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Chapter 1

INTRODUCTION

This chapter firstly illustrates the significance of piezoelectric materials, their recent
applications in various fields, motivation of the present study, and then provides the
brief background and review of relevant literatures in modeling and analysis of
fractures in piezoelectric media. Next, the key objectives and scope of work are
clearly defined as well as the methodology and research procedure. Finally, the

expected outcome and contribution of the present work is addressed.
1.1 Significance and Motivation

Piezoelectric materials have been found possessing unique properties which enable
to transform mechanical energy into electrical energy or vice versa. Such strong
electro-mechanical coupling effect is widely known as the piezoelectric effect
(including both the direct and converse piezoelectric effects). Owing to these
abilities, piezoelectric materials have been utilized in many applications in various
disciplines such as aerospace and automotive industries, acoustic field, engineering
and medical applications. Additionally, piezoelectric materials have also been found
as constituting materials of the key components of many recent advanced devices
and structures including piezoelectric power supplies, the electro-mechanical sensors
and actuators, the sonar transducers, and smart and self-adaptive structures.
However, one obvious drawback of this particular class of materials is their brittle
characteristics associated with possessing relatively low fracture toughness and high
sensitivity to flaw inducing. In addition, these piezoelectric-based devices often
operate under various circumstances that may be prone to fracture-induced damages
and failures. For instance, vibration detector sensors are designed to capture the
earthquake motion; loud speakers receive electric signals and convert them into
mechanical vibrations which create sound waves to produce the desirable acoustic;
and the piezoelectric floors, which have been trailed in some stations in Japan,
generate the electricity from walking pedestrian for automatic ticket gates and

electronic display systems. As a direct consequence of their key properties and



applications, cracks/defects are unavoidably found inside piezoelectric bodies under
usages. Therefore, when subjected to mechanical, electrical, or electrical-mechanical
excitations, these piezoelectric components and devices can encounter the
degradations, damages, and ultimate failure as a result of preexisting or loaded
induced cracks/defects. Understanding of fundamental fracture characteristics and
fracture-induced failure mechanism is obviously essential and required in the design
of piezoelectric components and devices to maintain their safety and integrity.
Mathematical modeling and simulations, based mainly on the classical theory
of linear piezoelectricity, have been vastly applied in literature and found effective
and efficient for the generalized stress analysis of piezoelectric cracked bodies. The
generalized stress field in the neighborhood of the crack boundary (including the
mechanical stress and the electric induction), predicted from the linear theory,
dominates characteristics of the cracked medium and has been found essential as
the basic information for simulating cracks initiations and advances. Most of existing
studies in the context of linear piezoelectric fracture mechanics focused mainly on
the dominant singular terms in the near-front expansion of the generalized stress
field and, the corresponding parameters such as the electric and stress intensity
factors and generalized strain energy release rate have been often used in the
growth criteria. Numerous researches have been carried out to demonstrate the
significance of these crack-front parameters, for instance, the crack formation, the
subsequent crack propagation, and the damage and failure (Zhou et al, 2013).
Nevertheless, existing experimental and theoretical evidences have also indicated
the significant contribution of the non-singular term of the near-tip generalized stress,
known as the generalized T-stress, and the necessity to integrate such information in
the fracture modeling. Within the context of elastic media, the T-stress is viewed as
the boundary effect by following the study of Shahani and Tabatabaei (2009). In
addition, the T-stress also found to strongly influence the shape and size of plastic
zones, the crack-front stress constraint and tri-axiality, and the directional stability of
advancing crack (Larsson & Carlsson, 1973; Cotterell & Rice, 1980; Du & Hancock,
1991; Matvienko & Pochinkov, 2013; Matvienko, 2014). The experimental study by
Ayatollahi and Safari (2003) also confirmed that the rotation of the isochromatic



fringes pattern is also affected by the sign of the T-stress. In addition, the shielding or
anti-shielding characteristics of the plastic-zone size and shape at the crack front is
dependent on the negative and positive values of the T-stress (Zhou et al.,, 2011).
For piezoelectric media, several investigators also concluded that the generalized T-
stress is essential quantities affecting the crack-kinking behavior and the plastic zone
shapes (Zhu & Yang, 1999; Hao & Biao, 2004; Li & Lee, 2004a,b; Viola et al., 2008) .
These past evidences confirmed the significance of the generalized T-stress and
ignorance of such crucial fracture information can, in fact, lead to the inaccurate
prediction of fracture responses. As an essential step to integrate the information of
the generalized T-stress in the fracture modeling, analytical and computational
procedures must be properly adopted to accurately and efficiently determine those
quantities along the crack front. From limited advances of researches in this
particular area as supported by a careful survey of literature in the following section,
the development of a solution methodology to extract the fracture data of the
generalized T-stress still requires further investigations and its merit to the

community of fracture mechanics should be remarkable.
1.2 Literature Review

This section mainly reviews and summarizes relevant researches concerning the
historical development and current advances of techniques for deriving both the T-
stress in linear elastic cracks media and the generalized T-stress in linear
piezoelectric crack bodies. Although, the proposed research directly involve the
calculation of the generalized T-stress, the review of existing studies for the linear
elastic case is considered a pre-requisite and the close connection to the current
work should offer certain insights both in terms of the significant contribution of the
generalized T-stress and the solution techniques. Finally, the treatment of various
electrical crack-face conditions in previous studies is discussed at the end of this
section.

Regarding to linear elastic cracks media, non-singular (or finite) part of stress in
the near-front expansion of the stress field have been well investicated and a vast

amount of researches have been published regarding to the calculations of the T-



stresses and the study of their effect on the crack-tip stress field and fracture
process. For instance, Sladek and Sladek (1997) developed a boundary integral
equation method to compute the T-stress for interface cracks of a two-dimensional,
semi-infinite, dissimilar materials subjected to a point force at the crack tip. Fett
(1997) also derived T-stress green’s functions due to a pair of normal concentrated
forces and then used the obtained result to develop a boundary collocation
technique to determine the T-stress of an edged-crack embedded in a rectangular
plate made of a linear isotropic elastic material and subjected to general normal
traction. Later, Fett (1998) extended his previous research to investigate linearly
elastic rectangular plate and circular disks containing various crack configurations
such as edged cracks and centered cracks and subjected to both tensile and bending
loads. Yang and Ravi (1999) proposed the stress-difference method together with an
iterative dual boundary integral equation method along with the tip-node
displacement jump to compute the T-stress at a crack tip for thermo-elastic crack
problems. Later, Chen (2000) applied the complex-potential-function theory to
develop the solution of the T-stress for four types of cracks including a line crack, a
symmetric airfoil crack, circular-arc crack, and a symmetric lip crack in a two-
dimensional, linear elastic, infinite plate. Zhao et al. (2001) applied the domain
integral and interaction integral technique to obtain numerical solution for the T-
stresses of a quarter-circular crack and a tunnel-corner crack in an elastic square
plate under remote tension. Their results indicated the good agreement with
experimental observations, for instance, the discrepancies of the fatigue crack growth
rate between CN (corner notch) and CT (compact tension) test specimens, and the
crack tunneling in CN specimens under pre-dominantly sustained load. Fett (2001)
utilized the same technique as that by Fett (1997) to investigate a circular disk
containing an internal crack under different types of boundary conditions such as
pure displacement boundary conditions, pure traction boundary conditions and mix
boundary conditions. Fett (2002) extended his previous work to treat different crack
configurations in both single and double edge cracked circular disks. Wang (2002)
used the finite element technique together with the weight-function approach to

compute the T-stress for several test specimens, for instance, CCP (a centered crack



plate), SECP (a single edged crack plate) and DECP (a double edged crack plate). The
applied crack-face normal traction with either uniform, linear, parabolic, or cubic
variation was investigated. Fett and Rizzi (2006) made use of the finite element
procedure and the weight-function approach to determine the T-stresses for CT (a
compact tension crack), DCC (a double cantilever crack), and ECB (an edge cracked
bar) under self-equilibrated general normal traction near the crack tip. Also, Fett et
al. (2006) employed Green’s function technique to obtain the T-stress of a forked
crack and a kinked crack in a plated made of an isotropic, linearly elastic material
and subjected to in-plane shear and normal tractions. Recently, the T-stress of an
edged crack embedded in a plate which is made of two different isotropic linearly
elastic materials was studied by Zhou et al. (2013). A symplectric expansion method
was employed in this particular work, and it was found efficient for treating complex
boundary conditions.

While various researches concerning the two-dimensional problems have
been carried out, simplified assumptions used in the modeling can lead to an
inaccurate prediction and the loss of certain essential information and, as a
consequence, the full three-dimensional analysis have been continuously proposed.
Various existing methods for calculating the T-stress of cracks in three-dimensional
media are briefly summarized and discussed below. Wang (2003) generalized the
work of Wang (2002) to treat a three-dimensional crack problem by utilizing the finite
element method together with the interaction integral formula to obtain the T-
stresses of a surface-breaking, semi-elliptical crack in an isotropic, linearly elastic
finite thick plate under bending and tensile loadings. Later, Wang and Bell (2004)
further extended his previous research to treat other types of loading with different
spatial variations (e.g., uniform, linear, parabolic, and cubic distribution). Wang (2004)
applied the potential-theory-based method and the Hankel integral transformation
to determine an exact solution for the T-stress of a penny-shaped crack contained in
an isotropic, linearly elastic, infinite body under applied remote tension and bending
loads. Qu and Wang (2006) determined the T-stress of a corner-quarter-elliptical
crack in an isotropic, linearly elastic, thick plate via the finite element method and

the interaction integral formula. Both tensile and bending loads applied at both ends



of the plate were considered in their study. Kirilyuk and Levchuk (2007) presented
the T-stress solution of a flat-elliptical crack contained in an isotopic, linearly elastic,
infinite body under the remote axial tension and bending loads. This research is the
extension of the work of Wang (2004) by utilizing a special set of harmonic functions
instead of the Hankel integrals. Zhou and Li (2007) and Zhou et al. (2011) also
presented the analytical solution of the T-stress under both mode-I and mode-li
conditions for the crack-inclusion interaction by using Eshelby equivalent inclusion
method. Most recently, Rungamornrat and Pinitpanich (2016) utilized the existing
stress field from Fabrikant (1989) together with conventional differentiations and limit
procedure to derive Green’s functions for the T-stress of a circular crack under a pair
of opposite, normal point forces. A superposition method along with a numerical
quadrature was then adopted to construct an integral formula capable of computing
the T-stress components for a circular crack in a three-dimensional, transversely
isotropic, linear elastic medium subjected to general applied normal traction on the
crack surface.

While significant advances and progress of the modeling and analysis for the
T-stress have been well recognized in the literature for various crack geometries and
loading conditions, work concerning the generalized T-stress in piezoelectric cracked
bodies is still limited. This may result from not only the complexity of electro-
mechanical coupling effect but also the lack of recognition of the generalized T-
stress and its contribution. The brief overview of relevant literatures concerning the
determination of the generalized T-stress solution is presented and discussed in a
chronological order as follows. Zhu and Yang (1999) confirmed the contribution of
the generalized T-stress on the crack-kinking behavior for a straight crack embedded
in a piezoelectric, two-dimensional body under prescribed mechanical loading
conditions. In their study, the continuous dislocation theory and a boundary integral
equation method were employed. Hao and Biao (2004) derived the exact solution of
the generalized T-stresses of an impermeable straight crack embedded in a
transversely isotropic, linear piezoelectric whole space under applied mechanical
and electrical loading conditions. In their study, the principle of superposition along

the Plemelji formulation was utilized. Results from this investigation also indicated



that the value of the generalized T-stress depends mainly on the elastic,
piezoelectric constants, and dielectric permittivity. In the same year, Li and Lee
(2004a) applied Fourier transform to formulate a pair of dual integral equations and
then derived the analytical solution of a semi-permeable Griffith crack oriented
normal to the poling direction and subjected to uniform electro-mechanical loading
conditions. Later, Zhong and Li (2008) reported the closed-form solution of the
generalized T-stress for a semi-permeable Griffith crack in a two-dimensional,
transversely isotropic, linear piezoelectric solid under the remote uniform mechanical
tension, electrical induction and magnetic effect. In their analytical study, the Fourier
integral transform along with the standard procedure was applied to solve the dual
integral equation to obtain the complete solution. Liu et al. (2012) studied an
elliptical hole embedded in a two-dimensional, transversely isotropic, linear
piezoelectric, infinite body subjected to the uniform pressure at the surface of the
hole and the remote electro-mechanical loads. The complete analytical solution of
both mechanical and electrical fields for the electrical permeable boundary
condition was obtained by applying the complex variable function approach. They
also pointed out that the behavior of the electric induction and stress in the vicinity
of the crack front depends strongly on the value of the non-singular term. Most
recently, Subsathaphol (2013) developed a numerical procedure based upon the
weakly singular, boundary integral equation technique and standard Galerkin
procedure to extract the generalized T-stress components of an impermeable
isolated cracks contained in three-dimensional, anisotropic, piezoelectric, infinite
media under general mechanical/electrical loading conditions.

Another important issue effecting the calculation of the generalized T-stress
components of cracks in piezoelectric media is the model used to simulate the
crack-face conditions. Various models have been proposed to simulate such crack-
face conditions and the key difference among those models stems directly from the
assumption of the dielectric permittivity of a medium filled within crack cavity.
Suitability of all existing models is still questionable, highly problem dependent, and,
therefore, requires further investigations. The electrical impermeable and electrical

permeable crack-face conditions are two idealized models that have been widely



employed in the linear piezoelectric fracture modeling due to their mathematical
simplicity. The permeable model, proposed by Parton (1976), assumes the continuity
of a normal component of the electrical induction and the electrical potential across
the geometrically identical crack surfaces. This is opposite to the impermeable
model where the electric induction normal to surface of the crack is fully prescribed
whereas the crack-face electrical potential is unknown a priori and discontinuous. It
should be remarked that these two crack-face models could provide an inaccurate
prediction of solution due to the ignorance of the influence of permittivity. In order
to improve the modeling, Hao and Shen (1994) developed a semi-permeable
electrical boundary condition which includes the effect of the dielectric permittivity
of the medium within the crack cavity on the continuity of the electric field across
the crack gap. In this point of view, the electrical impermeable and electrical
permeable conditions are simply two extreme cases of the semi-permeable crack-
face condition. Later, McMeeking (2004) found that the total energy and the crack-tip
energy release rates of a Griffith crack resulting from the use of the semi-permeable
condition are not consistent. To overcome the energy inconsistency, Landis (2004)
further modified the original semi-permeable model to obtain an energetically
consistent model by integrating the traction normal to the crack face.

From the comprehensive review of all involved literatures, most the existing
solutions for the T-stress of cracks in elastic bodies have been well-established in the
context of both two-dimensional and three-dimensional boundary value problems.
However, the analytical and numerical solutions of the generalized T-stress have
been very limited and restricted mostly to very simple settings. In addition, the
integration of more suitable electrical crack-face conditions such as those described
by energetically consistent and semi-permeable models in the determination of the
generalized T-stress components and the study of their effects on that essential
fracture data have not been well recognized. These existing gaps of knowledge

directly motivate the proposed research.



1.3 Research Objective

This research aims mainly to derive analytical and semi-analytical solutions of the

generalized

T-stress components for a penny-shaped (or circular) crack in

piezoelectric media under various crack-face conditions and to preliminary explore

the effect of crack-face conditions and crack-face loading on the generalized T-stress

components along the crack boundary.

1.4 Scope of Work

The present work is carried out within following context:

(1) A cracked medium is three-dimensional and occupies the whole space.

(2) A piezoelectric material is assumed linear, homogeneous, and transversely

isotropic with the poling direction and the axis of material symmetry normal

to the crack surface.

(3) A body is free of the body force and distributed electric charge.

(4) A penny-shaped crack under various loading and crack-face conditions is

considered.

(4.1)

(4.2)

(4.3)

(4.4)

For an impermeable crack, remote uniform mechanical/electrical loads,
a pair of opposite normal concentrated forces acting on the crack
surface, a pair of opposite concentrated charges acting on the crack
surface, and arbitrarily distributed, crack-face normal traction and crack-
face surface charge are considered.

For a permeable crack, remote uniform mechanical/electrical loads, a
pair of opposite normal concentrated forces acting on the crack surface,
and arbitrarily distributed, crack-face normal traction are considered.

For a semi-permeable crack, uniform remote mechanical/electrical
loads and uniformly distributed, crack-face normal traction are
considered.

For an energetically consistent crack, uniform remote mechanical/

electrical loads are considered.



1.5
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Research Methodology

The proposed research mainly involves the development of both analytical and

semi-analytical solutions of the generalized T-stress for various cases as indicated

above.

Available complete solutions of the generalized stress field for a circular crack

subjected to fundamental loading conditions and various types of crack-face

conditions are employed as the basis for the derivation of the generalized T-stress

and the essential Green’s functions. To accomplish all proposed tasks, following

fundamental theories, methodology and research procedure are employed.

(1)

(2)

(3)

(4)

(5)

(6)

Basis field equations including conservation law, kinematics, and constitutive
relationship follow a classical theory of linear piezoelectricity.

The crack-face condition is simulated by four mathematical models including
electrically permeable, electrically impermeable, electrically semi-permeable,
and energetically consistent conditions.

Basic equations, crack-face conditions, and prescribed loading conditions are
integrated to form a set of boundary value problems.

Closed-form solutions of the generalized stress field for certain fundamental
cases, such as cracks under a pair of opposite normal concentrated forces
(impermeable and permeable cases), a pair of self-equilibrated charges
(impermeable case), and uniform remote mechanical/electrical loads (all
crack-face conditions), are collected from existing literature.

A formula involving differentiations and limits is developed based on the
near-front expansion of the generalized stress field for extracting the
generalized T-stress. This formula together with standard differentiations and
a proper limiting process is then employed to compute the generalized T-
stress Green’s function and the generalized T-stress components for all
fundamental cases.

A method of superposition is applied together with the developed
generalized T-stress Green’s function to establish the integral formula for the

generalized T-stress components for both impermeable and permeable
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penny-shaped cracks under arbitrarily distributed, crack-face surface charge
and normal traction.

(7) An efficient quadrature is employed to compute all involved singular integrals
in the integral formula for general crack-face loading conditions.

(8) The influence of crack-face loading conditions and crack-face conditions on
the generalized T-stress components on the crack boundary is preliminary

investigated.
1.6 Expected Outcome and Contribution

The present research offers (i) the closed-form expression of the generalized T-stress
components for a circular crack under uniform remote mechanical/electrical loads
and various crack-face conditions, (i) the integral formula of the generalized T-stress
for an impermeable circular crack under arbitrarily distributed, crack-face, normal
traction and surface charge, (i) the integral formula of the generalized T-stress
components for a permeable circular crack under arbitrarily distributed normal
traction, and (iv) fundamental understanding of the effect of various parameters such
as the crack-face and loading conditions on the generalized T-stress components on
the crack boundary. The derived solution can be also employed as the reliable
benchmark solution in the verification procedure of computational techniques

developed for modeling more general crack problems.
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Chapter 2

PROBLEM FORMULATION

This chapter begins with describing basic field equations essential for formulating
boundary value problems of linear piezoelectricity and, also, providing the definition
of all involved parameters. Following sections present the clear description of the
crack-face conditions considered in the present study, the near-front generalized
stress field and essential formula for extracting the generalized T-stress, the
superposition method employed to formulate the integral formula of the generalized
T-stress components, and, finally, existing solutions of the generalized stress field for

certain fundamental cases.
2.1 Basic Field Equations

Basic equations for a medium with zero body forces and body electric charges are
adopted from the classical theory of linear piezoelectricity. The laws of conservation
are expressed explicitly by
Ciji = 0

2-1
D=0 (2-1)

where o denotes components of a stress tensor; D, denotes components of an
electrical induction vector; the comma notation f; represents a partial derivative of
any function f with respect to a Cartesian coordinate X;; and standard indicial
notations apply. Here and in what follows, a standard indicial notation applies;
specifically, lower-case subscripts range from 1 to 3 and the repeated lower-case
index indicates the summation over its range. Components of the stress tensor and
electric induction vector are linearly related to the electric field with its components
denoted by E; and the strain tensor with its components denoted by &; via a set

of fully coupled linear algebraic equations

Gij=E
D =e¢

s g —e LB
ukm_ km mij —m (2_2)
gkm+gimEm

ikm
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where E,

ikm denotes the elastic constants; e; denotes the piezoelectric constants;

and ¢&,, denotes the dielectric permittivity. The electric field E; and the strain
tensor g&; are given in terms of components of the displacement vector, denoted by

U;, and the electric potential, denoted by ¢, via the following linearized kinematics

1
&ij :E(ui,j +uivi) (2-3)

Components of the mechanical traction, denoted by t;, and the surface electric
charge, denoted by D, at any point on the smooth boundary can be computed in

terms of the stress field and the electric induction vector by

t =o0.n.
R (2-4)

D:Djnj

where n; denote components of an outward unit normal vector to the smooth
surface. Al field equations (2-1)-(2-3) can also be expressed in a more concise form

(suggested by (Rungamornrat & Mear, 2008)) as follows:

O, = (2-5)

iJ,i

05 = EiknUk m (2-6)

where upper-case index ranges from 1 to 4 and the repeated upper-case index
indicates the summation over its range; o;; is termed the generalized stress which
contains components of the stress tensor o and components of the electrical
induction vector o, =D,; U, is termed the generalized displacement which
contains components of the displacement u; and the electrical potential U, =¢;
and Ejy is termed the generalized moduli which contains elastic moduli Ey,,
piezoelectric constants E,, = E,,; =¢;;, and dielectric permittivity E,,, =, =—¢,
. Consistent with this new notation, the generalized traction, denoted by t, and
computed from t; =o,;N;, contains the mechanical traction t; =oyn; and the

surface electric charge t,=o0;,N, =D. It can be remarked that the generalized



14

moduli B, defined above possesses the following symmetric property E; = E

provided that E,; is selected to be identical to Ey,,.
2.2  Crack-face Conditions

On the surface of the crack, the condition on the crack-face data such as the
generalized displacement on the upper crack surface (S;) and the lower crack
surface (S.), denoted by uj and uj, respectively, and the generalized traction on
both the upper and lower crack surfaces, denoted by t; and t;, respectively, must
be properly prescribed. In the current investigation, four types of crack-face models
including electrically permeable, impermeable, semi-permeable, and energetically
consistent crack-face conditions are treated (see details in Rungamornrat et al.
(2015)).

For an impermeable crack model, the crack-face generalized traction t; and
t; are fully prescribed whereas the crack-face generalized displacements u; and uj
are unknown a priori. For a permeable crack model, the mechanical crack-face
tractions tj+ and t; are fully prescribed and the jump in the crack-face electrical
potential and the sum of the crack-face surface electrical charge vanishes (i.e.,
Au,=u, —u, =0 and ZXt,=t, +t, =0) whereas the sum of the crack-face
generalized displacement Zu, =u; +U;, the jump in the crack-face displacement
Au; =uj -U;, and the jump in the crack-face surface electrical charge At, =t; —t,
are unknown a priori. For a semi-permeable crack model, the crack-face generalized
displacement u; and uj, and the jump in the crack-face surface electric charge At,
are unknown a priori whereas the mechanical crack-face tractions tJT and t; are fully
known, the sum of the crack-face surface electrical charge vanishes (ie., Xt, =0),

and the following nonlinear relationship is satisfied
tyAun =—x.Au, (2-7)

where k, denotes the dielectric permittivity of a medium filled within the crack
cavity. Finally, for an energetically consistent crack model, the crack-face generalized
displacement uj and uj, the jump in the crack-face surface electrical charge At,,

and the jump in the mechanical crack-face normal traction, denoted by
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Ao, =0 —o; where o] =tjn,n; and o] =t;n;n;, are unknown a priori whereas
the mechanical crack-face shear tractions, denoted by 7" =t' —o;" and 7; =t —o;
are fully known, the sum of the crack-face surface electrical charge and the sum of
the mechanical crack-face shear traction vanish (i.e., £t, =0 and Xo, =0, +0, =0),

and the following two nonlinear relations are satisfied

t,Aun’ =—-x.Au,

o, =(1/2)x,n; (Au, )2 /(Auini+)2

(2-8)

”»

It is emphasized that the superscripts “+” and “—" are used only to designate

quantities on the upper crack surface and the lower crack surface, respectively.
2.3 Description of Problem

Consider a three-dimensional body occupying the whole space and containing a
circular (or penny-shaped) crack with the radius a as shown in Figure 2.1. For
convenience, the reference Cartesian coordinate system {O;Xl,xz,x3} and the
associated cylindrical reference coordinate system {O;r,é?,z} are introduced such
that an origin 0 is located at the crack center, the X,;-axis directs upward, and the
remaining axes follow the right-hand rule. A material constituting the body is
assumed to be homogeneous, transversely isotropic, and linear piezoelectric. All
involved material constants are fully prescribed whereas the axis of material
symmetry and poling direction are assumed to direct normal to the crack surface.
Besides the basic field equations (2-1)-(2-3), the prescribed crack-face
boundary conditions have been found strongly affecting responses of the
piezoelectric cracked medium. Thus, the proper understanding of the role of the
crack-face condition on the fracture data along the crack boundary such as the
generalized intensity factors and generalized T-stress is essential and requires the full
investigation. In the present study, all four models of crack-face boundary conditions
indicated above are considered and the different types of mechanical/electrical
loading conditions are considered as follows.
For a circular crack under the impermeable condition, six following loading cases are

considered: (i) a pair of opposite, normal concentrated forces acting to the crack
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surface (see Figure 2-2), (i) a pair of opposite, concentrated electrical charge acting to
the crack surface (see Figure 2.3), (iii) a self-equilibrated, crack-face, uniform normal
traction t? and a self-equilibrated, crack-face, uniform surface charge d? (see Figure
2-4(a-b)), (iv) uniform remote triaxial stress {o};,05,,0n} and a uniform remote
electrical induction {d,”,d;’,d;’} (see Figure 2-5), (v) general, self-equilibrated, crack-
face normal traction t; (see Figure 2-6(a)), and (vi) general, self-equilibrated, crack-

face surface electrical charge d, (see Figure 2-6(b)).

/ AX,,zZ \

Figure 2-1: Schematic of circular crack with radius a contained in transversely
isotropic, linear piezoelectric, infinite medium

AX,.Z

32

X P

Figure 2-2: Schematic of circular crack under pair of opposite normal concentrated

forces acting to crack surface
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A Xy, Z

X

Figure 2-3: Schematic of circular crack under pair of opposite, concentrated electrical

charge acting to crack surface

For a permeable circular crack, four loading cases are considered: (i) a pair of
opposite, normal concentrated forces acting to the crack surface (see Figure 2-2), (ii)
self-equilibrated, crack-face, uniform normal traction t? (see Figure 2-4(a)), (iii)
uniform remote triaxial stress {o;,05,,05F and a uniform remote electrical
induction {d,”,d;,d;} (see Figure 2-5), and (iv) general, self-equilibrated, crack-face

normal traction t; (see Figure 2-6(a)).

x3 )C3
4] 0
fy d;
" W W W W S 7\ I W W W S A
— X — 5
Y Y Y Y Y VL ¥ l Y Y Y Y Y Y Y Y l y
0 0
t d,
(a) (b)

Figure 2-4: Schematic of circular crack under (a) self-equilibrated, crack-face, uniform

normal traction t7 and (b) self-equilibrated, crack-face, uniform surface charge d.
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—
0%

Figure 2-5: Schematic of circular crack under uniform remote triaxial stress

{o},,05,,05} and uniform remote electrical induction {d;*,d,’,d;’}

For a semi-permeable penny shaped crack, two following loading cases are
considered: (i) self-equilibrated, uniform normal traction t{ (see Figure 2-4(a)) and (ii)
a uniform remote triaxial stress {o}],05,,05} and a uniform remote electrical
induction {d,”,dy,d;} (see Figure 2-5). Finally, for an energetically consistent
circular crack, only the constant remote triaxial stress {o};, 05,053 and a uniform

remote electrical induction {d,*,d;’,d;"} (see Figure 2-5) are considered.

Miterf]
1 2

(@ (b)

Figure 2-6: Schematic of circular crack under (a) general, self-equilibrated, crack-face,

normal traction and (b) general, self-equilibrated, crack-face, surface charge
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2.4 Near-front Generalized Stress Field

By following an analogy as that employed by Williams (1957), the local generalized
stress field in a region containing the point X, on the crack front can be expressed

as

G, (X T,0)= i&ﬁ (X;0)+ ) (X.;0)+ ifm”&iﬁm) (x.;6) (2-9)
Jr =

where the “bar” is used to designate quantities referring to the local reference
coordinate system {X_;X,X,, X} with the origin at X, and the corresponding
orthonormal basis {€,,€,,€;} such that X —X; is a tangent plane to the crack
surface at X, whereas the X, —X, plane is normal to the crack front at X as shown
in Figure 2.6; (7,0) denotes the polar coordinates of a point in the X, —X, plane;
&,(x_;T,0) denotes the generalized stress at any point in the X, —X, plane in the
neighborhood of the point X.; &5 , & ,and 5};‘” are functions independent of
the radial coordinate T . This asymptotic expansion of the near-front field is
expressed in the same form as that appearing in Rungamornrat and Pinitpanich
(2016). Regarding to the near-front expansion (2-9), it is evident that the first term
represents the dominant part of the field which is singular of order 1/~r at the
point X,; the second term represent the constant field that is independent of the
radial coordinate T, and the third term represents the non-singular part that
vanishes identically at the point X, along the crack front.

Now, let us define the components T, =T,(X,) referring to the local

reference coordinate system {X_; X, X,, X} such that
Ty (%) =5 (%,;0 =0) (2-10)

From the definition (2-10) and the definition of the generalized stress, it is apparent
that T, =T; and, as a result, only nine components are independent. In addition,
the components T,(X.) represent the non-singular part of the generalized stress
field at the point X, and not all these components are unknown a priori. From the

continuity of the finite part of the generalized stress at the point X_, it can be readily
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verified that the four components T,,, T,,, T,; and T,, can be obtained in terms of
the generalized crack-face traction at a limiting point X, on the surface of the crack.
As a result, {1y, Ty, Toas Ty {120 Too Tk s {120 200 Tos}, and {T,, Tys} are known a
priori for electrically impermeable, electrically permeable, electrically semi-
permeable, and energetically consistent cracks, respectively. The components T,,
and T,, can be readily obtained once the unknown crack-face generalized tractions
are solved. The five independent components {T,;, T, T3, Ty, Tos} are always
unknown and they are commonly termed the generalized T-stress components. The
first three components {T,;,T;, To,;} are the mechanical T-stress components
associated with the stress field similar to the elastic case (see also the work of
Rungamornrat and Pinitpanich (2016)) whereas the last two components {T,,T,,} are
the electrical T-stress components associated with the electric induction field. The
generalized T-stress can be obtained if the generalized stress field at least in the
region embedding the crack front is known.

From the near-front asymptotic expansion of the generalized stress field (2-9)
and the definition (2-10), components of the generalized T-stress are given explicitly

in terms of the generalized stress field by

Figure 2-7: Schematic of crack front and local reference coordinate system for

defining generalized T-stress components
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To (%) = 2|imﬁi_ﬁ5Q(xC;r,§= 0) (2-11)
F—0 or

where Qe{11,13,33,l4,34}. According to the formula (2-11), it becomes evident
that the generalized T-stress components can be calculated from existing generalized
stress fields of a cracked body via standard differentiations and limiting processes

without directly carrying the series expansion.
2.5 Existing Generalized Stress Fields

It is apparent from the earlier section that the generalized stress field is the key
ingredient for extracting the generalized T-stress. To construct the complete
analytical solution for the generalized stress field, various analytical techniques
based on the integral transforms, the representation theories, and potential-function-
based theories have been applied successfully for cracked bodies with simple crack
and domain geometries and loading conditions as recognized in the literature. In the
present investigation, existing complete solutions of the generalized stress field for a
circular crack embedded in a three-dimensional, transversely isotropic, linear
piezoelectric, whole space subjected to four different crack-face conditions are
utilized as the basis for the derivation of the generalized T-stress components for

various scenarios:

° An impermeable crack: Chen and Shioya (1999) applied the potential-
function-based theory to derive the closed-form solution of the generalized
stress field of a penny-shaped crack in a three-dimensional piezoelectric
whole space under a pair of self-equilibrated, normal concentrated forces
and a pair of self-equilibrated concentrated electric charges acting on both
crack surfaces. For the special case of uniform remote mechanical and
electrical loading, Chen et al. (2000) utilized the potential-function-based
theory together with superposition method to derive the closed-form solution
of the generalized stress field.

L] A permeable crack: Chen and Lim (2005) applied the potential-function-based
theory to obtain the analytical solution of the generalized stress field of a

circular crack in a three-dimensional, piezoelectric whole space under a pair
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of opposite, unit normal, concentrated forces and uniform remote
mechanical and electrical loading conditions.

® A semi-permeable crack: Li and Lee (2004b) employed the Hankel integral
transform technique to obtain the exact solution of the generalized stress
field of a circular crack in a three-dimensional piezoelectric whole space

under uniform remote mechanical and electrical loading conditions.

° An energetically consistent crack: Li et al. (2011) applied the classical
complex potential theory to derive the generalized stress field of a circular
crack contained in a three-dimensional, piezoelectric whole space under

uniform remote electrical and mechanical loading conditions.
2.6 Generalized T-stress for General Generalized Traction

The generalized T-stress Green’s functions obtained from equation (2-11) for the
electrically impermeable and permeable circular cracks are utilized along with the
superposition method to construct an integral formula for computing the generalized
T-stress components of circular cracks under general, crack-face, normal traction and
general, crack-face, surface electrical charge for the impermeable case and under
arbitrarily distributed, surface electric charge for the permeable case.

For the impermeable case, let us consider a circular crack under general, self-
equilibrated, crack-face, normal traction t; =-t; and surface electrical charge
t; =—t,. The generalized T-stress components for this case, denoted by T, for

Qe {11,13, 33,14, 34}, can be obtained in an integral form as

Ta 7T a
T, (6) = j j T (6;1,6)t (4, 6)rdrdd, + j j TE(0;r,,0,)t: (r,,6,)r,dr,dd,  (2-12)
-7 0 -z 0
where TQGP is the generalized T-stress Green’s function due to a pair of opposite, unit
normal concentrated forces under the impermeable crack-face boundary condition
and TQGE is the generalized T-stress Green’s function due a pair of opposite, unit
concentrated electrical charges under the impermeable crack-face boundary

condition.
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For the permeable case, consider a circular crack under a general, self-
equilibrated, crack-face, normal traction t; =—t;. By following the same
methodology as that for the impermeable case, the integral formula of the

generalized T-stress components is then obtained as

Toa
To(0) = I j TS5 (055,68 (1, 6)rdrdo (2-13)
-z 0
where 'rQGP is the generalized T-stress Green’s function due to a pair of opposite,
unit normal concentrated forces under the electrically permeable crack-face

boundary condition.
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Chapter 3
DETERMINATION OF GENERALIZED T-STRESS COMPONENTS

By applying the formula (2-11) along with existing solutions of the generalized stress
field indicated in Chapter 2, the direct differentiations, and proper limiting procedure,
the generalized T-stress components can be derived in an exact form involving only
elementary functions. It is noted that the generalized stress field of cracked media
under the remote loading can be readily related to that of the cracked medium
under an equivalent crack-face generalized traction via the method of superposition.
This chapter mainly presents the exact solutions of the generalized T-stress
components under four different crack-face conditions and the Green’s functions for
the generalized T-stress components for both impermeable and permeable crack-
face conditions. Finally, the integral formula of the generalized T-stress components
for both electrically impermeable and permeable cracks under general loading

conditions is presented.
3.1 Generalized T-stress of Impermeable Crack under Uniform Load

The generalized stress fields proposed by Chen and Shioya (1999) are applied
together with the methodology described in the previous chapter to provide the
generalized T-stress components for an impermeable circular crack under the
uniform remote electrical inductions {d,”,d,’,d;}, the uniform remote triaxial
stresses {oy;, 05,00}, and the self-equilibrated, uniform normal traction t and self-
equilibrated uniform electrical charge df on the crack surface. The final set of results

is given explicitly as

3
:—472' A{Z[ Cyy +C133| Qg + €545 |2:| pi}+ 5;; (3-1)
i=1
3
=-Ar A{ l: 11 +Cl3S|a|l +e313|a|2:| p }"‘ 0_33 (3_2)
i=1
Ta=65, T, =07, T, =d;° (3-3)

where {07;,05,05} and {d,”,d;"} are components of the remote triaxial stresses

and remote electrical inductions referring to the local coordinate system defined in
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Section 2.4 and all involved quantities are given by

A=1/47"(9,9,~9,9;) (3-4)
pi = (digS _Cig4)(o_§; +te?) + (Cigz - digl)(d::O + de?) (3-5)
3
9, = _Z Gi7in (3-6)
i1
3
9;= _Zdﬂ/il (3-7)
i1
3
g;= _Z Gi7iz (3-8)
i1
3
9, = _zdﬂ/iz (3-9)
i1
o) . s, s, s ] [1
Cp= Py oy Oy Oy | 1 (3-10)
Cy Qp Gy O 0
1
d, 1 S S, § €5/ Cyy
dyp=o-lay ay oy 0 (3-11)
2
d, Qp Gy O il
Vin = —Ci5 TG54, + €554, (3-12)
Vio = €5 T 6550, — E335,4, (3-13)
2 4
C,&, —M,S" +C,,E.S:
o, =1L T : 4433 (3-14)
(m1 —MyS; )Si
2 4
C -m,S; +C,,6,,S:
a, = 11615 — M, S; . 445339 (3-15)
(m,—m,s?)s,
M, =&, (Cs +Cyp ) +E15 (85 +€4) (3-16)
M, = &35 (Cia +Cy ) + 55 (€15 +€51) (3-17)
M, =Cpy€55 +Cppéyy + (els + e31)2 (3-18)
M, = Cyy€y; + Cpy€is —(Ciy +Cyp ) (€15 + €4 ) (3-19)
S; =Cg/Cyy (3-20)

AWl involved material constants are defined by C€,=E;;, C3=E 3, Cy3=Esy;,

Cp = E1313: Cos = E1212: €5 = E1341» €y = E1143» €3 = E3343’ &= _E1441’ &3 = _%443

and the three parameters {s?,s?, s’} are solutions of the nonlinear equation
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as® —bs* +cs’—d =0 (3-21)
where constants a, b, ¢, d are defined by

a=Cy, (€3 +Cpéyy ) (3-22)
b=c,m,+é&y, [CL —(Cpp +Cyy )2} +e5(2m, —c 85 (3-23)
c=cC,Mm +é&, [cﬂc33 —(Cy+Cy)’ } +e,(2m, —c,e;) (3-24)
d=c, (e +Cuty) (3-25)

All involved parameters given above can be also found in the work of Chen and

Shioya (1999).
3.2 Generalized T-stress of Permeable Crack under Uniform Load

By using the generalized stress field proposed by Chen and Lim (2005) along with the
same procedure utilized in Section 3.1, the closed-form solution of the generalized
T-stress components for an electrically permeable circular crack under the uniform
remote triaxial stresses {oy;,0,,,05}, the uniform remote electrical inductions

{d”,d;,d;}, and the self-equilibrated, crack-face, uniform normal traction tj can be

obtained as
oo 2%
T,=—"— Z [(Cee - Cll) + G385, + 6,54, ] G+ oy (3-26)
0, i=1
O-::; +t§ 3 —o©
T, = = D [(Cog —Cyy )+ CuSiry +€5,5:0%, |C + Gy (3-27)
1 i=1
T, =05, Ty = d_lw’ Ty = d_3oO (3-28)

where parameter ¢, are given by

1

G, 1 TuSt  VaS;  VaiSs 0

Cor==2-] u On Oy 1 (3-29)
27

Gy Ay Oy Oy

and all remaining parameters are defined in the same fashion as those provided in
Section 3.1 (the definition of all parameters can be also found in the work of Chen

and Lim (2005)).
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3.3 Generalized T-stress of Semi-permeable Crack under Uniform Load

By starting with results reported in Li and Lee (2004b), the generalized T-stress
components for an electrically semi-permeable circular crack under the uniform
remote tri-axial stresses {o7;,05,,05}, the uniform remote electrical inductions
{d,”,d;,d;"}, and the self-equilibrated, crack-face, uniform normal traction t{ can be

obtained explicitly as

P& e
Ty :§Z|:Zﬂ0iai +(Cll_ClZ)ai]+O-ll (3-30)
i1
S o e
Ts :§Z[Zﬂ5iai _(Cll_clz)ai:|+o-33 (3-31)
i1
T3 =0y, Ty = d_lw’ Ty = d_soo (3-32)

where all involved parameters are defined by

b d;"—df, a§§=t§=0 (3-33)
o5 +td, on#0o0rt)=0
3
Zﬁ4jaj, o5 =t0=0
k=" (3-34)
> B3, om#0ort)=0
=1
/ .
%/ -—(A")'B (3-35)
ala
A {ﬁzz (05 +8) B + (5 —d?)ﬂn} 536
Do (0'; +t§)ﬂ43 + (dg - d;)ﬂla
Py }
B={ _ oo (3-37)
{(0-33 +t§)ﬂ41 +(dy —dy) By
2
de = £y~ 4mym, (3-38)
2m,
m, = ¢, (o5 +15)det[B, B, m,] (3-39)
-&dy de'[[Bl B, le]
m =g, dEt[Bl B, nz] + (033; +t3?)det [B4 B, Th] (3-40)

_d;det[ﬁl B, 1]1]
mzzdet[B1 B, 1]1] (3-41)
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ﬂkl
B =18 k=124 (3-42)
ﬂk?:
a1
N2 =7als [ K=3,4 (3-43)
3?3
i = (s +eas; ) 7T s (3-44)
= (0337731 +€3374 )7, Cis (3-45)
=[ m 1+ i +elsm,}7, (3-46)
= |:e1 1+7731 511’741']71' (3-47)
=( 337135 — 533’74,)7/1 31 (3-48)
( 13773 + €17l )71 (3-49)

with &, denoting the dielectric permittivity of a medium filled within the crack cavity

and 7/]-2, 175; and n,; for j =1, 2, 3 being solved from the two nonlinear algebraic

equations
C Cs+Cyy +Cyytsi €1y
7/]2 _ 1 _ U3 T Cas T laallyj T CisTls (3-50)
Cpp + (C13 +Cy )7731' +(eal o e15)774j Casl3j +€35714
2 Cy €31 1 €15 + 15705 — €074
7/1' = &~ (3-51)
Caq +(C13 + C44)7731' +(e31 + e15)774j e337731' &334

The equation (3-50) & (3-51) can be further reduced to a cubic equation in terms of

7
3,(77)° +10,(73) + ¢, (y°) +d, =0 (3.52)

where a,,b;,¢,,d, are constants given by

8y = Cyy (Cas +€3;) (3-53)
Dy = —C35Caq&11 + iy — CiiCasag + 2C15Cq 5 — Cagis (3-54)
—C116323 o 2033631615 o Csseszl + 2C13e33e15 + 2013633631
+2C,,85€5
Co = _0123811 +Cy1Cag81y — 2C13C0 81 +C1Cupzy — 20138125 (3-55)

2
_2C13615€31 + C44e31 + 2cllelSe33
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do =—Cy (C44311 + e125) (3-56)

It should be remarked that only the value of d; computed from (3-38) that falls
between those of the two limiting cases (i.e., electrically permeable and electrically
impermeable cases) is acceptable. Remark that the closed-form solution of the semi-
permeable model can be further reduced to the special cases of impermeable and
permeable models by taking the dielectric permittivity of the crack medium within

the crack cavity ¢, to zero and infinity, respectively.

3.4 Generalized T-stress of Energetically Consistent Crack under Uniform

Load

The generalized T-stress components for an energetically consistent circular crack
under the uniform remote triaxial stresses {o7;,05,,05,} and the uniform remote
electrical inductions {d,”,d;’,d;} can be derived using the same procedure and the

analytical solution presented by Li et al. (2011). Final results are given explicitly by

P & i 2(c K, —ey k. | |

Tu=2=S Al (cy+c,)- (¢ - —— ) +67 (3-57)
4 3 i Vi |
i S I 2(ck, —ek ) | ~

Ts _ZZAJ (C11+C12)_ ( E 212 = lJ) +05 (3-58)
4 4 I Vi :

Tis =013, Thg :d_:l.w’ Ty = _300 (3-59)

where all involved parameters are defined by (also see the work of Li et al. (2011))

0 dc 2 00 C
A :Aj{ass—%}mja(ds —dS) (3-60)
3 k2'
i1V
3k,
H,= ”Z_Ajs (3-62)
i1V
3k,
Hy=-7) —A,, (3-63)
i1V
3 k1
Ho=—m2 wA (3-64)

=R
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c\2
H3|:O';; (g ) }—H (dy —dJ)
ds =, 7 ‘9; (3-65)
H{G; 2e }+H (dy —dy)
A — Bfl (3‘66)
1
B = 7[044 1+ kzj )- elsklj ] (3-67)
j
7
sz :?[044(1+k2j)_e15k1j:| (3-68)
i
B, = ?[e44(1+ Kyp)+ £y | (3-69)
with v, k;; and k,; obtained from
V= Cu +(C13 +C44) k2j _(931 + elS)klj N C33k21 33k11 (3-70)
: Cy (013 5 C44)+C44k2j - 15k1j
V2 = Cas +(Cls +C44) k2j —(631 +('315)k11 - e33k2j + 533k1j (3-71)
: Ciy (e15 + eSl) + ‘911k1j + e15k2j

It is also important to remark that d; computed from (3-65) is acceptable if it
induces a positive value of the crack-opening displacement. Remark that the
analytical solution associated with the energetically consistent model can be further
specialized to the solutions of impermeable and permeable crack-face conditions by
taking the dielectric permittivity of a medium within the crack cavity ¢,to zero and

infinity, respectively.
3.5 Generalized T-stress Green’s Function for Impermeable Crack

Consider a problem concerning a circular crack under a pair of opposite, unit normal
point forces and electric point charges as reported by Chen and Shioya (1999). The

closed-form solution of the generalized-stress Green’s function is given by

3
ot =8A_Zl:[(c66—c11 )+, sjajl+e3151a12J[ﬂj1f31(zj)+ﬁj2f32(zj)] (3-72)
=
3
oS =8AC6621:[ﬂj1f41(2j)+,Bj2f42(zj)] (3-73)
=
3
o2 =4AY [cy (s +ay)+esay, || Bufa(z)+ Bt (7)) (3-74)

=
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3
D¢ = 4A2[e15 (sj +aj1)—gllaj2][,6’jl f51(zj )+ﬂjz fo, (Zj )] (3-75)

=

in which a superscript “G” is used to designate Green’s function, i=+-1, z; =s,z,

ol =og +oy, (3-76)
oy = (Gﬁ —-o5 + 2i0'rGg)eZi€ (3-77)
= (O'S +o5 )e” (3-78)
D¢ =(Dy + Dy )e” (3-79)
Bi=¢9,-d;9, (3-80)
B, =d;9,-¢;9, (3-81)

All other involved parameters defined in Section 3.1 apply here and the complex

functions f;; (Zj), fy; (Zj), f, (Zj) are defined by

z h. h. e NN
f.(z)=—tan?| -~ |- ) AN Y 3-82
() R} (R] z(Rf+hf){l§—If R?} (3-62)

] ] ]

Jai—r? e 5 z(3R? - 22 h
f;(2)= 1[2 Ii© Jtan{ >, ]—( J )tan‘l( J

T =2 2p3
UET U JI2-a? 4R j
— (3-83)
N \/az —r/ \/If ~a’re" 1 1% r2g2¢
_ _i(o- 2, n2| Fp2 2 12\(12 .2
tﬁf[lf ~rre © el)} RY+h7 | GRY (12 -17)(15 %)

t. h. h. re t.
f.(z)=-Ltan™| =L |[+—— +-L (3-84)
1 (7) R [R.J Rf+hf{l§—lf R?}

J ]

with all involved parameters defined explicitly by
1 2 2
== 2—J(r- 2} 3-85
) 2[\/(r+a) +2 \/(r a) +z2 (3-85)
1 2 2
l,== ? — 2} 3-86
, 2[\/(r+a) +2 +\/(r a) +z (3-86)

(3-87)

(3-88)
(3-89)

(3-90)
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R, :\/r2+rj2—2rrj cos(@—ej)+ 72 (3-91)

By first noting following properties (see also the work of Rungamornrat and

Pinitpanich (2016)

- (3-92)
70 z 2(r2 aZ)
o 24rr—a* ja’ -r?
lim M _ J \/ ‘ (3-93)
0|, —r r

and then substituting these results into (3-82)-(3-84) and (3-72)«(3-75), the Green’s
function for the generalized stress at any point on the plane z=0 is given explicitly

by

ol (r,6,0;r,,6,) 8AZ[ )+ CySit; + 85,85, |[ By £, (0)
(3-94)
+B, ta (0)}
o3 (r,0,0;r,,6,) 8ACG6Z[ﬁJlf41 )+ B, (0) ] (3-95)
7 (r,0,0;r,,6,)=0 (3-96)
D¢(r,0,0;r,,6,)=0 (3-97)
where f,, (0), f,, (0), fs, (0) for =12 are given by
a’—r’
f, (0)=——— =« (3-98)
() g
f(0)=YE N[ 2 L N &
N G i a?
: (3-99)
\/rz—a \/a —r’r e e'ﬂ/az—rj
tasa( —rre )) R2 \/r? —a?
fs, (0)=0 (3-100)

with the parameter R, given by

R,, = Ra(z:O):\/r2+rj—2rra cos(6-0,) (3-101)
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By introducing the variable transformation T =r—a together with the proper limiting

process, for (r,,6,)#(a,0), itis readily to show that

. a?-r?

lim \/Fg Nig —"‘] =0 (3-102)
F—0 or r2_a2

_ r2_a2.Ja? _r2

limd 7 2| JF r-atyalon |l (3-103)
r—0 ar t_agaz (rz _ rrae_l(e_ga))

(3-104)

where T, =ae ™ —reand 5, =4/a’ —ar,e"“%) By substituting (3-102)-(3-104)
into (3-98)-(3-100) and (2-11) along with the relations (3-76)-(3-79), the generalized T-

stress components are obtained as

G i i a’—r’
T, (6;r,,6,)=4nAc R L., . —= _
j=1 a=1 : \/g(ae_le — r‘aeilga ) a— rae_l(g_ga)
(3-105)
1 r %)
X = _ a
a—re % 2a(a —re "% )
S .0) >3 a1
T, (6;r,,6,)=4rAc, R| L., - —= .
j=l a=1 : Ja(ae_le — raeflga a— rae_l(g_ga)
(3-106)
) r oi(0~0) ) 1
Za(a —r et} a-re %
. 3 2 a?—r?
T5(6;r,,0,)=4rAc 3| 8., a
13 ( a ) 66; ; IBJ \/a(ae_ie _ rae—iaa a— rae—i(e—ea)
(3-107)
1 r g%
X _ _ a
a—re % Za(a— re'’ 9“))
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TS =0 (3-108)
TS =0 (3-109)
where R(f) and J(f) represent real and imaginary parts of a complex function f,

respectively. The expressions (3-105)-(3-107) can be reduced further by introducing

new variables |,1,,4,, @, satisfying

rsin(6,—-0)=1,sing (5110
r,cos(6,—6)+l,cosg=a
r,sin(6,—6)=1,sing (111

r,cos(6,-0)+l,cosg=a

and B, =A, +iB;, where A; and B, are real and imaginary parts of f,,. The

graphical interpretation of the new variables |,1,,¢,, ¢, is indicated in Figure 3-1.

Location of unit point Location to determine generalize T-stress

Location of unit point force

Figure 3-1: Graphical interpretation of variables 1,1,,1,,1,,6,,0,,0, ¢, and ¢,

The final form of the generalized T-stress Green’s function is now given by

To =T +T5" (3-112)
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where TJ" and Tg® are components of the generalized T-stress Green’s function
due to a pair of opposite, unit normal concentrated forces and a pair of opposite,
unit concentrated, electrical charges, respectively. The explicit expressions of both

T," and T5F are given by

3
Tlfp (9, L, ¢1) =—4rAc Iiz /Zcos ¢ — Igl {E(l— %) cos%— cos %}z A,
1 j=1

, (3-113)
5|n¢1+sm3¢1 ZBjl
2 j:l
3
T3§P(9,I1,¢1):47IA066|£2 2C0s ¢, — E{M cos os%}ZAﬂ
'3:1 (3-114)
1 34
sm +5|n— B.
{3t Jngron’e o,
3
TS (0,1,4) = 47zA066|2,/2005¢l E{B( cos 33%}281.1
j=1
’3 (3-115)
10, 1). 4 .3
-1 sin sin—=- A,
{2(%) 2" 2}; Jl}
3
Tle(9’|2’¢2):—4”ACee|£z /2cos¢2—%{B(l—%]cos%—cos%}ZAjz
2 j=1
. ’ 3, 1< (3-116)
1 sin 22 +sin =2 B.
{3l Jong e[S
3
T3‘§E(6’,I2,¢2)=47zA066l2 /Zcos¢2—|—2 l(l—l—zjcosﬁ—cos% ZAjZ
I, a (|2 a 2 2 |3
. (3-117)
1(, | 6 . 3
—| = 1+-2 |sin 2= +sin == B
31 gfing s S
3
T (0,1,,0,) =47 Acg |12 /Zcosqﬁz—%{%(1—%}005%405%}2‘8]2
i - (3-118)

2
1 ¢, 3¢, |~
{Z(Ha)smgﬁm 5 LZ;A]Z}

From the formula (3-113)-(3-118), it is apparent that the generalized T-stress Green’s
functions of an impermeable crack depend on material properties and are singular

only at I =0 of (9(1/|2).
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Consider, next, a circular crack under a pair of opposite, unit normal point forces

presented by Chen and Lim (2005), the exact solution of the generalized stress

Green’s function is given by

1 3
022@;%30] f3(zj)

2 3
3
D 7uSic;fs (Zi)

="
07" =

1 3
T = W;ﬁzsj‘:j fs (Zj)

G
Z-zl

where of,07,75,75, and y,, 7;,, 75 are defined by
ol =05 +0gy

oy = (Gﬁ —o5 + 2i0'rGg)eZi9

i =(0'S +G§Z)ei6

75, =(Df + Dy )e"

Vin = ~C3 +Cy38;y + 65555,

Vie = —€3 €35,y — 555,

Vis = 2|:(C66 _011)+C135j0‘j1 +e31sjaj2]

(3-119)

(3-120)

(3-121)

(3-122)

(3-123)
(3-124)
(3-125)
(3-126)
(3-127)
(3-128)
(3-129)

AUl other involved parameters defined in Section 3.1 apply here except c; are

defined in Section 3.2 and the complex functions f3(2j), f4(zj), fs(Zj) are given

explicitly by

z h h r’—1z z°
f,(z)=—=tan™| — |- 1L
-(2) R® (Roj z(R§+h2)[I§—If Rj}

t S

a?—rl (2 re%) 5 z(3R; - 2*
f4(Z)= : [:_ 0—2 jtan l[ |2 2] (t—2R3 )

,—a

»|=

Jr\/az—roz\/lj—azroe‘g0 zh |t r’e
®(13-12)(1;-r%)

£57[1z e 0 4] R +h

(3-130)

(3-131)
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t h h re’ t
f,(2)==tan™| — |+ 2e —+— (3-132)
R R,) RZ+h?|IZ-12 R
where
2 2 2 2
NG (3-133)
a
t=re’ —re" (3-134)
5= a7 e O (3-135)
=\/r +17 —2rr,cos(0-6,)+2° (3-136)

By applying the properties (3-92)-(3-93) to the relations (3-130)-(3-132) and (3-119)-

(3-122) , the Green’s function of the generalized stress at any point on the plane

z=0 is given by

o5 (r,0,0;1,,6,) = ZJ/JaC fo( (3-137)
o, (r.0,0;1,,6,) = 2C66 zc fo (3-138)
75(r,6,0; r0,¢90)=0 (3-139)
75, (r.0,0;1,,6,)=0 (3-140)

where @, is defined in Section 3.1, and f,(0), f,(0), f,(0) are obtained as

[42 2
f3(0)=—& (3-141)

a’-r; (2 re®) [ 5 Jr?—a? Ja? —rire® (3-142)
— | = tan +— o
r’—a’ t0§02(r2—rroe (04 )

f,(0)=0 (3-143)

with Ry, defined by

Ry = Ro(z:0)=\/r2+r02—2rrO cos(6—6,) (3-144)



38

By introducing, again, the variable transformation T =r—a along with the proper
limiting process, it can be proved, for (1,,6,) #(a,8), that

2.2
lim \/r:i Jr u] =0 (3-145)
-0 of r2_ga2

r2_a?.fa? _r2
lim Jr:i Jr J J _0 =0 (3-146)
-0 or ts? (r2 - rroe"(‘g“"’))

. 0 a’—r’(2 re% 3
limdJF —|Jr| ¥« |2 Do tan | —
(Sl I [ s (t 5 j [ r2_a? m

(3-147)

where T =ae™—-re™ and § =.a’-are'”® . By substituting the results

(3-145)-(3-147) into (3-137)-(3-140), (2-11), and (3-123)-(3-126), the generalized T-stress

Green’s functions are obtained as

G Cos N -
T11 (‘9’ r0190) = _ZER Ci i0 io -i(0-6y)
o7 = \/a(ae" —-re” °) a-re " "

(3-148)
1 e
X
a—re "% 2a(a— roe"(”‘%))
c 3 a.2 _ r2
T (0.%,6)) == > R ¢, : i O S04
0,7 3 Ja(ae™ —re ) Ja—re "
(3-149)
re'®) 1
X i - i(6,-6)
Za(a—roe 0-%)) a-re'®
C 3 N a2 _ r2
Tl(é;(@v "016)0):i21‘s Cj i i : ~i(6-4,
9.7 = \/a(ae"g—roe" °) a-re %
(3-150)
1 rlei(eo—e)
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TS =0 (3-151)
TS =0 (3-152)

The expressions (3-148)-(3-150) can be further reduced by introducing the following

variable transformations

r,sin(6, —0)=Ising

r,cos(6,—6)+lcosgp=a

(3-153)

and the representation ¢; = A; +iB; where A; and B; are real and imaginary parts
of ¢;. The graphical interpretation of the variables |, ¢ is indicated in Figure 3-2. The

generalized T-stress Green’s function can be given explicitly by

Co | F([1, 1) ¢ 341
TS (0,1,¢)=——25_ [2cosg——{| =| 1—— |cos=—cos— | > A
i (0.1.4) g7l? ? a{{z( aj 2 21_1‘
1 |

3 (3-154)
{—(ngsingwin%}gsl}
To(0,1,4)= f%z 2COS¢_!Z{B(1_!EJCOSQ—COS% JZ::A,
1\ 4 . 34]< (3-155)
_B(l+gj5|n§+sm7}égj}
b (ell’qj)Z_%\/@{B@_éjmsg_ms%g& (5156)

o Dain® s sn ¥ 3
+L(1+aj3|n2+sm ; LZ:;AJ}

It is clear that the generalized T-stress Green’s functions of an electrically permeable

crack also depend on material properties and are singular at 1 =0 of (9(1/ IZ).
3.7 Generalized T-stress Components for General Crack-face Loading

Results of the generalized T-stress Green’s function established in Section 3.5 and
Section 3.6 are employed as a basis to formulate the general integral formula for
computing the generalized T-stress components for a circular crack subjected to

general crack-face loads.
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Location of unit point

Location to determine T-stress

Figure 3-2: Graphical interpretation of variables r,,1,6,,6 and ¢

3.7.1 Generalized T-stress Components for Impermeable Crack

For an impermeable circular crack under the uniform remote triaxial stresses
{o};,05,,05}, the uniform remote electrical inductions {d,;*,d,’,d;"}, and the self-
equilibrated, crack-face, general normal traction t, and the self-equilibrated, crack-
face, general electrical charge d,, the integral formula for the generalized T-stress

components is given implicitly by

5, (0.7.0)=5;+ [ [55(0.7.0:1,,6,){t, (.6, + 05} rdrde,
- (3-157)
+ [ [655(0.7.0:1,,6,){dy (1,,6,)+d5 | r,dr,do,

where &,,5.7, G, and G- are local components of the generalized stress field,
local components of the uniform remote triaxial generalized stresses o;; (including
the remote triaxial stress {o};,05,05F and remote electrical inductions
{d;”,d>,ds}), components of the generalized stress Green’s function &% and o®*
under a pair of opposite, unit normal point forces and opposite, unit point charges,

respectively. By following the work of Rungamornrat and Pinitpanich (2016), i.e.,



a1
employing equation (2-11) together with the expression (3-157), the generalized T-

stress components at any point (a,8,0) along the crack front is given by

T

0 (0)=T5 +T5(6)+T5(0) (3-158)

with Ty”, T3 (0), and Ty () defined by

Ty =0, +2I|m{\/_ |:\/_J-J‘—GP e,r,e rl,e)a%rdrdﬁ}}

(3-159)
+2'r'£‘8{ {f” (6.7.0:1,,6,)d; rdrd@}}
Ty (0)= 2Ir|£r(1){f_ IIJ—GP 9F,é;rl,Hl)ta(rl,Hl)rldrldel}}
s (3-160)
+2!'§3{‘/—_ x/_H (0.7.0;r,.0 )dg(rz,ez)rzdrzdez}}
To(60)= lem{ {\/_”‘GP 0.7,0;1,6,)[t, (rl,el)—t3(a,e)]rldrldal}}
(3-161)

+2I|m{ [«/_”o (6.7.0; r2,¢9)[dg(rz,ez)—d3(a,e)]rzdrzdez}}

r—0
-7 0

where T represents the generalized T-stress components associated with the
uniform remote triaxial stress o;;; TQ0 (6?) are the generalized T-stress components
corresponding to the uniform portion of the general applied traction t,(r,6,) and
general electrical charge d,(r,,8,) with the magnitude equal to t,(r,=a,6, =) and
d,(r,=a,0,=0), respectively; and TQl(G) represent the generalized T-stress
components associated with the remaining portion of the general applied traction
t,(r,6,) and the general electrical charge d,(r,,8,) with its magnitude equal to
zero at the point (a, 8), respectively.

By employing the condition t,(r,,6,)—t;(a,6)=0, d,(r,,6,)—d;(a,8)=0 at
the point (a,8) and the fact that the singularity of &5 (r,0,0;r,,6,) is present only
at a location where the concentrated load is applied together with interchanging the

order of limits, integrations and differentiations, the generalized T-stress TQl (9) can

be obtained as
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r—0

{znmf [ E I CANHS a)]}[t3(r1,<91)—t3(a,e)]rldrlda1
(3-162)

[f
ﬁ{zlumf _[Jr5sE (0T, rz,a)]}[d (r,,6,)—d, (a,0)]r,drdé,

T—0

By applying the definition of the generalized T-stress, the relation (3-162) reduces to

>(0)= IIT(fP(H; r,6,)p. (1. 6,)rdrd6,
o (3-163)
+ j jTQGE (6;1,,6,)p,(r,,6,)r,dr,do,
-7 0
where  p,(r,6,)=t,(r.6,)-t(a,0) andp,(r,,6,)=d,(r,,6,)—-d,(a,8). By
applying the variable transformations (3-110)-(3-111), it leads to the alternative form
of (3-163)

/2 2acos¢

()= j/z ! [(1T5 (6:1,4)) By (1,4l |
_:/2 2acos¢ R (3-164)
w0 [ LTS (6:1,0,)) B2 (1,4 )l |

where B, (I,4)=p,(r (k. ¢).6, (L)) and P, (L. ¢,)= P, (6 (1,.4,).6,(1,.4,))-
It should be evident from the formula (3-113)(3-118) that the function

IfQGP (6;1,.4,) and I'fQGE (6;1,.4,) appearing in (3-164) is singular only at 1=0 of
o(1/1), p(0,4)=0 and p,(0,4,)=0. Moreover, the normal traction t,(r,6,)
and the normal electric induction d,(r,,6,) are the most important factors for the
existence of the integral (3-164). If the functions t,(r,6,) and d,(r,,8,) are
sufficiently smooth at a point (a,8) with f)l(ll,qzﬁl):O(lﬂl), f)2(|2,¢2):O(|12), and
A, A, >0, the existence of all integrals appearing in (3-164) is confirmed since all
involved integrands are of (9(““‘1) and O(Ik_l). For A,4,21, all involved
integrands are obviously nonsingular and all integrals can be efficiently evaluated by
Gaussian quadrature. For 0< A, 4, <1, the involved integrands are weakly singular

and a numerical integration technique indicated below is employed. By introducing
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the change of variables |1=|1(E):|_71 and I, =1, (|_2)=|_72 where 7, and y, are

selected constants, the integral (3-164) can be modified as

2 (2acos¢)”

wO)=n| | [L) (HI(I)@)Jﬁ(ll(ﬂ)ﬁ)[ll(ll)] " dldg,

-l2 0

/2 (2acosg)’”2 (3-165)
| ] 1, (L) (0 (B).0) |01 (R). 0 )1 (2)] " g,
By setting 7, =1/ 4 and y, =1/ 4,, the integral (3-165) now becomes
. 1 P (2acosp)® _ o B
@)= [ [ [0 (o (0)a) Jp(u(5)o)L ()] dtoa
7l2 (_Zl;lciw)"zo ) (3-166)
o A I X ) )

It is apparent that all integrals appearing in (3-166) can now be efficiently integrated
by standard Gaussian Quadrature since the weak singularity at 1 =0 is completely
removed by the specific choice of ,,%,.

Since the closed-form solution of the generalized T-stress of an impermeable
circular crack under the uniform remote and crack-face loadings is already
established in Section 3.1, the generalized T-stress components TQ°° and TQ0 (0) are

then given by

T —A{i[ 5 — Cu1 )+ CiaSici, +€5,8,¢ IZ]pf"}+ o (3-167)
T = A{Zsl[ Cos — Cuz ) + 1S,y +€5,5:0%, | P }+ &% (3-168)
T3 =05, T, d°C d°O (3-169)
T8 =Ta =A{Z[ Cos —Cuy )+ CiaSiy + €55, | Y } (3-170)
T3 =0, Ty =0, Ty =0 (3-171)

where the loading parameters p; and p;° are defined in a fashion similar to those
indicated in the relation (3-5), ie, p*=(d,g,—-c0,)on+(cg,—dg,)dy and
P/ =(digs —¢9,)05 +(cg, —d;g,)d; -
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3.7.2 Generalized T-stress Components for Permeable Crack

For a permeable circular crack under the uniform remote ftriaxial stresses
{o};,05,,05}, the uniform remote electrical inductions {d;*,d,’,d;"}, and the self-
equilibrated, crack-face, general normal traction t,, the integral formula of the

generalized T-stress components are given implicitly by

G, (0.7.0)= +H5§" (6.7.0:1,,6,){t:(r,. 6, ) + o3} rdrdo, (3-172)
-7 0

By following the procedure similar to that employed by Rungamornrat and

Pinitpanich (2016), components of the generalized T-stress at any point (a,8,0) on

the crack boundary can be also written as
To (6?):TQ°° +TQ§’ ((9)+TQ1 (9) (3-173)

where T3, T7(6),Ty(6) are defined by

TS = +2I|m{«/_ {J‘H-GP (6.7.0; ro,e)%rdrdeﬂ (3-174)

r—0
-7 0

T5(0)= 2|lm{ {x/_H‘GP (6.7.0; rO,H) (ro,eo)rodrodeo}} (3-175)
T2(6)= 2I|m{ {J’jj 5o (0.7.0:1,6, [t (ro,eo)—t3(a,e)]rodrodeo}} (3-176)

r—0
-z 0

Note that the meaning of Ty, Ty (6), and Ty (@) is similar to that described in
Section 3.7.1.

Again, by employing the condition t,(r,6,)—t,(a,0)=0 at the point (a,8)
and the fact that the singularity of o_'Q (r,0,0;r,,0,) is present only at a location
where the concentrated force is applied along with the interchange of the order of

limits, differentiations and integrations, the generalized T-stress TQl(H) can be

obtained as

r—0

= TT{ZIlm\/_ [ GP(&,r,e I, 0, )]}[ta(rO,HO)—ta(a,e)}rodrodgo (3-177)
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By utilizing the definition of the generalized T-stress, the expression (3-177) can be

simplified to
TQ1 ('9) - _[ ITQGP (9; o t9o)p(ro'6’o) rdr,dé, (3-178)
-z 0

where  p(r,,6,)=t,(1,,6,)-t;(a,0). By applying the variable transformations
(3-110)-(3-111) to the integral relation (3-178), it leads to an alternative integral

formula

/2 2acos¢

@)= | [('Tlfp(@:lﬁ))Iﬁ(l,¢)d|dﬂ (3-179)

-zl2 0

where p(1,4)=p(r,(1,4).6,(1,4)). It should be evident from the formula (3-154)-
(3-156) that the function ITS"(8;1,¢) appearing in (3-179) is singular only at | =0
of ¢(1/1) and p(0,4)=0. If the traction data t,(r,,6,) is sufficiently smooth at a
point (a,8) such that f)(l,qé):(ﬂ(li) with A >0, the integrand of (3-179) is
obviously of O(1*™) and, as a result, the existence of the integral in (3-179) is
confirmed. For 4 >1, the integral appearing in (3-179) is clearly not singular and can
be integrated using standard Gaussian quadrature while for 0< A <1, the integral
contains a weakly singular integrand and the same integration scheme described in
Section 3.7.1 is applied. Specifically, by utilizing the variable transformation
=1 (I_)=|_7 where y denotes a pre-selected constant, the formula (3-179) can be

modified as

zl2 (2acos¢)y7

)=y [ [ [T ((T).0)]p(1T).)[1(T)] " dhdg, G180

—rl2 0
By setting ¥ =1/ A, (3-180) now becomes
L #2 acsd) ~ ~ PN
T(0)=~ [ ] [myts(ea(r).e) | p(1(T).0)[1(T)] "~ dig (3-181)
—l2 0

It is evident that for the chosen ¥, the singularity of the integrand at 1 =0 is fully

eliminated. Now, the resulting integral can be integrated accurately and efficiently by
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standard Gaussian quadrature.

By using the exact solution of the components of the generalized T-stress for
a permeable circular crack under uniform remote and crack-face loading presented in
Section 3.2, the generalized T-stress components TJ and TQ0 (0) can be given

explicitly by

Ty =(o5/ gl)izgl:[(c66 —Cyy )+ CpaSiy + €4S, |G + 5 (3-182)
Ty =(o5/ gl)izall[(c66 —Cyy ) +CiSi +e318iozi2]ci + &5 (3-183)
T5 =65, Ty =d°, Ty =dy (3-184)
T2 =T2=(/ gl)i[(ceﬁ —Cyy )+ CiaSiay + €55, |, (3-185)

T3=0,T=0, T =0 (3-186)
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Chapter 4

NUMERICAL RESULTS

Verification of the integral formula of the generalized T-stress components derived in
the previous chapter for impermeable and permeable circular cracks subjected to
general crack-face loading conditions is presented in this chapter. In addition, the
influence of the crack-face and applied loads on the generalized T-stress along the

crack boundary is reported.
4.1 Verification of Integral Formula for Generalized T-stress

Consider impermeable and permeable circular cracks under only the linearly
distributed, self-equilibrated, crack-face normal traction t, =o,(1+x,/a)/2 along
the global Xj-axis (see Figure 4-1). The body is made from a representative
transversely isotropic, piezoelectric material with the properties similar to those of
PZT-5H, shown in Table 4-1. To verify the integral formula developed in Section 3.7,
two benchmark cases are considered. First, the formula (3-158) for the impermeable
crack is specialized to an elastic case by simply eliminating the electric-mechanical
coupling effect (i.e., €5=6, =€,=0) and results are then compared with the
analytical solution reported by Rungamornrat and Pinitpanich (2016) as shown in
Figure 4-2. Next, results obtained from the integral formula (3-158) and (3-173) are
benchmarked with solutions obtained from a numerical technique presented by
Limwibul et al. (2016) in Figure 4-3 and Figure 4-4 for impermeable and permeable

cracks, respectively.
X
3

o,(l+x /a)/2

e saliiy
*¢vlll

Figure 4-1: Circular crack under linearly distributed, self-equilibrated, crack-face

normal traction o, (1+x,/a)/2 along the global X;-axis
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Table 4-1: Elastic moduli, piezoelectric constants and dielectric permittivities of
representative, transversely isotropic, piezoelectric solid identical to PZT-5H (eg. Li

and Lee (2004b))

Elastic constants C11 126.00
(x 10 Pa) C13 53.00
Ca3 117.00
Cas 35.30
Cee 35.50
Piezoelectric constants €15 17.00
(C/m) est -6.50
€33 23.30
Dielectric permittivities & 15.10
(x10° C/AVm)) &5 13.00

0.2

Tll ! T33 ! T13

Oy

Reference Sol.
—dee

-1.0
0.0 0.5 1.0 1.5 2.0

Olr

Figure 4-2: Normalized T-stress components of circular crack due to linearly
distributed, self-equilibrated, crack-face, normal traction o, (1+ xlla)/2 by ignoring
the electro-mechanical effect. The reference solution is taken from Rungamornrat

and Pinitpanich (2016).
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0.2
0.0 J=e_
-0.2

T s Ty 04

o, i
-0.6
-0.8 ¥
F Reference Sol.
1.0 A N SR I
0.0 0.5 1.0 1.5 2.0

0l rx

Figure 4-3: Normalized generalized T-stress components of impermeable circular
crack subjected to linearly distributed, self-equilibrated, crack-face, normal traction
o,(1+x,/a)/2. The reference solution is generated by a technique proposed by

Limwibul et al. (2016).

02

Tll ! T33 ! T13

Oy

Reference Sol.
M B B

a2 b
0.0 0.5 1.0 15 20

0z
Figure 4-d4: Normalized generalized T-stress components of permeable circular crack

subjected to linearly distributed, self-equilibrated, crack-face, normal traction
o,(1+x,/a)/2. The benchmark solutions are obtained from numerical technique

developed by Limwibul et al. (2016).
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It is evident from these results that numerical solutions generated by the proposed
integral formula exhibit an excellent agreement with the reference solutions for both
cases. This good agreement of results should ensure the correctness of both the

proposed integral formula and the implemented numerical quadrature.
4.2 Generalized T-stress Components under Uniform Loading Conditions

From the closed-form solutions presented in Sections 3.1-3.4, it is apparent that the
value of the generalized T-stress components T,,T,,T,, is independent of the
uniform crack-face, normal traction and uniform crack-face electrical charge,
dependent only on the in-plane components of the remote triaxial stresses and
remote electrical inductions, and independent of the electrical crack-face conditions.
In addition, for the permeable case, the out-of-plane electrical induction d;” shows
no contribution to both the mechanical T-stress components T,,T,;,T,; and the
electrical T-stress components T,,T,,. By integrating the effect of the dielectric
permittivity of a medium within the crack gap, both electrically semi-permeable and
energetically consistent cases introduce a new parameter d; which significantly
influences the values of the generalized T-stress components T, and T,.

To demonstrate the effect of the crack-face conditions and the remote
mechanical/electrical loading, the generalized T-stress components of a circular crack
under the uniform remote triaxial stresses 207y, =0,, 0, =0,, 204 =0, and the
uniform remote electrical inductions 2d;” =d,, d; =d,, 2d; =d, are computed and
reported in Figure 4-5 to Figure 4-12 for electrically impermeable, electrically
permeable, electrically semi-permeable, and energetically consistent cracks. In the
numerical study, the dielectric permittivity of a medium within the crack cavity for
both electrically semi-permeable and energetically consistent cracks is taken to be
g, 1&,=0.1 where g, =8.85x107?C/(Vm) is the value of the dielectric permittivity
of the air. In addition, the normalized generalized T-stress components at =0 are
also reported as a function of the normalized dielectric permittivity &,/ &, for the
remote mechanical load and the combined remote mechanical/electrical loads in

Figure 4-11 and Figure 4-12, respectively.
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Figure 4-5: Normalized generalized T-stress component T, along the crack front.

Results are obtained for

0.1 0.2 0.3 0.4 0.5
0lr

g 1&,=01,0,=1x10°Pa and d, =0.

05T
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Figure 4-6: Normalized

Results are obtained for
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generalized T-stress component T, on crack boundary.

g 18 =01,0,=1x10°Pa and d,=0.
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0.6
0.5
0a |
0.3
L
o, .

01 F

—o0— Impermeable

0.0 —a— Permeable
———— Semi-permeable
01 ——— Energetically consistent
-0.2 M I I I
0.0 0.1 0.2 0.3 0.4 0.5

Olr

Figure 4-7: Normalized generalized T-stress component T, on crack boundary.

Results are obtained for &, /&, =0.1,0, =1x10°Pa and d, =1x10*C/m?.

0.6
0.5 F
04 F
03 F
LER.
0.2
o, !

01}
—o— Impermeable

0.0 — —=&a— Permeable

———— Semi-permeable
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0.0 0.1 0.2 0.3 0.4 05
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Figure 4-8: Normalized generalized T-stress component T,, along the crack front.

Results are obtained for ¢, /¢, =0.1,0, =1x10°Pa and d, =1x10°C/m?.
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Figure 4-9: Normalized generalized T-stress component T, along the crack front for

all crack-face conditions and &, =1x10°Pa

14 ¢

olr

Figure 4-10: Normalized generalized T-stress components T,, and T,, along the crack

front for all crack-face conditions and o, =1x10°Pa and d, =1x10°C/m?
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Figure 4-11: Normalized generalized T-stress component T, at =0 versus the

normalized dielectric permittivity &,/&, for o, =1x10°Pa and d, =0
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0.06 |
0.04 |
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(on 0.02 —— Impermeable
———— Permeable
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Figure 4-12: Normalized generalized T-stress component T, at =0 versus the

normalized dielectric permittivity &,/&, for o, =1x10°Pa and d, =1x10°C/m?
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It is evident from these results that for a medium subjected only to the
remote triaxial stresses (e, d,=0), the electrically impermeable and electrically
permeable crack models yield, respectively, the upper and lower bound solutions of
the generalized T-stress components T,; and T;; on the entire crack boundary (see
Figure 4-5 and Figure 4-6). In addition, the generalized T-stress components T, T
predicted by the semi-permeable model are only slightly different from the lower
bound solution generated by the permeable case while solutions obtained from the
energetically consistent crack model fall in between the electrically impermeable
and permeable solutions. For this particular loading case, the generalized T-stress
component T, is independent of the crack-face conditions and its variation along
the crack boundary due to the influence of the in-plane remote stresses is clearly
indicated in Figure 4-9 whereas the components T,, and T,, identically vanish.

Unlike the previous case, for a combined remote mechanical/electrical
loading (i.e.,, o, =1x10°Pa and d, =1x10"°C/m?), the upper and lower bounds of
the generalized T-stress components T,; and T,; change to those generated by the
energetically consistent and impermeable models, respectively (see Figure 4-7 and
Figure 4-8). It can be also seen from these results that T,; and Ty, generated by the
impermeable model are significantly different from solutions predicted by the other
three crack-face models. In addition, T, is still identical to the previous case
whereas T, and T, are now non-zero but still independent of the crack-face
conditions. The variation of T,, and T,, along the crack front is due mainly to the
influence of the non-zero in-plane electric inductions d,”,d; as indicated in Figure
4-10.

To further demonstrate the influence of the dielectric permittivity of the
medium within the crack cavity on the value of the generalized T-stress components,
results are obtained for a range of ¢./g, from 0 to 2. Since the behavior of both
components T;; and Ty, is similar for the entire crack boundary as indicated above
and T,,T,,T,, are independent of the crack-face conditions, it is sufficient to report
only the generalized T-stress component T, at a representative location at 8=0
along the crack-front as indicated in Figure 4-11 and Figure 4-12. In the absence of

the remote electrical loading (see Figure 4-11), it is apparent that the electrically



56

permeable and impermeable solutions constitute the lower and upper bounds,
respectively. In addition, as the dielectric permittivity increases from zero, semi-
permeable and energetically consistent solutions start deviating from the
impermeable solution and gradually converging to that of the permeable case for a
sufficiently large value of &./g,. For the case of combined remote triaxial stresses
and electric inductions, the permeable and impermeable models yield the upper
and lower bounds of the semi-permeable solution for the entire range of &./g,
considered (see Figure 4-12). However, results of the energetically consistent case
show that as the dielectric permittivity increases from zero, the value of T,
increases rapidly to its peak value above the permeable solution and then gradually

decreases monotonically to that predicted by the permeable model.
4.3 Influence of Crack-face Mechanical Loading on Generalized T-stress

In this final section, the influence the distribution of the self-equilibrated, normal
traction acting to the crack surface on the generalized T-stress components for both
electrically permeable and impermeble cracks is studied.

Consider a circular crack under an axisymmetric, self-equilibrated, crack-face
normal traction t, =o-0(r/a)n where o, is a constant representing the maximum
value of the traction along the crack front and n is an exponent indicating the
distribution of traction across the crack surface. The resultant force of this traction
can be readily computed and denoted by T, =2zc,a’/(n+2). It can be remarked
that the exact solution of the generalized T-stress is available for the special case of
Nn=0 in Section 3.1 and Section 3.2. For this particular problem, only the
generalized T-stress components T, and T;; are non-zero and are apparently
independent of the position along the crack front for impermeable and permeable
cases. The computed generalized T-stress components T,; and T,;, normalized
either by the maximum value of the traction o, or the resultant force T, are
reported as a function of the exponent n in Figure 4-14 to Figure 4-17. As indicated
by results in Figure 4-14 and Figure 4-15, the normalized generalized T-stress
component T,; decreases monotonically in magnitude as the exponent n whereas

the reverse effect is observed for the component T,, for both crack-face conditions.
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Note also that both T,; and T,; are negative and, for a fixed value of the exponent
n, the permeable model vyields higher T, and T, in magnitude than those
generated by the impermeable model. By changing the means of normalization
(from o, to T,/ za®), itis clear from Figure 4-16 and Figure 4-17 that the normalized
generalized T-stress T, and T, depends linearly on the exponent n. In particular,
as N increases, the normalized T-stress components increase in magnitude.

X3 X3
o,(r/a) o,(r/a)’

el ]

(a)

Figure 4-13: Circular crack under axisymmetric, self-equilibrated, crack-face, normal

traction o, (r/a)": (@ n=1 and (b) any generic value of n

-0.85

—0— Impermeable

-0.90 B —a— Permeable

Figure 4-14: Normalized generalized T-stress components T, of circular crack under
axisymmetric, self-equilibrated, crack-face, normal traction t, = o, (r / a)n. Results are

normalized by maximum value of traction o.
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-0.95 |

100 L

Figure 4-15: Normalized generalized T-stress components T,; of circular crack under
axisymmetric, self-equilibrated, crack-face, normal traction t, = o, (r / a)n. Results are

normalized by maximum value of traction o .

-1.5

—O0— Impermeable

-3.0 | —a— Permeable
35 1 1 1
0 1 2 3 4
n

Figure 4-16: Normalized generalized T-stress components T,, of circular crack under
axisymmetric, self-equilibrated, crack-face, normal traction t, = o, (r / a)n. Results are

normalized by resultant force of traction T, .
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Figure 4-17: Normalized generalized T-stress components T,; of circular crack under
axisymmetric, self-equilibrated, crack-face, normal traction t, = o, (r / a)n. Results are

normalized by resultant force of traction T,
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Chapter 5

CONCLUSION

An exact solution of the generalized T-stress components for a circular crack
contained in a three-dimensional, transversely isotropic, linear piezoelectric, infinite
body under electrically permeable, im permeable, semi-permeable and energetically
consistent crack-face conditions and subjected to both a uniform generalized far field
and uniformly distributed crack-face mechanical/electrical loading has been derived.
In addition, for both permeable and impermeable crack-face conditions, the
generalized T-stress Green’s function due to a pair of opposite, unit concentrated
crack-face loads and the integral formula equipped with the numerical quadrature
for calculating the generalized T-stress components under general loading conditions
have been also established. In the derivation, existing generalized stress fields for
various cases have been employed together with the near-front expansion and
standard differentiations and proper limiting procedures. The obtained analytical
solutions are explicit and involve only elementary functions, and they can be used
as a basis for the parametric study to explore the effect of loading conditions, crack-
face conditions and material properties on the generalized T-stress components
along the crack boundary. In addition, the derived solutions can be also employed as
the reliable benchmark solutions in the validation procedure of newly developed
numerical schemes (e.g., boundary element and finite element methods) for analysis
of general and complex crack problems.

The implemented integral formula using the proposed numerical quadrature
has been also tested for several scenarios and it has been indicated that obtained
results are in very good agreement with benchmark solutions. Additionally, results
from a preliminary parametric study have shown that both the crack-face conditions
and crack-face loading play an important role on the generalized T-stress along the
crack boundary. To gain an in-depth understanding of the effect of many parameters

on the generalized T-stress, a more extensive parametric study is still required and



61

solutions and formula obtained from the present study should provide a useful basis

for such investigation.
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