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transmission probabilities of localized electrons is negligible compared to that of delocalized
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Chapterl [;(\ ]

Introduction N

The metal-Semiconductor contact has been in existence for more
than a hundred years. Braun (1874) was the first person who can describe the
rectifying properties of a thin wire brought in contact with a variety of natural
crystals. These point-contact rectifiers of various kinds found practical
applications in early day’s radio telegraphy, although the rectification
mechanism was not understood.

The first step towards understanding the rectifying action of metal-
semiconductor contacts was taken in 1931, when Schottky, Stormer, and
Waible showed that it was a current flow then the potential drop occurs
almost entirely at the contact, there by implying the existence of some sort of
potential barrier. In 1938 Schottky and, independently, Mott pointed out that
the observed direction of rectification could be explained by supposing that
electrons passed over a potential barrier through the normal processes of drift
and diffusion. A significant advance in our understanding of metal-
semiconductor contacts came during the Second World War as a result of the
use of silicon and germanium point-contact rectifiers in microwave radars.
This advance was considerably helped by developments in semiconductor
physics. The realization that evaporation of metal films in high vacuum
system produced contacts which were much more stable and reproducible
than point-contacts triggered off a great flurry of a activity in the 1950s and

1960s and laid the foundation for our present extensive knowledge of the



subject. This activity was inspired to a considerable extent by the great
importance of contact in semiconductor technology.

Metal-semiconductor contacts are important in microwave
applications and as tools in the analysis of other fundamental physical
parameters. Most of these applications are based on the interpretation or use
of the electron transport properties of the particular barrier considered . This
is the reason why understanding of the voltage-current characteristic is one of
the important aspects of the study of metal-semiconductor contacts.

For a heavily doped semiconductor or for operation at low
temperatures, especially in semiconductors with small electron effective
mass, such as GaAs, the tunneling current will become the dominant transport
process, such a mechanism is called “ field emission ”. When we consider the
case of the depletion approximation. In this approximation the free-carrier
density 1s assumed to fall abruptly from a value equal to that density in the
bulk semiconductor to a value negligible compared to the donor or acceptor
concentration. In more accurately than the depletion approximation, we must
allow for the fact the majority carrier concentration does not fall abruptly to
zero but penetrates in to the depletion region. Then, in Chapter 4 we account
for the majority carriers in the charge density and solve Poisson’s equation in
case of a degenerate semiconductor. We obtain the electrostatic potential. As
a result, based on the field emission, the voltage-current characteristic can be
calculated. In this thesis, we are interested in the V-I characteristic at low
bias. Consequently, the Schottky effect, and the emission of electron over the

top of the potential barrier can be neglected.



In case of barriers such as the one made by an n-type GaAs, the
electrons experience a highly nonparabolic energy-momentum relationship
when tunneling through the energy gap at low biases. The influence of
nonparabolic energy-momentum relation on V-I characteristic of tunneling
junction was first considered by Padovan: and Stratton'". The electron
energy-momentum relationship in the forbidden gap can be calculated using
Kane’s two-band model and Franz 's empirical expression. In Chapter 5, we
present our calculations for the electron energy-momentum relationship in the
forbidden gap (accounting tail states). As a result, V-I characteristic at low
bias of heavily doped GaAs can be calculated, and we compare the localized
electron transmission probability with the delocalized electron transmission
probability in the last section. We review some basic theories of heavily
doped semiconductors in Chapter 2, and current transport mechanisms,
especially in field emission regime, in Chapter 3. Finally, discussion and

conclusion are given in Chapter 6.



Chapter 2

Heavily Doped Semiconductors

The physics of metal-semiconductor contacts is naturally dependent on
the physics of semiconductors themselves. This chapter presents a summary
of the physics and properties of semiconductors.

2.1 Electron and Hole Densities"

Electrons in a solid obey the Pauli éxclusion principle and are
indistinguishable in their characteristics. Each available state contains two
electrons of opposite spin angular momentum. The statistics governing the

energy-level occupation is the Fermi-Dirac given by the Fermi function

1
“l+expl(E-E,)/k,T]

f(E) (2.1)

where E, is the Fermi energy. As usual, Eq.(2.1) gives the probability of |
finding an electron in the energy state E. Some simple observations about this
function will remind us its application to some physical problems of electron
occupancy.

At the absolute zero of temperature, all electron states have unity
probability of being filled for E < E_, and the states of which E > E_ are
completely empty. Thus the Fermi-Dirac distribution is a ‘“reversed
Heaviside” function; it is unity up to the Fermi level and zero for energies
beyond the Fermi level. At higher temperatures, there is gradual spreading of

the distribution about the Fermi level. as shown in Fig. 2.1.



The electrons that would normally exist in the region marked “T =0
are excited to the region marked “T > 0. The number of electrons transferred
from below the Fermi energy to above the Fermi energy are given by the
marked areas weighted by the appropriate density of states function. The
Fermi energy must adjust so that the number of electrons removed from area
T =0 is exactly equal to number of electrons excited into area 7 >0 . In an
intrinsic semiconductor, this means that the Fermi level will be somewhere
near midgap, but this is not the case in an impurity-dominated semiconductor.
It is just the Fermi energy position, one of the crucial factors, that must be

determined in next section.

f(E)4 T=0

1
\\\ T>0

0 %ﬁ-’\ » E
EF

Fig. 2.1 The Fermi-Dirac distribution function is plotted as a function of the
energy when 7 > 0.

The total number of electrons in a band given by the sum over all of the
possible energy states that exist in the band, while each of the states is

weighted by the probability that it is filled, or for the conduction band,

n=JN(E)f(E)dE (2.2)



where E, is the lower edge of the conduction band. Thus, to a particular
density of electrons in the conduction band, there is a very specific value of
the Fermi energy that is required in order to satisfy eq.(2.2). The density of

states function N (E) is free electron approximation

3/2
1 [2m, 172
N(E) = 2 E-F .
(E) Zﬂz[leJ ( :) (2.3)
where m] is the density-of -states effective mass. Equations (2.1) and (2.3)

can be combined to yield

n =l {2’”).[ (H—f) dE (2.4)
27°\ n* ) 1+ expl(E-E,)/k,T]

where the zero of energy has been shifted to the conduction-band edge (E,).
Equation (2.4) was obtained by neglecting the state energies lying below the
conduction-band edge (absent of the tail states).

In eq.(2.4), for a large electron density n, the Fermi energy can be
expected to lie within the conduction band. This case is termed the degenerate
limit, and the full form of the Fermi-Dirac function is required in the integral.
Where the temperature is not too low and the density is not too high, eq. 2.4
can be satisfied with the situation when the Fermi energy lying within the
forbidden energy gap so that only the tail of the Fermi-Dirac function extends
into the conduction band. In this case only a small fraction of the states are
occupied, even for the lowest energies in the band. All occupied states lie
near the band edge, and the electron density with its statistics are termed

nondegenerate. In the latter case, its statistics is termed classical, as



-1

(l+exp[Ek_fF D ~exp(—(E-E,)/k,T) (2.5)

B

for the conduction band states. This approximation usually requires the
Fermi energy to lie some 3 to 5 times of k,7 below the conduction-band
edge. The electron density in this case is relatively small.

By introducing a set of reduced variables for the energies:
_E-E, ~Bp—E,

— ] ) 2.6
YT (s (2.6)

the density in eq.(2.4) becomes

3/2 o

. [2m,‘k,,TJ J' y' dy=NF,(n) 2.7
} 1+ exply—n]

2n’ 7k

In this last formulation, the Fermi-Dirac integral is introduced through its

definition

o

2 y’
F - 2.8
1('!)"F(. 1)!1 [ ]dy ( )

and the effective density of states is defined as

N = 2{2’"';#] . (2.9)

The latter quantity 1s quite important, as it is the number of electrons per unit
volume that will exist in the conduction band if it is assumed that a density is

localized at the edge. In essence, it tells us whether or not a degenerate



system exists. If n<<N_, the density is nondegenerate, but if n>> N_, the
statistics is degenerate. In a similar manner, the case of holes in the valance
band can be developed. However, for holes, the probability is that

corresponding to an empty state; for example.

fu(E)=1-£.,(E) (2.10)

where f,(E) and f,(E) are the Fermi-Dirac functions for holes and electrons,

respectively. The density of holes is then given by

EV

e j N, (E)f, (EME

—o0

(2.11)
=N,F, (Tlh)
where y= E_E”, 1, = Ex=5, , m, is the density-of-state effective mass
h h
k,T k,T

for the valence band and including both light and heavy holes and

’ 312
N, =2[2’”"—}:2k81] . (2.12)

2.2 Fermi Level in Semiconductors

Closed-form solutions for the Fermi-Dirac integrals do not exist for the
case in which the argument is larger than zero. Asymptotic expansions also
exist for a large positive argument (i.e., the integral is integrated up to the
argument and the denominator in eq.(2.8) is set equal to unity). For large
negative arguments the integral is closely approximated to the Maxwell-

Boltzmann distribution function. Since the latter case is the one that arises



for nondegenerate semiconductors and therefore has relatively great
applicability, the latter case will be treated more extensively. Then the Fermi-

Dirac integral is just

F,,,(n)~ exp[n]. (2.13)

Substituting eq. (2.13) in eq. (2.7), we obtain

n~N_exp|(E, - E.)/k,T] (2.14)

In the opposite limiting case, when the Fermi level enters the conduction

(or the valance) band, the semiconductor is called degenerate semiconductor.

In this case

4
Fl/z(ﬂ)zmnm > (2.15)
4 3p
=N | — ; (2.16)
’ ‘{3\5 g )

The position of the Fermi level, E, can be found from the condition of

neutrality:

p+2XZ,N;,-n=0 2.17)
j

where Z; is the charge (in units of the electron charge) of an impurity of type
j and N, is the concentration of such impurities. In case of heavily doped n-

type semiconductors, it is found from eq. (2.17) that
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n=N, (2.18)

the position of the Fermi level is found from the equation

N.F,,(n)=N,. (2.19)
For degenerate semiconductors (n >>1) it is found that
hZ

E,-E =——@n'N,)". (2.20)

2m’

This result may also be obtained in a simple way by counting the number of

allowed states in the Fermi sphere.

2.2 Heavily Doped Semiconductors'

In extrinsic semiconductors with low impurity concentrations, it is
generally assumed that the conduction and valence-band edges as well as the
donor and acceptor-state energies are sharply defined. These energies
coincide with their respective positions in the intrinsic material. In a
degenerate semiconductor, however, we must take into account modifications
introduced into the band structure by heavy impurity concentrations. The two
effects of high doping can be described as follows. First, the hydrogen-like
impurity-atom wave functions begin to overlap. As a result, the energy of the
impurities broadens to form a band, known as the impurity band. Second, an
impurity atom introduces a local variation in the potential energy of an
electron because of the difference in the nuclear potential of the impurity and

host atom.



PARABOLIC
DISPERSION
RELATION

DELOCALIZED.

" Fig.2.2 Schematic representation of the band structure showing (on the left)

localized states in the band tail between E and E, and delocalized states

outside this rang. On the right the parabolic DOS used to describe the

:::::

(5]
shown .

Such a local, random variation in the potential energy modifies the
position of the band edges. As a result, the bands extend beyond their
respective positions in the intrinsic material. The extended part of a band is

called the band tailing. In Fig. 2.2, the band structure of a heavily doped



semiconductor is drawn for comparison with the band structure of the

Intrinsic material.

2.3 Density of States (DOS)[6]
We begin with free electrons. In this case the electron wave function are

plane waves corresponding to parabolic momentum-energy relationship. The

density of states per unit volume at energy E is defined as

p(E)= $28(E— E;) (2.22)

k

where the sum is over the free electron energies E;. Taking V large, we may
convert the sum over k to an integral and use a property of the delta function

to go

312
m

PlE)= NpYAA

where H(E) is the heaviside step function defined as

E"H(E) (2.23)

1 E>0
H(E ):{ (2.24)

0 E<O0.

For an undoped semiconductor, the DOS has a parabolic shape with E so that
it is always called the “parabolic” DOS.

For a heavily doped semiconductor, Kane " has combined the potential
energy fluctuations with the Thomas-Fermi method or semi-classical

methods, to calculate the density of states. In this method he assumes that the
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potential is sufficiently slowly varying from place to place in the crystal that a
local density of states can be defined just as if the potential were constant.
The calculation of the total density of states then reduces to the calculation of
the distribution function of the potential. It was noticed that the potential
energy distribution at high concentration is Gaussian and the resulting band
tail found by Kane is Gaussian.

In Kane’s theory, the DOS is written in terms of the well-known

parabolic cylinder function D p(z)as

'o(E)_47zzh3 g, exp{ " LYo \/E; (2.25)

here E° is the averaged potential and &, is the potential fluctuation defined
by the equation
_ 2nZ%e*N

&g = —Qef (2.26)

where ¢ is the semiconductor permittivity and Q is the inverse screening

length defined by the equation

s (ﬂj (2.27)

en \m

N in eq.(2.26) is the number of impurities of charge Z . For large E eq.
(2.25) approaches the limit of free electrons. The Kane DOS at very deep tail

region where E - E" is large and negative is a function of exp[—- E 2].
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The most complete calculation of density of states in the low energy,
deep tail region of the imparity-band, remains the optimal fluctuation results
of Halperin and Lax theory. Their theory is the quantum counterpart of the
original semi-classical theory of Kane. Quantum effects were included by
adding the zero point energy of electron states (kinetic energy of localization)
which raises the electron state energies and reduces the density of states at
small energy below the semiclassical value obtained by Kane. However,
their p(E) is obtained as a numerical table and is not easy to use.

Sa-yakanit and Glyde (SG), have used the Feyman path integral
technique to obtain an expression for p(E) valid at all E. This expression
reduces to simple form in the band-tail region (low E) and reduces to
expected parabolic value at high E. Since SG's DOS"™ is obtained by
modelling impurity fluctuation wells by harmonic wells and the model gives
Gaussian wave functions. Our envelope function” is assumed to be of a
Gaussion form instead of a hydrogenic atom form. The envelope function for

the electrons in the conduction band is

3/4
- 2 r:
v, (kC,F):[ acj explik, -F]exp[—aclf = Fjlz] (2.28)
T
where 7, is the impurity location and the localization parameter () is related

to the variational parameter z, calculated by Sritrakool et.al” by the relation
Q2

a, =—
2z;

(2.29)

the values of the parameter z, for heavily doped GaAs.



Chapter3

Current-Transport Mechanisms

This chapter discusses the transport mechanisms which determine the
conduction properties of metal-semiconductor contacts. In the first part, the
V-1 characteristic of Schottky barriers made on low concentration
semiconductors will be discussed. In the second part, the V-I characteristic of
Schottky barriers made on highly doped semiconductors material will be
discussed in terms of electron tunneling through the barrier.

3.1 Formation of Metal-Semiconductor Contact
3.1.1 Idealized Metal - Semiconductor Contact

To see how a metal-semiconductor contact may form when a metal
comes into contact with a semiconductor, we suppose that the metal and
semiconductor are both electrically neutral and separated from each other.
The energy band diagram is shown in Fig.3.1 (a) for an n-type semiconductor
with a work function g¢, less than that of the metal. This is the most
important case in practice, and it is supposed that there is no surface state
present. If the metal and semiconductor are connected electrically by a wire,
electrons pass from the semiconductor into the metal and the two Fermi levels
are forced to coincide as shown in Fig 3.1 (b). The positive charges are
provided by conduction electrons receding from the surface, leaving
uncompensated positive donor ions in a region depleted of electrons.
Because the donor concentration is many order of magnitude less than the

concentration of electrons in metal, the uncompensated donors occupy
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Fig. 3.1 Formation of barrier between a metal and a semiconductor (a)
neutral and isolated, (b) electrically connected, (c) separated by a narrow gab,
(d) in perfect contact. The symbol o denotes electrons in conduction band and
+ denote donor ions™.
A layer of appreciable thickness W. If the metal and semiconductor approach
each other, ¢qV; must tend to zero if the field in the gap is to remain finite
[Fig. 3.1(c)] and where they finally touch [Fig. 3.1 (d)], the barrier due to
vacuum disappears altogether and we are left with an ideal metal-
semiconductor contact. It is clear from the fact that V, tends to zero so that
the height of the barrier (4,) measured relative to the Fermi level is given by
Gy = bn = X (3.1
In most practical metal-semiconductor contacts, the ideal situation shown in
Fig. 3.1 (d). The foregoing description applies to an n-type semiconductor

with work function energy (g¢,) less than the work function energy (gé, ) of
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the metal. It will by seen alter that such a contact behaves as a rectifier. It a
similar argument is developed for the case when (¢,) is greater than (¢, )
one obtains a band diagram of the form shown in Fig. 3.2 (b). Clearly, if such
a contact is biased so that electrons flow from the semiconductor to metal,
they encounter no barrier. If it is biased so that electrons flow in the reverse
direction, the comparatively high concentration of electrons in the region
where the semiconductor bands are bent downwards behave like a cathode
which is easily capable of providing a copious supply of electrons. The
current is then determined by the bulk resistance of semiconductor. Such a
contact is termed an ohmic contact. This type of contact has a sufficiently
low resistance for the current to be determined by the resistance of the bulk
semiconductor rather than by the properties of the contact.

In a p-type semiconductor for which ¢, exceeds ¢,, we obtain the band
diagram shown in Fig. 3.2 (¢), which also represents an ohmic contact. The
case of a p-type semiconductor for which ¢, exceed ¢, is shown in Fig. 3.2
(d). Bearing in mind that holes have difficulties in going underneath a
barrier, one sees that Fig. 3.2 (d) is the p-type analogue of Fig. 3.2 (a) and
gives rise to rectification. Figure 3.2 (b) and (c) are very uncommon in
practice and the majority of metal-semiconductor combinations from
rectifying or “blocking” contacts. Thus all subsequent discussions will be the
case of n-type semiconductors with ¢ > ¢ which is the most important case
in practice.

It is frequently necessary to know how the electrostatic potential and

electric-field strength in a Schottky barrier depend on the barrier height, bias



voltage, and impurity concentration, and for most purposes it is sufficiently
accurate to use an approximation known as the depletion approximation. In
this approximation the free-carrier density is assumed to fall abruptly from a
value equal to the density in the bulk of the semiconductor to a value which

is negligible compared with the donor or acceptor concentration.

g

Figure 3.2 Barriers for semiconductors of differentt types and differént work
functions. n-type: (a) ¢, > ¢ (rectifying); (b) ¢, < ¢;, (ohmic); p-type: (c)
¢, > ¢,(ohmic); (d) ¢, < ¢, ( rectifying) 2l

Let us consider the case of an n-type semiconductor. The charge density and

electrostatic potential are related by Poisson’s equation

d'¢__plx) (3.2)



where ¢, 1s semiconductor permittivity.
If we take the electrostatic potential ¢(x) to be zero with in the neutral

region, so that ¢(x) the potential at x is given by

N
6(x) =—L2 (w—x)? (3.3)
2¢,
and
, 260,
w’ = N, 3.4)

where ¢(x) at the interface is equal to the diffusion potential ¢,and w
depletion width.The energy of the bottom of the conduction band relative to

the Fermi level in the metal is given by

E_(x)=q(p, +9(0) + p(x)) (3.5)
we obtained
E.(x)= Ui (3.6)
2L,

Several effects will alter the actual Schottky barrier height from the
theoretical value given by eq.(3.1) such as the effects of surface (or interface)
states seen in generalized analysis of Bardeen model (see Rhoderichm).
Schottky effect, or image-force-induced lowering of the potential energy for

\ ol . . : [10)
charge carrier emission when an electric field is applied. (see Sze ).

3.2 Voltage- Current Characteristic of Schottky Barriers
The transport mechanisms which determine the conduction properties
of Schottky barrier can proceed in different ways. A way in which electrons

can be transported across a metal-semiconductor junction under a forward
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bias are shown schematically for n-type semiconductors in Fig.3.3. An
inverse process occurs under a reverse bias. The mechanisms are :

a) Emission of electron from the semiconductor over the top of barrier into
the metal; ( the dominant process for Schottky diodes made of low doped
semiconductors (e.g. Si with N, <10"cm operated at moderated
temperatures (e.g. 300K),

b) Quantum mechanical tunneling through the barrier (important for heavily
doped semiconductors and responsible for most ohmic contacts),

¢) Recombination in the space-charge region,

d) Recombination in neutral region (hole injection).

+—tg

b
qo, ==

T
Q
=

Fig.3.3 Four various transport processes in a forward-biased Schottky

. m
barrier
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3.2.1 Transport Properties of Schottky Barrier of Lightly Doped
Semiconductor

The activation of charge carrier over the barrier can proceed in two
different ways. The choice between the two depends upon the width of the
depletion region with respect to the mean free path of electrons scattered by
acoustic phonons. If the barrier thickness is small compared with the electron
mean free path, collisions can by neglected for all practical proposes. This
situation was first considered by Bethe' " (i.e. “diode theory”). If the barrier
thickness is large compared with the electron mean free path, a carrier
experiences may collisions in the barrier region before reaching the top of
barrier. This latter case was studies by Wagner, Schottky and Spenke[”], and

is usually referred to as the “diffusion” theory.

Thermionic Emission Theory
The thermionic emission theory by Bethe is derived from the assumptions:
1) The barrier height ( g¢, ) is much larger than ,T,
2) Thermal equilibrium is established at the plane that determines emission,
3) The existence of a net current flow does not affect this equilibrium.
The current density from semiconductor to metal J,,, is the
concentration of electrons with energies sufficient to overcome the potential

barrier and traversing in the x direction, i.e.

Joop = quxdn 3.7)

Ep+q¢y
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where E, +g¢, is the minimum energy required for thermionic emission into
the metal. And v, is carrier velocity in direction of transport. If we postulate
that all the energy of electrons in conduction band is kinetic energy. We

obtain

k,T

B

J. . =AT exp[ﬂ_—v)jl (3.8)

where ¢, is the barrier height , V is bias voltage and
4mgm’ (k,T )
h3

A= (3.9)
is the effective Richardson constant for the thermionic emission and m" is the
effective mass of semiconductor.

The barrier height for electrons moving from the metal into the
semiconductor remains the same, the current flowing into the semiconductor
is thus unaffected by the applied voltage. It must therefore be equal to the
current flowing from the semiconductor into the metal when thermal

equilibrium (i.e. when V =0). The corresponding current density is obtained

from eq.(3.8) by setting V=0
q(¢ )

B

J. . =—ATexp[—=4]. (3.10)

The total current density is given by the sum of €q.(3.8) and eq.(3.10) ,

_ av,_
J —Jn[exp[k T] 1} (3.11)

B

where
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q¢

J,=ATexp[-
kT

(3.12)

Eq. (3.11) is similar to the transport equation for diodes (The mathematical

details can by found in reference [10])

Diffusion Theory
The diffusion theory by Schottky is derived from the assumptions that
1) The barrier height is much larger than &,7,
2) The effect of electron collisions within the depletion region is included,
3) The carrier concentration at x = 0 and x = w are unaffected by the current
flow,
4) The impurity concentration of the semiconductor is nondegenerate.

For Schottky barriers, neglect image-force effect [10], we obtain

qV
J=J |exp[—]-1

8

(3.13)

. _a'DN. (29(4,-VIN, )" -49,
] o

where

5

The current density expressions of the diffusion and thermionic emission
theories, are basically very similar. However, the “saturation current density”
J, for the diffusion theory varies more rapidly with the voltage but is less
sensitive to temperatures compared with the “saturation current density” J of
thermionic emission theory.

The forward-bias current-voltage characteristics of two Schottky

diodes are shown in Fig.3.4 when the forward bias voltage V is greater than
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4k, T

B

q

, we can neglect the (-1) term in the diode equation (eq. (3.13)). We

have the In J versus V curve as a straight line shown is the Fig. 3.4.

J (A/e¢m?)

) o a2 03
v (voLT)

Fig. 3.4 Experimental (dots) and theoretical (solid lines) forward-bias current

density J versus V for W-Si and W -GaAs diodes .
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3.2.2 Transport Properties of Schottky Barrier Made of Heavily
Doped Semiconductor
For Schottky barrier of highly doped semiconductors, the depletion region
becomes so narrow that electrons can tunnel through the barrier well near the
top, where the barrier is thin. This process is called thermionic-field. The

number of electrons with a given energy E exponentially decreases with

energy  as exp[—}c%} and the transmission coefficient of the barrier

b

exponentially increases with the decrease in the barrier width (see WKB
approximationm’m). Hence, the dominant electrons tunneling paths occur at
lower energies as doping increases and the barrier becomes thinner. In
degenerate semiconductors, especially in semiconductors with small electron
effective mass, such as GaAs, electrons can tunnel through the barrier near
the Fermi level, and the tunneling current is dominant such a mechanism is
called field emission.
Thermionic-Field Emission

The current-voltage characteristic of a Schottky diode in the case of
thermionic-field emission can be calculated by evaluating the product of the
transmission coefficient and the number of electrons as the function of energy
and integrating over the states in the conduction band. Such a calculation
yields

J=J. exp[‘g—v] (3.16)

E
h E =F coth(—), 3.17
where =E co (k T) (3.17)

B

and E_ =%{£N".] : (3.18)
m

5
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d un Electrons
q¢, E
J y " run E(.
y
EFn
+‘]V Relatively Low Doping
(Thermionic-Field Emission)
E,
Tunneling
- tun Tunneling Electrons
< N A
q¢b Erun
v E,
4 EFH
v
Very High Doping

(Thermionic-Field Emission)

FV
A i
Tunneling Electrons
q9, i
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A E,
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E

v

Fig 3.5 Thermionic-field and field emission under forward bias. dis the
characteristic tunneling length. At low doping electrons tunnel across the
barrier closer to the top of the barrier. With increasing in doping, the
characteristic tunneling energy, E,, decreases. In highly doped degenerate
semiconductors, electrons near the Fermi level tunnel across a very thin

depletion regionm].
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The preexponential term was calculated by Crowell and Rideout™;

_ATIE. 4@, -V+EOI” | =45 4@ +4),

STF exp[
k, cosh(£=) kT E
kT

B

J (3.19)

here &=(E,-E )/q, so that & 1is negative for nondegenerate
semiconductors. In GaAs the thermionic field emission occurs roughly when
N; >10"cm”at 300 K and when N,>10“cm™at 77 K. In silicon the
corresponding values of N, are several time bigger.
Field Emission

The quantum mechanical tunneling through the barrier (important for heavily
doped semiconductors and responsible for most ohmic contacts), Figure 3.6
shows the potential energy diagram and serves to define the symbols that will

be used in the tunnel equation. This can be written as
_24y ;
J =23 JUAE) = FoE)WPEDdp, (3.20)
0

where f,(E,) and f,(E,) are Fermi functions for electrons of energy E,
and E, in conductors 1 and 2, respectively. v, is the group velocity and
P(E,) is the transmission probability for electrons of energy E,. It will be
assumed that the WKB approximation is applicable. In addition, the electron
energy-momentum relation will be assumed in each of three regions. At
sufficiently highly doped semiconductor, the tunneling probability will be
greatest for electrons near the Fermi level Padovani and Stratton' " al have
shown that, making Taylor expansions for the transmission probability

around the Fermi level of conductor 1 eq.(3.20) leads to
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Fig. 3.6 Potential energy diagram for a tunneling structure. The insulating
region represents either an insulation film sandwiched between two
conductors or a space charge barrier formed at the contact between a metal

) [14]
and semiconductor .

, .
J = Por oxp[ b, ]J[f(E )= F.(E. ) explec, (E —& )JdE (1 ——jexp[—]d(p)
(3.21)
where E, = E, +V + &, — &, under the condition that
_1__ch >(2f,)" (3.22)

kT

B

The coefficients p,..b,.c, and f, arise in Taylor's expansion of the

1F?

logarithm of the transmission coefficient around the Fermi level of conductor

1 and are given by

L _1f & (3.23)
Por B4 (D),

blF =—J‘( —ﬁ)gdx (324)
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X2

. :%J.(dﬁ/dE Judx (3.25)
f =—;1—J(d25/d122 ) dx (3.26)

—~p’ = p’is the square of the quasi-momentum of electron in the forbidden
gap of the insulator and p_ (E,,¢@) is the maximum value of the component
of the quasi-momentum parallel to the plane of the insulation region and the
transmission coefficient is the maximum value, when p, (E,,@) is minimum
(eq.3.21). The parabolic energy momentum relations for the conductor and
the insulator are assumed,
p, =2m,(E -¢&) (3.27)
and
p2 =min[2m(E, ) 2m,(E,)] (3.28)
where min [a,b] refer to the lesser of the quantities a and b, mis the effective

mass of the insulation and E, = E, +V +&, —&,. Thus

3!
P.
14
0LF

= mm[l(zm, (E), 2m(E +V+& -&EN] (3.29)
ml

where p.. =2m /c,.

Let us now consider more specifically tunneling through a Schottky
barrier. An energy diagram for such a barrier is shown in Fig. 3.6 with the
relevant parameters used in this analysis. In the forward direction we identify
conductor 1 and the insulating region with the degenerate semiconductor and
the space-charge region, respeétively. Thus and if, further

E <E, (3.30)

which will hold for all reasonable values of the parameters
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- =c E. (3.31)
pOIF

here, m, is the electron mass in the metal electrode. Equation 3.21 reduces to

A’ me, kT

J= mexp[*blr]{(;in(ﬂc—kn) - (1 + cmé, ])exp[—chf, ]} (332)

IF B [P

if  exp[(E€ -V )/k,T]<<1, orto

A’ nc k,T
1l 1F° "B 1_ _ _ _

IF "B IF' "B

(3.33)

if exp[(§ -V )/k,T]>>1. Here A" is the Richardson constant, equal to
dnm=*(k,T )* /h'. In the reverse direction, the same conditions apply and the

result V-J characteristic is.

A nc, k, T
J = ————agpl -, ———
(c,.k,T) sin( e, kT )

2F° "B

N1—exp(c,V])+c, Vexp[—c, (& -V )]}

(3.34)

where exp[(§, -V )/k,T]>>1, since V is now negative Eq 3.34 applies for
all reverse bias.

Padovani and Stratton' " assumed that the contribution of the free
electrons to the total space-charge density was negligible. This assumption
has been discussed in details by Conley and Mahan"® with the conclusion

that the simple parabolic potential energy
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(w—x)* (3.335)

is adequate for most treatment.
Under those approximations, the constants b _,c,and f, are found

to be equal to o

b, =SB, =V +&)" (B, =V)"™ 16) = Il(E, =V +£)" = (B, =V)") /&)

(3.36)
6, = Eim[«E,, LV AE) 4 (E, -V E"] (3.37)
fo = (B, KE, + &)™) (3.38)

46.E.,
where E.is the constant defined by eq.(3.18), E, is the barrier-height
potential energy (g¢, ), V the applied bias in energy units, and & the
Fermi energy of the conductor 1. Similarly, in the reverse direction, the

coefficients b, ,c and f, canbe expressed as

1F

sz =EL{((EI; T +§l)”2(Eb)”2 /él) +(V _fl)ln[((Eb -V -}-51)”2 _(Eb)llz)/(é:l _V)”z]}

(3.39)
C,, =ELln[((Eb -V +4,’l)”2 +(Eh)”2)/(§—V)”2] (3.40)
f L (& -v-&)KE)" (3.41)

T4 -V)E,

In case of a Schottky barrier the condition in (3.22)can be reduced to
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k,T <2E (In[4E, /€ ]+(2E_ /& )" )" (3.42)
As an example, Padovani and Stratton' “calculated for Au-n-type GaAs
barrier as a function of the semiconductor carrier concentration . Fig.3.7
shows that, the field emission will occur at low temperatures or heavily doped
semiconductor. The theory will by compared with results obtained for Au-Si
diédes with an impurity concentration of 8x10' atom/cm’. The forward
characteristic of such a diode at 77 K is shown Fig.3.8 as can be seen, a linear

dependence of the logarithm of the current on the applied bias.

kT(meV)
-3
I
1

Thermionic-ficld emission

Ficld emission

0 T3 ln lé“
10" 10 10
Nfem™)

Fig.3.7 N, versus k,T for Au- GaAs Schottky barrier as a function of the
semiconductor impurity concentration' .

The figure gives for a given carrier concentration the range of
temperatures where the conduction properties of the barrier are dominated by
either T-F are F emission, The cross-matched region corresponds to

temperatures where both conditions do not apply[”].
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Fig. 3.8 Forward V-I characteristic of a gold heavily doped n-type silicon
diode at 77 K.

Therefore, the complex energy-momentum relationship for the tunnel
electrons has been assumed to be parabolic. This is certainly not the case for
metal-semiconductor junction where the barrier height is an appreciable

fraction of the energy gap, as in the case of n-type GaAs junctions, where

9%,

G

2 . . .
= In this case, the electron tunneling in the energy gap has acquired a

considerable valence-band character before encountering the metal surface.

The electron energy-momentum relationship in the forbidden gap can be
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calculated by assuming a two-band model. If the effective mass is small,

Franz’ experimental expression for kinetic energy,

2

E'=(E%/4)+(E, 2‘”—’7{)”2 (B, 12), (3.43)

. , . 8]
can be used. If a more accurate relation is sought, Kane’s expression  for the

momentum,

p> E'E'+E )E'+E; +A)E; +(2A13)) (3.44)
2m Ey(E;+ANE'+E;+(2A/13) ‘

where A is the value of spin-orbit splitting is used instead. The Franz,
parabolic and Kane energy-momentum relationship for GaAs are shown in

Fig.3.9.
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A

-2 -3
10 5x10
-1 il Ye / o

P2 22
'ﬁ—z(A )
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-+—=0.5

) :
-+T-1.0

(2)

\Ev

Fig 3.9 The parabolic (1) ,Franz (2) ,and Kane dispersion relationships as

computed for GaAs'"”,



35

The influence of a nonparabolic energy-momentum relation on the V-J
characteristic of a tunneling junction was first considered by Padovani and
Stratton . Let consider the case where p.,.,» the maximum value of the
component of the quasi momentum parallel to the plane of the junctions, is
large enough that the last integral in eq.(3.21) can be neglected. Let us also
assume the Fermi energy of the semiconductor is sufficiently large to satisfy
thé inequality

e Sl (3.45)
This condition are equivalent to assuming that the major contribution to the
tunneling current came from electrons located in the vicinity of the

semiconductor Fermi level. It then follows that eq.(3.21) can be expressed as
J o expl-b. ] (3.46)

In this expression, The constant of proportionality is a slowly varying
function of the applied bias. Stratton and Padovani in Ref.[14] have presented
a further check of their experimentally deduced energy-momentum
relationship by studying the influence of this relationship on the shape of the

forward characteristic at low biases (shown in Fig.3.10).
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Fig. 3.10 Low bias forward characteristic of a Au-n-type GaAs Schottky
barrier. Computed curves by : (1) parabolic bands , (II) Kane’s band, (III)
experimentally deduced bands dots indicate experimental points and arrows
indicate inflection points. Curve barrier : (1), 0.960 eV ;(1I) 1.135 ¢V,

(II), 1.035 eV (From Stratton in reference [14]).

3.3 Contact Resistance
An ohmic contact of a metal-semiconductor contact is defined as a
negligible contact resistance relative to the bulk or spreading resistance of the
semiconductor. The voltage —current characteristics of Schottky barrier diode
and of an ohmic contact are compared in Fig.3.11. Ideally, an ohmic contact

has a linear voltage —current characteristic.
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(a)
Fig. 3.11 Voltage —current characteristics of Schottky barrier diode and of an
ohmic contact ">\

An ohmic contact to an n-type semiconductor should also ideally be
made using a metal with a lower work function than that of a semiconductor.
Unfortunately, very few practical material systems satisfy this condition, and
metals usually form Schottky at semiconductor interfaces. Therefore, a
practical way to obtain a low resistance ohmic contact is to increase the
doping near the metal-semiconductor interface to a very high value so that the
depletion layer caused by the Schottky barrier becomes very thin an the
current transport through the barrier is enhanced by tunneling (field emission
regime; see section 3.2).

Field emission is of considerable importance in connection with ohmic
contacts to semiconductors, which usually consist of Schottky barriers on
very highly doped semiconductors. The specific differential resistance R

. . [19]
around zero bias is defined as
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very highly doped semiconductors. The specific differential resistance R

. . [19]
around zero bias 1s defined as

3 Y
R, =| — 3.46
(5. 49
For metal-semiconductor contacts with higher doping concentrations, the
tunneling process will dominate, and the current density is given by eq.

(3.46). Then

RC oc exp[q‘E¢b / Eon ] (3'47)

where E_ define by eq.(3.18), theoretical calculations of R have been
published by Chang , Fang, and Sze'"for contacts to silicon an gallium
arsenide. The experimental results of R, for various metals on silicon samples
are in good agreement with predictions and shown in Fig. (3.12). In chapter 4,
we have presented contact resistance for check of their V-I characteristic at

low biases.
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Fig. 3.12 Theoretical (solid lines) and experimental (dots) values of specific
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contact resistance.



Chapter 4

Field Emission for Parabolic Case

In this chapter, we want to know more accurately than the depletion
approximation. We must allow for the fact the majority carrier concentration
does not fall abruptly to zero but penetrates into the depletion region. The
analysis will be developed for an n-type semiconductor.

4.1 Asymptotic Solution of Poisson’s Equation

The Schottky barrier assumés that a barrier has been established as

described in Fig. 3.1 and assuming the semiconductor to be degenerate, the

electron concentration in the depletion region n(x) is given by -

49,
q9,) qx: ‘I— ™1 122; ié
E; A 4 §
\N E
N 0

Degenerate

(Cl) Semiconductor ( b)

Fig. 4.1 Formation of barrier between a metal and a degenerate semiconductor

(2) neutral and isolated, (b) in perfect contact.
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n(x)=N.F,.((qo(x)+£)/ &,T) (4.1)
where F{,,(x) is the Fermi-Dirac integral (defined by eq.(2.8)), ¢(x) is the
electrostatic potential within the semiconductor at a distance x from the
interface, k,is Boltzmann's constant, 7 is absolute temperature, ¢is magnitude of
electronic charge. The Fermi level & = E, — E_ would be positive for degenerate
semiconductors. The conduction band edge in the bulk is taken as the zero
potential reference. Thus the sign of the electrostatic potential is negative in the
space-charge region.

In the ideal contact, we neglect the surface states. The net charge density
1s given by
p(x) = g[N, —n(x)] (4.2)
where N, is the donor impurity density.
The charge density and electrostatic potential are related by Poisson’s equation. It

q¢

1s convenient to introduce new variables u = 3 and v = i Hence

8 B

a'zu(x)_ —gf
PR s k,T [Nd —NcFl/z(u<x)+V)]- (4.3)

where ¢;is the permittivity of the semiconductors. Equation (4.3) is the
differential equation for the potential distribution in an arbitrarily doped n-type
semiconductor. Unfortunately, this equation cannot be solved in the general case,
and approximations must be made to obtain solutions appropriate to specific

situations.
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To proceed, we consider two special cases. In the first, the Fermi level
near the conduction band edge (i.e. g|¢| is much larger than & in the depletion
region) we may expand F,,,(«+v) in eq. (4.3) in Taylor s series, and retain only

first two terms, which yields

Tuld) __a'N, [I_(m(ungn(u)vﬂ, (4.9

dx’ &k, T

where N .F,,,(v)=N, .For |4>>v and u is negative, the second and third terms
in the square bracket in eq. (4.4) are small compared to unity and can thus be
neglected

dz”(x) i —quII

= . 4.5
dx’ ekl (45)

This result may also be obtained in the simple way by counting only the numbers
of positive charges exist on ionized donor atoms. As was discussed in the
depletion approximation (section 3.1). The electrostatic potential ¢(x)at x is

parabolic given by

= (W_x)z s (46)

where w? =2%¢—” (depletion width), ¢, is the height of barrier relative to the
d

Fermi level. This approximation is very good for non-degenerate semiconductors

(i.e., & is negative ).
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In the opposite limiting case when the Fermi level is much larger than the

conduction band edge (i.e. v>>[u| ). Thus eq. (4.3) becomes

dz“(x) _ qud F—n/z(v)
dx* B 8.\'kBT[ Fuz(V) ”] *.7)

For degenerate semiconductors, v>1, from eq. (2.16) we find the electrostatic

potential to be

¢(x)= 9, exp[-ax] (4.8)
where o= 39N, and & = kBT(%/EN" J
2¢ & 4N

In this case, the majority carrier concentration does not fall abruptly to zero, but
penetrates into the depletion region and cannot be neglected compared to the
donor concentration. Eq. (4.8) is applicable to highly degenerate semiconductors.

In the general case, the parabolic solution valid near the top of Schottky
barriers, where n(x) is vary small compared to N,, and the exponential solutions
valid near the bottom of Schottky barriers, where n(x) approaches N,. The
electrostatic potential of an M-S junction can be approximated by an exponential
barrier shape that provided in eq. (4.8) (shown in Fig. 4.2).

The contact potential g¢, in eq. (4.6) and eq. (4.8) is linearly dependent on
the work function of metal. The contact potential for GaAs with various metals is
shown in Table 4.1, where the positive and negative contact potential is

rectifying or Ohmic, respectively.
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Fig.4.2 Parabolic and exponential potentials for an Au-GaAs junction (GaAs with

N, =5x10"atoms/cm’ at 243 K ).
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Metal Work function (eV) Contact potential ( gg, ) (eV)
Pt 5.65 1.63
Ni 5.15 1.08
Pd 5.12 1.05
Au 5.10 1.03
Co 5.00 0.93
Cu 4.65 0.58
Mo 4.60 0.53
W 4.55 0.48
Fe 4.50 0.43
Cr 4.50 0.43
Sn 442 0.35
Ti 4.33 0.26
Al 4.28 0.21
Ag 4.26 0.19
Ta 4.25 0.18
Ga 4.20 0.13
In 4.12 0.05
Mg 3.66 -0.48
Ca 2.87 -1.2
Ba 2.70 -1.37
Cs 2.14 -~1.93

Table 4.1 Work functions and contact potentials for some common metals

contacted with GaAs of which electron affinity equal to 4.07 (V)[Z].



4.2 The V-I characteristics

In degenerate semiconductors, especially in semiconductors with small
electron effective mass such as GaAs, electrons can tunnel through the barrier
near the Fermi level and the tunneling current is dominant. Such a mechanism is
called field emission. The current-voltage characteristic 1s determined by the

coefficients b, ,¢, and f, defined by egs. (3.24), (3.25) and (3.26), respectively.

\F?

These quantities are dependent on the Schottky barrier shape. Under the
depletion approximation, Padovani and Stratton' " have given the values of

b,c, and f, in egs. (3.36), (3.37) and (3.38), respectively. This has been

1F270F

discussed in section 3.2. At arbitrary doping and under the condition

£E=0, exp{- o{w - ;EN& ﬂ (4.9)

3TN,
4N

where E‘\:kﬂT{ } and w 1s the depletion width in parabolic barrier. In

Fig. 4.3, the condition (4.9) was calculated for Au-GaAs Schottky barrier as a
function of the donor concentration. We obtain the temperatures operation for the
electrostatic potential of an M-S junction can be approximated by an exponential
barrier shape that provided in eq. (4.8). The figure gives the relationship of donor
concentration and temperatures where the potential of junction can be

approximated by an exponential barrier.
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Fig.4.3 The relationship of donor concentration (atoms/cm3) and temperatures

calculated for Au-GaAs Schottky barrier.
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The bottom of conduction band (defined by eq. (3.5)) is given by

E (x)=E, exp[-ax] , (4.10)
where E, is the contact potential energy. Neglecting the image force at low bias

for simplicity. The quantity b, in eq. (3.24) can be expressed as

21 (P,
) hL T (4.11)

If' V is the applied voltage, the energy of electrons in the barrier is given by

n(x)= E, exp[- aux]- & (4.12)

Substituting eq. (4.11) in eq. (4.10) gives

b, = 4[{\/ﬁ JE tan™ \/T} (4.13)

where E,, is defined by eq .(3.18) .

Similarly, the coefficients ¢, and f,, can be expressed as

= tan” |2 (4.14)

{E =V

For parabolic relationship between energy and momentum in the conductor and
the insulator (depletion region), eq. (3.21) then reduces to eq. (3.32), (3.33) and

(3.34). The expression for the V-I characteristic can now be obtained by
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replacing the coefficients 4, and ¢, in eq. (3.32) and eq. (3.33). In the reverse

direction, the coefficients b,,,c,, and f,, can be expressed as

b”:%{,/E,}(g—v)—(a—v)mn-' E, } (4.16)

E-V
2 . | E,
Cor —-\/_3—E“tan E_'_V s (417)
1 1 1 E
= N el I 4.18
T 4«/35,[ E,,(&—V)+<§~an &—V} (4.18)

The validity of these results is subjected to the condition in (3.22). Since a
Schottky barrier presents the largest depletion layer for tunneling at zero bias,
one can be sure that the field emission exists at all biases provided that condition
is fulfilled at zero bias. It can be shown that in the case of a exponential Schottky

barrier this condition implies that the temperature is such that

2, [E 1 1,1 |E _I_
{\B—Ewmn \/;+{2«@E,,[\/%+&t \E” ] k,T>0, (4.19)

the tunneling current is dominant.

As an example, the condition (4.19) was calculated for the Au —GaAs (n —
type) barrier as a function of the semiconductor carrier concentration. Fig. 4.4
shows that, for reasonable carrier concentrations, field emission will only occur

at low temperatures.
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Fig. 4.4 The relationship (condition (4.19) in thermal energy (k,7) units) of
donor concentration and temperatures calculated for Au-GaAs Schottky barrier

at 300K and 77K.
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The voltage—current characteristics at low bias for an Au—GaAs diode with the
parabolic and the exponential approximations of Schottky barrier shapes shown
in Fig. 4.5. In Figs. 4.6, 4.7 and 4.8, show that, the tunneling current density in
metal-semiconductor contact increases if the contact barrier decreases, or if the
doping concentration and temperature increases, respectively. For highly
degenerate semiconductors, we have the differential resistance R _ of the
exponehtial barrier are shown in Fig. 4.9. In this case, the majority carrier cannot
be neglected. Thus, the differential contact resistance is smaller than predicted by
the depletion approximation because the exponential barrier approached to the

exact barrier.
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Fig.4.5 The voltage—current characteristics for an Au—-GaAs (N , =1x10"
atoms/cm’) diode at 77K with the parabolic and the exponential approximations

of Schottky barrier shapes in the normal scale (a) and the log scale (b).
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Fig.4.6 The voltage—current characteristics for Au-GaAs, Al-GaAs, and Cu-

GaAs diode (N, =5x10" atoms/cm3) at 77 K.
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Fig.4.7 The voltage—current characteristic for an Au-GaAs diode for various

doping concentration N, (donors/cm3) at 77 K.
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Fig. 4.9 The contact resistance of Au —~GaAs in parabolic and exponential barrier

approximations at 300K.



Chapter 5

Field Emission of Nonparabolic Case

The influence of the shape of potential barrier on V-I characteristic
was considered in previous chapter. In this chapter we consider the
influence of a non-parabolic energy-momentum relationship on the V-I
characteristic of a Schottky barrier and compare the localized electron
transmission probability with the delocalized electron transmission
probability in the last section.

5.1 The V-1 Characteristic Curve

The effect of nonparabolic energy bands of a potential barrier on
tunneling electrons has been previously considered. Stratton and Padovani ]
have shown that it would lead to an increase of the tunnel current if the barrier
height were an appreciable fraction of the forbidden energy gap of the
insulator. They have adapted a technique to evaluate the band structure in
the forbidden gap of the insulator from the study of the voltage-current
characteristic of a tunneling metal-insulator-metal sandwich to the case of a
tunneling Schottky barrier and have obtained an experiment determination
of part of the complex energy- momentum relationship for GaAs. In this
section, we will apply a technique to evaluate the energy-quasi momentum
relationship in the forbidden gap of heavily doped semiconductors using the
density of states " and show the V-I characteristic of Schottky barrier.

The total number of states is assumed to be confined within a sphere in

k space, the integration of density of states function, p(E), over the

electron energy can yield the following expression
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1/3

k(E)= {3%2.[}(E’)dE} (5.1)

From Kane’s Theory, the density of states function is given by

_m”” —(E-E.) _(E_Ec)
'D(E)—47Z'2h3 é:Q exp{ 4§Q }Dz/z[ \/5 }, (5-2)

where £, is the potential fluctuation defined by eq. (2.26) and D, (x) is the

parabolic cylinder function. Substituting eq. (5.2) in eq. (5.1) gives

Im 2L ow _ 2
kS(E)zT;z“‘— exp[ p } _3,2( w)dw} (5.3)
E—-FE' -
where w' = Cand w= o i

From Gradshteyn and Ryzhik ! e have

0 %t 2
J._m eXp{—4—{|D_3,2 (— x)dx = m (54)

.r Exp[%:z-}D_yz(— x)dx: exp[ 5 /4] 64exp[ -x*/4]+ G( ))

3x2%4r(3/4)

| szﬁpj[:(sx/i;](?’l—sm[xz /4]+211/4[x2 /4]_15/4[)‘2 /4])

(5.5)

where G(x)=5x2"*I(=5/4)(1,.[x* 74]-21,,,[x* 74]-31,,,[x* 74]),
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I[x] is the modified Bessel function and T(x) is the Gamma function.

Rewrite eq. (5.3) in terms of eq. (5.4) and eq. (5.5) to be

3m*3/2 3/4 7[”2
KE) = 2 5.6
(E) 25’ {25’4r(7/4)+f(w)} (5-:6)

where

w’? exp[— w? /4] 2
__ = G
£(w) T (64 exp[—w* /4] +G(w))

.
E @fffﬁ(;}/:;](?’[—:%m[wz /4]+ 211/4|:W2 /4]~ Is,, [W2 /4])

and  G(w)=5x2"I(=5/4)(1,,,[w* 74]-21,,,[w* 74]-31,,,[w* 74]).
The quasi momentum ! (p) is defined by p =#k, where k is parameter to
calculate the tunneling current. Rewriting eq. (5.6) in terms of momentum, we

obtain the expression

(5.7)

2/3
12 £3/4 3/4 =
p2 37! 3 :|

_ Qo Q
2mt 2“1"(7/4)Jr 22 Fw)

In view of eq.(5.7), Kane's semiclassical model is used to find the energy —
quasi momentum dispersion relation for band tailing (in the forbidden gap of
heavily doped semiconductors) where a parabolic ldispersion is assumed in the
absence of impurities. Sine the quasi momentum in Fig.5.1 is an important
parameter when the problem associated with the effects of impurity band on
the tunneling current, we will then concentrate on the calculation of a
relationship between energy and momentum. Assuming the WKB
approximation is applicable, the magnifude of complex momentum in
parabolic band is replaced by the magnitude of quasi momentum in eq. (5.7)

to calculate the transmission coefficient.
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Fig. 5.1 The quasi momentum (eq. (4.7)) computed for GaAs(2x10"”donor

atoms/ cmS).
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The tunnel current through an arbitrary potential barrier with arbitrary
energy-momentum relationship can be expressed as eq. (3.21). For simplicity,
so that the last integral in eq. (3.21) can be neglected with respect to 2z and
that the Fermi energy of the semiconductor (&,, ) is sufficiently large to satisfy

the inequality
£, /k,T>c & >>1 (5.8)

where & _is the Fermi level in semiconductors. Finally, neglecting the energy
dependence of the factor p;, with respect to that exponential factor, eq.

(3.21) reduces to'"

2n*gk, Tp?, exp|—b ]
— 8 01F 1F 1_ V i 5'9
n* sin(nc, k,T) (1-exple,V]) (5.9)

IF' "8

J

The coefficients p;_,b.,c, and f,

iF

arise in the Taylor expansion of the
logarithm of the transmission coefficient around the Fermi level of
semiconductor and are given by eq. (3.23) to (3.26) respectively.

For nonparabolic energy-momentum relationship in the energy gap of

semiconductors (eq. 5.7),

Ve

p(E)= [cl +c, f(Ec_—E )} (5.10)

3m~1/2§22/4 772 3m* 2 ém
where ¢, = and ¢, =—2%—

2 2°°1(7/4) 2
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In lightly degenerate semiconductors, the contribution of the free
electrons to the total space-charge density was negligible (section 4.1). We
can write the_ parabolic potential energy as eq. (3.35). The constant b, is
given by €q.(3.24). Then, substituting for the momentum from eq.(5.10). This

can be rewritten as

1/4 E-Y 1/3
by, =28 JJE (e, +sz(77(x))l)2 dn (5.11)
) N2m'E,, Jo ) £ :
nix)+—=
JSs
—d)(j/)g;g“' is energy of the electron in the barrier and ¢(x)is the
0

simple parabolic potential energy . Similarly,

where n(x)=

E,-V

[n<x>+ fg,_] (e, + e, Fln()”

C

)
" osam g

and

1/4 Ey-V

e =| = — [ - 5.13
Porr w/EZ;;:TlZOO : - (5.13)

The coefficients b,,,c,,and pj,, is going to result in much more complex.
We can obtain numerically this coefficients and the V-I characteristic. The
Mathematica program is employed to calculate the V-I characteristic and the

result is shown in Fig. 5.2.
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Fig 5.2 The voltage-current characteristic for Au-GaAs diode (2><1018 donor
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momentum-energy relationship.
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5.1 The Localized Electron Tunneling
The tunneling current in Schottky barrier is proportional to the quantum
transmission coefficient multiplied by the occupation probability and the
unoccupied probability in the other side. In that way, the tunneling current
from the localized states and the delocalized states in the conduction band is
different at the quantum transmission coefficient, where the density of states
function is applied to any energy of electron. In this section, we consider the
quantum transmission coefficient of localized electrons and compare with the
transmission coefficient of delocalized electron in the conduction band.
Since Sayakanit and Glyde’ s density of states (SG’s DOS) B i
obtained by using harmonic wells and the model provides Gaussian wave

functions. The envelope function for the conduction bands is™

2(} 3/4
v, (kc,?)=( ”j explik, - rlexp[-a,
7

7—7.|2] (5.14)

where the localization parameter («,) is related to the variational parameter
(z, ) by eq.(2.29 ) and eq.(2.30). Let us consider the Schottky potential
barrier of which the localized electrons in the degenerate semiconductors
incident to the potential and penetrate to the metal in other side. We use the
wave function of an electron in the conduction band as given by eq. (5.14)

which can be rewritten in the form

v, (IEC,?)= g(?,kcy,kcZ explik, x] + g(?,kc).,kcz , exp|— ik, x] (5.15)

where k, =k, and
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g(?,l;c)_,lzcz ): [za" ]3/4 exp[ikc)_y + ikczz]exp[—oc‘F - Fjr], (5.16)

Vi

with 7, is the center of a modelled harmonic well anda,,b, are arbitrary

th

constants in " region. The WKB approximation is readily applied to the
tunnel electrons in the Schottky barrier (i.e. region 2). The wave functions are

found to be of the form

2
Wy =ay exp[jxyix + by exp[— J‘)de] (5.17)

|

where x,(x) is magnitude of the complex momentum and x,,x, are the
classical turning point. An electron in the metal is represented by a plane

wave, which may be written as

v, (x)=a, exp[ik_%x]+b3 expl— ik3x] (5.18)

.. ; ; [11]
The transmission coefficient 7 is defined as

J

trans

J

T =

where current density is written J = %(\V*V\u— yVy* )

To derive an expression for the transmission coefficient across the
barrier, we match these wave functions along with their first derivatives at
different boundaries. At the edge of depletion width (x=x,) for v, (x) with

v, (x) and at (the contact point) x =x, for ,(x)with y,(x), we obtain

_ 16k k. 7.(x) 7. (x,) .,
ST e Y (Il ) B I ) "xp{‘ _[276 (X)dX} (5.19)
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We are concerned with a random system, we must average the result over all

random position 7, within the volume Q. If A(Fj) is the quantity to be

averaged, the average will be

where

T(k] 7 lk 16k, k, ?L’z( )Zz(xz)

T LRk (2 () (2 +z§(x2DeXp

(5.20)

(5.21)

Xy

- J.2,1/2 (x)dx}

X

When the depletion width (w) can be neglected with respect to the length of

specimen in the tunnel direction (L, ). Differentiating the expression for (T)

leads to

d<T> To(kpl’z’k ) To(kl’lz’ks)

da

¢ a,L, acz
N2k L a [H[ﬁkJ ]

an (ﬂ] (5.22)

J2k,

Setting eq. (5.22) to be equal to zero, we obtain maximum transmission

coefficient when o, approaches to zero, and is given by
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X2

= 16k, ks Zz(x1)7(2(x2) x| RS
" ) W) J2raton (5.23)

X

This equation is equal to the transmission coefficient of the plane wave

incident on to the barrier . Thus, from eq. (5.21) we obtain

Tlacal _ \/Ekc [an"l aCLX (524)
Tde[ocal LX o“c \/_Q"kc

Here a, is the energy-dependent Gaussian parameter and k, is defined by «,
from as eq. (5.6) (shown in Fig. 5.3).When k_ approaches to zero eq. (5.24)
also approaches to zero . In other words, the tunneling transmission
coefficient of localized electrons is negligible compared to that of delocalized

electrons near the conduction band edge.
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Fig. 5.3 Magnitude of k, versus arbitrary energies of electrons of n-type GaAs

(2x10" donor atoms/cm3) compared to the parabolic relation.



Chapter 6

Summary and Discussion

For a metal contacted with a degenerate semiconductor, especially
the semiconductors with small electron effective masses, such as GaAs, the
tunneling current will become the dominant transport process, such a
mechanism is called “ field emission . In more accurately than the depletion
approximation, we account for the majority carriers in the charge density and
solve Poisson’s equation in case of a degenerate semiconductor. We obtain
the electrostatic potential. As a result, based on the field emission, the
voltage-current characteristic can be calculated. In this thesis, we are
interested in the V-I characteristic at low biases. The influence of the shape of
potential barrier on V-I characteristic was considered in Chapter 4. In Chapter
5, we consider the influence of a non-parabolic energy-momentum
relationship on the V-I characteristic of a Schottky barrier and compare the
localized electron transmission probability with the delocalized electron
transmission probability in the last section of Chapter 5.

In chapter 4, we consider a metal contact with a degenerate
semiconductor and accounts for the majority carrier in the net charge density.
Consequently, the electrostatic potential within the semiconductor is
determined by two special cases. Firstly, for lightly degenerate
semiconductors, the free carrier density is negligible compared with the donor

or acceptor concentration. The electrostatic potential is obtained using the
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depletion approximation. Secondly, for highly degenerate semiconductors, we
obtained the exponential potential barrier and the temperature as a new
parameter of potential barrier.

From eq. (4.5), o increases (i.e., the depletion layer width
decreases) as N)'®and T7'?. Consequently, the tunneling current will become
dominant if the semiconductor is doped heavily or if operated at low
temperatures. In other words, the tunneling current dominated at low
temperature is obtained by accounting for the majority carrier in the net
charge density. In Figs. 4.4, 4.5 and 4.6, show that, the tunneling current
density in rectifying increases if the contact barrier decreases, or if the doping
concentration and temperature increases, respectively. For highly degenerate
semiconductors, the majority carrier cannot be neglected. Thus, the
differential contact resistance is smaller than predicted by the depletion
approximation (Fig. 4.7) because the exponential barrier approached to the
exact barrier.

In chapter 5, the case of n-type GaAs junction, examining of Fig. 5.1
together with the expression for the WKB transmission probability shows that
the transmission coefficient of barrier at low biases will be higher, in eq. (5.7),
then expected on the basis of the parabolic and Franz’s energy-momentum
felationship. As a consequence, the current density will increase at low biases

(Fig 5.2).
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From eq. (5.24), we can show that the tunneling transmission
coefficient of the localized electrons 1s negligible compared to the

transmission coefficient of the delocalized electrons near the Fermi level.



REFERENCES

[1] Padovani, F.A. and Stratton, R. “Experimental Energy-Momentum
Relationship Determination Using Schottky Barriers,” Phys. Rev.
Lett. 16 (1966): 1202.

[2] Rhoderik, E.H. and Williams, R.H. Metal-Semiconductor Contacts, 2™
ed. Oxford: Clarendon Press, 1988.

[3] Ferry, D.K. Semiconductor Physics and Devices, Oxford: Clarendon
Press, 1984.

[4] Wang, S. Solid-State Electronic, 2" ed. Singapore: John Wiley & Sons,
1977.

[5] Sritrakool, W., Glyde, H.R., and Sa-yakanit, V. “Absorption near Band
Edges in Heavily Doped GaAs,” Phys. Rev. B.32 (1985): 1090.

[6] Lundqvist, S., Ranfagni, A., Sa-yakanit, V., and Schulman, L.S. Path
Summation: Achievements and Goals, Singapore: World
Scientific Publishing Co., Pte. Ltd, 1988.

[7] Kane, E.O. “Thomas-Fermi to Impure Semiconductor Band Structure,”
Phys. Rev. B.131 (1963): 79.

[8] Sa-yaknit, V. and Glyde, H.R. “Impurity-Band Density of States in

Heavily Doped Semiconductors,” Phys. Rev. B.22 (1980): 6222.



72

[9] Sa-yakanit, V., Sritrakool, W., and Glyde H.R. “Imparity-Band Density of
States in Heavily doped semiconductors: Numerical results,” Phys.
Rev B 25 (1982): 2776.

[10] Sze, S.M. Physics of Semiconductor Devices, 2™ ed. New Delhi: Wiley
Eastern Limited, 1981.

[11] Liboff, R.L. Introductory Quantum Mechanics, 2™ ed. New York :
Addisson-Wesley Publishing Company, 1993.

[12] Merzbacher, E. Quantum Mechanics, 3" ed. New York: John Wiley &
Sons, Inc, 1998.

[13] Shur, M. Physics of Semiconductor Devices, New Jersey: Prentice-
Hall, Inc. 1990.

[14] Burstein, E. and Lundgvist, S. Tunneling Phenomena in Solids, New
York: Plenum Press, 1969:105.

[15] Padovani, F.A. and Stratton, R. “Field and Thermionic-Field Emission in
Schottky Barriers,” Solid-State Electronics 9 (1996): 695

[16] Conley, J.W. and Mahan, G.D. “Tunneling Spectroscopy in GaAs” Phys
Rev. 161 (1967): 681.

[17] Willardson, R.K. and Baer, A.C. Semiconductors and Semimetals,
vol.7 New York: Academic Press, 1971.

[18] Kane, E.O. “Band Structure of Indium Antimonide,” J. Phys. Chem.

Solids. 1 (1957): 249.



73

[19] Chang, C.Y., Fang, Y.K,, and Sze, S.M. “Specific Contact Resistance of
Metal — Semiconductor Barriers,” Solid-State Electrons 14 (1971):
541.

[20] Seiwatz, R. and Green, M. “Space Charge Calculations for
Semiconductors,” J. Appl. Phys. 29 (1958): 1034.

[21] Lou, Y.S. and Wu, C.Y. “The Effects of Impurity Band on the Electrical
Characteristic of Metal-Semiconductor Ohmic Contacts” Solid-State
Electronics 38 (1995): 163.

[22] Gradshteyn, L.S. and Ryzhik, .M. Table of Integrals Series and
Products, 4" ed. New York: Academic Press, 1965.

[23] Roy, D.K. Quantum Mechanical Tunneling and Its Applications,
Singapore: World Scientific, 1986.

[24] Chakraborty, P.K., and Biswas, J. C. “Conduction-Band tailing in

Parabolic Band Semiconductors,” J. Appl. Phys. 82 (1997): 3328.



CURRICULUM VITAE

Mr. Prathan Srivilai was born on July 27, 1974 in Roi-et. He
received his B.Sc. degree in Applied Physics (Solid State Electronics) from
King Mongkut ‘s Institute of Technology Ladkrabang in 1995. During his
study for a Master degree he received a grant from the National Science and

Technology Development Agency (NSTDA).




	Cover (Thai) 
	Cover (English)
	Accepted 
	Abstract (Thai) 
	Abstract (English) 
	Acknowledgements
	Contents 
	Chapter 1 Introduction
	Chapter 2 Heavily Doped Semiconductors
	2.1 Electron and Hole Densities
	2.2 Fermi Level of Semiconductors
	2.2 Heavily Doped Semiconductors
	2.3 Density of States

	Chapter 3 Current Transport Mechanisms
	3.1 Formation of Metal-Semiconductor Contact
	3.2 Voltage-Current Characteristic of Schottky Barriers
	3.3 Contact Resistance

	Chapter 4 Field Emission for Parabolic Case
	4.1 Asymptotic Solution of Poisson's Equation
	4.2 The V-I Characteristics


	Chapter 5 Field Emission of Nonparabolic Case
	5.1 The V-I Characteristic Curve
	5.1 Localized Electron Tunneling

	Chapter 6 Summary and Discussion
	References 
	Vita

