalline or $TiO_2(A)$ -based mixed oxide [89], whilst $TiO_2(A)$ exhibits a hydrophilic behavior [90-91]. Although the incorporation of $TiO_2(AR)$ could reduce the electrical conductivity of the catalyst layer, because of its low electrical conductivity compared to the carbon support and metal catalysts, an appropriate quantity of $TiO_2(AR)$ can improve the hydrophilic properties of the catalyst layer and also prevent the drying out of the membrane, which results in an increased proton conductivity.

From the ORR activity test, although the $TiO_2(0.06AR)$ -PtCo/C catalyst exhibited a lower kinetic current density (7.10 mA/cm²) than that of $TiO_2(0.15AR)$ -PtCo/C catalyst (9.39 mA/cm²) in acid solution, it provided a slightly higher current density at 0.6 V tested in PEM fuel cell (Table 4.4). For actual application of such catalyst, the performance in PEM fuel cell should be considered first. Thus, it can be said that the optimum $TiO_2(AR)$ in PtCo/C catalyst for ORR in PEM fuel cell was 0.06 mg/cm².

Figure 4. 13 Current density-potential curves of a single H_2/O_2 PEM fuel cell with the asprepared PtCo/C catalyst in the (\blacktriangle) absence of TiO₂, and in the presence of (\bigcirc , \bigcirc) TiO₂(R) or (\diamondsuit , \blacklozenge) TiO₂(AR) at a loading of (\bigcirc , \diamondsuit) 0.06 and (\bigcirc , \diamondsuit) 0.15 mg/cm²

4.5 Stability of MO₂-PtCo/C catalyst

The stability of all MO_2 -PtCo/C catalysts was finally monitored by the change of ESA during the repetitive potential cycling of these catalysts in N₂-saturated 0.5 M H₂SO₄. The example cyclic voltammogram of MO_2 -PtCo/C catalysts was exhibits in Figure 4.14(a). The similar pattern of cyclic voltammogram of all as-prepared catalyst was observed. Namely, the H₂ adsorption peak appeared as a broad shoulder, not in a sharp peak, probably due to the partial overlapping with the reduction peaks of the oxygen atom (Pt-O reduction). The H₂ desorption peak appeared as a clear sharp peak. Increasing the potential cycling from the first cycle to the 10th cycle resulted in the increase of peak intensity, due to the initial wetting of the thin Nafion layer covering the catalyst particles [67]. Further rising the repetitive potential cycling led to the decrease of peak intensity, indicating the decrease of ESA of the catalyst. To compare the catalyst stability, the normalized ESA was calculated by Eq. (4.4).

Normalized ESA=
$$\frac{\text{ESA}}{\text{ESA}_{\text{Max}}}$$
 (4.4)

where ESA is the electrochemical surface area and ESA_{Max} is the maximum electrochemical surface area of each sample.

As summarized in Figure 4.14(b), the loss of normalized ESA of catalysts after 200 cycles was observed as the order of CeO₂-PtCo/C > MoO₂-PtCo/C > PtCo/C > TiO₂-PtCo/C. Approximately 78%, 43%, 28% and 20% were observed for CeO₂-PtCo/C, MoO₂-PtCo/C, PtCo/C and TiO₂-PtCo/C, respectively. This suggests that the TiO₂-PtCo/C catalyst had the most stability compared with the other catalysts. This is probably due to a strong resistance of TiO₂ in acid media. To get more information about the resistance of all investigated catalysts, the corrosion test of all catalysts was then carried out in 0.5 M H₂SO₄. As the Tafel plot (Figure 4.15), the magnitude of corrosion current density was changed as the order of CeO₂-PtCo/C > MoO₂-PtCo/C > PtCo/C > TiO₂-PtCo/C as 14.17,

9.37, 6.71 and 5.68 mA/cm², respectively. This confirms that the TiO₂-PtCo/C exhibited the highest corrosion resistance compared to other MO₂-PtCo/C catalysts.

Figure 4. 14 (a) Cyclic voltammogram of TiO_2 -PtCo/C catalyst after the cycle numbers of repeated potential cycling in 0.5 M H_2SO_4 at a scan rate of 20 mV/s and (b) variation of normalized ESA.

Figure 4. 15 Potentiodynamic polarization for corrosion of PtCo/C and MO_2 -PtCo/C catalysts in 0.5 M H_2SO_4 .

CHAPTER 5

ORR activity of PtCo/C catalyst in the presence of TiO₂ layer prepared by CVD

In the previous chapter, the effects of different metal oxide types and loadings on the ORR activity of PtCo/C catalyst layer were presented. The results showed the PtCo/C catalyst in presence of TiO₂ layer had higher activity than PtCo/C catalyst in presence of CeO₂ and MoO₂ layer. In this chapter, we will focus our attention on the TiO₂ incorporation procedure on PtCo/C catalyst layer by CVD technique. Morphology of either TiO₂ prepared by CVD and TiO_{2,CVD}-PtCo/C catalyst will be explored. Finally, their ORR activity will be studied in acid solution and PEM fuel cell under H₂/O₂ environment.

5.1 Effect of preparing condition on morphology of TiO₂

In the primary study, the comparison of TiO_2 particle morphology with different reactant concentrations and deposition temperatures were determined. Figure 5.1 exhibits the SEM micrograph of TiO_2 particle obtained from different concentrations of TTIP in the range of 0.01 – 0.05 M. It was clearly seen that the $TiO_{2,CVD}$ particles were interfered together and formed the spherical shape. The precursor concentration did not effect on shape but affected the size of $TiO_{2,CVD}$ particles.

The particle size of TiO_2 decreased with an increasing TTIP concentration (Table 5.1). This is because the high reactant concentration can achieve a fast reaction rate. Then, the nucleation process can be promoted more than particle growth process. Thus, many nuclei of TiO_2 metal were produced [92] leading to the generation of small metal particle size. Then the TTIP concentration at 0.05 M would be used in the next step. Regarding the effect of deposition temperature, it was clearly seen that the TiO_2 particles deposited at 350 °C had a bigger than that of TiO_2 particles deposited at 450 °C (Figure 5.2). Since, the temperature had affected on both nucleation and growth processes of particle formation process. The low temperature brought the metal nuclei to lower mobility

along the substrate surface than that at high temperature, resulting in a higher particle growth rate and bigger particle size [93-97]. However, the deposition at high temperature affected the disintegration of substrate compositions. Figure 5.3 shows the thermogravimetric analysis of carbon cloth with sublayer substrate from 80 to 800 °C. The degradation of substrate started at temperature around 407 °C. So, the deposition temperature used in this study will be around 350 °C.

Figure 5. 1 SEM micrographs of TiO_2 particle with different reactant concentrations of TTIP at (a) 0.01 M, (b) 0.025, and (c) 0.05 M

Table 5. 1 Preparation conditions of $\mathrm{TiO}_{\mathrm{2}}$ coated by CVD at 20 torr

CHULALONGKORN UNIVERSITY					
Ter Sample	Temperature	[TTIP]	Loading	Particle Size	
	(°C)	(M)	(mg/cm ²)	(µm)	
T1		0.01	0.1350	1.216	
T2	350	0.025	0.1314	0.705	
Т3		0.05	0.1317	0.679	
T4	450	0.05	N/A	0.313	

350 °C and (b) 450 °C

Figure 5. 3 Thermo-gravimetric analysis (TGA, blue) and the differential temperature curves (DTG,Red) of carbon cloth with sublayer substrate

5.2 Morphology of TiO_{2.CVD}-PtCo/C catalyst layer (electrode)

The XRD patterns of the crystalline structures of PtCo/C in the presence of different TiO₂ loadings prepared by CVD technique are shown in Figure 5.4. For comparative purpose, the XRD pattern of 30 wt.% of PtCo/C and pure TiO2, cvD deposited on sub-layer coated gas diffusion layer (sGDL) are also included in this figure. The diffraction peaks of as-prepared PtCo/C catalyst at 2 θ values of 39.67°, 45.80° and 67.78° assigned the crystal planes of Pt at (111), (200) and (220), respectively with a face centered cubic (fcc) structure. Furthermore, no characteristic peak of Co was found in XRD pattern, suggesting that it may be present in a very small amount and/or in an amorphous form. In addition, TiO₂ showed the characteristic peaks at about 25.28°, 37.80° and 48.05° corresponding to the [101], [004], and [200] diffraction planes of anatase phase were presented in TiO_{2'CVD}-PtCo/C catalyst. From Figure 5.4, the intersection between a peak [002] of carbon and peak [101] of TiO₂ in anatase phase were observed. When TiO_{2,CVD} was incorporated onto the surface of PtCo/C catalyst, their XRD patterns also exhibited the characteristic TiO₂ peaks (Figure 5.4) and increased with increasing of TiO_{2 CVD} loading. However, the XRD feature for PtCo alloy was very less intensity than TiO_{2,CVD}, which might be attributed to the presence of PtCo particle in a very small amount.

The mean crystalline size of PtCo/C catalyst was calculated from the (111) diffraction line of Pt using Scherrer equation. The crystalline sizes of PtCo in all of TiO_{2, CVD}-PtCo/C catalysts were 7.10 nm as shown in Table 5.2. The SEM images of the PtCo/C and TiO_{2, CVD}-PtCo/C catalysts coated on the GDL are shown in Figure 5.5. The EDX spectrum (Figure 5.5 (a1 and b1)) revealed the presence of Pt, Co and Ti on the TiO_{2, CVD}-PtCo/C catalysts. From Figure 5.5 (a2 and b2), one can see that there are large number of grain boundaries and voids in the catalyst layer. The elemental map of the catalyst layer in both of catalysts for Pt, Co and Ti demonstrates that all metals had a well dispersion on catalyst substrate.

Figure 5. 4 X-ray diffraction patterns of (a) PtCo/C, (b) $TiO_{2,CVD}$ and $TiO_{2,CVD}$ -PtCo/C catalysts at different TiO_2 contents: (c) 0.03, (d) 0.06, (e) 0.15, (f) 0.3, (g) 0.45 mg/cm².

Table 5. 2 Morphology of the PtCo/C-catalyst layer at different TiO_2 loadings prepared by CVD.

Catalyst	TiO _{2,CVD} loading	d-spacing	Crystalline size
Calalysi	(mg/cm ²)	(nm)	(nm)
Pt-Co/C	-	0.217	7.11
TiO _{2,CVD} -PtCo/C	0.03	0.217	7.10
	0.06	0.217	7.10
	0.15	0.217	7.10
	0.30	0.217	7.10
	0.45	0.218	7.11

Figure 5. 5 EDX spectra of elements (a1 and b1), SEM micrographs of crystalline particles (a2 and b2), and X–ray images used to map the location of the elements dispersion (Pt, Co and Ti) of (a) PtCo/C and (b) TiO_{2, CVD}-PtCo/C catalysts at TiO_{2,CVD} loading of 0.15 mg/cm².

5.3 Electrochemical property of TiO_{2.CVD}-PtCo/C catalyst layer

The evaluation of electrocatalytic performance of catalyst layer was carried out by electrochemical methods including cyclic voltammetry and ICR. The ORR activity of all catalysts was tested in acid solution by linear sweep voltammetry (LSV) with rotating disk electrode (RDE) and in PEM fuel cell under H_2/O_2 environment.

Figure 5.6 shows cyclic voltammograms of TiO_{2,CVD}-PtCo/C catalysts together with that of PtCo/C catalyst in 0.5 M H_2SO_4 solution under N_2 -saturated condition. The CV curves measurements were recorded in the range of potential from -0.35 to 1.2 V/SCE. All shapes of the voltammograms are very similar and corresponding to the typical voltammogram of Pt nanoparticles in acid medium [69, 98]. The ESA was determined from the charge corresponding to the oxidation peak of proton, which is formed due to desorption of a monolayer of chemisorbed hydrogen as shown in Appendex B. The calculated ESA values of all the catalysts are presented in Figure 5.7. It can be seen that the ESA for TiO_{2,CVD}-PtCo/C catalyst was larger than that of the PtCo/C catalyst in the presence of TiO_{2,CVD} indicating that the TiO_{2,CVD}-PtCo/C catalyst had more available active sites to reach the reaction.

Interestingly, the increasing trend of in ESA with respect to the increasing TiO_2 content was similar to that reported for $PtTiO_2/C$ [99]. According to literatures, the increased ESA for Pt in the presence of TiO_2 may be due to the TiO_2 can modify favorably the structural and electronic features of Pt to carry the H-adsorption [5, 100-103]. However, too high TiO_2 loading (> 0.15 mg/cm²) induced a diminished site reaction because the oxide layer functioned an insulating phase in the catalyst layer, resulting in the reduction of the electrical conductivity of the catalyst layer.

Figure 5. 6 Cyclic voltammetry of the as-prepared $TiO_{2, CVD}$ -PtCo/C catalyst at different $TiO_{2, CVD}$ loadings in 0.5 MH₂SO₄ (N₂ sat.) at scan rate 20 mV/s.

Figure 5. 7 Comparison of electrochemical surface area and interfacial contact resistance of $TiO_{2,CVD}$ -PtCo/C electrodes with different loadings of $TiO_{2,CVD}$.

5.4 ORR activity of TiO_{2,CVD}-PtCo/C

The ORR activity of all TiO_{2, CVD}-PtCo/C catalysts were first tested in O₂-saturated 0.5 M H₂SO₄ using RDE at rotation rates between 500-2,000 rpm during a varying potential of -0.20 to 0.70 V and a constant sweep rate of 10 mV/s. The similar pattern of the voltammogram for the ORR was obtained for all TiO_{2, CVD}-PtCo/C catalysts as demonstrated in Figure 5.8. The curve can be divided into three distinct regions. The first region is a kinetics-controlled region, where the current density was not affected by the rate of mass transfer, and it is independent of the rotation rate (\mathcal{O}). The second region is an intermediate region of mixed control where the current is partially controlled by mass transport and partially by the kinetics of electron transfer. The current increases with \mathcal{O} , but not as a linear function of $\mathcal{O}^{1/2}$. The last region is a diffusion-controlled region, which showed a well-defined limiting current plateau that increased linearly with $\mathcal{O}^{1/2}$. The relationship between the current density and the rotation rate can be expressed by the Koutecky-Levich equation (Eq.(5.1)). This equation is valid for a first order process with respect to the diffusion species [80].

$$\frac{1}{j} = \frac{1}{j_{k}} + \frac{1}{B\omega^{1/2}}$$
(5.1)

and where B is estimated by Eq. (5.2),

$$B = 0.62n_{\circ}FD^{2/3}v^{-1/6}C \tag{5.2}$$

Here, j_k is the kinetic current density, \mathcal{O} is the rotation rate, n_e is the number of involved electrons, *F* is the Faraday's constant (96,485 C/mol), *D* is the diffusion coefficient of oxygen in solution (1.9 × 10⁻⁵ cm²/s), *V* is the kinematics viscosity (0.01 cm²/s) and *C* is the oxygen concentration in the bulk solution (1.1 × 10⁻⁶ mol/cm³).

Figure 5. 8 Linear sweep voltammograms for the ORR in 0.5M H_2SO_4 (sat.O₂) with scan rate 10 mV/sec of the TiO_{2, CVD}-PtCo/C catalyst at different TiO_{2,CVD} loadings of (a) 0.0, (b) 0.03, (c) 0.06, (d) 0.15, (e) 0.30, and (f) 0.45 mg/cm².

Figure 5.8 Linear sweep voltammograms for the ORR in 0.5M H_2SO_4 (sat. O_2) with scan rate 10 mV/sec of the Ti $O_{2, CVD}$ -PtCo/C catalyst at different Ti $O_{2, CVD}$ loadings of (a) 0.0, (b) 0.03, (c) 0.06, (d) 0.15, (e) 0.30, and (f) 0.45 mg/cm²(cont.).

The plot of j^1 vs. $\boldsymbol{\omega}^{-1/2}$ provided straight lines with the intercepts corresponding to the kinetic current density (j_k) and a slope of 1/*B* could be determined. Figure 5.9 shows the plot of kinetic current density of all TiO_{2, CVD}-PtCo/C catalysts. The increase in the ORR activity or j_k was found to depend on the loading of TiO_{2,CVD}. Nevertheless, too high quantity of TiO_{2,CVD} cannot enhance the ORR activity. Just a certain quantity of TiO_{2,CVD} is required to promote the ORR activity. The highest ORR activity for PtCo/C catalyst was observed in the presence of TiO_{2,CVD} at the loading of 0.06 mg/cm². The number of transferred electrons in the process via TiO_{2,CVD}-PtCo/C catalyst are between 3.97 and 4.05 with an average value of 3.99, suggesting that the ORR reaction occurred via the four-electron pathway.

Figure 5. 9 Kinetically controlled ORR at 0.375 V versus SCE electrode for PtCo/C catalyst in the presence of different TiO_{2, CVD} loadings.

Figure 5. 10 Current density-potential curves of a single H_2/O_2 PEM fuel cell of the asprepared TiO_{2, CVD}-PtCo/C catalyst at different TiO₂ loadings of (\bigcirc) 0.0, (\square) 0.03, (\blacktriangle) 0.06, (\blacklozenge) 0.15, (\triangle) 0.30 and (O) 0.45 mg/cm².

The catalytic activity of PtCo/C and TiO_{2, CVD}-PtCo/C for the ORR was then evaluated in a PEM fuel cell under H₂/O₂ atmosphere. All prepared catalysts were used in cathode side, while the commercial Pt/C (ETEK) was used as a catalyst for the HOR at the anode. The catalyst loading was fixed at 0.15 mg/cm². As demonstrated in Figure 5.10 and Table 5.3, the incorporation of appropriate TiO₂ content can promote the performance of PtCo/C catalyst. The reason for an improved Pt utilization and fuel cell performance was probably due to an increasing of a percolating electron-conducting network of TiO₂ loading, which resulted in an enhanced macroscopic electronic conductivity in the GDE as showed in Figure 5.7. Among all TiO_{2, CVD}-PtCo/C catalyst, the PtCo/C with 0.15 mg/cm² TiO₂ exhibited the highest performance compared with other PtCo/C catalysts. Further raising the TiO₂ greater than 0.15 mg/cm² decreased the performance in fuel cell importantly, probably due to limited macroscopic electronic conductivity. This is because

a sufficiently high macroscopic electronic conductivity can be assumed in the $Pt-TiO_2/C$ composite electrodes when 50 vol% carbon is present [104].

Sample	TiO ₂ ,CVD loading (mg/cm ²)	j _{0.9 v} (mA/cm²)	j _{0.6 v} (mA/cm²)
Pt-Co/C	0	11.2	358
	0.03	16.8	339
	0.06	22.8	434.4
TiO _{2, CVD} -PtCo/C	0.15	33.0	454.8
	0.30	11.4	231.8
	0.45	11.2	210

Table 5. 3 Summary of the electrochemical evaluation on all $\rm TiO_{2,\,CVD}\mathchar`-PtCo/C$ catalysts.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

CHAPTER 6

ORR activity and stability of TiO2-PtCo/C catalysts in PEM fuel cell

In chapter IV and V, the result showed that PtCo/C catalyst with commercial TiO₂ (TiO_{2,com}-PtCo/C) at loading of 0.06 mg/cm² had the highest performance for PEM fuel cell, while the PtCo/C catalyst with TiO₂ prepared by CVD technique (TiO_{2,CVD}-PtCo/C) gave the highest performance at TiO₂ loading of 0.15 mg/cm². In this chapter, we will compare activity and stability of TiO_{2,com}-PtCo/C and TiO_{2,LPCVD}-PtCo/C catalyst. The activity was determined both in acid solution and in PEM fuel cell under H₂/O₂ environment. Moreover, the stability of PtCo/C, TiO_{2,com}-PtCo/C and TiO_{2,CVD}-PtCo/C catalyst was studied. The obtained results are shown as the following.

6.1 Morphology of TiO₂-PtCo/C electrode

Figure 6.1 displays the XRD patterns of the sublayer coated-gas diffusion layer (sGDL), TiO_{2,COM} and TiO_{2,CVD} deposited on sGDL. The XRD pattern of sGDL exhibited two broad peaks at 2 θ of 25.27° and 42.87° associating with the hexagonal plane of carbon at planes of C[002] and C[101] (JCP-001-0646), respectively. Both peaks at the same 2 θ were also observed for both types of TiO₂ coated on sGDL but with the sharp-end for a peak at 2 θ of 25.27°. This might be attributed to the intersection between a peak C[002] of carbon and peak A[101] of TiO₂ in anatase phase (JCP-002-0606). Also, the XRD pattern of both TiO₂ revealed the peak at 2 θ of 48.05°, assigning to the peak of A[200] (JCP-002-0606). Besides, a characteristic peak of rutile phase at a 2 θ of 53.99°, corresponding to the R[211] planes (JCP-001-1292) was also observed for TiO_{2,COM}. This suggests that the phase of TiO_{2,COM} was a mixture of both anatase and rutile phases, while the phase of TiO_{2,CVD} was only the anatase phase. The particle size, estimated from the

peak at 2 θ of 48.05° according to the Debye-Scherrer equation [105], of TiO_{2,COM} was around 38.66 nm, close to that of TiO_{2,CVD} (37.82 nm).

Figure 6. 1 Representative XRD patterns of TiO_{2.COM} and TiO_{2.CVD}.

The XRD spectra of PtCo/C catalysts on GDL also demonstrated peak during 2θ between 20° and 30° of carbon substrate. However, a broad sharp-end peak was observed for the TiO₂-PtCo/C catalyst at the same 2θ range (Figure 6.2). This is attributed to the intersection between the diffraction peaks of hexagonal carbon substrate and the crystal plane of A[101] of TiO₂. Besides, the spectrum of PtCo/C exhibited the main characteristic peaks of the face-center cubic (FCC) structure of crystalline Pt[111] at 2θ of 40.01° [16]. The *d*-spacing of all the supported PtCo/C catalysts was smaller than that of the pure Pt/C catalyst (Table 6.1), indicating a contraction of the Pt lattice, due to the particle substitution of Pt by Co in the FCC structure [106] or the formation of the PtCo alloy. In the presence of TiO₂, the XRD pattern of the TiO₂-PtCo/C catalyst still exhibits the diffraction peaks of FCC Pt, and the diffraction peaks of TiO₂ at about 25.27° and 48.05° are well presented in the TiO_{2,CVD}-PtCo/C catalyst. The diffraction peaks of Pt were also noticed in this catalyst at 2 θ of 40.01°. The crystallize sizes of both TiO₂-PtCo/C catalyst
were slightly smaller than that of PtCo/C (Table 6.1). The ratio of Pt and Co was close to the set value of 1: 1. When either $TiO_{2,COM}$ or $TiO_{2,CVD}$ were coated on the PtCo/C catalyst layer, a uniform distribution of metal along the electrode surface was observed for all types of catalysts (Figure 6.3). The EDX spectrum revealed the presence of metal elements including Pt, Co and Ti on the electrode surface (Figure 6.3).

	d-	Crystallize	Pt : Co	ESA	Contact	Corrosion
Catalysts	spacing	size (nm)	(wt ratio)	(m ² /gPt)	angle	current
	(A°)				(degree)	density (j_{corr})
Pt/C	2.26	- States				
PtCo/C	2.22	9.4	52:48	55.3	88.7	13.7
T _{COM} -PtCo/C	2.22	9.5	51:49	79.6	35.9	8.2
T _{CVD} -PtCo/C	2.22	9.3	55:45	121	~ 0	4.5

Table 6. 1 Morphology of fresh PtCo/C, TiO_{2,COM} -PtCo/C and TiO_{2,CVD}-PtCo/C catalysts

Figure 6. 2 XRD patterns of fresh PtCo/C and TiO₂-PtCo/C catalysts.

Figure 6. 3 SEM micrographs of crystalline particles and EDX spectra of fresh catalysts: (a) PtCo/C, (b) TiO_{2,COM}-PtCo/C and (c) TiO_{2,CVD}-PtCo/C catalyst.

6.2 Electrochemical property of prepared TiO_{2,CVD} and TiO_{2,com}-PtCo/C catalysts

Regarding the ESA of TiO₂ and TiO₂-PtCo/C, the magnitude of hydrogen desorption area was observed as the order of TiO_{2,CVD}-PtCo/C > TiO_{2,com}-PtCo/C > PtCo/C catalysts (Figure 6.3), suggesting that the maximum ESA was ranked in the order of TiO_{2,CVD}-PtCo/C > TiO_{2,com}-PtCo/C > PtCo/C > PtCo/C catalysts (Table 6.1). The presence of TiO₂ in the catalyst layer can enhance an increase of ESA compared with that in the absence of TiO₂, probably due to the increase of electrode roughness in the presence of TiO₂ [107]. Moreover, either pure TiO_{2,COM} or TiO_{2,CVD} can participate in the H_{upd} adsorption/desorption reaction as shown as the insert of Figure 6.4. A higher hydrogen desorption area was observed for TiO_{2,CVD} than that of TiO_{2,COM}, resulting in a high ESA of the TiO_{2,CVD}-PtCo/C catalyst.

Figure 6. 4 Representative cyclic voltammetery of PEM fuel cells with pure TiO_2 and fresh TiO_2 -PtCo/C catalysts in 0.5 M H₂SO₄ (N₂ sat.) at scan rate of 20 mV/s.

6.3 Activity of TiO₂-PtCo/C catalysts

The activity of all three PtCo/C catalysts was then tested in a single PEM fuel cell under H_2/O_2 at atmospheric pressure and temperature of 60 °C. As clearly seen in Figure 6.5, the TiO_{2,CVD}-PtCo/C exhibited the highest current density (20.5 mA/cm²) compared with that of TiO_{2,COM}-PtCo/C (12.6 mA/cm²) and PtCo/C (10.1 mA/cm²) catalysts at 0.9 V. It also exhibited the highest current density (434 mA/cm²) as well as power density (277 mW/cm²) at 0.6 V during the medium-through-high current density region. This suggests that the TiO_{2,CVD}-PtCo/C catalyst had the highest activity in the PEM fuel cell, probably attributed to its highest ESA as well as its hydrophilic property (Table 6.1) measured in terms of water contact angle. Although TiO₂ has low electrical conductivity compared to the catalyst layer, it can improve the hydrophilic properties of the catalyst layer in fuel cells as well as prevent the drying out of the membrane, which results in an increasing proton conductivity as well as decreasing ohmic resistance in actual operation.

Figure 6. 5 Current density-potential curves of the as-prepared (•) PtCo/C, (•)TiO_{2,COM}-PtCo/C and (•)TiO_{2,CVD}-PtCo/C catalysts in a single H_2/O_2 PEM fuel cell.

This is also supported by previous work which reported that the oxygen atom could be adsorbed on the TiO_2 surface in the similar adsorbed state as Pt surfaces [6, 108], suggesting that the addition of TiO_2 on the surface of catalyst layer can also enhance the ORR activity of PtCo/C catalyst.

6.3 Stability of TiO₂-PtCo/C catalysts

To test the stability of all prepared catalysts, the repetitive LSV was conducted in 0.5 M H₂SO₄. Figure 6.6 shows example plots obtained from the stability test of the TiO_{2,CVD}-PtCo/C catalyst at particular LSV cycles. A well-defined polarization curve for oxygen reduction with the thin film electrode fabrication was observed for all repetitive cycles (Figure 6.6(a)). The value of the limiting current (j_L), the maximum current density occurs when the concentration of reactant species at the electrode surface becomes zero, obtained from this plot can be used to determine the ORR performance [109-111].The limiting current (j_L) increased during the first 2,000 LSV-cycles and decreased importantly when the testing cycle was prolonged to 8,000 cycles.

The complex plane representation obtained from the EIS measurement after the particular LSV cycle is demonstrated in Figure 6.6(b). Linear spectra originating from the *x*-axis with positive slope value deviating from 45° were observed, suggesting that this system comprised two circuit elements, resistance (R) and constant phase element (CPE) [112]. With this electrochemical configuration, the obtained resistance is the electrolyte resistance (R_{Ω}), which could be used to monitor the variation of electrolyte conductivity. A low value of R_{Ω} exhibited a high electron conductivity of the electrolyte. From the plot, it seems to be that the value of R_{Ω} decreased with increasing repetitive LSV cycles.

For the CV measurement (Figure 6.6(c)), a fresh T_{CVD} -PtCo/C catalyst exhibited only a clear hydrogen desorption peak at a potential of -0.18 V/SCE. After repetitive LSV cycles were conducted, an adsorption peak of the oxygen atom on the catalyst surface (Pt-O) was observed at +0.39 V/SCE after 1,000 LSV-cycles (peak I). The downfield shift of the reduction potential was observed as increasing repetitive LSV cycles, probably due to the accumulation of an electronic charge on the electrocatalyst-electrolyte interface and the formation of a high double-layer charging current, due to a strongly adsorbed hydride as well as oxide layers on the catalyst surface [112]. High intensity of hydrogen adsorption (region II)/desorption peak (region III) with a more pronounced peak segregation to Pt[100] and Pt[110] was observed as the increasing repetitive LSV cycle. This suggests an increase of ESA as well as an alternation of crystalline structure of the Pt catalyst. The intensity of the oxide formation peak (Pt-OH and then Pt-O, region IV) also increased with the increase of the LSV cycles.

Figure 6.7 sumarizes the variation of normalized j_i , R_{Ω} and nomalized ESA as a functoin of repetitive LSV cycles in 0.5 M H₂SO₄. The normalized j_1 of the PtCo/C catalyst decreased drastically after the beginning of the stability test. The semilar variation trend of normalized j, was observed for both TiO_{2 COM}-PtCo/C and TiO_{2 CVD}-PtCo/C catalysts (Figure 6.7(a)). They increased during the early period of the LSV cycles to reach their maximum value (1.0) at 2,000th LSV-cycle and then drop drastically, suggesting the start up of catalyst degradation after the 2,000 LSV-cycle. Importantly, the drop of normalized j_1 of the PtCo/C catalyst was low pronounced in the presence of TiO₂, probably due to an excellent corrosion resistance property of TiO₂ both in acid and alkaline environments [113-114]. This could be confirmed by the Tafel plot as shown in Figure 6.8. The corrosion current density of TiO $_{\rm 2,COM}$ and TiO $_{\rm 2,CVD}$ were 0.515 and 0.095 mA/cm², lower than that of sGDL of 0.12 and 0.68-fold, respectively. When they were incorporated on the PtCo/C catalyst layer, they can reduce the corrosion current density of PtCo/C catalyst significantly. Namely, the corrosion current density of PtCo/C catalyst was reduced from 13.7 mA/cm² to 8.2 and 4.5 mA/cm², when TiO_{2.COM} and TiO_{2.CVD} were respectively added on the PtCo/C catalyst (Table 6.1). The $\text{TiO}_{2,\text{CVD}}$ can promote a more corrosion resistance of PtCo/C catalyst than TiO_{2.COM}, probably due to the different TiO₂ incorporation technique into the sGDL. The incorporation of T_{COM} by direct spray might provide a non-adhesive TiO₂ layer on the sGDL, while the CVD technique induced under high temperature and low pressure (350 °C and 0.026 atm) could enhance the adhesion with a carbon layer providing an impregnable TiO₂ layer.

Figure 6. 6 Example plot of stability test for $TiO_{2,CVD}$ -PtCo/C catalyst obatined from (a) LSV, (b) EIS and (c) CV measurement in 0.5 M H₂SO₄.

Figure 6. 7 Variation of (a) limiting current (j_L), (b) ohmic resistance and (c) ESA of (\bullet) PtCo/C, (\bullet)TiO_{2,COM}-PtCo/C and (\blacksquare)TiO_{2,CVD}-PtCo/C catalysts during the stability test by repetitive LSV in 0.5 M H₂SO₄.

Regarding the alternation of the R_{Ω} value with the increasing repetitive LSV cycle, the drastically decreasing R_{Ω} was observed after the 500th-LSV cycle for all prepared catalysts (Figure 6.7(b)), suggesting an increase in electrical conductivity of the acid electrolyte. This is probably due to the dissolution of the metal catalyst into the electrolyte. As the LSV cycles increased to greater than 500 cycles, a slight decrease of R_{Ω} of all prepared catalysts was observed. More d ecrease of R_{Ω} was observed for the PtCo/C catalyst, suggesting increased electrolyte conductivity, or in other words, more metal dissolution into the acid electrolyte than other prepared catalysts, which is agreeable with the corrosion rate as listed in Table 6.1 and Figure 6.8.

Figure 6. 8 Tafel plot of PtCo/C and TiO₂-PtCo/C catalysts in 0.5 M H₂SO₄.

With regard to ESA, the normalized ESA of all prepared catalysts increased noticeably with increasing repetitive LSV cycles to reach the maximum value (1.0) and then dropped afterward with the prolonged LSV cycles (Figure 6.7(c)). The increase of ESA during the early period of the LSV cycles was probably due to the initial wetting behavior of the thin Nafion layer covering the catalyst particles [109]. The maximum ESA of the TiO_{2 COM}- PtCo/C catalyst was found at 2,000th LSV-cycles, corresponding to the

maximum j_{L} . However, the ESA of the TiO_{2,CVD}-PtCo/C catalysts still increased and reached the maximum value at 5,000th LSV-cycles, which was inconsistent with the variation of j_i . The increasing tendency of ESA after stability tests previously showed that the $\mathrm{H}_{\mathrm{upd}}$ adsorption/desorption on the Pt surface is more improved for age surfaces than fresh surfaces due to the dissolution of Co [115]. Thus, the presence of a high quantity of Co atoms at the near-surface region deducted the H_{upd} charge density [116-117]. As shown in Figure 6.9, the XRD peaks shifted to a low angle closer to the pure Pt peak while no TiO₂ peaks were observed, indicating the loss of alloy property as well as TiO₂ elements during the stability test. Furthermore, their *d*-spacing was close to that of pure Pt, and the crystallize size of all catalysts increased around 1.2-fold after the stability test (Table 2). To prove this hypothesis, the metal composition of all prepared catalysts after the stability test was again measured. As demonstrated in Table 6.2 and Figure 6.10, all prepared catalysts after the stability test lost Co and Ti contents from their structures, resulting in an increase of ESA with increasing repetitive LSV cycles. The inconsistent trend between the ESA and j_1 might be attributed to the change of catalyst morphology after the stability test. This is due to the catalyst agglomeration as confirmed by the SEM images (Figure 6.10), owing to the carbon-support loss and Ostwald ripening [118-120]. The dissolution behavior of metal elements from Pt-M alloy under the 0.5 M H₂SO₄ solution was already proved and explained elsewhere [7, 118]. That is, the M atoms at the first top layer will dissolve, and Pt atoms will diffuse on the surface and accumulate to form a cluster on the surface. Finally, the surface of the Pt alloy will become completely covered with Pt atoms, which is consistent with this study's results.

Based on the obtained results, although all prepared PtCo/C catalysts lost their stability after testing in 0.5 M H_2SO_4 using the LSV, catalyst deterioration was ranked as the order of PtCo/C > TiO_{2,COM}-PtCo/C > TiO_{2,CVD}-PtCo/C. Approximately 40% of performance loss was observed for PtCo/C, TiO_{2,COM}-PtCo/C and TiO_{2,CVD}-PtCo/C after 1,300, 3,300 and 6,000 LSV-cycles. This suggests that a home-prepared T_{CVD} can enhance the stability and durability of PtCo/C catalyst due to its excellent corrosion resistance property and its preparation/incorporation technique.

Catalysts	d-spacing	Crystallize	Pt : Co ratio	ESA (m ² /g _{Pt})
	(A°)	size (nm)	(wt. ratio)	
PtCo/C	2.28	11.6	100:0	114
T _{COM} -PtCo/C	2.27	11.4	100:0	93.9
T _{CVD} -PtCo/C	2.27	11.1	100:0	110

Table 6. 2 Morphology of PtCo/C, $TiO_{2,COM}$ -PtCo/C and $TiO_{2,CVD}$ -PtCo/C catalysts after stability test by repetitive LSV for 2,000, 3,500 and 8,000 cycles, respectively.

Figure 6. 9 XRD patterns of PtCo/C, TiO_{2,com}-PtCo/C, and TiO_{2,CVD}-PtCo/C catalysts after stability test by repetitive LSV for 2,000, 3,500 and 8,000 cycles, respectivel

GHULALUNGKUKN UNIVERSITY

Figure 6. 10 SEM micrographs and EDX spectra of crystalline particles of catalyst after stability test: (a) PtCo/C, (b) TiO_{2,COM}-PtCo/C and (c) TiO_{2,CVD}-PtCo/C catalysts.

CHAPTER 7

Conclusions and Recommendations

7.1 Conclusions

Part 1: Effects of metal oxide (CeO₂, MoO₂, and TiO₂) on activity and stability of PtCo/C catalyst.

Three types of metal oxides including CeO₂, MoO₂ and TiO₂ were incorporated as the interlayer of PtCo/C catalysts at different loadings. The results demonstrated that incorporation of those metal oxides had insignificant effect on either crystalline size or *d*spacing of the PtCo/C catalyst. However, they have a significant effect on the ESA and ICR. Addition of CeO₂ and MoO₂ affected negatively the ESA and ICR as well as the hydrophilic/hydrophobic property of the PtCo/C catalyst. The addition of TiO₂ at appropriate loading can enhance an increase of ESA as well as the decrease of ICR of the PtCo/C catalyst. Moreover, it can help to manage the water in the catalyst layer. The PtCo/C catalyst with TiO₂ of 0.06-0.15 mg/cm² can produce a maximum power density of 305 mW/cm² with a loss of around 20% of ESA after the repetitive potential cycling of 200 cycles.

CHULALONGKORN UNIVERSITY

Part 2: Effects of TiO₂ phases on activity of PtCo/C catalyst.

The interlayer of either TiO_2 phases rutile or mixed phase (anatase-rutile) on PtCo/C catalysts at different loadings did not affect the alloy properties, structure, and morphology of the PtCo/C catalyst layer, but affected on the ESA and the ORR activity. The PtCo/C catalyst with TiO₂ in mixed phase had significant effect on the PEM fuel cell performance in middle to high voltage than that of PtCo/C catalyst with TiO₂ in rutile phase.

Part 3: ORR activity of PtCo/C catalyst in the presence of TiO_2 layer prepared by chemical vapor deposition.

In the preparation process, the size of TiO₂ layer, which was prepared by low-pressure chemical vapor, was controlled by the precursor concentration and deposition temperature. The selected preparation conditions were precursor concentration at 0.05 M and deposition temperature at 350 °C. The TiO₂ loadings was varied by deposition time. After incorporated with PtCo/C catalyst, it did not change the structure and morphology of PtCo/C catalyst but it could promote the ESA and kinetic current density of PtCo/C catalyst. The ESA, ORR activity and performance of PEM fuel cells were characterized at different TiO₂ loadings (0.03 mg/cm², 0.06 mg/cm²,0.15 mg/cm², 0.30mg/cm² and 0.45 mg/cm² on GDLs). The PtCo/C catalyst with TiO₂ layer at TiO₂ loading of 0.06 mg/cm² gave the highest ESA, ORR activity and PEM fuel cell performance with 59.98 m²/g_{Pt}, 20.24 mA/cm² and 460.8 mA/cm² at PEM fuel cell operating potential 0.6V, respectively.

Part 4: ORR activity and stability of TiO₂-PtCo/C catalysts

The comparative study of PtCo/C catalyst activity and stability in the presence of different types of TiO₂ (TiO_{2,COM} and TiO_{2,CVD}) was explored in PEM fuel cells and an acid electrolyte (0.5 M H₂SO₄). Both TiO₂ (TiO_{2,COM} and TiO_{2,CVD}) had a similar particle size, but in different phases. The TiO_{2,COM} was in a mixed phase of rutile and anatase, while TiO_{2,CVD} was in a pure anatase. When both were incorporated on the PtCo/C catalyst, the TiO_{2,CVD} -PtCo/C catalyst exhibited higher ESA and super hydrophilic property compared with the PtCo/C and TiO_{2,COM} -PtCo/C catalysts, which could thus induce the highest performance in PEM fuel cells. Regarding the stability test by the repetitive LSV, the drastic drop of normalized j_L was observed for the PtCo/C catalyst, while that of the TiO₂-PtCo/C catalyst increased to its maximum value at around 2,000 LSV-cycle and dropped afterward. The impedance spectra displayed the decrease of electrolyte resistance along the repetitive LSV, due to the dissolution of metal elements into the electrolyte. The ESA of the catalyst increased with the increasing LSV cycles, due to the dissolution of the Co atom from the catalyst layer and the change of the Pt crystalline structure. In summary, a home-prepared TiO_{2,CVD} exhibited an effective property to

enhance the activity and stability of the PtCo/C catalyst, which can produce the current density of 434 mA/cm² (277 mW/cm²) at 0.6 V with performance loss of around 40% after a 6,000 LSV-cycle, due to its excellent corrosion resistance property and preparation/incorporation technique.

7.2 Recommendations

There are several additional ideas for further research that have been focused by the studies undertaken for this dissertation.

1. This study has investigated the effects of metal oxide and PtCo/C catalyst incorporation on activity and stability of ORR in PEM fuel cell. This has shown the both significant negative and positive results. The negative effect came from the addition of CeO₂ and MoO₂ that had the large particle size. In the other word, the small particle size TiO₂ provided the best of ESA, ORR activity, PEM fuel cell performance and also stability. Then, to get the precious result, the effect of metal oxide size should be more studied.

หาลงกรณ์มหาวิทยาลัย

- 2. The metal oxide and PtCo/C catalyst incorporation method should be further explored. In this study, the metal oxide was created as the interlayer between GDLs and catalyst layer which increased the resistance of electrode. Then, it would benefit additional investigation in order to determine how to mix the metal oxide with the catalyst to get the high catalytic performance.
- 3. The catalyst stability should be determined in the PEM fuel cell application.

REFERENCES

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

REFERENCES

- [1] M.M. Hasani-Sadrabadi, S.H. Emami, R. Ghaffarian, H. Moaddel. Nanocomposite Membranes Made from Sulfonated Poly(ether ether ketone) and Montmorillonite Clay for Fuel Cell Applications. <u>Energy & Fuels</u>, 22 (2008): 2539-2542.
- [2] Y. Tang, W. Yuan, M. Pan, Z. Li, G. Chen, Y. Li. Experimental investigation of dynamic performance and transient responses of a kW-class PEM fuel cell stack under various load changes. <u>Applied Energy</u>, 87 (2010): 1410-1417.
- [3] X. Zhang, J. Guo, J. Chen. The parametric optimum analysis of a proton exchange membrane (PEM) fuel cell and its load matching. <u>Energy</u>, 35 (2010): 5294-5299.
- [4] C.W.B. Bezerra, L. Zhang, H. Liu, K. Lee, A.L.B. Marques, E.P. Marques, H. Wang, J. Zhang. A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction. <u>Journal of Power Sources</u>, 173 (2007): 891-908.
- [5] K. Kinoshita. <u>Electrochemical oxygen technology</u>. John Wiley & Sons, 1992.
- [6] H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. <u>Applied Catalysis B: Environmental, 56</u> (2005): 9-35.
- [7] M.T. Paffett, J.G. Beery, S. Gottesfeld. Oxygen Reduction at Pt_{0.65}Cr_{0.35}, Pt_{0.2}Cr_{0.8} and Roughened Platinum. <u>Journal of The Electrochemical Society</u>, 135 (1988): 1431-1436.
- [8] B.C. Beard, P.N. Ross. The Structure and Activity of Pt-Co Alloys as Oxygen Reduction Electrocatalysts. <u>Journal of The Electrochemical Society</u>, 137 (1990): 3368-3374.
- [9] E. Antolini, J.R.C. Salgado, M.J. Giz, E.R. Gonzalez. Effects of geometric and electronic factors on ORR activity of carbon supported Pt–Co electrocatalysts in PEM fuel cells. <u>International Journal of Hydrogen Energy</u>, 30 (2005): 1213-1220.
- [10] P.A. Thiel, M. Shen, D.-J. Liu, J.W. Evans. Coarsening of Two-Dimensional Nanoclusters on Metal Surfaces. <u>The Journal of Physical Chemistry C</u>, 113 (2009): 5047-5067.

- [11] E.F. Holby, W. Sheng, Y. Shao-Horn, D. Morgan. Pt nanoparticle stability in PEM fuel cells: influence of particle size distribution and crossover hydrogen. <u>Energy &</u> <u>Environmental Science</u>, 2 (2009): 865-871.
- [12] F. Hasche, M. Oezaslan, P. Strasser. Activity, stability and degradation of multi walled carbon nanotube (MWCNT) supported Pt fuel cell electrocatalysts. <u>Physical</u> <u>Chemistry Chemical Physics</u>, 12 (2010): 15251-15258.
- [13] C. Xu, P.K. Shen. Novel Pt/CeO₂/C catalysts for electrooxidation of alcohols in alkaline media. <u>Chemical Communications</u>, (2004): 2238-2239.
- [14] C. Xu, P.K. Shen, X. Ji, R. Zeng, Y. Liu. Enhanced activity for ethanol electrooxidation on Pt–MgO/C catalysts. <u>Electrochemistry Communications</u>, 7 (2005): 1305-1308.
- [15] Hydrogen fuel cell [Online]. http://www.hydrogen.energy.gov/pdfs/doe_fuelcell_factsheet.pdf [20 October

2015].

- [16] R.P. O'Hayre, S.-W. Cha, W. Colella, F.B. Prinz. <u>Fuel cell fundamentals</u>. John Wiley & Sons New York, 2006.
- [17] W. Vielstich, A. Lamm, H.A. Gasteiger. <u>Handbook of Fuel Cells: Fundamentals</u> <u>Technology and Applications. Vol. 2, Electrocatalysis</u>. Wiley, 2003.
- [18] Fuel Cell: Proton exchange membrane fuel cell [Online]. <u>http://file.scirp.org/Html/2-6401059_4954.htm</u>: [20 October 2015].
- [19] J. Larminie, A. Dicks, M.S. McDonald. <u>Fuel cell systems explained</u>. Wiley New York, 2003.
- [20] I. Pilatowsky, R.J. Romero, C. Isaza, S. Gamboa, P. Sebastian, W. Rivera. <u>Cogeneration fuel cell-sorption air conditioning systems</u>. Springer Science & Business Media, 2011.
- [21] Losses in fuel cell. [Online]. <u>http://users.encs.concordia.ca/~pillay/fuel-cells.html:</u>[20 October 2015].
- [22] A. Appleby, F.F.F.C. Handbook. van Nostrand Reinhold. New York, 18 (1989).

- [23] R. O'Hayre, D.M. Barnett, F.B. Prinz. The Triple Phase Boundary: A Mathematical Model and Experimental Investigations for Fuel Cells. <u>Journal of The</u> <u>Electrochemical Society</u>, 152 (2005): A439-A444.
- [24] The technical targets of the U.S. Department of Energy for each component of MEAs for transportation applications. [Online]. <u>http://energy.gov/sites/prod/files/2014/02/f8/fctt_roadmap_june2013.pdf:</u> [14 November 2015].
- [25] P. Kiatkittikul, T. Nohira, R. Hagiwara. Nonhumidified Fuel Cells Using N-Ethyl-Nmethyl-pyrrolidinium Fluorohydrogenate Ionic Liquid-poly(Vinylidene Fluoride-Hexafluoropropylene) Composite Membranes. <u>Energies</u>, 8 (2015): 6202.
- [26] A. Jayakumar, S. Sethu, M. Ramos, J. Robertson, A. Al-Jumaily. A technical review on gas diffusion, mechanism and medium of PEM fuel cell. <u>lonics</u>, 21 (2015): 1-18.
- [27] L. Cindrella, A.M. Kannan, J.F. Lin, K. Saminathan, Y. Ho, C.W. Lin, J. Wertz. Gas diffusion layer for proton exchange membrane fuel cells—A review. <u>Journal of</u> <u>Power Sources</u>, 194 (2009): 146-160.
- [28] O.T. Holton, J.W. Stevenson. The Role of Platinum in Proton Exchange Membrane Fuel Cells. <u>Platinum Metals Review</u>, 57 (2013): 259-271.
- [29] N.M. Marković, T.J. Schmidt, V. Stamenković, P.N. Ross. Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective Review. <u>Fuel Cells</u>, 1 (2001): 105-116.
- [30] Nafion 117 membrane. [Online]. <u>http://www.sigmaaldrich.com/catalog/product/aldrich/274674?lang=en®ion=</u> <u>TH:</u> [8 November 2015].
- [31] H. Wu, D. Wexler, G. Wang. PtxNi alloy nanoparticles as cathode catalyst for PEM fuel cells with enhanced catalytic activity. <u>Journal of Alloys and Compounds</u>, 488 (2009): 195-198.
- [32] E. Antolini, J.R.C. Salgado, E.R. Gonzalez. The stability of Pt–M (M = first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel

cells: A literature review and tests on a Pt–Co catalyst. <u>Journal of Power Sources</u>, 160 (2006): 957-968.

- [33] T. Toda, H. Igarashi, H. Uchida, M. Watanabe. Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co. <u>Journal of The Electrochemical Society</u>, 146 (1999): 3750-3756.
- [34] S. Koh, J. Leisch, M.F. Toney, P. Strasser. Structure-Activity-Stability Relationships of Pt-Co Alloy Electrocatalysts in Gas-Diffusion Electrode Layers. <u>The Journal of</u> <u>Physical Chemistry C</u>, 111 (2007): 3744-3752.
- [35] S. Takenaka, A. Hirata, E. Tanabe, H. Matsune, M. Kishida. Preparation of supported Pt–Co alloy nanoparticle catalysts for the oxygen reduction reaction by coverage with silica. <u>Journal of Catalysis</u>, 274 (2010): 228-238.
- [36] S.S. Kocha. Chapter 3 Electrochemical Degradation: Electrocatalyst and Support Durability, in M.M.M.C.K.N. Veziroglu (Ed.), <u>Polymer Electrolyte Fuel Cell</u> <u>Degradation</u>, pp. 89-214. Boston: Academic Press, 2012.
- [37] Dissolution mechanisms for Pt in acid media. [Online]. <u>http://d-nb.info/1021976377/34:</u> [8 November 2015].
- [38] E. Bailón-García, F. Maldonado-Hódar, A. Pérez-Cadenas, F. Carrasco-Marín. Catalysts Supported on Carbon Materials for the Selective Hydrogenation of Citral. <u>Catalysts</u>, 3 (2013): 853.
- [39] Z.Y. Liu, J.L. Zhang, P.T. Yu, J.X. Zhang, R. Makharia, K.L. More, E.A. Stach. Transmission Electron Microscopy Observation of Corrosion Behaviors of Platinized Carbon Blacks under Thermal and Electrochemical Conditions. <u>Journal</u> <u>of The Electrochemical Society</u>, 157 (2010): B906-B913.
- [40] L.M. Roen, C.H. Paik, T.D. Jarvi. Electrocatalytic Corrosion of Carbon Support in PEMFC Cathodes. <u>Electrochemical and Solid-State Letters</u>, 7 (2004): A19-A22.
- [41] J. Wu, X.Z. Yuan, J.J. Martin, H. Wang, J. Zhang, J. Shen, S. Wu, W. Merida. A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies. <u>Journal of Power Sources</u>, 184 (2008): 104-119.

- [42] E. Antolini, R.R. Passos, E.A. Ticianelli. Electrocatalysis of oxygen reduction on a carbon supported platinum-vanadium alloy in polymer electrolyte fuel cells. <u>Electrochimica Acta</u>, 48 (2002): 263-270.
- [43] V. Stamenkovic, B.S. Mun, K.J. Mayrhofer, P.N. Ross, N.M. Markovic, J. Rossmeisl, J. Greeley, J.K. Nørskov. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. <u>Angewandte Chemie</u>, 118 (2006): 2963-2967.
- [44] M.P. Hyman, J.W. Medlin. Effects of Electronic Structure Modifications on the Adsorption of Oxygen Reduction Reaction Intermediates on Model Pt(111)-Alloy Surfaces. <u>The Journal of Physical Chemistry C,</u> 111 (2007): 17052-17060.
- [45] A.L. Linsebigler, G. Lu, J.T. Yates. Photocatalysis on TiO₂ Surfaces: Principles, Mechanisms, and Selected Results. <u>Chemical Reviews</u>, 95 (1995): 735-758.
- [46] U. Diebold. Structure and properties of TiO₂ surfaces: a brief review. <u>Appl Phys A</u>, 76 (2003): 681-687.
- [47] A. Di Paola, M. Addamo, M. Bellardita, E. Cazzanelli, L. Palmisano. Preparation of photocatalytic brookite thin films. <u>Thin Solid Films</u>, 515 (2007): 3527-3529.
- [48] TiO₂ structure. [Online].

https://pavemaintenance.wikispaces.com/file/view/TiO₂ ball and stick.jpg/32123 2034/880x220/TiO2_ball_and_stick.jpg: [10 November 2015].

- [49] D. Devilliers, M.T. Dinh, E. Mahé, D. Krulic, N. Larabi, N. Fatouros. Behaviour of titanium in sulphuric acid-Application to DSAs. <u>Journal of New Materials for</u> <u>Electrochemical Systems</u>, 9 (2006): 221.
- [50] Physical property of TiO₂ [Online]. <u>http://ruby.colorado.edu/~smyth/min/tio2.html:</u> [10 November 2015].
- [51] G.D. Considine. Molybdenum. <u>Van Nostrand's Encyclopedia of Chemistry</u>, (2005): 1038-1040.
- [52] L.C. Dufour, O. Bertrand, N. Floquet. Chemical reactivity of (010)MoO₃: a structural study of the MoO₂ formation in molecular hydrogen. <u>Surface Science</u>, 147 (1984): 396-412.

- [53] V. Henrich, P. Cox. The surface science of metal oxidesCambridge Univ. <u>Press</u>, <u>Cambridge</u>, (1994).
- [54] F. Werfel, E. Minni. Photoemission study of the electronic structure of Mo and Mo oxides. <u>Journal of Physics C: Solid State Physics</u>, 16 (1983): 6091.
- [55] A. Gulino, S. Parker, F. Jones, R. Egdell. Influence of metal–metal bonds on electron spectra of MoO₂ and WO₂. <u>J. Chem. Soc., Faraday Trans.</u>, 92 (1996): 2137-2141.
- [56] Structure of molybdenum dioxide (MoO₂) [Online]. <u>http://goo.gl/9cDpGR:</u> [10 November 2015].
- [57] M. Pourbaix. Atlas of electrochemical equilibria in aqueous solutions. (1966).
- [58] B. Choudhury, P. Chetri, A. Choudhury. Oxygen defects and formation of Ce³⁺ affecting the photocatalytic performance of CeO₂ nanoparticles. <u>RSC Advances</u>, 4 (2014): 4663-4671.
- [59] Structure of Ceria dioxide [Online]. <u>https://goo.gl/OdN9Hu:</u> [10 November 2015].
- [60] E. Stoyanova, D. Stoychev. <u>Corrosion behavior of stainless steels modified by cerium</u> <u>oxides layers</u>. INTECH Open Access Publisher, 2012.
- [61] P. Yu, S.A. Hayes, T.J. O'Keefe, M.J. O'Keefe, J.O. Stoffer. The Phase Stability of Cerium Species in Aqueous Systems II. The Systems. Equilibrium Considerations and Pourbaix Diagram Calculations. <u>Journal of the Electrochemical Society</u>, 153 (2006): C74-C79.
- [62] J. Geus. Production and Thermal Pretreatmewt of Supported Catalysts. <u>Studies in</u> <u>Surface Science and Catalysis</u>, 16 (1983): 1-33.
- [63] M. Schlesinger, M. Paunovic. Modern electroplating. John Wiley & Sons, 2011.
- [64] Y. Saejeng, N. Tantavichet. Preparation of Pt–Co alloy catalysts by electrodeposition for oxygen reduction in PEMFC. <u>Journal of Applied Electrochemistry</u>, 39 (2009): 123-134.
- [65] J. Creighton, P. Ho. Introduction to chemical vapor deposition (CVD). <u>Chemical vapor</u> <u>deposition, (</u>2001): 2.
- [66] A.C. Jones, M.L. Hitchman. <u>Chemical vapour deposition: precursors, processes and applications</u>. Royal Society of Chemistry, 2009.

- [67] H.R. Colón-Mercado, B.N. Popov. Stability of platinum based alloy cathode catalysts in PEM fuel cells. <u>Journal of Power Sources</u>, 155 (2006): 253-263.
- [68] S.C. Zignani, E. Antolini, E.R. Gonzalez. Evaluation of the stability and durability of Pt and Pt–Co/C catalysts for polymer electrolyte membrane fuel cells. <u>Journal of</u> <u>Power Sources</u>, 182 (2008): 83-90.
- [69] N. Elezovic, B. Babic, V. Radmilovic, L.M. Vracar, N. Krstajic. Synthesis and characterization of MoO_x-Pt/C and TiO_x-Pt/C nano-catalysts for oxygen reduction. <u>Electrochimica Acta, 54</u> (2009): 2404-2409.
- [70] K. Fugane, T. Mori, D.R. Ou, A. Suzuki, H. Yoshikawa, T. Masuda, K. Uosaki, Y. Yamashita, S. Ueda, K. Kobayashi. Activity of oxygen reduction reaction on small amount of amorphous CeO_x promoted Pt cathode for fuel cell application. <u>Electrochimica Acta, 56</u> (2011): 3874-3883.
- [71] V. Rico-Pérez, A. Bueno-López. Effect of RhO_x/CeO₂ Calcination on Metal-Support Interaction and Catalytic Activity for N₂O Decomposition. <u>Applied Sciences</u>, 4 (2014): 468-481.
- [72] L. Jinlong, L. Tongxiang, L. Hongyun. Effect of grain refinement and electrochemical nitridation on corrosion resistance of the 316L stainless steel for bipolar plates in PEMFCs environment. Journal of Power Sources, 293 (2015): 692-697.
- [73] T. Ungár, J. Gubicza, G. Tichy, C. Pantea, T. Zerda. Size and shape of crystallites and internal stresses in carbon blacks. <u>Composites Part A: Applied Science and Manufacturing</u>, 36 (2005): 431-436.
- [74] Y. Ra, J. Lee, I. Kim, S. Bong, H. Kim. Preparation of Pt–Ru catalysts on Nafion (Na+)bonded carbon layer using galvanostatic pulse electrodeposition for protonexchange membrane fuel cell. <u>Journal of Power Sources</u>, 187 (2009): 363-370.
- [75] Z. Wang, G. Yin, P. Shi, Y. Sun. Novel Pt–Ru–Ni/C catalysts for methanol electrooxidation in acid medium. <u>Electrochemical and solid-state letters</u>, 9 (2006): A13-A15.

- [76] Z. Yan, J. Xie, J. Jing, M. Zhang, W. Wei, S. Yin. MoO₂ nanocrystals down to 5 nm as Pt electrocatalyst promoter for stable oxygen reduction reaction. <u>International</u> <u>Journal of Hydrogen Energy</u>, 37 (2012): 15948-15955.
- [77] A.G. Pandolfo, A.F. Hollenkamp. Carbon properties and their role in supercapacitors. Journal of Power Sources, 157 (2006): 11-27.
- [78] K.H. Radeke, K.O. Backhaus, A. Swiatkowski. Electrical conductivity of activated carbons. <u>Carbon</u>, 29 (1991): 122-123.
- [79] M. Polovina, B. Babić, B. Kaluderović, A. Dekanski. Surface characterization of oxidized activated carbon cloth. <u>Carbon</u>, 35 (1997): 1047-1052.
- [80] A.J. Bard, L.R. Faulkner. <u>Electrochemical methods: fundamentals and applications</u>.Wiley New York, 1980.
- [81] H.B. Yu, J.-H. Kim, H.-I. Lee, M.A. Scibioh, J. Lee, J. Han, S.P. Yoon, H.Y. Ha. Development of nanophase CeO₂-Pt/C cathode catalyst for direct methanol fuel cell. <u>Journal of Power Sources</u>, 140 (2005): 59-65.
- [82] C. Xu, P.K. Shen. Electrochamical oxidation of ethanol on Pt-CeO₂/C catalysts. <u>Journal of Power Sources</u>, 142 (2005): 27-29.
- [83] C. Xu, R. Zeng, P.K. Shen, Z. Wei. Synergistic effect of CeO₂ modified Pt/C catalysts on the alcohols oxidation. <u>Electrochimica Acta</u>, 51 (2005): 1031-1035.
- [84] A.M. Eppler, I.M. Ballard, J. Nelson. Charge transport in porous nanocrystalline titanium dioxide. <u>Physica E: Low-dimensional Systems and Nanostructures</u>, 14 (2002): 197-202.
- [85] K. Pomoni, M.V. Sofianou, T. Georgakopoulos, N. Boukos, C. Trapalis. Electrical conductivity studies of anatase TiO₂ with dominant highly reactive {0 0 1} facets. <u>Journal of Alloys and Compounds, 548</u> (2013): 194-200.
- [86] J. Kim, S.M. Lee, S. Srinivasan, C.E. Chamberlin. Modeling of proton exchange membrane fuel cell performance with an empirical equation. <u>Journal of the</u> <u>Electrochemical Society</u>, 142 (1995): 2670-2674.

- [87] E. Antolini, L. Giorgi, A. Pozio, E. Passalacqua. Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC. <u>Journal of Power Sources</u>, 77 (1999): 136-142.
- [88] E.I. Santiago, R.A. Isidoro, M.A. Dresch, B.R. Matos, M. Linardi, F.C. Fonseca. Nafion– TiO2 hybrid electrolytes for stable operation of PEM fuel cells at high temperature. <u>Electrochimica Acta, 54</u> (2009): 4111-4117.
- [89] Z. Liu, B. Guo, J. Huang, L. Hong, M. Han, L.M. Gan. Nano-TiO₂-coated polymer electrolyte membranes for direct methanol fuel cells. <u>Journal of Power Sources</u>, 157 (2006): 207-211.
- [90] C. Montero-Ocampo, J. Vargas Garcia, E. Arce Estrada. Comparison of TiO₂ and TiO2-CNT as cathode catalyst supports for ORR. <u>International Journal of</u> <u>Electrochemical Science</u>, 8 (2013): 1278-1280.
- [91] S.-Y. Huang, P. Ganesan, B.N. Popov. Electrocatalytic activity and stability of niobium-doped titanium oxide supported platinum catalyst for polymer electrolyte membrane fuel cells. <u>Applied Catalysis B: Environmental</u>, 96 (2010): 224-231.
- [92] A. Fujishima, K. Hashimoto, T. Watanabe. <u>TiO₂ photocatalysis: fundamentals and applications</u>. BKC Incorporated, 1999.
- [93] S.B. Abu Suilik, D. Shimamoto, H. Kitagawa, K. Hasezaki, Y. Noda. Experimental study of nucleation and quality of CVD diamond adopting two-step deposition approach using MPECVD. <u>Diamond and Related Materials</u>, 15 (2006): 1765-1772.
- [94] J. Zhang, X. Cui, Z. Shi, B. Wu, Y. Zhang, B. Zhang. Nucleation and growth of ZnO films on Si substrates by LP-MOCVD. <u>Superlattices and Microstructures</u>, 71 (2014): 23-29.
- [95] C. Kittel, H. Kroemer, Thermal physics 2nd ed, in: C. Kittel, H. Kroemer (Eds.), Freeman, 1980.
- [96] R.W. Chia, C.C. Wang, J.J. Lee. Effect of adatom mobility and substrate finish on film morphology and porosity: Thin chromium film on hard disk. <u>Journal of magnetism</u> <u>and magnetic materials</u>, 209 (2000): 45-49.

- [97] J. Wagner, C. Mitterer, M. Penoy, C. Michotte, W. Wallgram, M. Kathrein. The effect of deposition temperature on microstructure and properties of thermal CVD TiN coatings. <u>International Journal of Refractory Metals and Hard Materials</u>, 26 (2008): 120-126.
- [98] K. Tiido, N. Alexeyeva, M. Couillard, C. Bock, B.R. MacDougall, K. Tammeveski. Graphene–TiO₂ composite supported Pt electrocatalyst for oxygen reduction reaction. <u>Electrochimica Acta</u>, 107 (2013): 509-517.
- [99] G. Selvarani, S. Maheswari, P. Sridhar, S. Pitchumani, A. Shukla. Carbon-Supported Pt–TiO₂ as a Methanol-Tolerant Oxygen-Reduction Catalyst for DMFCs. <u>Journal of</u> <u>the Electrochemical Society</u>, 156 (2009): B1354-B1360.
- [100] B. Ruiz-Camacho, H.R. Santoyo, J. Medina-Flores, O. Álvarez-Martínez. Platinum deposited on TiO₂-C and SnO₂-C composites for methanol oxidation and oxygen reduction. <u>Electrochimica Acta</u>, 120 (2014): 344-349.
- [101] L. Timperman, A.S. Gago, N. Alonso-Vante. Oxygen reduction reaction increased tolerance and fuel cell performance of Pt and Ru_xSe_y onto oxide–carbon composites. <u>Journal of Power Sources</u>, 196 (2011): 4290-4297.
- [102] L. Xiong, A. Manthiram. Synthesis and characterization of methanol tolerant Pt/TiO ,/C nanocomposites for oxygen reduction in direct methanol fuel Cells. <u>Electrochimica Acta, 49</u> (2004): 4163-4170.
- [103] S. Maheswari, S. Karthikeyan, P. Murugan, P. Sridhar, S. Pitchumani. Carbonsupported Pd–Co as cathode catalyst for APEMFCs and validation by DFT. <u>Physical Chemistry Chemical Physics</u>, 14 (2012): 9683-9695.
- [104] G. Álvarez, M. Mamlouk, K. Scott. An investigation of palladium oxygen reduction catalysts for the direct methanol fuel cell. <u>International Journal of Electrochemistry</u>, 2011 (2011).
- [105] H.-J. Kim, D.-Y. Kim, H. Han, Y.-G. Shul. PtRu/C-Au/TiO₂ electrocatalyst for a direct methanol fuel cell. <u>Journal of power sources</u>, 159 (2006): 484-490.

- [106] S. Von Kraemer, K. Wikander, G. Lindbergh, A. Lundblad, A.E. Palmqvist. Evaluation of TiO₂ as catalyst support in Pt-TiO₂/C composite cathodes for the proton exchange membrane fuel cell. <u>Journal of Power Sources</u>, 180 (2008): 185-190.
- [107] J. Xu, T. Zhao, W. Yang, S. Shen. Effect of surface composition of Pt-Au alloy cathode catalyst on the performance of direct methanol fuel cells. <u>international</u> <u>journal of hydrogen energy</u>, 35 (2010): 8699-8706.
- [108] S.C. Zignani, E. Antolini, E.R. Gonzalez. Stability of Pt–Ni/C (1: 1) and Pt/C electrocatalysts as cathode materials for polymer electrolyte fuel cells: effect of ageing tests. <u>Journal of Power Sources</u>, 191 (2009): 344-350.
- [109] T. Lopes, E. Antolini, E. Gonzalez. Carbon supported Pt–Pd alloy as an ethanol tolerant oxygen reduction electrocatalyst for direct ethanol fuel cells. <u>international</u> <u>journal of hydrogen energy</u>, 33 (2008): 5563-5570.
- [110] N. Chaisubanan, K. Pruksathorn, H. Vergnes, M. Hunsom. Effect of the TiO₂ phase and loading on oxygen reduction reaction activity of PtCo/C catalysts in proton exchange membrane fuel cells. <u>Korean Journal of Chemical Engineering</u>, (2015): 1-9.
- [111] H. Steininger, S. Lehwald, H. Ibach. Adsorption of oxygen on Pt (111). <u>Surface</u> <u>Science</u>, 123 (1982): 1-17.
- [112] N.H. Linh, T.Q. Nguyen, W.A. Diño, H. Kasai. Effect of oxygen vacancy on the adsorption of O₂ on anatase TiO₂ (001): A DFT-based study. <u>Surface Science</u>, 633 (2015): 38-45.
- [113] K. Hyun, J.H. Lee, C.W. Yoon, Y. Kwon. The effect of platinum based bimetallic electrocatalysts on oxygen reduction reaction of proton exchange membrane fuel cells. <u>Int. J. Electrochem. Sci.</u> 8 (2013): 11752-11767.
- [114] L. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin, R.S. Ruoff. Exploration of the active center structure of nitrogen-doped graphenebased catalysts for oxygen reduction reaction. <u>Energy & Environmental Science</u>, 5 (2012): 7936-7942.

- [115] U. Paulus, A. Wokaun, G. Scherer, T. Schmidt, V. Stamenkovic, V. Radmilovic, N. Markovic, P. Ross. Oxygen reduction on carbon-supported Pt-Ni and Pt-Co alloy catalysts. <u>The Journal of Physical Chemistry B</u>, 106 (2002): 4181-4191.
- [116] M. Hunsom. Electrochemical impedance spectroscopy (EIS) for PEM fuel cells. <u>Spectroscopic Properties of Inorganic and Organometallic Compounds:</u> <u>Techniques, Materials and Applications, 42 (2011): 196-247.</u>
- [117] H.R. Colón-Mercado, H. Kim, B.N. Popov. Durability study of Pt₃ Ni₁ catalysts as cathode in PEM fuel cells. <u>Electrochemistry Communications</u>, 6 (2004): 795-799.
- [118] Z.-Z. Jiang, D.-M. Gu, Z.-B. Wang, W.-L. Qu, G.-P. Yin, K.-J. Qian. Effects of anatase TiO₂ with different particle sizes and contents on the stability of supported Pt catalysts. <u>Journal of Power Sources</u>, 196 (2011): 8207-8215.
- [119] C. Odetola, L. Trevani, E.B. Easton. Enhanced activity and stability of Pt/TiO₂/carbon fuel cell electrocatalyst prepared using a glucose modifier. <u>Journal of Power</u> <u>Sources</u>, 294 (2015): 254-263.
- [120] S. Ohyagi, T. Sasaki. Durability of a PEMFC Pt–Co cathode catalyst layer during voltage cycling tests under supersaturated humidity conditions. <u>Electrochimica</u> <u>Acta,</u> 102 (2013): 336-341.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

REFERENCES

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Appendix A

A.1 The crystalline size of metal from XRD diffraction peak was calculated by Debye-Scherrer equation.

$$L = \frac{0.9\lambda_{k\alpha 1}}{B_{2\theta}\cos\theta_{\max}} \tag{A.1}$$

Where *L* is crystallite size (nm)

 $\boldsymbol{\lambda}_{_{kal}}$ is wave range of X-rays (0.154056 nm)

- $\beta_{2\theta}$ is full width at half maximum (rad)
- heta is Bragg angle (rad)

The example of Pt/C (commercial) crystalline size calculation.

 $\beta_{2\theta} = 3.037 \text{ degree (0.053 rad)}$ $2\theta = 39.79 \text{ degree (0.347 rad)}$ $\cos \theta = \cos(0.347) = 0.9403$ Substitute in the eq. (A.1) then, $L = \frac{0.9x0.154}{0.053x0.9403} = 2.78 \text{ nm.}$

จหาลงกรณ์มหาวิทยาลัย

A.2 The *d*-spacing was calculated by Bragg's law to determine the inter planar spacing d (this is experimental d value depend on 2Θ measured experimentally)

$$\lambda = 2d_{hkl} \sin \theta_{hkl}$$
 (A.2)

Where $\lambda_{\scriptscriptstyle kal}$ is wave range of X-rays (0.154056 nm)

d_{kal} is *d*-spacing (nm)

 θ is Bragg angle (rad)

The example of Pt/C (commercial) crystalline size calculation. Choose a Pt(111) plane for this calculation.

$$\lambda = 2d_{hkl}\sin\theta_{hkl}$$

$$2\theta = 39.79 \text{ degree (0.347 rad)}$$

$$\sin\theta = \sin(0.347) = 0.3401$$
Substitute in the eq. (A.2) then,

0.154

$$d_{hlk} = \frac{0.134}{2x0.3401} = 0.226 \text{ nm}.$$

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Appendix B

The ESA of catalyst can be estimated from the hydrogen desorption peak (Figure. B1) according to Eq.(B.1):

Figure B1. Integrated $\mathrm{H}_{\mathrm{des}}$ peak area of cyclic votammogram

$$ESA = \frac{Q_H}{[M] \times 0.21} \tag{B.1}$$

Where Q_{H} is the charge for hydrogen desorption (C/cm²)

0.21 is the charge required to oxidize a monolayer of $\rm H_2$ on bright Pt and (mC/cm^2)

[M] is the metal loading of Pt on the electrode (mg_{Pt}/cm^2)

The example of ESA calculation for PtCo/C catalyst

- Integrated peak area = 7.452 mC/cm^2
- Pt loading = 0.075 mg/cm^2

Substitute in eq. (B.1) then,

$$ESA = \frac{7.452}{0.21 \times 0.075} = 473.14 \text{ cm}^2/\text{mg}_{\text{Pt}}$$

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Appendix C

The relationship between the current density and the rotation rate can be expressed by the Koutecky-Levich equation (Eq.(C.1)). This equation is valid for a first order process with respect to the diffusion species [88].

$$\frac{1}{j} = \frac{1}{j_k} + \frac{1}{B\omega^{1/2}}$$
(C.1)

and where B is estimated by Eq. (C.2),

$$B = 0.62n_e F D^{2/3} v^{-1/6} C \tag{C.2}$$

Here, j_k is the kinetic current density,

- ω is the angular velocity (rad/sec),
- $n_{\rm e}$ is the number of involved electrons,
- *F* is the Faraday's constant (96,485 C/mol),
- *D* is the diffusion coefficient of oxygen in solution $(1.9 \times 10^{-5} \text{ cm}^2/\text{s})$,
- V is the kinematics viscosity (0.01 cm²/s)
- C is the oxygen concentration in the bulk solution $(1.1 \times 10^{-6} \text{ mol/cm}^3)$.

Or,

$$= (const.)(n_{e})$$
(C.3)

Cnost. is 0.1001,

 $n_{\rm e}$ is the number of involved electrons

В

The example of kinetic current density and number of electron calculation for PtCo/C catalyst

- Selected the voltage in the range of kinetic mass transfer mixed region of linear sweep voltammogram.
- Plot between 1/|i| vs $1/\omega^{1/2}$ to get the slope and interception of linear trend line

Figure C.1 Example plot of voltammogram for the ORR of TiO₂-PtCo/C catalyst in 0.5 M $H_2SO_4(O_2$ -Sat.) at scan rate of 10 mV/s.

From Figure C.1 (inset); substitute slope = 2.6083 and interception = 0.0429 in eq. C.3

CHULALONGK B = slope

$$1$$

 $0.1001(n_e) = \frac{1}{2.6083}$
 $n_e = 3.80$
 $\frac{1}{i_k} = interception$
 $i_k = \frac{1}{0.0429}$
 $i_k = 23.31 \text{ mA/cm}^2$

And
Miss Napapat Chaisubanan was born on February 16, 1987 in Kanchanaburi Thailand. She received her B.Sc. degree in Physics and M.Sc. degree in Fuel Technology from Chulalongkorn University. She joined the Department of Chemical Technology, Chulalongkorn University as Ph.D. student in 2011. She has receive the scholarship from the Royal Golden Jubilee Ph.D. program, Thailand research fund.

VITA

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University