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Chapter 1  

INTRODUCTION 

This chapter firstly illustrates the significance of piezoelectric materials, their recent 
applications in various fields, motivation of the present study, and then provides the 
brief background and review of relevant literatures in modeling and analysis of 
fractures in piezoelectric media. Next, the key objectives and scope of work are 
clearly defined as well as the methodology and research procedure. Finally, the 
expected outcome and contribution of the present work is addressed. 

1.1  Significance and Motivation 

Piezoelectric materials have been found possessing unique properties which enable 
to transform mechanical energy into electrical energy or vice versa. Such strong 
electro-mechanical coupling effect is widely known as the piezoelectric effect 
(including both the direct and converse piezoelectric effects). Owing to these 
abilities, piezoelectric materials have been utilized in many applications in various 
disciplines such as aerospace and automotive industries, acoustic field, engineering 
and medical applications. Additionally, piezoelectric materials have also been found 
as constituting materials of the key components of many recent advanced devices 
and structures including piezoelectric power supplies, the electro-mechanical sensors 
and actuators, the sonar transducers, and smart and self-adaptive structures. 
However, one obvious drawback of this particular class of materials is their brittle 
characteristics associated with possessing relatively low fracture toughness and high 
sensitivity to flaw inducing. In addition, these piezoelectric-based devices often 
operate under various circumstances that may be prone to fracture-induced damages 
and failures. For instance, vibration detector sensors are designed to capture the 
earthquake motion; loud speakers receive electric signals and convert them into 
mechanical vibrations which create sound waves to produce the desirable acoustic; 
and the piezoelectric floors, which have been trailed in some stations in Japan, 
generate the electricity from walking pedestrian for automatic ticket gates and 
electronic display systems. As a direct consequence of their key properties and 



 

 

2 

applications, cracks/defects are unavoidably found inside piezoelectric bodies under 
usages. Therefore, when subjected to mechanical, electrical, or electrical-mechanical 
excitations, these piezoelectric components and devices can encounter the 
degradations, damages, and ultimate failure as a result of preexisting or loaded 
induced cracks/defects. Understanding of fundamental fracture characteristics and 
fracture-induced failure mechanism is obviously essential and required in the design 
of piezoelectric components and devices to maintain their safety and integrity.   

Mathematical modeling and simulations, based mainly on the classical theory 
of linear piezoelectricity, have been vastly applied in literature and found effective 
and efficient for the generalized stress analysis of piezoelectric cracked bodies. The 
generalized stress field in the neighborhood of the crack boundary (including the 
mechanical stress and the electric induction), predicted from the linear theory, 
dominates characteristics of the cracked medium and has been found essential as 
the basic information for simulating cracks initiations and advances. Most of existing 
studies in the context of linear piezoelectric fracture mechanics focused mainly on 
the dominant singular terms in the near-front expansion of the generalized stress 
field and, the corresponding parameters such as the electric and stress intensity 
factors and generalized strain energy release rate have been often used in the 
growth criteria. Numerous researches have been carried out to demonstrate the 
significance of these crack-front parameters, for instance, the crack formation, the 
subsequent crack propagation, and the damage and failure (Zhou et al., 2013). 
Nevertheless, existing experimental and theoretical evidences have also indicated 
the significant contribution of the non-singular term of the near-tip generalized stress, 
known as the generalized T-stress, and the necessity to integrate such information in 
the fracture modeling. Within the context of elastic media, the T-stress  is viewed as 
the boundary effect by following the study of Shahani and Tabatabaei (2009). In 
addition, the T-stress also found to strongly influence the shape and size of plastic 
zones, the crack-front stress constraint and tri-axiality, and the directional stability of 
advancing crack (Larsson & Carlsson, 1973; Cotterell & Rice, 1980; Du & Hancock, 
1991; Matvienko & Pochinkov, 2013; Matvienko, 2014). The experimental study by 
Ayatollahi and Safari (2003) also confirmed that the rotation of the isochromatic 
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fringes pattern is also affected by the sign of the T-stress. In addition, the shielding or 
anti-shielding characteristics of the plastic-zone size and shape at the crack front is 
dependent on the negative and positive values of the T-stress (Zhou et al., 2011). 
For piezoelectric media, several investigators also concluded that the generalized T-
stress is essential quantities affecting the crack-kinking behavior and the plastic zone 
shapes (Zhu &  Yang, 1999; Hao & Biao, 2004; Li & Lee, 2004a,b; Viola et al., 2008) . 
These past evidences confirmed the significance of the generalized T-stress and 
ignorance of such crucial fracture information can, in fact, lead to the inaccurate 
prediction of fracture responses. As an essential step to integrate the information of 
the generalized T-stress in the fracture modeling, analytical and computational 
procedures must be properly adopted to accurately and efficiently determine those 
quantities along the crack front. From limited advances of researches in this 
particular area as supported by a careful survey of literature in the following section, 
the development of a solution methodology to extract the fracture data of the 
generalized T-stress still requires further investigations and its merit to the 
community of fracture mechanics should be remarkable. 

1.2  Literature Review 

This section mainly reviews and summarizes relevant researches concerning the 
historical development and current advances of techniques for deriving both the T-
stress in linear elastic cracks media and the generalized T-stress in linear 
piezoelectric crack bodies. Although, the proposed research directly involve the 
calculation of the generalized T-stress, the review of existing studies for the linear 
elastic case is considered a pre-requisite and the close connection to the current 
work should offer certain insights both in terms of the significant contribution of the 
generalized T-stress and the solution techniques. Finally, the treatment of various 
electrical crack-face conditions in previous studies is discussed at the end of this 
section. 

Regarding to linear elastic cracks media, non-singular (or finite) part of stress in 
the near-front expansion of the stress field have been well investigated and a vast 
amount of researches have been published regarding to the calculations of the T-
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stresses and the study of their effect on the crack-tip stress field and fracture 
process. For instance, Sladek and Sladek (1997) developed a boundary integral 
equation method to compute the T-stress for interface cracks of a two-dimensional, 
semi-infinite, dissimilar materials subjected to a point force at the crack tip.  Fett 
(1997) also derived T-stress green’s functions due to a pair of normal concentrated 
forces and then used the obtained result to develop a boundary collocation 
technique to determine the T-stress of an edged-crack embedded in a rectangular 
plate made of a linear isotropic elastic material and subjected to general normal 
traction. Later, Fett (1998) extended his previous research to investigate linearly 
elastic rectangular plate and circular disks containing various crack configurations 
such as edged cracks and centered cracks and subjected to both tensile and bending 
loads. Yang and Ravi (1999) proposed the stress-difference method together with an 
iterative dual boundary integral equation method along with the tip-node 
displacement jump to compute the T-stress at a crack tip for thermo-elastic crack 
problems. Later, Chen (2000) applied the complex-potential-function theory to 
develop the solution of the T-stress for four types of cracks including a line crack, a 
symmetric airfoil crack, circular-arc crack, and a symmetric lip crack in a two-
dimensional, linear elastic, infinite plate. Zhao et al. (2001) applied the domain 
integral and interaction integral technique to obtain numerical solution for the T-
stresses of a quarter-circular crack and a tunnel-corner crack in an elastic square 
plate under remote tension. Their results indicated the good agreement with 
experimental observations, for instance, the discrepancies of the fatigue crack growth 
rate between CN (corner notch) and CT (compact tension) test specimens, and the 
crack tunneling in CN specimens under pre-dominantly sustained load. Fett (2001) 
utilized the same technique as that by Fett (1997) to investigate a circular disk 
containing an internal crack under different types of boundary conditions such as 
pure displacement boundary conditions, pure traction boundary conditions and mix 
boundary conditions. Fett (2002) extended his previous work to treat different crack 
configurations in both single and double edge cracked circular disks. Wang (2002) 
used the finite element technique together with the weight-function approach to 
compute the T-stress for several test specimens, for instance, CCP (a centered crack 
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plate), SECP (a single edged crack plate) and DECP (a double edged crack plate). The 
applied crack-face normal traction with either uniform, linear, parabolic, or cubic 
variation was investigated. Fett and Rizzi (2006) made use of the finite element 
procedure and the weight-function approach to determine the T-stresses for CT (a 
compact tension crack), DCC (a double cantilever crack), and ECB (an edge cracked 
bar) under self-equilibrated general normal traction near the crack tip. Also, Fett et 
al. (2006) employed Green’s function technique to obtain the T-stress of a forked 
crack and a kinked crack in a plated made of an isotropic, linearly elastic material 
and subjected to in-plane shear and normal tractions. Recently, the T-stress of an 
edged crack embedded in a plate which is made of two different isotropic linearly 
elastic materials was studied by Zhou et al. (2013). A symplectric expansion method 
was employed in this particular work, and it was found efficient for treating complex 
boundary conditions.  

While various researches concerning the two-dimensional problems have 
been carried out, simplified assumptions used in the modeling can lead to an 
inaccurate prediction and the loss of certain essential information and, as a 
consequence, the full three-dimensional analysis have been continuously proposed. 
Various existing methods for calculating the T-stress of cracks in three-dimensional 
media are briefly summarized and discussed below. Wang (2003) generalized the 
work of Wang (2002) to treat a three-dimensional crack problem by utilizing the finite 
element method together with the interaction integral formula to obtain the T-
stresses of a surface-breaking, semi-elliptical crack in an isotropic, linearly elastic 
finite thick plate under bending and tensile loadings. Later, Wang and Bell (2004) 
further extended his previous research to treat other types of loading with different 
spatial variations (e.g., uniform, linear, parabolic, and cubic distribution). Wang (2004) 
applied the potential-theory-based method and the Hankel integral transformation 
to determine an exact solution for the T-stress of a penny-shaped crack contained in 
an isotropic, linearly elastic, infinite body under applied remote tension and bending 
loads. Qu and Wang (2006) determined the T-stress of a corner-quarter-elliptical 
crack in an isotropic, linearly elastic, thick plate via the finite element method and 
the interaction integral formula. Both tensile and bending loads applied at both ends 
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of the plate were considered in their study. Kirilyuk and Levchuk (2007) presented 
the T-stress solution of a flat-elliptical crack contained in an isotopic, linearly elastic, 
infinite body under the remote axial tension and bending loads. This research is the 
extension of the work of Wang (2004) by utilizing a special set of harmonic functions 
instead of the Hankel integrals. Zhou and Li (2007) and Zhou et al. (2011) also 
presented the analytical solution of the T-stress under both mode-I and mode-II 
conditions for the crack-inclusion interaction by using Eshelby equivalent inclusion 
method. Most recently, Rungamornrat and Pinitpanich (2016) utilized the existing 
stress field from Fabrikant (1989) together with conventional differentiations and limit 
procedure to derive Green’s functions for the T-stress of a circular crack under a pair 
of opposite, normal point forces. A superposition method along with a numerical 
quadrature was then adopted to construct an integral formula capable of computing 
the T-stress components for a circular crack in a three-dimensional, transversely 
isotropic, linear elastic medium subjected to general applied normal traction on the 
crack surface. 

While significant advances and progress of the modeling and analysis for the 
T-stress have been well recognized in the literature for various crack geometries and 
loading conditions, work concerning the generalized T-stress in piezoelectric cracked 
bodies is still limited. This may result from not only the complexity of electro-
mechanical coupling effect but also the lack of recognition of the generalized T-
stress and its contribution. The brief overview of relevant literatures concerning the 
determination of the generalized T-stress solution is presented and discussed in a 
chronological order as follows. Zhu and Yang (1999) confirmed the contribution of 
the generalized T-stress on the crack-kinking behavior for a straight crack embedded 
in a piezoelectric, two-dimensional body under prescribed mechanical loading 
conditions. In their study, the continuous dislocation theory and a boundary integral 
equation method were employed. Hao and Biao (2004) derived the exact solution of 
the generalized T-stresses of an impermeable straight crack embedded in a 
transversely isotropic, linear piezoelectric whole space under applied mechanical 
and electrical loading conditions. In their study, the principle of superposition along 
the Plemelji formulation was utilized. Results from this investigation also indicated 



 

 

7 

that the value of the generalized T-stress depends mainly on the elastic, 
piezoelectric constants, and dielectric permittivity. In the same year, Li and Lee 
(2004a) applied Fourier transform to formulate a pair of dual integral equations and 
then derived the analytical solution of a semi-permeable Griffith crack oriented 
normal to the poling direction and subjected to uniform electro-mechanical loading 
conditions. Later, Zhong and Li (2008) reported the closed-form solution of the 
generalized T-stress for a semi-permeable Griffith crack in a two-dimensional, 
transversely isotropic, linear piezoelectric solid under the remote uniform mechanical 
tension, electrical induction and magnetic effect. In their analytical study, the Fourier 
integral transform along with the standard procedure was applied to solve the dual 
integral equation to obtain the complete solution. Liu et al. (2012) studied an 
elliptical hole embedded in a two-dimensional, transversely isotropic, linear 
piezoelectric, infinite body subjected to the uniform pressure at the surface of the 
hole and the remote electro-mechanical loads. The complete analytical solution of 
both mechanical and electrical fields for the electrical permeable boundary 
condition was obtained by applying the complex variable function approach. They 
also pointed out that the behavior of the electric induction and stress in the vicinity 
of the crack front depends strongly on the value of the non-singular term. Most 
recently, Subsathaphol (2013) developed a numerical procedure based upon the 
weakly singular, boundary integral equation technique and standard Galerkin 
procedure to extract the generalized T-stress components of an impermeable 
isolated cracks contained in three-dimensional, anisotropic, piezoelectric, infinite 
media under general mechanical/electrical loading conditions. 

Another important issue effecting the calculation of the generalized T-stress 
components of cracks in piezoelectric media is the model used to simulate the 
crack-face conditions. Various models have been proposed to simulate such crack-
face conditions and the key difference among those models stems directly from the 
assumption of the dielectric permittivity of a medium filled within crack cavity. 
Suitability of all existing models is still questionable, highly problem dependent, and, 
therefore, requires further investigations. The electrical impermeable and electrical 
permeable crack-face conditions are two idealized models that have been widely 
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employed in the linear piezoelectric fracture modeling due to their mathematical 
simplicity. The permeable model, proposed by Parton (1976), assumes the continuity 
of a normal component of the electrical induction and the electrical potential across 
the geometrically identical crack surfaces. This is opposite to the impermeable 
model where the electric induction normal to surface of the crack is fully prescribed 
whereas the crack-face electrical potential is unknown a priori and discontinuous. It 
should be remarked that these two crack-face models could provide an inaccurate 
prediction of solution due to the ignorance of the influence of permittivity. In order 
to improve the modeling, Hao and Shen (1994) developed a semi-permeable 
electrical boundary condition which includes the effect of the dielectric permittivity 
of the medium within the crack cavity on the continuity of the electric field across 
the crack gap. In this point of view, the electrical impermeable and electrical 
permeable conditions are simply two extreme cases of the semi-permeable crack-
face condition. Later, McMeeking (2004) found that the total energy and the crack-tip 
energy release rates of a Griffith crack resulting from the use of the semi-permeable 
condition are not consistent. To overcome the energy inconsistency, Landis (2004) 
further modified the original semi-permeable model to obtain an energetically 
consistent model by integrating the traction normal to the crack face.  

From the comprehensive review of all involved literatures, most the existing 
solutions for the T-stress of cracks in elastic bodies have been well-established in the 
context of both two-dimensional and three-dimensional boundary value problems. 
However, the analytical and numerical solutions of the generalized T-stress have 
been very limited and restricted mostly to very simple settings. In addition, the 
integration of more suitable electrical crack-face conditions such as those described 
by energetically consistent and semi-permeable models in the determination of the 
generalized T-stress components and the study of their effects on that essential 
fracture data have not been well recognized. These existing gaps of knowledge 
directly motivate the proposed research.   
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1.3  Research Objective 

This research aims mainly to derive analytical and semi-analytical solutions of the 
generalized T-stress components for a penny-shaped (or circular) crack in 
piezoelectric media under various crack-face conditions and to preliminary explore 
the effect of crack-face conditions and crack-face loading on the generalized T-stress 
components along the crack boundary. 

1.4  Scope of Work 

The present work is carried out within following context: 
(1) A cracked medium is three-dimensional and occupies the whole space. 
(2) A piezoelectric material is assumed linear, homogeneous, and transversely 

isotropic with the poling direction and the axis of material symmetry normal 
to the crack surface. 

(3) A body is free of the body force and distributed electric charge. 
(4) A penny-shaped crack under various loading and crack-face conditions is 

considered. 
(4.1) For an impermeable crack, remote uniform mechanical/electrical loads, 

a pair of opposite normal concentrated forces acting on the crack 
surface, a pair of opposite concentrated charges acting on the crack 
surface, and arbitrarily distributed, crack-face normal traction and crack-
face surface charge are considered. 

(4.2) For a permeable crack, remote uniform mechanical/electrical loads, a 
pair of opposite normal concentrated forces acting on the crack surface, 
and arbitrarily distributed, crack-face normal traction are considered.  

(4.3) For a semi-permeable crack, uniform remote mechanical/electrical 
loads and uniformly distributed, crack-face normal traction are 
considered. 

(4.4) For an energetically consistent crack, uniform remote mechanical/ 
electrical loads are considered. 
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1.5  Research Methodology 

The proposed research mainly involves the development of both analytical and 
semi-analytical solutions of the generalized T-stress for various cases as indicated 
above. Available complete solutions of the generalized stress field for a circular crack 
subjected to fundamental loading conditions and various types of crack-face 
conditions are employed as the basis for the derivation of the generalized T-stress 
and the essential Green’s functions. To accomplish all proposed tasks, following 
fundamental theories, methodology and research procedure are employed. 

(1) Basis field equations including conservation law, kinematics, and constitutive 
relationship follow a classical theory of linear piezoelectricity. 

(2) The crack-face condition is simulated by four mathematical models including 
electrically permeable, electrically impermeable, electrically semi-permeable, 
and energetically consistent conditions. 

(3) Basic equations, crack-face conditions, and prescribed loading conditions are 
integrated to form a set of boundary value problems. 

(4) Closed-form solutions of the generalized stress field for certain fundamental 
cases, such as cracks under a pair of opposite normal concentrated forces 
(impermeable and permeable cases), a pair of self-equilibrated charges 
(impermeable case), and uniform remote mechanical/electrical loads (all 
crack-face conditions), are collected from existing literature. 

(5) A formula involving differentiations and limits is developed based on the 
near-front expansion of the generalized stress field for extracting the 
generalized T-stress. This formula together with standard differentiations and 
a proper limiting process is then employed to compute the generalized T-
stress Green’s function and the generalized T-stress components for all 
fundamental cases. 

(6) A method of superposition is applied together with the developed 
generalized T-stress Green’s function to establish the integral formula for the 
generalized T-stress components for both impermeable and permeable 
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penny-shaped cracks under arbitrarily distributed, crack-face surface charge 
and normal traction. 

(7) An efficient quadrature is employed to compute all involved singular integrals 
in the integral formula for general crack-face loading conditions. 

(8) The influence of crack-face loading conditions and crack-face conditions on 
the generalized T-stress components on the crack boundary is preliminary 
investigated. 

1.6  Expected Outcome and Contribution 

The present research offers (i) the closed-form expression of the generalized T-stress 
components for a circular crack under uniform remote mechanical/electrical loads 
and various crack-face conditions, (ii) the integral formula of the generalized T-stress 
for an impermeable circular crack under arbitrarily distributed, crack-face, normal 
traction and surface charge, (iii) the integral formula of the generalized T-stress 
components for a permeable circular crack under arbitrarily distributed normal 
traction, and (iv) fundamental understanding of the effect of various parameters such 
as the crack-face and loading conditions on the generalized T-stress components on 
the crack boundary. The derived solution can be also employed as the reliable 
benchmark solution in the verification procedure of computational techniques 
developed for modeling more general crack problems. 
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Chapter 2  

PROBLEM FORMULATION 

This chapter begins with describing basic field equations essential for formulating 
boundary value problems of linear piezoelectricity and, also, providing the definition 
of all involved parameters. Following sections present the clear description of the 
crack-face conditions considered in the present study, the near-front generalized 
stress field and essential formula for extracting the generalized T-stress, the 
superposition method employed to formulate the integral formula of the generalized 
T-stress components, and, finally, existing solutions of the generalized stress field for 
certain fundamental cases.  

2.1  Basic Field Equations 

Basic equations for a medium with zero body forces and body electric charges are 
adopted from the classical theory of linear piezoelectricity. The laws of conservation 
are expressed explicitly by 
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where ij  denotes components of a stress tensor; iD  denotes components of an 
electrical induction vector; the comma notation ,if  represents a partial derivative of 
any function f  with respect to a Cartesian coordinate ix ; and standard indicial 
notations apply. Here and in what follows, a standard indicial notation applies; 
specifically, lower-case subscripts range from 1 to 3 and the repeated lower-case 
index indicates the summation over its range. Components of the stress tensor and 
electric induction vector are linearly related to the electric field with its components 
denoted by  iE  and the strain tensor with its components denoted by   ij  via a set 
of fully coupled linear algebraic equations 

 

ij ijkm km mij m

i ikm km im m

E e E

D e E

 

 

 

 
  (2-2) 



 

 

13 

where ijkmE  denotes the elastic constants; mije  denotes the piezoelectric constants; 
and im  denotes the dielectric permittivity. The electric field  iE  and the strain 
tensor   ij  are given in terms of components of the displacement vector, denoted by 
  iu , and the electric potential, denoted by  , via the following linearized kinematics 
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Components of the mechanical traction, denoted by   it , and the surface electric 
charge, denoted by D , at any point on the smooth boundary can be computed in 
terms of the stress field and the electric induction vector by 
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where jn  denote components of an outward unit normal vector to the smooth 
surface. All field equations (2-1)-(2-3) can also be expressed in a more concise form 
(suggested by (Rungamornrat & Mear, 2008)) as follows:  

 

, 0iJ i    (2-5) 

,iJ iJKm K mE u   (2-6) 
 

where upper-case index ranges from 1 to 4 and the repeated upper-case index 
indicates the summation over its range; iJ  is termed the generalized stress which 
contains components of the stress tensor ij  and components of the electrical 
induction vector 4i iD  ; Ju  is termed the generalized displacement which 
contains components of the displacement ju  and the electrical potential 4u  ; 
and iJKlE  is termed the generalized moduli which contains elastic moduli ijklE , 
piezoelectric constants 4 4ij l l ij lijE E e  , and dielectric permittivity 44 44i l l i ilE E   

. Consistent with this new notation, the generalized traction, denoted by Jt  and 
computed from J iJ it n , contains the mechanical traction j ij it n  and the 
surface electric charge 4 4i it n D  . It can be remarked that the generalized 
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moduli iJKlE  defined above possesses the following symmetric property iJKl lJKiE E  
provided that 4l jiE  is selected to be identical to 4ij lE . 

2.2  Crack-face Conditions 

On the surface of the crack, the condition on the crack-face data such as the 
generalized displacement on the upper crack surface ( cS  ) and the lower crack 
surface ( cS  ), denoted by Ju   and Ju  , respectively, and the generalized traction on 
both the upper and lower crack surfaces, denoted by Jt

  and Jt
 , respectively, must 

be properly prescribed. In the current investigation, four types of crack-face models 
including electrically permeable, impermeable, semi-permeable, and energetically 
consistent crack-face conditions are treated (see details in Rungamornrat et al. 
(2015)). 
 For an impermeable crack model, the crack-face generalized traction Jt

  and 

Jt
  are fully prescribed whereas the crack-face generalized displacements Ju   and Ju   

are unknown a priori. For a permeable crack model, the mechanical crack-face 
tractions jt   and jt   are fully prescribed and the jump in the crack-face electrical 
potential and the sum of the crack-face surface electrical charge vanishes (i.e., 

4 44Δ 0u u u    and 4 44 0t t t   ) whereas the sum of the crack-face 
generalized displacement J J Ju u u   , the jump in the crack-face displacement 
Δ j j ju u u   , and the jump in the crack-face surface electrical charge 4 4 4Δt t t   
are unknown a priori. For a semi-permeable crack model, the crack-face generalized 
displacement Ju   and Ju  , and the jump in the crack-face surface electric charge 4Δt  
are unknown a priori whereas the mechanical crack-face tractions jt   and jt   are fully 
known, the sum of the crack-face surface electrical charge vanishes (i.e., 4 0t  ), 
and the following nonlinear relationship is satisfied 
 

4 4Δi i ct u n u       (2-7) 
 

where c  denotes the dielectric permittivity of a medium filled within the crack 
cavity. Finally, for an energetically consistent crack model, the crack-face generalized 
displacement Ju   and Ju  , the jump in the crack-face surface electrical charge 4Δt , 
and the jump in the mechanical crack-face normal traction, denoted by 
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i i i

       where j ji int n   and j ji int n  , are unknown a priori whereas 
the mechanical crack-face shear tractions, denoted by ii it      and ii it      
are fully known, the sum of the crack-face surface electrical charge and the sum of 
the mechanical crack-face shear traction vanish (i.e., 4 0t   and 0i i i

      ), 
and the following two nonlinear relations are satisfied 
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It is emphasized that the superscripts “ ” and “” are used only to designate 
quantities on the upper crack surface and the lower crack surface, respectively. 

2.3  Description of Problem 

Consider a three-dimensional body occupying the whole space and containing a 
circular (or penny-shaped) crack with the radius a as shown in Figure 2.1. For 
convenience, the reference Cartesian coordinate system  1 2 3; , ,x x x0  and the 
associated cylindrical reference coordinate system  ; , ,r z0   are introduced such 
that an origin 0  is located at the crack center, the 3x -axis directs upward, and the 
remaining axes follow the right-hand rule. A material constituting the body is 
assumed to be homogeneous, transversely isotropic, and linear piezoelectric. All 
involved material constants are fully prescribed whereas the axis of material 
symmetry and poling direction are assumed to direct normal to the crack surface. 

Besides the basic field equations (2-1)-(2-3), the prescribed crack-face 
boundary conditions have been found strongly affecting responses of the 
piezoelectric cracked medium. Thus, the proper understanding of the role of the 
crack-face condition on the fracture data along the crack boundary such as the 
generalized intensity factors and generalized T-stress is essential and requires the full 
investigation. In the present study, all four models of crack-face boundary conditions 
indicated above are considered and the different types of mechanical/electrical 
loading conditions are considered as follows. 
For a circular crack under the impermeable condition, six following loading cases are 
considered: (i) a pair of opposite, normal concentrated forces acting to the crack 
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surface (see Figure 2-2), (ii) a pair of opposite, concentrated electrical charge acting to 
the crack surface (see Figure 2.3), (iii) a self-equilibrated, crack-face, uniform normal 
traction 0

3t  and a self-equilibrated, crack-face, uniform surface charge 0

3d   (see Figure 
2-4(a-b)), (iv) uniform remote triaxial stress 

11 22 33{ , , }      and a uniform remote 
electrical induction 

1 2 3{ , , }d d d    (see Figure 2-5), (v) general, self-equilibrated, crack-
face normal traction 3t  (see Figure 2-6(a)), and (vi) general, self-equilibrated, crack-
face surface electrical charge 3d  (see Figure 2-6(b)). 
 
 
 
 
 
 

 
 
 
 
 

Figure 2-1: Schematic of circular crack with radius a contained in transversely 
isotropic, linear piezoelectric, infinite medium 

 
 
 
 
 
 
 
 

 
Figure 2-2: Schematic of circular crack under pair of opposite normal concentrated 
forces acting to crack surface 
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Figure 2-3: Schematic of circular crack under pair of opposite, concentrated electrical 
charge acting to crack surface 
 

For a permeable circular crack, four loading cases are considered: (i) a pair of 
opposite, normal concentrated forces acting to the crack surface (see Figure 2-2), (ii) 
self-equilibrated, crack-face, uniform normal traction 0

3t  (see Figure 2-4(a)), (iii) 
uniform remote triaxial stress 

11 22 33{ , , }      and a uniform remote electrical 
induction 

1 2 3{ , , }d d d    (see Figure 2-5), and (iv) general, self-equilibrated, crack-face 
normal traction 3t  (see Figure 2-6(a)). 

 
 
 
 
 

 
 

 
 

Figure 2-4: Schematic of circular crack under (a) self-equilibrated, crack-face, uniform 
normal traction 0

3t  and (b) self-equilibrated, crack-face, uniform surface charge 0

3d  
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Figure 2-5: Schematic of circular crack under uniform remote triaxial stress 

11 22 33{ , , }      and uniform remote electrical induction 
1 2 3{ , , }d d d    

 
For a semi-permeable penny shaped crack, two following loading cases are 

considered: (i) self-equilibrated, uniform normal traction 0

3t  (see Figure 2-4(a)) and (ii) 
a uniform remote triaxial stress 

11 22 33{ , , }      and a uniform remote electrical 
induction 

1 2 3{ , , }d d d    (see Figure 2-5). Finally, for an energetically consistent 
circular crack, only the constant remote triaxial stress 

11 22 33{ , , }      and a uniform 
remote electrical induction 

1 2 3{ , , }d d d    (see Figure 2-5) are considered. 
 

 
 

 
 
 
 

 
 
Figure 2-6: Schematic of circular crack under (a) general, self-equilibrated, crack-face, 
normal traction and (b) general, self-equilibrated, crack-face, surface charge 

(a) 

 

 

 

 

 

 

 

 

(b) 
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2.4  Near-front Generalized Stress Field 

By following an analogy as that employed by Williams (1957), the local generalized 
stress field in a region containing the point cx  on the crack front can be expressed 
as 
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where the “bar” is used to designate quantities referring to the local reference 
coordinate system 1 2 3{ ; , , }c x x xx  with the origin at cx  and the corresponding 
orthonormal basis 1 2 3{ , , }e e e  such that 1 3x x  is a tangent plane to the crack 
surface at cx  whereas the 1 2x x  plane is normal to the crack front at cx  as shown 
in Figure 2.6; ( , )r   denotes the polar coordinates of a point in the 1 2x x  plane; 

( ; , )iJ c r x  denotes the generalized stress at any point in the 1 2x x  plane in the 

neighborhood of the point cx ;  ,K

iJ T

iJ  , and  m

iJ  are functions independent of 
the radial coordinate r . This asymptotic expansion of the near-front field is 
expressed in the same form as that appearing in Rungamornrat and Pinitpanich 
(2016). Regarding to the near-front expansion (2-9), it is evident that the first term 
represents the dominant part of the field which is singular of order 1/ r  at the 
point cx ; the second term represent the constant field that is independent of the 
radial coordinate r , and the third term represents the non-singular part that 
vanishes identically at the point cx  along the crack front.  

Now, let us define the components ( )iJ iJ cT T x  referring to the local 
reference coordinate system 1 2 3{ ; , , }c x x xx  such that 
 

( ) ( ; 0)T

iJ c iJ cT   x x   (2-10) 
 

From the definition (2-10) and the definition of the generalized stress, it is apparent 
that ij jiT T  and, as a result, only nine components are independent. In addition, 
the components ( )iJ cT x  represent the non-singular part of the generalized stress 
field at the point cx  and not all these components are unknown a priori. From the 
continuity of the finite part of the generalized stress at the point cx , it can be readily 
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verified that the four components 12T , 22T , 23T  and 24T  can be obtained in terms of 
the generalized crack-face traction at a limiting point cx  on the surface of the crack. 
As a result, 12 22 23 24, , }{ ,T T T T , 12 22 23, ,{ }T T T , 12 22 23, ,{ }T T T , and 12 23, }{T T  are known a 
priori for electrically impermeable, electrically permeable, electrically semi-
permeable, and energetically consistent cracks, respectively. The components 22T  
and 24T  can be readily obtained once the unknown crack-face generalized tractions 
are solved. The five independent components 11 13 33 14 34, , , }{ ,T T T T T  are always 
unknown and they are commonly termed the generalized T-stress components. The 
first three components 11 13 33, ,{ }T T T  are the mechanical T-stress components 
associated with the stress field similar to the elastic case (see also the work of 
Rungamornrat and Pinitpanich (2016)) whereas the last two components 14 34, }{T T  are 
the electrical T-stress components associated with the electric induction field. The 
generalized T-stress can be obtained if the generalized stress field at least in the 
region embedding the crack front is known. 

From the near-front asymptotic expansion of the generalized stress field (2-9) 
and the definition (2-10), components of the generalized T-stress are given explicitly 
in terms of the generalized stress field by 
 

 
 
 
 
 
 
 
 

 
 
 

 

Figure 2-7: Schematic of crack front and local reference coordinate system for 
defining generalized T-stress components 
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x x   (2-11) 

 

where  11,13,33,14,34Q . According to the formula (2-11), it becomes evident 
that the generalized T-stress components can be calculated from existing generalized 
stress fields of a cracked body via standard differentiations and limiting processes 
without directly carrying the series expansion. 

2.5  Existing Generalized Stress Fields  

It is apparent from the earlier section that the generalized stress field is the key 
ingredient for extracting the generalized T-stress. To construct the complete 
analytical solution for the generalized stress field, various analytical techniques 
based on the integral transforms, the representation theories, and potential-function-
based theories have been applied successfully for cracked bodies with simple crack 
and domain geometries and loading conditions as recognized in the literature. In the 
present investigation, existing complete solutions of the generalized stress field for a 
circular crack embedded in a three-dimensional, transversely isotropic, linear 
piezoelectric, whole space subjected to four different crack-face conditions are 
utilized as the basis for the derivation of the generalized T-stress components for 
various scenarios:  

 An impermeable crack: Chen and Shioya (1999) applied the potential-
function-based theory to derive the closed-form solution of the generalized 
stress field of a penny-shaped crack in a three-dimensional piezoelectric 
whole space under a pair of self-equilibrated, normal concentrated forces 
and a pair of self-equilibrated concentrated electric charges acting on both 
crack surfaces. For the special case of uniform remote mechanical and 
electrical loading, Chen et al. (2000) utilized the potential-function-based 
theory together with superposition method to derive the closed-form solution 
of the generalized stress field. 

 A permeable crack: Chen and Lim (2005) applied the potential-function-based 
theory to obtain the analytical solution of the generalized stress field of a 
circular crack in a three-dimensional, piezoelectric whole space under a pair 
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of opposite, unit normal, concentrated forces and uniform remote 
mechanical and electrical loading conditions.  

 A semi-permeable crack: Li and Lee (2004b) employed the Hankel integral 
transform technique to obtain the exact solution of the generalized stress 
field of a circular crack in a three-dimensional piezoelectric whole space 
under uniform remote mechanical and electrical loading conditions. 

 An energetically consistent crack: Li et al. (2011) applied the classical 
complex potential theory to derive the generalized stress field of a circular 
crack contained in a three-dimensional, piezoelectric whole space under 
uniform remote electrical and mechanical loading conditions. 

2.6  Generalized T-stress for General Generalized Traction 

The generalized T-stress Green’s functions obtained from equation (2-11) for the 
electrically impermeable and permeable circular cracks are utilized along with the 
superposition method to construct an integral formula for computing the generalized 
T-stress components of circular cracks under general, crack-face, normal traction and 
general, crack-face, surface electrical charge for the impermeable case and under 
arbitrarily distributed, surface electric charge for the permeable case. 

For the impermeable case, let us consider a circular crack under general, self-
equilibrated, crack-face, normal traction 3 3t t    and surface electrical charge 

4 4t t   . The generalized T-stress components for this case, denoted by QT  for 

 11,13,33,14,34Q , can be obtained in an integral form as 
 

3 41 1 1 1 1 1 1 2 2 2 2 2 2
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Q Q QT T r t rdrd T r r r dr dt t

 

 

         

 

       (2-12) 

 

where GP

QT  is the generalized T-stress Green’s function due to a pair of opposite, unit 
normal concentrated forces under the impermeable crack-face boundary condition 
and GE

QT  is the generalized T-stress Green’s function due a pair of opposite, unit 
concentrated electrical charges under the impermeable crack-face boundary 
condition. 
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For the permeable case, consider a circular crack under a general, self-
equilibrated, crack-face, normal traction 3 3t t   . By following the same 
methodology as that for the impermeable case, the integral formula of the 
generalized T-stress components is then obtained as 
 

1 1 1 1 13

0

1( ) ( ; , ) ( , )GP

Q Q

a

tT T r t rdrd



  




       (2-13) 

 

where GP

QT  is the generalized T-stress Green’s function due to a pair of opposite, 
unit normal concentrated forces under the electrically permeable crack-face 
boundary condition. 
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Chapter 3  

DETERMINATION OF GENERALIZED T-STRESS COMPONENTS 

By applying the formula (2-11) along with existing solutions of the generalized stress 
field indicated in Chapter 2, the direct differentiations, and proper limiting procedure, 
the generalized T-stress components can be derived in an exact form involving only 
elementary functions. It is noted that the generalized stress field of cracked media 
under the remote loading can be readily related to that of the cracked medium 
under an equivalent crack-face generalized traction via the method of superposition. 
This chapter mainly presents the exact solutions of the generalized T-stress 
components under four different crack-face conditions and the Green’s functions for 
the generalized T-stress components for both impermeable and permeable crack-
face conditions. Finally, the integral formula of the generalized T-stress components 
for both electrically impermeable and permeable cracks under general loading 
conditions is presented.  

3.1 Generalized T-stress of Impermeable Crack under Uniform Load 

The generalized stress fields proposed by Chen and Shioya (1999) are applied 
together with the methodology described in the previous chapter to provide the 
generalized T-stress components for an impermeable circular crack under the 
uniform remote electrical inductions 

1 2 3{ , , }d d d   , the uniform remote triaxial 
stresses 

11 22 33{ , , }     , and the self-equilibrated, uniform normal traction 0

3t  and self-
equilibrated uniform electrical charge 0

3d  on the crack surface. The final set of results 
is given explicitly as 
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13 1413 3341,  ,  dT T T d        (3-3) 
 

where 11 13 33{ , , }      and 1 3{ , }d d   are components of the remote triaxial stresses 
and remote electrical inductions referring to the local coordinate system defined in 
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Section 2.4 and all involved quantities are given by  
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4 66 44/s c c   (3-20) 
 

All involved material constants are defined by 11 1111c E , 13 1133c E , 33 3333c E , 

44 1313c E , 66 1212c E , 15 1341e E , 31 1143e E , 33 3343e E , 11 1441E   , 33 3443E    
and the three parameters 2 2 2

1 2 3{ , , }s s s  are solutions of the nonlinear equation 
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6 4 2 0as bs cs d      (3-21) 
 

where constants a, b, c, d are defined by 
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 2

11 15 44 11d c e c     (3-25) 
  

All involved parameters given above can be also found in the work of Chen and 
Shioya (1999). 

3.2 Generalized T-stress of Permeable Crack under Uniform Load 

By using the generalized stress field proposed by Chen and Lim (2005) along with the 
same procedure utilized in Section 3.1, the closed-form solution of the generalized 
T-stress components for an electrically permeable circular crack under the uniform 
remote triaxial stresses 

11 22 33{ , , }     , the uniform remote electrical inductions 

1 2 3{ , , }d d d   , and the self-equilibrated, crack-face, uniform normal traction 0

3t  can be 
obtained as 
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where parameter 
ic  are given by 
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and all remaining parameters are defined in the same fashion as those provided in 
Section 3.1 (the definition of all parameters can be also found in the work of Chen 
and Lim (2005)). 
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3.3 Generalized T-stress of Semi-permeable Crack under Uniform Load 

By starting with results reported in Li and Lee (2004b), the generalized T-stress 
components for an electrically semi-permeable circular crack under the uniform 
remote tri-axial stresses 

11 22 33{ , , }     , the uniform remote electrical inductions 

1 2 3{ , , }d d d   , and the self-equilibrated, crack-face, uniform normal traction 0

3t  can be 
obtained explicitly as 
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where all involved parameters are defined by 
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with c  denoting the dielectric permittivity of a medium filled within the crack cavity 
and 2

j , 3 j  and 4 j  for j = 1, 2, 3 being solved from the two nonlinear algebraic 
equations 
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The equation (3-50) & (3-51) can be further reduced to a cubic equation in terms of 
2

j : 
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0 11 44 11 15( )d c c e     (3-56) 
 

It should be remarked that only the value of 3

cd  computed from (3-38) that falls 
between those of the two limiting cases (i.e., electrically permeable and electrically 
impermeable cases) is acceptable. Remark that the closed-form solution of the semi-
permeable model can be further reduced to the special cases of impermeable and 
permeable models by taking the dielectric permittivity of the crack medium within 
the crack cavity c  to zero and infinity, respectively. 

3.4 Generalized T-stress of Energetically Consistent Crack under Uniform 
Load 

The generalized T-stress components for an energetically consistent circular crack 
under the uniform remote triaxial stresses 

11 22 33{ , , }      and the uniform remote 
electrical inductions 

1 2 3{ , , }d d d    can be derived using the same procedure and the 
analytical solution presented by Li et al. (2011). Final results are given explicitly by 
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where all involved parameters are defined by (also see the work of Li et al. (2011)) 
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with jv , 1 jk  and 2 jk  obtained from 
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It is also important to remark that 3

cd  computed from (3-65) is acceptable if it 
induces a positive value of the crack-opening displacement. Remark that the 
analytical solution associated with the energetically consistent model can be further 
specialized to the solutions of impermeable and permeable crack-face conditions by 
taking the dielectric permittivity of a medium within the crack cavity c to zero and 
infinity, respectively. 

3.5 Generalized T-stress Green’s Function for Impermeable Crack 

Consider a problem concerning a circular crack under a pair of opposite, unit normal 
point forces and electric point charges as reported by Chen and Shioya (1999). The 
closed-form solution of the generalized-stress Green’s function is given by 
 

     
3

1 66 11 13 1 31 2 1 31 2 32

1

8G

j j j j j j j j

j

A c c c s e s f z f z    


            (3-72) 

   
3

2 66 1 41 2 42

1

8G

j j j j

j

Ac f z f z  


  
    (3-73) 

     
3

44 1 15 2 1 51 2 52

1

4G

z j j j j j j j

j

A c s e f z f z    


      
      (3-74) 



 

 

31 

     
3

15 1 11 2 1 51 2 52

1

4G

j j j j j j j

j

D A e s f z f z    


      
      (3-75) 

 

in which a superscript “G” is used to designate Green’s function, 1i   , j jz s z , 
 

1

G G G

rr       (3-76) 

  2

2 2G G G G i

rr ri e 

         (3-77) 

 G G G i

z rz z e 

      (3-78) 

 G G G i

rD D D e 

    (3-79) 

1 4 3j j jc g d g     (3-80) 

2 1 2j j jd g c g     (3-81) 
 

All other involved parameters defined in Section 3.1 apply here and the complex 

functions      3 4 5, ,j j j j j jf z f z f z  are defined by 
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with all involved parameters defined explicitly by 
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 2 2 22 cosj j j jR r r rr z        (3-91) 
 

By first noting following properties (see also the work of Rungamornrat and 
Pinitpanich (2016) 
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and then substituting these results into (3-82)-(3-84) and (3-72)-(3-75), the Green’s 
function for the generalized stress at any point on the plane 0z   is given explicitly 
by 
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where       3 4 50 , 0 , 0f f f    for 1,2   are given by 
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with the parameter 0R   given by         
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By introducing the variable transformation r r a   together with the proper limiting 

process, for    , ,r a   ,  it is readily to show that  
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into (3-98)-(3-100) and (2-11) along with the relations (3-76)-(3-79), the generalized T-
stress components are obtained as 
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14 0GT    (3-108) 

34 0GT    (3-109) 
 

where ( )f  and ( )f  represent real and imaginary parts of a complex function f , 

respectively. The expressions (3-105)-(3-107) can be reduced further by introducing 

new variables 1 2 1 2, , ,l l    satisfying 
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(3-110) 

 2 2 2sin sinr l     

 2 2 2cos cosr l a      
(3-111) 

 

and j j jA iB      where jA   and jB   are real and imaginary parts of j . The 

graphical interpretation of the new variables 1 2 1 2, , ,l l    is indicated in Figure 3-1. 

  

 

 

 

 

 

 

 

 

 

 
Figure 3-1: Graphical interpretation of variables 1r , 2r , 1l , 2l , 1 , 2 , , 1 , and 2  

The final form of the generalized T-stress Green’s function is now given by 
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where GP

QT  and GE

QT  are components of the generalized T-stress Green’s function 

due to a pair of opposite, unit normal concentrated forces and a pair of opposite, 

unit concentrated, electrical charges, respectively. The explicit expressions of both 
GP

QT  and GE

QT  are given by 
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From the formula (3-113)-(3-118), it is apparent that the generalized T-stress Green’s 
functions of an impermeable crack depend on material properties and are singular 

only at 0l   of  21/ lO . 
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3.6 Generalized T-stress Green’s Function for Permeable Crack 

Consider, next, a circular crack under a pair of opposite, unit normal point forces 
presented by Chen and Lim (2005), the exact solution of the generalized stress 
Green’s function is given by 
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where 1 2 1 2, , ,G G G G

z z     and 1j , 2j , 3j  are defined by 
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All other involved parameters defined in Section 3.1 apply here except jc  are 

defined in Section 3.2 and the complex functions      3 4 5, ,j j jf z f z f z  are given 
explicitly by 
 

 
 

2 2 2
1 1

3 3 2 2 22 2
0 0 2 1 00

tan
r lz h h z

f z
R R l l Rz R h

    
     

   
  (3-130) 

 
 

    

0

0

0

2 22 2
00 1 10

4 2 2 32 2
0 02

2 2 2 2 2 2
0 2 0

2 2 2 2 2 2 22 2
0 0 2 1 22 0

32
tan tan

i

i i

i

z R za r r e s h
f z

t s t s t R Rl a

a r l a r e zh t r e

R h tR l l l rt s l rr e



 

 

 

 

     
      
     

  
   

       

  (3-131) 



 

 

37 

  1

4 3 2 2 2 2 2

0 0 0 2 1 0

tan
it h h re t

f z
R R R h l l R


    

     
    

  (3-132) 
 

where  
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By applying the properties (3-92)-(3-93) to the relations (3-130)-(3-132) and (3-119)-
(3-122) , the Green’s function of the generalized stress at any point on the plane 

0z   is given by 
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where  1g  is defined in Section 3.1, and      3 4 50 , 0 , 0f f f   are obtained as 
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with 00R  defined by 
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By introducing, again, the variable transformation r r a   along with the proper 

limiting process, it can be proved, for    0 0, ,r a  , that  
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(3-145)-(3-147) into (3-137)-(3-140), (2-11), and (3-123)-(3-126), the generalized T-stress 
Green’s functions are obtained as 
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14 0GT    (3-151) 

34 0GT    (3-152) 
 

The expressions (3-148)-(3-150) can be further reduced by introducing the following 
variable transformations  
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(3-153) 

 

and the representation j j jc A iB   where jA  and jB  are real and imaginary parts 
of jc . The graphical interpretation of the variables ,l   is indicated in Figure 3-2.  The 
generalized T-stress Green’s function can be given explicitly by 
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It is clear that the generalized T-stress Green’s functions of an electrically permeable 

crack also depend on material properties and are singular at 0l   of  21/ lO . 

3.7 Generalized T-stress Components for General Crack-face Loading 

Results of the generalized T-stress Green’s function established in Section 3.5 and 
Section 3.6 are employed as a basis to formulate the general integral formula for 
computing the generalized T-stress components for a circular crack subjected to 
general crack-face loads.    
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Figure 3-2: Graphical interpretation of variables 0r , l , 0 ,  and   
 

3.7.1  Generalized T-stress Components for Impermeable Crack 

For an impermeable circular crack under the uniform remote triaxial stresses 

11 22 33{ , , }     , the uniform remote electrical inductions 
1 2 3{ , , }d d d   , and the self-

equilibrated, crack-face, general normal traction 3t  and the self-equilibrated, crack-
face, general electrical charge 3d , the integral formula for the generalized T-stress 
components is given implicitly by  
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where iJ , iJ  , GP

iJ , and GE

iJ  are local components of the generalized stress field, 
local components of the uniform remote triaxial generalized stresses iJ   (including 
the remote triaxial stress 

11 22 33{ , , }      and remote electrical inductions 

1 2 3{ , , }d d d   ), components of the generalized stress Green’s function GP  and GE  
under a pair of opposite, unit normal point forces and opposite, unit point charges, 
respectively. By following the work of Rungamornrat and Pinitpanich (2016), i.e., 
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employing equation (2-11) together with the expression (3-157), the generalized T-
stress components at any point  , , 0a   along the crack front is given by 
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where QT   represents the generalized T-stress components associated with the 
uniform remote triaxial stress iJ  ;  0

QT   are the generalized T-stress components 
corresponding to the uniform portion of the general applied traction  3 1 1,t r   and 
general electrical charge  3 2 2,d r   with the magnitude equal to  3 1 1,t r a     and 

 3 2 2,d r a    , respectively; and  1

QT   represent the generalized T-stress 
components associated with the remaining portion of the general applied traction 

 3 1 1,t r   and the general electrical charge  3 2 2,d r   with its magnitude equal to 
zero at the point  ,a  , respectively.  

By employing the condition    3 1 1 3, , 0t r t a   ,    3 2 2 3, , 0d r d a    at 
the point  ,a   and the fact that the singularity of  , ,0; ,G

Q r r     is present only 
at a location where the concentrated load is applied together with interchanging the 
order of limits, integrations and differentiations, the generalized T-stress  1

QT   can 
be obtained as       
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By applying the definition of the generalized T-stress, the relation (3-162) reduces to  
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where      1 1 1 3 1 1 3, , ,p r t r t a     and      2 2 2 3 2 2 3, , ,p r d r d a    . By 
applying the variable transformations (3-110)-(3-111), it leads to the alternative form 
of (3-163)  
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where       1 1 1 1 1 1 1 1 1 1
ˆ , , , ,p l p r l l     and       2 2 2 2 2 2 2 2 2 2

ˆ , , , ,p l p r l l    .  
It should be evident from the formula (3-113)-(3-118) that the function 

 1 1
ˆ ; ,GP

QlT l   and  2 2
ˆ ; ,GE

QlT l   appearing in (3-164) is singular only at 0l   of 

 1/ lO ,  1 1
ˆ 0, 0p    and  2 2

ˆ 0, 0p   . Moreover, the normal traction  3 1 1,t r   
and the normal electric induction  3 2 2,d r   are the most important factors for the 
existence of the integral (3-164). If the functions  3 1 1,t r   and  3 2 2,d r   are 

sufficiently smooth at a point  ,a   with    1

1 1 1
ˆ ,p l O l  ,    2

2 2 2
ˆ ,p l O l  , and 

1 2, 0   , the existence of all integrals appearing in (3-164) is confirmed since all 

involved integrands are of  1 1l O  and  2 1l O . For 1 2, 1   , all involved 
integrands are obviously nonsingular and all integrals can be efficiently evaluated by 
Gaussian quadrature. For 1 20 , 1   , the involved integrands are weakly singular 
and a numerical integration technique indicated below is employed. By introducing 
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the change of variables   1

1 1 1l l l l 
   and   2

2 2 2l l l l    where 1  and 2  are 
selected constants, the integral (3-164) can be modified as  
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By setting 1 11/   and 2 21/  , the integral (3-165) now becomes  
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It is apparent that all integrals appearing in (3-166) can now be efficiently integrated 
by standard Gaussian Quadrature since the weak singularity at 0l   is completely 
removed by the specific choice of 1 2,  . 
 Since the closed-form solution of the generalized T-stress of an impermeable 
circular crack under the uniform remote and crack-face loadings is already 
established in Section 3.1, the generalized T-stress components QT   and  0

QT   are 
then given by 
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0 0 0

13 14 340 0 0,  ,  T T T     (3-171) 
 

where the loading parameters 0

ip  and ip  are defined in a fashion similar to those 
indicated in the relation (3-5), i.e., 

3 4 33 2 1 3( ) ( )i i i i ip d g c g c g d g d       and 
0 0 0

3 4 33 2 1 3( ) ( )i i i i ip d g c g c g d g d    . 
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3.7.2  Generalized T-stress Components for Permeable Crack  

For a permeable circular crack under the uniform remote triaxial stresses 

11 22 33{ , , }     , the uniform remote electrical inductions 
1 2 3{ , , }d d d   , and the self-

equilibrated, crack-face, general normal traction 3t , the integral formula of the 
generalized T-stress components are given implicitly by  
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By following the procedure similar to that employed by Rungamornrat and 
Pinitpanich (2016), components of the generalized T-stress at any point  , , 0a   on 
the crack boundary can be also written as 
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where QT  ,  0

QT  ,  1

QT   are defined by  
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Note that the meaning of QT  ,  0

QT  , and  1

QT   is similar to that described in 
Section 3.7.1. 

Again, by employing the condition    3 1 1 3, , 0t r t a     at the point  ,a   
and the fact that the singularity of  , ,0; ,G

Q r r     is present only at a location 
where the concentrated force is applied along with the interchange of the order of 
limits, differentiations and integrations, the generalized T-stress  1

QT   can be 
obtained as 
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By utilizing the definition of the generalized T-stress, the expression (3-177) can be 
simplified to 
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where      0 0 3 0 0 3, , ,p r t r t a    . By applying the variable transformations 
(3-110)-(3-111) to the integral relation (3-178), it leads to an alternative integral 
formula 
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where       0 0
ˆ , , , ,p l p r l l    . It should be evident from the formula (3-154)-

(3-156)  that the function  ˆ ; ,GP

QlT l   appearing in (3-179)  is singular only at 0l   

of  1/ lO  and  ˆ 0, 0p   . If the traction data  3 0 0,t r   is sufficiently smooth at a 

point  ,a   such that    ˆ ,p l l  O  with 0  , the integrand of (3-179) is 
obviously of 1 1

( )l
 O  and, as a result, the existence of the integral in (3-179) is 

confirmed. For 1  , the integral appearing in (3-179) is clearly not singular and can 
be integrated using standard Gaussian quadrature while for 0 1  , the integral 
contains a weakly singular integrand and the same integration scheme described in 
Section 3.7.1 is applied. Specifically, by utilizing the variable transformation 

 l l l l     where   denotes a pre-selected constant, the formula (3-179) can be 
modified as   
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By setting 1/  , (3-180) now becomes  
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It is evident that for the chosen  , the singularity of the integrand at 0l   is fully 
eliminated. Now, the resulting integral can be integrated accurately and efficiently by  
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standard Gaussian quadrature. 
 By using the exact solution of the components of the generalized T-stress for 
a permeable circular crack under uniform remote and crack-face loading presented in 
Section 3.2, the generalized T-stress components QT   and  0

QT   can be given 
explicitly by 
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Chapter 4  

NUMERICAL RESULTS 

Verification of the integral formula of the generalized T-stress components derived in 
the previous chapter for impermeable and permeable circular cracks subjected to 
general crack-face loading conditions is presented in this chapter. In addition, the 
influence of the crack-face and applied loads on the generalized T-stress along the 
crack boundary is reported.   

4.1 Verification of Integral Formula for Generalized T-stress  

Consider impermeable and permeable circular cracks under only the linearly 
distributed, self-equilibrated, crack-face normal traction  3 0 11 / / 2t x a   along 
the global x1-axis (see Figure 4-1). The body is made from a representative 
transversely isotropic, piezoelectric material with the properties similar to those of 
PZT-5H, shown in Table 4-1. To verify the integral formula developed in Section 3.7, 
two benchmark cases are considered. First, the formula (3-158) for the impermeable 
crack is specialized to an elastic case by simply eliminating the electric-mechanical 
coupling effect (i.e., 15 31 33 0e e e   ) and results are then compared with the 
analytical solution reported by Rungamornrat and Pinitpanich (2016) as shown in 
Figure 4-2. Next, results obtained from the integral formula (3-158) and (3-173) are 
benchmarked with solutions obtained from a numerical technique presented by 
Limwibul et al. (2016) in Figure 4-3 and Figure 4-4 for impermeable and permeable 
cracks, respectively. 
 

  
 
 
 
 
 

Figure 4-1: Circular crack under linearly distributed, self-equilibrated, crack-face 
normal traction  0 11 / / 2x a   along the global x1-axis 
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Table 4-1: Elastic moduli, piezoelectric constants and dielectric permittivities of 
representative, transversely isotropic, piezoelectric solid identical to PZT-5H (eg. Li 
and Lee (2004b))  
 

Elastic constants 
( x 109 Pa) 

c11 126.00 
c13 53.00 
c33 117.00 
c44 35.30 
c66 35.50 

Piezoelectric constants 
(C/m2) 

e15 17.00 
e31 -6.50 
e33 23.30 

Dielectric permittivities 
( x 10-9 C/(Vm)) 

11 15.10 
33 13.00 

   
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Figure 4-2: Normalized T-stress components of circular crack due to linearly 
distributed, self-equilibrated, crack-face, normal traction  0 11 / / 2x a   by ignoring 
the electro-mechanical effect. The reference solution is taken from Rungamornrat 
and Pinitpanich (2016). 
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Figure 4-3: Normalized generalized T-stress components of impermeable circular 
crack subjected to linearly distributed, self-equilibrated, crack-face, normal traction 

 0 11 / / 2x a  . The reference solution is generated by a technique proposed by 
Limwibul et al. (2016). 
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Figure 4-4: Normalized generalized T-stress components of permeable circular crack 
subjected to linearly distributed, self-equilibrated, crack-face, normal traction 

 0 11 / / 2x a  . The benchmark solutions are obtained from numerical technique 
developed by Limwibul et al. (2016). 
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It is evident from these results that numerical solutions generated by the proposed 
integral formula exhibit an excellent agreement with the reference solutions for both 
cases. This good agreement of results should ensure the correctness of both the 
proposed integral formula and the implemented numerical quadrature. 

4.2 Generalized T-stress Components under Uniform Loading Conditions 

From the closed-form solutions presented in Sections 3.1–3.4, it is apparent that the 
value of the generalized T-stress components 13 14 34, ,T T T  is independent of the 
uniform crack-face, normal traction and uniform crack-face electrical charge, 
dependent only on the in-plane components of the remote triaxial stresses and 
remote electrical inductions, and independent of the electrical crack-face conditions. 
In addition, for the permeable case, the out-of-plane electrical induction 3d   shows 
no contribution to both the mechanical T-stress components 11 33 13, ,T T T  and the 
electrical T-stress components 

14 34,T T . By integrating the effect of the dielectric 
permittivity of a medium within the crack gap, both electrically semi-permeable and 
energetically consistent cases introduce a new parameter 3

cd  which significantly 
influences the values of the generalized T-stress components 

11T  and 33T . 
To demonstrate the effect of the crack-face conditions and the remote 

mechanical/electrical loading, the generalized T-stress components of a circular crack 
under the uniform remote triaxial stresses  

11 02   , 
22 0   , 

33 02    and the 
uniform remote electrical inductions 

1 02d d  , 
2 0d d  , 

3 02d d   are computed and 
reported in Figure 4-5 to Figure 4-12 for electrically impermeable, electrically 
permeable, electrically semi-permeable, and energetically consistent cracks. In the 
numerical study, the dielectric permittivity of a medium within the crack cavity for 
both electrically semi-permeable and energetically consistent cracks is taken to be 

0/ 0.1c    where  12

0 8.85 10 C/ Vm    is the value of the dielectric permittivity 
of the air. In addition, the normalized generalized T-stress components at 0   are 
also reported as a function of the normalized dielectric permittivity 0/c   for the 
remote mechanical load and the combined remote mechanical/electrical loads in 
Figure 4-11 and Figure 4-12, respectively.  
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Figure 4-5: Normalized generalized T-stress component 11T  along the crack front. 
Results are obtained for 

0/ 0.1c   , 6

0 1 10 Pa    and 0 0d  . 
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Figure 4-6: Normalized generalized T-stress component 33T  on crack boundary. 
Results are obtained for 

0/ 0.1c   , 6

0 1 10 Pa    and 0 0d  . 
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Figure 4-7: Normalized generalized T-stress component 11T  on crack boundary. 
Results are obtained for 

0/ 0.1c   , 6

0 1 10 Pa    and 3 2

0 1 10 C/md   .  
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Figure 4-8: Normalized generalized T-stress component 33T  along the crack front. 
Results are obtained for 

0/ 0.1c   , 6

0 1 10 Pa    and 3 2

0 1 10 C/md   . 
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Figure 4-9: Normalized generalized T-stress component 13T  along the crack front for 
all crack-face conditions and 6

0 1 10 Pa    
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Figure 4-10: Normalized generalized T-stress components 14T  and 34T  along the crack 
front for all crack-face conditions and 6

0 1 10 Pa    and 3 2

0 1 10 C/md    
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Figure 4-11: Normalized generalized T-stress component 11T  at 0   versus the 
normalized dielectric permittivity 0/c   for 6

0 1 10 Pa    and 0 0d   
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Figure 4-12: Normalized generalized T-stress component 11T  at 0   versus the 
normalized dielectric permittivity 0/c   for 6

0 1 10 Pa    and 3 2

0 1 10 C/md    
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It is evident from these results that for a medium subjected only to the 
remote triaxial stresses (i.e., 0 0d  ), the electrically impermeable and electrically 
permeable crack models yield, respectively, the upper and lower bound solutions of 
the generalized T-stress components 11T  and 33T  on the entire crack boundary (see 
Figure 4-5 and Figure 4-6). In addition, the generalized T-stress components 11T , 33T  
predicted by the semi-permeable model are only slightly different from the lower 
bound solution generated by the permeable case while solutions obtained from the 
energetically consistent crack model fall in between the electrically impermeable 
and permeable solutions. For this particular loading case, the generalized T-stress 
component 13T  is independent of the crack-face conditions and its variation along 
the crack boundary due to the influence of the in-plane remote stresses is clearly 
indicated in Figure 4-9 whereas the components 14T  and 34T  identically vanish. 

Unlike the previous case, for a combined remote mechanical/electrical 
loading (i.e., 6

0 1 10 Pa    and 3 2

0 1 10 C/md   ), the upper and lower bounds of 
the generalized T-stress components 11T  and 33T  change to those generated by the 
energetically consistent and impermeable models, respectively (see Figure 4-7 and 
Figure 4-8). It can be also seen from these results that 11T  and 33T  generated by the 
impermeable model are significantly different from solutions predicted by the other 
three crack-face models. In addition, 13T  is still identical to the previous case 
whereas 14T  and 34T  are now non-zero but still independent of the crack-face 
conditions. The variation of 14T  and 34T  along the crack front is due mainly to the 
influence of the non-zero in-plane electric inductions 

1 2,d d   as indicated in Figure 
4-10. 

To further demonstrate the influence of the dielectric permittivity of the 
medium within the crack cavity on the value of the generalized T-stress components, 
results are obtained for a range of 0/c   from 0 to 2. Since the behavior of both 
components 11T  and 33T  is similar for the entire crack boundary as indicated above 
and 13 14 34, ,T T T  are independent of the crack-face conditions, it is sufficient to report 
only the generalized T-stress component 11T  at a representative location at 0   
along the crack-front as indicated in Figure 4-11 and Figure 4-12. In the absence of 
the remote electrical loading (see Figure 4-11), it is apparent that the electrically 
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permeable and impermeable solutions constitute the lower and upper bounds, 
respectively. In addition, as the dielectric permittivity increases from zero, semi-
permeable and energetically consistent solutions start deviating from the 
impermeable solution and gradually converging to that of the permeable case for a 
sufficiently large value of 0/c  . For the case of combined remote triaxial stresses 
and electric inductions, the permeable and impermeable models yield the upper 
and lower bounds of the semi-permeable solution for the entire range of 0/c   
considered (see Figure 4-12). However, results of the energetically consistent case 
show that as the dielectric permittivity increases from zero, the value of 11T  
increases rapidly to its peak value above the permeable solution and then gradually 
decreases monotonically to that predicted by the permeable model. 

4.3 Influence of Crack-face Mechanical Loading on Generalized T-stress  

In this final section, the influence the distribution of the self-equilibrated, normal 
traction acting to the crack surface on the generalized T-stress components for both 
electrically permeable and impermeble cracks is studied.   
 Consider a circular crack under an axisymmetric, self-equilibrated, crack-face 

normal traction  3 0 /
n

t r a  where 0  is a constant representing the maximum 
value of the traction along the crack front and n  is an exponent indicating the 
distribution of traction across the crack surface. The resultant force of this traction 
can be readily computed and denoted by 2

0 02 /( 2)T a n  . It can be remarked 
that the exact solution of the generalized T-stress is available for the special case of 

0n   in Section 3.1 and Section 3.2. For this particular problem, only the 
generalized T-stress components 11T  and 33T  are non-zero and are apparently 
independent of the position along the crack front for impermeable and permeable 
cases. The computed generalized T-stress components 11T  and 33T , normalized 
either by the maximum value of the traction 0  or the resultant force 0T , are 
reported as a function of the exponent n  in Figure 4-14 to Figure 4-17. As indicated 
by results in Figure 4-14 and Figure 4-15, the normalized generalized T-stress 
component 11T  decreases monotonically in magnitude as the exponent n  whereas 
the reverse effect is observed for the component 33T  for both crack-face conditions. 
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Note also that both 11T  and 33T  are negative and, for a fixed value of the exponent 
n , the permeable model yields higher 11T  and 33T  in magnitude than those 
generated by the impermeable model. By changing the means of normalization 
(from 0  to 2

0 /T a ), it is clear from Figure 4-16 and Figure 4-17 that the normalized 
generalized T-stress 11T  and 33T  depends linearly on the exponent n . In particular, 
as n  increases, the normalized T-stress components increase in magnitude. 
 
 
 
 
 
 
                                                                            
Figure 4-13: Circular crack under axisymmetric, self-equilibrated, crack-face, normal 

traction  0 /
n

r a : (a) 1n   and (b) any generic value of n  
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Figure 4-14: Normalized generalized T-stress components 11T  of circular crack under 

axisymmetric, self-equilibrated, crack-face, normal traction  3 0 /
n

t r a . Results are 
normalized by maximum value of traction 0 .  
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Figure 4-15: Normalized generalized T-stress components 33T  of circular crack under 

axisymmetric, self-equilibrated, crack-face, normal traction  3 0 /
n

t r a . Results are 
normalized by maximum value of traction 0 . 
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Figure 4-16: Normalized generalized T-stress components 11T  of circular crack under 

axisymmetric, self-equilibrated, crack-face, normal traction  3 0 /
n

t r a . Results are 
normalized by resultant force of traction 0T .  
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Figure 4-17: Normalized generalized T-stress components 33T  of circular crack under 

axisymmetric, self-equilibrated, crack-face, normal traction  3 0 /
n

t r a . Results are 
normalized by resultant force of traction 0T  
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Chapter 5  

CONCLUSION 

An exact solution of the generalized T-stress components for a circular crack 
contained in a three-dimensional, transversely isotropic, linear piezoelectric, infinite 
body under electrically permeable, im permeable, semi-permeable and energetically 
consistent crack-face conditions and subjected to both a uniform generalized far field 
and uniformly distributed crack-face mechanical/electrical loading has been derived. 
In addition, for both permeable and impermeable crack-face conditions, the 
generalized T-stress Green’s function due to a pair of opposite, unit concentrated 
crack-face loads and the integral formula equipped with the numerical quadrature 
for calculating the generalized T-stress components under general loading conditions 
have been also established. In the derivation, existing generalized stress fields for 
various cases have been employed together with the near-front expansion and 
standard differentiations and proper limiting procedures. The obtained analytical 
solutions are explicit and involve only elementary functions, and they can be used 
as a basis for the parametric study to explore the effect of loading conditions, crack-
face conditions and material properties on the generalized T-stress components 
along the crack boundary. In addition, the derived solutions can be also employed as 
the reliable benchmark solutions in the validation procedure of newly developed 
numerical schemes (e.g., boundary element and finite element methods) for analysis 
of general and complex crack problems. 
 The implemented integral formula using the proposed numerical quadrature 
has been also tested for several scenarios and it has been indicated that obtained 
results are in very good agreement with benchmark solutions. Additionally, results 
from a preliminary parametric study have shown that both the crack-face conditions 
and crack-face loading play an important role on the generalized T-stress along the 
crack boundary. To gain an in-depth understanding of the effect of many parameters 
on the generalized T-stress, a more extensive parametric study is still required and 
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solutions and formula obtained from the present study should provide a useful basis 
for such investigation. 
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