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Chapter 1

Introduction

From the idea brought about in physics regarding the relationship between mass
(energy) and spacetime curvature, which has been presented through the Einstein field
equations, in general relativity, cosmology as a field has grown up tremendously,
producing a lot of new knowledge in the understanding of the universe. This thesis
looks at the anisotropic pressure sphere problem in general relativity. The spherical
symmetry is a condition to solve for a new solution of the Einstein field equations
(Bondi, 1947; Boonserm, Visser, & Weinfurtner, 2005; Buchdahl, 1959). An anisotropic
pressure system is interesting because it has characteristics that resemble a real
spherical stellar object. However, solving the Einstein field equations for a new solution
is complicated even though we have the symmetry and the required physical
conditions. A useful technique that we use in the study to obtain a new solution, the
anisotropic solution, is a solution generating theorem. The theorem can generate a

new solution if we have an existing known solution.

1.1 Introduction to general relativity

The background topics that we need in the understanding of this thesis are presented
in Chapter 2. The general theory of relativity is a field that many physicists are
interested in, which was first published in 1915 by the famous physicist Albert Einstein.
The theory introduces a different perspective in the understanding of the universe
from classical mechanics, particularly focusing on ideas about gravity (Carrol, 2014,
Hartle, 2014). In classical physics, gravity is a result of an attraction of one mass to
another mass. We can detect this attraction in term of force. If the mass disappears,
the force is lost simultaneously. However, according to general relativity, the classical
idea of gravitational force is not a completely correct concept. The gravity is instead
expressed as a consequence of a mass on spacetime. According to the theory, the

spacetime region at which matter is located will be curved because of the presence
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of mass. This curvature is recognized as gravity. Any other mass in proximity is also
aware of curvature, and therefore, aware of the presence of gravity in spacetime.
Anything that travels through spacetime has its speed limit not exceeding the speed
of light. If the mass suddenly disappears, the other mass has to take the time to realize
the absence of the gravity. The important concept of the general theory of relativity is
the Einstein field equations, which express the relationship between mass (or energy)

and the geometry of spacetime,
GW :872'GTW, (1.1)

where GW is an Einstein tensor, G is a gravitational constant, and Tﬂv is energy
momentum stress tensor. The Einstein field equations are a set of nonlinear differential
equations with coupling variables. It is hard to solve the equations directly without any
assumptions or symmetry. The first physicist who solved for the exact solution was
Karl Schwarzschild. He applied spherical symmetry to Einstein’s theory to explain the
gravitational field produced by some objects in a model of fluid spheres (Carrol, 2014,
Hartle, 2014). After that, perfect fluid spheres became known as the first approximation
in a construction of a realistic model for a general relativistic star (Boonserm et al.,
2005; Boonserm, Visser, & Weinfurtner, 2007; Delgaty & Lake, 1998; Lake, 2003; Rahman
& Visser, 2002).

1.2 The model of perfect fluid spheres

We assume that all spherical objects can be equated to a perfect fluid sphere, allowing
for symmetry that makes the Einstein field equations simpler. Perfect fluid spheres can
represent a spherically symmetric ideal object, which is filled by mass or energy. The
definitions for perfect fluid in this work differ from fluid mechanics. They are expressed

in terms of energy-momentum-stress tensor T, (Carrol, 2014);

TOO TOl T03

N

g
N

1

3. (1.2)

1 3
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— =
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The quantity T, describes four momentum p, across the surface constant X, .

In general relativity, the three properties associated with perfect fluid are: no shear
stress, no heat (energy) conduction, and isotropic pressure. In Veilbein formalism, these
properties direct the energy-momentum-stress tensor of perfect fluid to the following

diagonal matrix;

ab

o o o
o oo o
oo o o
o o o
—
*

p

where p is the pressure and p is the density of the fluid. For the isotropic property,
the pressure in every direction must be equal. Using equation (1.1), we obtain a

constraint for perfect fluid spheres in terms of the Einstein tensor G,
Gﬁ:Géé:G(M. (1.4)

The hat symbols above the coordinates are used to represent the quantities in Veilbein
formalism. This form has a non-coordinate basis and agrees with the observer’s view
(Boonserm et al., 2005; Carrol, 2014; Delgaty & Lake, 1998). The constraint will be

used to construct a solution generating theorem in the later section.

1.3 The Tolman-Oppenheimer-Volkov (TOV) equation

To express a system in physics, we may have to be familiar with physical observations
such as mass and energy. In general relativity, the system, which is considered as a
spherical object in this thesis, is described by the metric. Using the properties of perfect
fluid sphere and the Einstein field equations, the interior solution of a perfect fluid

spherical object obeys the Tolman-Oppenheiner-Volkov (TOV) equation as follows,
dp(r) _ _[p(n)+ p(OIIm(r) +47p(n)r’]

dr r’fl—2m(r)/r]

dm(r)

(1.5)

= 47p(r)r?.
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The TOV equation provides the relationship between the pressure profile p and the
density profile p, the m term refers to the mass. For astronomy related calculations,
information of an object can more easily be obtained in terms of pressure and density

rather than the geometry of spacetime around it.

1.4 Solution generating theorems

The method used in studying anisotropic fluid spheres in this work is referred to as a
solution generating theorem. The prime concept of the theorem is to generate a new
solution from an initial solution. In reference to ‘ Generating perfect fluid spheres in
general relativity’ by P. Boonserm et. al. (Boonserm et al., 2005), the theorem
transformations are based on spacetime geometry of perfect fluid spheres in terms of
the static Schwarzschild coordinates metric,

2
s? :—g’o(r)zdt2+L+ r’dQ?’. (1.6)
B, (r)
The solution is denoted by {{O (r).B, (r)} , where it satisfies the perfect fluid sphere
constraint Gy, =G, =G, ;.
For theorem 1, the B,y(r) term is transformed to B,(r)+4A,(r). The solution after
applying the theorem is {¢, (1), B, (r)+AA,(r)}. The new solution is also a solution

of perfect fluid spheres, where the A, (r) term should be in the form

_ 4/0( ) i go é,o(r)_rélo(r)
Bolr)= [@(rwr:o J {I (r):o(r)+r:o(r)dr} e

For theorem 2, the £, (r) is transformed to Z,(r)d,(r). The solution after applying

the theorem is {Zo(r)go(r), Bo(r)}. The new solution is also a solution of perfect
fluid spheres, where the Z () term should be in the form

rdr
o(r)?/By(r)

Theorem 3 and theorem 4 are a combination of theorem 1 and theorem 2. Theorem

zo(r):a+gj (1.8)

3 is the application of theorem1 followed by theorem 2. The steps involved in the

application of theorem 4 are the reverse of theorem 3.
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Besides, a solution generating theorem can also be constructed for the TOV equation
with a different approach in reference to ‘ Solution generating theorems for the TOV
equation’ by P. Boonserm et. al. (Boonserm et al., 2007). Assuming that we obtain the
initial pressure P, and the initial density p,, they can be transformed to new

solutions in terms of p,+op and p, +op.

For theorem (P1), the initial density p, (r) is fixed. The TOV equation is in the form of
nonhomogeneous differential equation, referred to as the Riccati equation. The new

solution for the TOV equation is Py +0P, where

P A[1-2m, /T exp {—Zj godr}
0

op(r)=

’ (1.9)

1+47op, rdr

jlexp —2_r[g dr
o J1-2my/r 0 °

3
where op, is Op at the center of the sphere, g, = moz([? +24” F()ogj)a ,and M, is
r’|1—-2my(r)/r

initial mass.

For theorem (P2), the initial pressure p, and the initial density p, are transformed to

P, +OpP and p,+Jp, respectively,

) 1+87p,r? f 1-r
5p(r) = —te - 2 exp{ZJgo—%dr}, (1.10)
[1+rg,]” -2 o 1+rg,
"
1d{ sp)r’
oplr)=———| ————|. (1.11)
P (1) re dr (1+2rg0(r)

Considering the solutions of both theorems, the physical reasonableness of the
generated solutions depends on the initial solution. If the initial solution has a finite
and positive pressure and density at the center, new solutions are well behaved.
Therefore, theorem (P1) and theorem (P2) have a restriction where a black hole cannot
be generated by the solution of a star. We can easily consider the physical meaning

of the solution in terms of the TOV equation rather than a metric form.
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1.5 Charged fluid spheres and an anisotropy of pressure

The perfect fluid sphere is an ideal concept to explain an object. In an approach to
real object; however, this concept must be modified. In this thesis, we are particularly
interested in anisotropic fluid spheres. In Chapter 3, the charged fluid sphere is
presented as an anisotropic pressure system. The property, which is unlike the perfect
fluid sphere, where the radial pressure is not equal to the transverse pressure. The

energy momentum stress tensor for anisotropic pressure system can be written as

follows,
p 0 0 O
N e (1.12)
® 10 0 p O
0 0 0 p

Considering the Einstein field equations, the radial Einstein tensor differs from the

transverse,

Gi # Gy (1.13)

rr 22]

A stellar object always has properties of an anisotropy of pressure. One kind of object
which is similar to anisotropic fluid spherical objects is a neutron star. The star is
classified as a type of compact star. The existence of electric charge, magnetic field

and scalar field in the star are causes of anisotropy.

In this thesis, we construct a solution generating theorem for charged fluid spheres.
Considering the solution in metric form, we assume the solution is in the form of

Schwarzschild coordinates metric,
2 22 O 242
ds® =—4,(r) dt® + ——+r°dQ°. (1.19)
B, (r)

The solution is denoted by {é’o(r),Bo(r)}. Following the derived steps of perfect
fluid spheres, we have to set up a constraint for charged fluid spheres,
Gy —G,, =87A(r). (1.15)

Therefore we can construct the theorems as follows;
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For theorem 1, the B,(r) term is transformed to B,(r)+ AA,(r). The solution after
applying the theorem is {¢;(r), B, (r)+ A4, (r)}. The new solution is also a solution
of charged fluid spheres, where the A, (r) term should be in the form

B R N YA PG R ()
A°(r)_[4o(r>+ra;(r)] r exp{zj 0 GOm0

For theorem 2, the £, (r) term is transformed to Z,(r)d,(r). The solution after

applying the theorem is {Zo(r)é’o(r), Bo(r)}. The new solution is also a solution of
charged fluid spheres, where the Z, (r) term should be in the form

rdr
Co(r)*y/By(r)

The results are similar to the solution generating theorems for perfect fluid spheres.

zo(r)=a+gj (1.17)

After that, we use the theorems to generate new solutions of the charged fluid sphere,

which is the Tolman-Bayin type with n=0,

2 2\t
dszz_(l_z_mﬂ jdt2+(1— 29 J dr? +r’dQ?. (1.18)
"

r2 r2

For the application of theorem 1, the By(r) term is transformed to B, (r)+A4A,(r),

where

A, :4|n(r—q){%—l}ﬂn(r+q){%+1}+8ln(r)- (1.19)

For the application of theorem 2, the ¢,(r) term is transformed to Z,(r)¢,(r), where

3 3 _ 2In(=2mr +q® +r?
ZO=a+g[%r2+2mr+q In(r+g)_q In(r g)+ ( a )[m“_quJA}

Am+4q 4m-4q (m+q)(m-q)

{1 2r—2m }
arctan| =

2 /_mz 4 qz

[meajim-a]-m o’

[m4—m2q+ﬂ], (1.20)

2 2
by assuming iz < 1.
r
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1.6 The modified TOV equation for charged anisotropic pressure system

The solution of the Einstein field equations in metric form is not enough to understand
charged fluid spheres. Research in the area of astrophysics always involves the interior
properties. Therefore we should construct a solution generating theorem for the
interior solution of charged anisotropic pressure spherical system in terms of pressure
and density. The solution is improved from the TOV equation by adding an
electromagnetic field and scalar field (Boonserm, Ngampitipan, & Visser, 2015). With
the conservation of energy momentum tensor V, T*" =0, the modified TOV equation

for charged fluid spheres is

dp, (Pf + pf)(m+4ﬂpfr3) Oen o d¢
_—— 2 - B S_’
dr r’(1-2m/r) Ji-2m/r Cdr (1.21)
dm(r)

ar =47r[pf +0,, +0'S]r2,

where P;, p;, O, and o, are perfect fluid pressure, perfect fluid density,

em!

electromagnetic density, and scalar field density.

For theorem 1, the initial density p, (r) is fixed. The modified TOV equation is in the
form of nonhomogenous differential equation, which is the Riccati equation. Assuming
that we obtain the initial solutions p, and p,, the new solution for the TOV equation

is P where
Aexp{—j(l_iﬁ/r)pl(r)dr} pl(r)+(1—/1)exp{—f(l_2%pz(r)dr} o, (r)

(1.22)

p(r) =

where A is a constant.

For theorem 2, the initial pressure p, and the initial density p, are transformed to

Py +O0P:. +OPp and p, +Ip, respectively, where

_ op(0) 1+8~x po(r)r2 0 1-rg,y(r)
Spe(r)= g, ] 1-2m (0 /F exp{zl' 90 ey (1) dr}, (1.23)
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op, (nNrd
5o, :_izi & -bo,, —60,, (1.24)
redr{1+2rg,(r)
(et
5Py =3pc | 1‘2”‘5’; ) lar. (1.25)
0 C

The new solutions from theorem 2 depend on the electromagnetic field and scalar
field. In addition, we also consider the effect of charge on pressure. For a special case:
when p is constantand oy is zero, the pressure of fluid spheres rises when the charge

increases.

1.7 Structure of the thesis

This thesis starts with an introduction to general relativity in Chapter 2. The general
relativity is linked to classical mechanics by special relativity. The involved physics
quantities are also explained. An important method in this thesis, which is a solution
generating theorem, is presented. After that, Chapter 3 contains the relevant
information about our interested system, anisotropic pressure sphere. A dominant
characteristic of anisotropy is the difference in the radial pressure and the transverse
pressure because of charge. We also construct a solution generating theorem here. In
Chapter 4, the theorems are created for the interior solution of charged fluid spheres
using the modified TOV equation. Moreover, the effect of electric charge on pressure
is also examined. Lastly, the results of the thesis and further works are concluded in

Chapter 5.



21

Chapter 2

Relativity and solution generating theorem

This thesis works on the idea of general relativity which presents a different approach
to distinguish physics from classical physics. This chapter describes about background
knowledge of the thesis. Moreover, definitions of the relevant physics quantity are
explained, such as tensor and the Einstein field equations which is the main idea to
construct the new theorems. We will introduce about the solutions of the Einstein
field equations in both metric form and interior solution. The important algorithmic
technique we use in the thesis is a solution generating theorem. In this chapter we
explain the construction of the solution generating theorems for perfect fluid sphere

in form of metric solution and interior solution.

2.1 Special relativity

Classical mechanics can describe motion and interaction between objects in daily life
by using Newton’s laws of motion. But the laws cannot completely explain mechanical
phenomena at extreme conditions. For example, classical mechanics gives the wrong
description about an object which moving at the speed near the speed of light. In
1905, Albert Einstein presented the theory that gives the concept different from
classical mechanics but more precisely, special relativity. The theory makes an impact

on physics and is a starting point of modern physics (Carrol, 2014).

Einstein’s idea is about setting up an inertial frame and another frame that moves with

constant velocity with respect to the inertial frame.

Special relativity was constructed by 2 postulates,

1. Physical laws are the same in all inertial frames.

2. The velocity of light (in vacuum) is constant in all inertial frames.

For the first postulate, a phenomenon that happens in all inertial frames should obey

the same laws of physics.The second postulate is supported by Michelson-Morley
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experiment (Hartle, 2014). Light velocity does not depend on how fast an observer
travels. This idea opposes relative speed in Newton’s Laws. This postulate allows
observers in different frames to be able to observe same event in different time

duration.

Because of the two postulates of relativity, time is seen as a coordinate. The time
interval of an event as observed in different frames may be different. Therefore, time
is coordinate same as spatial coordinates. The transformation from one frame to
another frame is Lorentz transformation. This transformation includes both rotation
and boost. The rotation transforms spatial coordinates between two frames. The boost
leaves the spatial coordinates as it is, while transforms only the time component. As
for the 4 dimensions, Lorentz transformation relates two initial frames via both time
coordinate and the spatial coordinates. The definition of metric for flat spacetime can

be seen from the line element (metric) in the Minkowski coordinates,
ds® = —c?dt? + dx* + dy® + dz°.
The metric can describe geometric property of a spacetime. This Minkowski mige

presents a spacetime with no energy or mass. We can write the metric in terms of the

infinitesimal coordinate displacement dx“ and metric tensor 77,,,
25 a1 7 v
ds® =n,, dx“dx". (2.2)

The Greek subscripts are run the number 0 to 3, where zero is defined as the time
coordinate and the others run for three spatial coordinates. Einstein summation
convention is used for summation of all running index without summation sign. The

metric tensor 77, stands for metric tensor of a Minkowski metric,

100 0
|0 100 (2.3)
Tw=l'o 01 0of

0 00 1

The metric tensor is related to the matrix A that is defined via the Lorentz

transformation by

n=A"nA. (2.0)
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The matrix A is constant square matrix and depends on the initial frame and relative
frame. The example of A, which describes the transformed frame boosts in x

direction of the initial frame, is

y - 00

Ao | By 00
10 0 10
0 0 01

2.2 General relativity

Special relativity

vacuum

acceleration

massless curved spacetime

flat
scalar field
mass

accelerating universe energy

General relativity

Figure 1: Special relativity as a specific case of general relativity

General theory of relativity was first published in 1915, which introduced a completely
new perspective in the understanding of physics. The theory presents new ideas about
gravity (Carrol, 2014; Hartle, 2014). This theory is involved with mass and energy.
Special relativity is a subsection of general relativity, as shown in Figure 1, and describes
the flat spacetime. In classical physics, gravity relates to a force exerted by a mass,
which attracts another mass in certain proximity. If the mass disappears, the force is
suddenly lost. However, according to general relativity, gravity is not a force. It is a
consequence of a mass or energy on spacetime. The spacetime where matter sits will
be curved because of the presence of mass. This curvature is recognized as gravity.

Any other mass in proximity is also aware of the presence of gravity in spacetime.
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Anything that travels through spacetime has its speed limit not exceeding the speed
of light. If the mass suddenly disappears, the other mass has to take the time to realize
the missing gravity. The another concept of gravity is about an equivalent principle.
The principle was presented by Einstein. He thought there is no difference for
experiment between constant acceleration and uniform gravity. Hence, the object in
the constant accelerated frame is equivalent to the objects with free fall moving from
the influence of gravity. The key basis of the theory is the Einstein’ s field equations
which express the relationship between mass (or energy) and the geometry of

spacetime,
G W7 87rGTW. (2.5)

The right hand side of the equation describes the mass and the energy, while the left
hand side is the spacetime curvature part of the equation. The Einstein field equations
are nonlinear differential equations with coupling variables. It is hard to solve the
equations directly without any assumption or symmetry. The first physicist who solved
for the exact solution was Karl Schwarzschild. He applied spherical symmetry with
Einstein” s theory to explain the gravitational field produced by some objects
(Boonserm et al., 2005). In this thesis, we also make use of spherical symmetry. For
astronomical objects in the universe, we can see that almost all objects are spherical.
By using this symmetry together with model development, we may be able to predict

the spacetime around a star.

2.2.1 Metric

In classical mechanics, coordinates are only reference positions of physical
phenomenon. An object’s move path is influenced by other masses or energy. On the
contrary, general relativity explains an action from one mass to another mass is not
direct action. The influence is acted on the spacetime and it transfers the action to
another mass. Therefore, the spacetime in general relativity are important and have a

role in interaction in physics. How to express the geometric property of spacetime, in
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4 dimensions, is to use metric. The general form of metric, which is consistent to the

spherically symmetric metric, is presented in the form as follows

dr?
B(r)

which is the type of metric we use in this thesis. The term g”(r) shows the scaling of

ds? =—¢ (r)" dt* + +r2dQ?, (2.6)

time coordinate and B(r) shows the curve on radial coordinate. This metric is written
in spherical coordinate for simply explanation of a spherical symmetry object. The
metric tensor 77, in special relativity is tuned to be g, for a curved spacetime

which can be obtained from line elements for a curved spacetime

ds® =g, dx“dx".

2.2.2 Vector and dual vector

In general relativity, an interaction is observed in 4 dimensions. We need a higher
dimensional quantity to explains the phenomena. A tensor is introduced as a type of
quantity for a better understanding of the concept of physics. Vector in relativity is a

first step for definition of a tensor.

A difference between two coordinates, in general relativity, can be explain by general
coordinate transformation. The concept of the transformation is similar to Lorentz
transform but done on curved spacetime. From general coordinate transformation, the
coordinate x* change from the coordinate dx” by

ox*

Ox"

dx* = dx”.

A vector represents magnitude and direction. The notation we use to define a
component of vector is the letter with upper index, V¥. We can transform the

component of a vector V# to another frame as follows

VY = Zx—ﬂv”. 2.7)
X

The basis vector is defined as a letter with lower index, é(#),
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_\/HA
V=V, (2.8)
General coordinate transformation of basis vector differs from the vector,

. OX"
e —

o= b (2.9)
X

We can define the quantity that opposes to vector, a dual vector or one-form. Itis a

mapping of vector in to real space,
V(a))sa)(V):V”a)ﬂ, (2.10)

where V is a scalar. The transformation for a component of dual vector is

@, = % @ (2.11)
v :
For the basis dual vector has a transformation rule likes vector
A= XY A
5 = 0 o (2.12)

- ox*
A vector and a dual vector are defined by general coordinate transformation which
depends on the properties of spacetime. By this definition, we will explain a tensor

quantity that expresses physical property in general relativity.

2.2.3 Tensor

We can construct a tensor as a quantity that has property of both vector and dual
vector. The tensor rank k +1 is expressed in term of a result of tensor product & as

follows

T=Ta* & ®.08

) )(v) 2.13
- @0 ®..®0". (2.13)

(

The bases of tensor consist of the tensor product of all coordinate bases

' He' Ay "
I e S SR (2.14)
T ok axMe oxt T ox S

In this thesis, the tensors that we use agree with this general coordinate

T

transformation.
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2.2.4 Energy-momentum stress tensor

The metric of spacetime gives a clear understanding about geometric property of
spacetime. The curvature of spacetime is a result of mass or energy. Considering in
particle and energy, this part can be described by a square matrix, energy momentum

stress tensor T,,. This quantity is defined by the flux of four-momentum p, across a

surface X,
TOO TOl TOZ T03
T = To Ty T Ty (2.15)
" TZO T21 T22 T23
T3O T31 T32 T33

From the definition, T,, is an energy density, T, refer to an energy flux through the
plane X', T, describe the momentum density in i direction, and T; are the flux of
mormentum in 1" component flow through the plane X;. The energy momentum
stress tensor is symmetric and should be consistent to the conservation of energy-

momentum condition,

-4 (2.16)
Vv, T =0,
V"

8xﬂ

where the symbol Vﬂ is covariant derivative. It is defined by V V" = +I7 Ve

for an is a Christoffel connection. The condition is useful to construct the interior

solution of anisotropic pressure system in this thesis.

2.2.5 The Einstein field equations

After publishing of special relativity in 1905, Albert Einstein had been developed the
more general case and he succeed. The general theory of relativity was published in
1916 and brought a big change to Modern physics. The fundamental idea of general
relativity is a relationship between spacetime curvature and mass or energy which is

described by the Einstein field equations
G, =8GT,, (2.17)

where GW is Einstein tensor, defined by
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1
G/zv = R,uv _E gva’ (218)

where Rﬂv is a Ricci tensor, R is a Ricci scalar, and g, is a metric tensor.

To derive an Einstein tensor G;,v starts from a metric tensor g, which can be

obtained from line element as follows
2 _ v
ds® =g, dx“dx". (2.19)

The Christoffel connection can be derived from derivatives of metric tensor,

T 1 w
I, =59 (0,9,,+0,9,, 2,9, )- (2.20)

The Christoffel connection can lead to a Ricci tensor and Ricci scalar as foollows

R, =0, -8, +T“T* ~T*“T", (2.21)
R=R_g". (2.22)

The Einstein field equations show the dynamic of gravity as a result of curved
spacetime. This equation is too complicated to solve for an exact solution. The
solution of this equation is obtained by supposing some symmetry to a system. In this
thesis, the symmetry is anisotropic fluid spheres. However, before we go to this part,

we have to consider in first step of approximation, perfect fluid spheres.

2.3 Perfect fluid spheres

The Einstein field equations are composed of Ricci tensor R, ,Ricci scalar R, and

uv?

metric tensor g,,. These quantities are highly nonlinear differential equation, which

uv”
are coupled with each other. We cannot solve the equation directly without
formulating an assumption to make it simpler. One year after publishing the general
theory of relativity, Karl Schwarzschild become the first person to successfully solve
for the spherically symmetric solution with the perfect fluid sphere condition
(Boonserm et al., 2005). We assume that all matter in a star can be equated to perfect

fluid spheres, allowing for symmetry that makes the Einstein field equations simpler.

Perfect fluid spheres can represent a spherically symmetric ideal object which is filled
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by mass or energy. The definitions for perfect fluid in this work differ from fluid

mechanics. They are expressed in terms of energy-momentum-stress tensor TW ;

TOO TOl TOZ T03

T/W — TlO Tll T12 Tl3 (223)
TZO T21 T22 T23
T30 T31 T32 T33

The quantity T,, describes four momentum p, across the surface constant X,

(Carrol, 2014).

In general relativity, the three properties associated with perfect fluid are; no shear
stress, no heat (energy) conduction, and isotropic pressure. For presenting an
observer’s view, we can use the non-coordinate basis known as the Vielbein formalism.
It presents the basis vector, which does not depend on any coordinates. In Vielbein
formalism, the properties direct the energy-momentum-stress tensor of perfect fluid

to the following diagonal matrix (Boonserm et al., 2005),

(2.24)

o O T O
o T O O
T O O O

For isotropic property of interior pressure, the pressure in every direction must be
equal. This property allows us to reduce complexity of density distribution inside an
object. Using equation (1), we obtain Einstein tensor G, for perfect fluid spheres, and

perfect fluid constraints

G =G;; =G,;. (2.25)

The hat symbols above the coordinates are used to represent the quantities in Veilbein

formalism. This form is in non-coordinate basis and agrees with the observer’s view.

2.4 The solution generating theorems for perfect fluid sphere metric

Subsequently, many solutions of the Einstein field equations with perfect fluid

constraints were explored in various coordinate systems (Bondi, 1947; Buchdahl, 1959;
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Thairatana, 2013). Each solution explains different systems in different conditions.
Recently, some algorithmic techniques have been developed to generate new
solutions from known perfect fluid spheres (Boonserm et al., 2005, 2007). This is very
interesting because we no longer need to solve the Einstein field equations directly to
obtain the solutions. The idea of a solution generating theorem is presented as in
Figure 2. This concept also classifies the type of metric solution and exhibits the

association of the solutions in distinct conditions.

initial Solution generating
Wt ‘ ‘ new solution
solution theorem
]
| |
: I
| I
I
I -
L _ satisfy_ _ System condition o _ satisfy _ |

example: perfect fluid

spheres condition)

Figure 2: The working of a solution generating theorem under system condition

For constructing the solution generating theorems, a metric of an object was written

in suitable coordinates. By definition of the geometric element of the Einstein field

v €an be obtained from the metric.

equation, G, =R, —%gﬂvR, Einstein tensor G
We can set perfect fluid constraints to G, for ordinary differential equation, which can
be used to build the solution generating theorems. These theorems deform perfect
fluid spheres in terms of spacetime geometry. In reference to the solution generating
theorems for perfect fluid spheres by P. Boonserm (Boonserm et al., 2005), the
generating theorems for Schawarszchild metric with perfect fluid sphere conditions

were constructed as follows. The coordinates that we want to work is Schwarzschild

coordinates,
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dr?
=—C (r)°dt? + —— + r2d Q2. (2.26)
&,(r) + 5. (N +

0

For describing perfect fluid sphere object, the different conditions of any systems
influence to ¢,(r)and B,(r)terms. So, the both terms will be transformed to other
metric form. Suppose {Q’O(r), Bo(r)} represents a perfect fluid sphere. According to
perfect fluid spheres constraint, G, =G, :Gé&’ and deriving the Einstein tensor in

topic 2.2.5, we can obtain

[r(r¢)]B+[2r’¢"=2(r¢) |B+2¢ =0, (2.27)
or in rearranged form of £(r),
2r’B¢ "+(r?B'-2rB)¢ "+(rB'- 2B +2)¢ =0. (2.28)

This equation is under the condition of perfect fluid spheres in Schwarzschild
coordinates. The solution that corresponds to equation (2.27) is also a perfect fluid

sphere solution of the Einstein field equations.

Four theorems for perfect fluid sphere

For theorem 1, suppose we know the solution of perfect fluid spheres {4’0 (r), Bo(r)},
we can generate the new solution by fixing the ¢,(r) term and extending the B,(r)
term to B,+A4A,(S,). The A(r) can be derived by setting a new solution
{&o(r), By(r) + AA, } to satisfy equation (2.27).

Theorem 1: Suppose {g’ ,(),B (r)} represents a perfect fluid sphere. Define

_ 40—()2 & (r) &(n=r&(r)
Ao(r) [é/o(r)—i—l’é’o J { I (r) é’o(l’)+r§0( )dr} (2.29)

Then for all A, the geometry defined by holding &,(r) fixed and setting
dr’
B,(r)+AA, (1)

is also a perfect fluid sphere. That is, the mapping
{0+ Bo} =140, By + 44, (S5)} (2.30)
takes perfect fluid spheres into perfect fluid spheres.

s? ==, (r)*dt* + +r’dQ’

Theorem 1 transforms a solution to a new solution with the different time scaling but

the geometric property about spatial parts remain the same.
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For theorem 2, suppose we know the solution of perfect fluid spheres {cjo (r), Bo(r)},
we can generate the new solution by transforming the ¢, (r) term to £ Z,(¢,, By)
and holding the By(r) term. The Z;(¢,,B,) term can be derived by setting a new
solution {£,Z,(,.B,),B,} satisfy equation (2.28).

Theorem 2: Let {(r), B,(r)} describe a perfect fluid sphere. Define
rdr

20 =+ RAGAEG)

then for all o and &, the geometry defined by holding B,(r) fixed and setting

d ? 2 2
—g“o(r) e (r) dt? + 5 (r)+r dQ

0

(2.31)

is also a perfect fluid sphere. That is, the mapping

{§O’BO}H{§OZO(§O’BO)’BO} (2.32)
takes perfect fluid spheres into perfect fluid spheres.
Theorem 2 transforms a solution to a new solution with the different radial explanation

but the description about time part remains the same.

Theorem 3: If {é’o(r) B (r)} represents a perfect fluid sphere, then for all o,& and
A, the three parameter geometry defined by

ds® :_é/o(r)z{ _[ \/B

dr?

2
dt? +
1)+ A0, ( } By (1) +A4,(r)

rdr

is also a perfect fluid sphere, where A

o(1) is
~ omn Y &o(r) So(r)—rdy(r) (2.33)
Ao(r)_[go(r)+r§5(r)J o p{ ’[ o (1) ?o(r)+r§o(r)d }

That is

T, =T,°T,:{C0. By} > {C0. By + 480 (&5 )} 5 {40Z5 (S0 By + 484 (£5)), By + 24, (&)}
(2.34)

For constructing the theorems, suppose we know the solution of perfect fluid spheres

{é’o(r), Bo(r)}, we can generate a new solution using the following 2 steps. First,

applying theorem 1, then the By(r) term is extended to B, = B, + 1A, (4’0) while

¢, (r) is held. After that, by applying theorem 2, the ¢,(r) term is transformed to
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$oZo(&5 By +4A,) while holding the By term. The Z,(¢,,B,) term and A, (&)
term can be derived by setting new solutions {£;,B,} and {(0 0(<0.B,).B 1} satisfy
equation (2.27) and (2.28), respectively. Theorem 3 transforms a solution to a new

solution with the different geometric property of radial and new time scaling.

Theorem 4: If {£,(r), By(r)} represents a perfect fluid sphere, then for all @, &, and
A, the three-parameter geometry defined by

5 rdr 2 dr’ 2d0?
__é,o(r) {64_8.[40“)2 BO(I')} at +BO(F)+/1A0(§1’r)+r a0

is also a perfect fluid sphere, where A, (gl, r) is defined as

Ay (&0r)= {¢J2 {jgl éVl('r)_rgl(r)dr}, (2.36)

(2.35)

G +rg(r (r) &) +rgi(r)
depending on ¢, =¢,Z,, whereas before
rdr
= , (2.37)
Z,(r) G+&‘I Q’O(r)z 5 (1)
That is
T,=T.°T, :{é’oy Bo} = {é/ozo (4/07 Bo)’ Bo} = {4020 (é/o' Bo)’ B, +44, (é/ozo (go’ BO))}

(2.38)
For constructing the theorems, suppose we know the solution of perfect fluid spheres
{go(r), Bo(r)}, we can generate a new solution by reversing the steps of theorem 3.
First we apply theorem 2 to the initial solution. Therefore, the ¢, (r) term is extended
to & =¢,Z,(&5,By) while By(r) is held. After that, by applying theorem 1, the
By(r) term is transformed to B,+A4A,(¢;), while holding the ¢;(r) term. The
Z,(&,.By) term and Ay(¢;) term can be derived by setting new solutions {¢;, By}
and {g”l, B, + 44, (g”l)} satisfy equation (2.28) and (2.27), respectively. Theorem 4
transforms a solution to a new solution with the different geometric property of radial
and new time scaling.
Four theorems transform a solution in metric terms. The theorems can generate new
solutions from known solution but sometimes the generated solutions have the same

mathematical form as the initial solution of generation. We can classify the type of
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solutions from generation of four theorems to be seed and non-seed solutions
(Boonserm et al., 2005).

If a solution gives a new solution from both theorem 1 and theorem 2, the solution is
a seed solution or a seed metric.

If a solution gives a new solution from either theorem 1 or theorem 2, the solution is

a non-seed solution or a non-seed metric

Seed solution Non-seed solution
Theorem 1 New solution New solution initial solution
Theorem 2 New solution initial solution New solution

Table 1: Types of the solution, divided from the solution generating theorems

2.5 Interior solution of perfect fluid sphere and the TOV equation

For the solution generating theorems, the theorem transformations are based on
spacetime geometry. But for us, a star can more easily be observed in terms of mass
and energy rather than the geometry of spacetime around it. Because the star matter
can be expressed by energy-momentum-stress tensor in terms of pressure and density,
the solution generating theorems should be applied to physical observables: pressure

and density.

The relationship between pressure and density profile is given in the Tolman-

Oppenheimer-Volkov (TOV) equation;

dp(r) __[p(r)+ p(n]Im(r) + 4z p(r)r’] (2.39)
ar r2[1—2m(r)/r] ! '
dm(r) _ 47rp(r)l’2. (2.40)
dr

2.6 The solution generating theorems for the pressure and density terms

The Tolman-Oppenheimer-Volkov (TOV) equation describes the interior properties of
spherical static perfect fluid object as a relationship between two physical observables,

pressure P and density p. For a fluid sphere object, which contains electric charge,
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magnetic field, and scalar field, the pressure becomes anisotropic. We deform the TOV

equation in terms of dp and &p.

Before considering interior part of a perfect fluid sphere system, we first cite to the
solution generating theorems on the TOV equation in perfect fluid system. Referring
to the article ‘Solution generating theorems for the TOV equation’ by P. Boonserm et
al. (Boonserm et al.,2007), the solution generating theorems for the TOV equation

were developed as follows.

Theorem (P1): Let p,(r) and p,(r) solve the TOV equation, and hold
m, (1) = 471[,00 (r)r*dr as fixed. Define an auxiliary function g, (r) by

7 m, (1) +47p,(r)r’

Port[1-2my(r)/r] 241

Then the general solution to the TOV equation is p(r)= p,(r)+8p(r) where

S PeA/1—2m, /1 exp {—Zj godr}
0

(2.42)

op(r)=
1+47op,

jlexp —Zj. g,dr ;rdr |
o Jl-2my/r 0
and where 0P, is the shift in the central pressure.

Theorem (P1) gives a new solution in terms of the variation of pressure. The mass is
fixed allows us to solve for op(r) by perturbing solution of Riccati equation. The
physical reasonableness at the center of a new solution, in terms of pressure, depend
on the well- behaved properties of the initial pressure p,(r), the initial density o, (),

the central pressure and the central density.

Theorem (P2): Let p,(r) and p,(r) solve the TOV equation, and hold g, fixed,
such that

- my(N)+4zp,(Nr®  m(r)+4zp(r)r’

©rPl-2my(r)/r]  r[i-2m(r)/r]’ (2.43)
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Then the general solution to the TOV equation is given by p(r)=p,(r)+op(r)
and p(r)=p,(r)+dp(r) where

3
5m(r): 5'0° { Igo dth dr} (2.44)
31+

and

om 1+8zp,r’

op(r)=- :
P(r) 4rr® 1-2my /v

(2.45)

Here o p, is the shift in the central density. By explicitly combining these formulae

we have
2 r .
op(r)= oP 21+87rp0r exp 2J'g0l 9 dr}, (2.46)
[1+rg,]” 1_2Mo "1+ rg,
r
and
1d( spn)r’
o(r)=-—=—|——"—"=| (2.47)
o (") r2 dr (1+2rgo(r)

Theorem (P2) transforms pressure and mass terms with holding the function g,. We
obtain a shift in pressure and mass by transforming of theorem (P2) through relating

between mass and density in the TOV equation.

2.7 Conclusions

The theory of relativity gives an idea in understanding the physical phenomenon using
the concept of spacetime curvature After that, the physicist found this approach can
explain and predict an interaction more precisely and correctly than Newtonian
mechanics. Special relativity is a special case of general relativity. In this thesis, our
work is based on general theory of relativity. The work will perform on both matter

and energy part and spacetime part.

In this chapter, new solutions of perfect fluid spheres can be generated by applying
theorems to initial solution. We can classify solutions of perfect fluid spheres to seed

and non-seed metrics by considering results after applying theorem 1 and theorem 2.
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We have established several relationships among the generating theorem. The
transformation theorems provide the unexpected structure of perfect fluid spheres
solutions and yield a new way of viewing the interrelationships between different

static fluid spheres.

Moreover, the solution generating theorems for the TOV equation in terms of
pressure and density can be generated. The deformed solutions are parameterized in

terms of dp, and Ip, .
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Chapter 3

Charged fluid sphere and solution generating theorem

The main work of this thesis is to consider anisotropic pressure spherical system. The
system is interesting because it is the next step which try to explain a realistic object
in our universe after perfect fluid spheres. The important method, that we use, is also
a solution generating theorem. Therefore, building steps of the theorems for charged
fluid spheres are similar to the algorithm in Chapter 2. The application of the solution

generating theorems for charged fluid spheres is also shown in this chapter.

3.1 Introduction to anisotropic pressure spheres

For describing the interior of a spherical object in the general relativistic frame, some
objects can be considered using the concept of perfect fluid spheres for simplicity.
The absence of heat conduction and shear stress, and the presence of isotropic
pressure are the characteristics of perfect fluid spheres. In this thesis, we are interested
in generating a solution for charged fluid spheres (Bayin, 1982; Herrera, Ospino, & Di
Prisco, 2008; Patel & Mehta, 1995). The particular property of anisotropic pressure,
which differs from the property of perfect fluid spheres, is that the radial pressure and
the transverse pressure are not equal. One cause of anisotropy is the presence of
charge inside an object. Charged fluid spheres with anisotropic pressure are models for
describing a charged star such as a neutron star (Boonserm et al., 2015; Heintzmann &
Hillebrandt, 1975; Sulaksono, 2015). An important tool in studying fluid sphere
solutions is a solution generating algorithm. This technique can be used to generate a
new solution from known solutions without having to solve the Einstein field equations
directly. A solution generating theorem for charged fluid spheres are constructed in

terms of the metric of spacetime.

Many solutions of the Einstein field equations with perfect fluid constraints were
explored in various coordinate systems (Bondi, 1947; Buchdahl, 1959). Each solution

explains different systems in different conditions. Recently, some algorithmic
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techniques have been developed to generate new solutions from known perfect fluid
spheres (Boonserm et al., 2005, 2007; Thairatana, 2013). This concept also classifies
the type of metric solution and exhibits the association of the solutions in distinct

conditions.

Perfect fluid spheres are the first approximation of solution for many objects. But there
are also many other spherical objects that do not fit the properties of perfect fluid
spheres. One kind of such object is a neutron star. The radial pressure of a neutron
star may differ from its tangential pressure (Boonserm et al., 2015; Heintzmann &
Hillebrandt, 1975; Sulaksono, 2015). The applied idea for these stars is referred to as

charged fluid spheres with anisotropic pressure.

For finding a solution generating theorem, a metric (or line element) of an object was

written in a suitable coordinate. By definition of the geometric element of the Einstein
1
field equations, G,, =R, =5 g,,R, the Einstein tensor G,, can be obtained from

the metric. We can set the fluid constraints to G, for ordinary differential equation,
which can be used to build the solution generating theorems. These theorems deform

fluid spheres in terms of spacetime geometry.

In case of spherical objects with a charge on the inside, the electromagnetic charge
makes the pressures of the objects become anisotropic. The radial pressure and the
transverse pressure in these kinds of objects are unequal. The energy-momentum-

stress tensor for anisotropic pressure spheres is

p 0 0 0

_|0 p 00 (3.1)
10 0 p O
0 0 0 p

The constraint of perfect fluid spheres cannot be used in constructing the solution
generating theorems. Therefore, we have to set a new ordinary differential equation
that satisfies charged fluid spheres from the Einstein field equations. This equation
gives an Einstein tensor that agrees with the anisotropic energy momentum stress

tensor. This model is a primary model that can be applied to a real object in our
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universe; the neutron stars (Bayin, 1982; Boonserm et al., 2015; Patel & Mehta, 1995;
Sulaksono, 2015).

3.2 Anisotropic pressure system: a neutron star

The type of compact star that a star will eventually become, in the end point, is up
to the mass of the star. A neutron star is one type of an end point star. It is the result
of gravitational collapse of a star into a very small size compared to the mass. The
matter of the star is condensed and any chemical potential becomes broken up.
Finally, there are only neutrons and elementary particles that remain in the star

(Herrera et al., 2008; Ray & Das, 2004).

In studying a neutron star, we can observe the star as pulsars which are created from
the rapid rotation of the neutron star. Pulsars are the key evidence of magnetic field
in the stars. Additionally, the large magnetic field that can be observed indicate that
the magnetic field in a star are anisotropic (Sulaksono, 2015). Moreover, we also found
that the matter within a neutron star constitutes several particle types with different
charges. The lightest charged particles, electrons, pass into the boundary and create
an unbalanced electric field on the surface of the star. The electric field affects the
energy- momentum- stress tensor, the tensor that was filled with four-momentum
across the surface, which gives us the anisotropic pressure. A neutron star is an example

of an anisotropic pressure object that we are particularly interested in this study.

3.3 The solution generating theorems for charged anisotropic pressure spheres

and classifying steps

Suppose the solution of charged fluid spheres in Schwarzschild coordinates is defined

as a specific metric (Boonserm et al., 2005)

2
ds? = —¢,(r)*dt’ +%“+r2d92, (3.2)
r

0

where dQ® =d#* +sin*8dg?, or with the notation
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(0B} 3
From the definition of Einstein tensor, we obtain its components (Boonserm et al.,
2015)
= 4B¢ r_2§+2§B, (3.4)
2r’¢
1 1 2 ~n 2~ 1
GM:BJHZB; r+2r<g B+r§B. (3.5)
00 2r2§

Then setting G, -G, =87A(r), we obtain a second order homogeneous linear ODE
for £(r) as

2r*BS "+ (r*B'-2Br) ¢ '+(2- 2B+ B'r +167Ar% )£ =0, (3.6)
which can be rearranged to a first order nonhomogeneous linear ODE for B(I’) as

(r’¢+rg)BH(2r2¢ "—2rd ~2¢ ) B+(2+16mAr7 )£ =0. (3.7)

3.3.1 The solution generating theorems for charged anisotropic pressure spheres

Theorem 1: Suppose {é’o(r), Bo(r)} represents a charged fluid sphere. Define

Ao =[ é/o(r) ]2 r2 exp{ZJ. é/o I(r) é/o(r)_ ré/o I(r) dl’}. (3.8)
Co(r)+1&,'(r) o(r) &o(r)+rdy'(r)

We can define a new metric solution for charged fluid sphere with fixed &,(r) as

follows

dr?

L r2dQ?, (3.9)
B, (1) +A4,(r)

ds® =—¢,(r)*dt* +

where A is a constant. The mapping for theorem 1 is

Tl(/i):{éJO!Bo}H{é/o’Bo"'ﬂAo(é/o)}- (3.10)

If we apply theorem 1 at the second time, we get the same form of the solution as

applying theorem 1 first time. Therefore, T, is “idempotent”, in the sense that
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n

i=1

() ) ) 6B e (Sa @) e

For a general form

HTl 2T, (3.12)

the symbol = represents “equality up to relabeling of the parameters”(Boonserm

et al.,, 2005).

Proof for theorem 1: Assume the metric represents a charged fluid sphere

2
ds? =—§o(r)2dt2+;L(r)+ r’dQ?. (3.13)

0
We know ¢, and B, are solutions of charged fluid sphere. Therefore, they satisfy ODE
(3.7)

(r’¢+rg)B+(2r’¢ "~ 2rg =24 )B+(2+167Ar% )£, =0.

If we modified the metric as

2
ds? =~ (r)%dt? +%+ r2dQ?, (3.14)
r
1

where B, (r)=B,(r)+4A,(r). For this metric, {yand B, also satisfy charged fluid

spheres

(P60 +140) B+ (207G, " 218, -2, ) B +(2+167Ar°) ¢, =0 (315)

Substituting B, (r) = B,(r) + AA,(r) into equation (3.15)
(rP¢o+18y) By +(r°g, + 18, ) A0, +(2r°8, "~ 2r, - 24, ) B,
+(2r°¢, "= 2rg, '~ 24, ) A0, +(2+167Ar° ) £, = 0. (3.16)
Using equation (3.7) gives

(r2¢, +1&y) AAy +(2r°¢, "= 2rg, =28, ) AA, =0 (3.17)
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This first order homogeneous linear differential equation in A, leads to

go(r) ’ &, '(r) &y(r)—rd, '(I’)
A 2 +re .
0 (Co(l’)+ré’0 '(r)j { I (1) & () +1¢,(r) } (3.18)

Proof for idempotent property: For a second application of theorem 1, the mapping

is
Tl(ﬂ'z)oTl(ﬂ‘l):{é/olBo}H{é/o,Bz}, (3.19)
where Bz(r) = Bl(l’) +22A0(r) and B, (r) =By (r) + 4A,(r) . So,
T(A4) °Ty(A) 1{&0, By} 5 {&0, By + (A +4) Ay ). (3.20)

For n applications of theorem 1, the mapping is

T.(4,)owoT, (4)oT,(4): (S, By {;O,B+(i j } (3.21)

i=1

Corollary 1: Let {¢},B,} and {¢;.B,} both represent charged fluid spheres, then for
all p, {é’o, pBa+(1— p) Bb} is also a charged fluid sphere. Furthermore, all fluid

spheres for a fixed ¢, can also be written in this form.

Proof for corollary 1: Suppose {,,B,} and {¢,.B,} represent charged fluid spheres,
the solutions could satisfy (3.7)

(r?¢+1¢)(B,)+(2r%¢ - 2r =28 )B, +(2+167Ar2 ) =0, (3.22)
(r’¢+r¢)(B, )+ (2r2¢ "= 2rg - 2¢ ) B, +(2+167Ar% )£ = 0. (3.23)

{5, PB, +(1— p) B, } also represents charged fluid spheres,

(r’¢+r¢)(pB, +(1-p)B, )+ (2r’¢ "~ 2rs -2 )(pB, +(1- p)B, ) +(2+167Ar* )¢ =0
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(r°¢+rg) pB,+(r?¢ +1¢)(1-p) By’
+(2r’¢"—2r-2¢)(pB, +(1- p) B, ) +(2+167Ar% )¢ =0. (3.24)
From (3.24) - [ p *(3.22) + (1- p)*(3.23)};
—p(2+167Ar? )& +(1- p)(2+167Ar° )¢ +(2+167Ar% )£ =0. (3.25)

Therefore,{é’o, pB, +(1— p) Bb} represent a charged fluid sphere.

Theorem 2: Suppose {Q’O(r), Bo(r)} represents a charged fluid sphere. Define
rdr

o(n)?By(r)

Then for all o and &, we can define a new metric solution for charged fluid sphere

with fixed ¢,(r) as follows

Z,(N=c+¢ j (3.26)

2
ds® =—¢,(r)°Z,(r)?dt’ +BdL(r)+r2dQZ. (3.27)

0

The mapping of theorem 2 is

T,(2):{¢0. Byt = {402, (&0, By) By - (3.28)

If we apply theorem 2 at a second time, we get the same form of the solution as
applying theorem 2 first time. Therefore, T, is “idempotent”, in the sense that [1, 11,
22]

T, (O_nign)o-"oTz (02,82)0T2 (0_1’51) =T, (O-n"'o-zo-l’gn...321)7 (3.29)

where

_ -1 11 111 (3.30)
£, a1 —(6‘10'20'3...0n)+(01 6‘263...O'n)+(0'1 o, 83...O'n)+...+(01 o, 0, ...gn).

Proof for theorem 2: Assume the metric represents a charged fluid sphere

2
ds? Z—Co(r)zdt2+;L(r)+ r’dQ’. (3.31)

0
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We know ¢,and B, are solutions of charged fluid sphere. Therefore, they satisfy ODE
(3.6)

2r°Bys, "+ (r*By "= 2Byr ) &, '+ (2 2B, + By 'r +167Ar? ) £, = 0.
The generated metric should be in the form as follows

2
ds? =—§0(I’)ZZO(I’)2 dt? +BdL()+ r2dQ2. (3.32)

0

Then &,(r) =<, (r)Z,(r). For this metric,¢; and By also satisfy charged fluid spheres
2r°Byg, "+(r*B, '~ 2Byr ) ¢, +(2— 2B, + B, 'r +167Ar% )£, =0. (3.33)
Substituting &;(r) = &, (r)Z,(r) into equation (3.6)
[2r°B, [, "2, +2[ 2r°B, |, 'Z, +[ 2r°B, |£0Z, "+ [ r*By = 2Br | £, Z,
+[ I*By "= 2Byr |£,Zy '+ | 2—2B, + B, 'r +167Ar% |£,Z, =0.  (3.304)
Substituting &, (I’) into equation (3.6), equation (3.34) reduces to
[r*By'—2Byr [¢,Z,'+2[ 2r°B, |, 'Z, +[ 2r°B, |£,Z," = 0. (3.35)

Therefore,

Zo - _ 4rzBo§0 + r2Bo l§o _eroélo

ZOI n I:ZrZBOilé/O
__ 2%, B 1 (3.36)
& 2B, r
Integrating over r,
[Zerdr =20 gr— [ 2o gr + [ L, (3.57)
Z,' $o 2B, r
we obtain
. 1
In|Z, |:—2In|§0|—Eln|BO|+In|r|+c. (3.38)
Then,
Z,'=¢ r (3.39)
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forall Z,'>0,{,>0and B, >0.

Finally,

rdr

Z,(r) = - '
(r 0+8Igo(r)2 X0) (3.40)

Proof for idempotent property: For a second application of theorem 2, the mapping is

T2(0-2132)°T2(O-1’51):{é’o’Bo}H{é/zaBo}v (3.41)
where &, =£,Z,(£0,By), &= CoZo (£, By) and dZ, =31:L. We can substitute
o8y

0

¢ in &y,
é/z :é/ozo (é’o’ BO)Zl(é/l’ Bo)

rdr
=0oo| 0, +‘92J.2—J

& rdr
=Coly| Oy _Zj ]

+
2
& (4oZy) By (r)
g, rdZ
=(,Z,| 0, +-2 —OJ
0lo| O3 82'[25
—gozo(az_i{i_i}J
&4, o
&, g 1
=Co| ——=+ Ly oy +t—=—1], (3.42)
& & 0y
then
&, & 1
i =——=+Z,|0,+—=—|. (3.43)
& & 0y

As above, the law of composition for theorem 2 is

£
T,(0,.6)°T,(0,,6)=T, [620'1,8102 +—2j. (3.44)

O,
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Theorem 2 has idempotent property only in special case (o =1for all o)

ﬁTZ (1’ & ) =T, [L Zn:gi j: (3.45)
i=1 i=1

and for n applications of theorem 2 with the same o and ¢

T,(c.8) =T, (0'“ & [a"’l vo 3 v ]) (3.46)

For large n
T, (o, 5)” ~T, (U”,g”) =o""'T,(0,¢)2T,(0,¢). (3.47)

Corollary 2: Let {¢,,B,}and {¢,,B,}both represent charged fluid spheres, then for
allp, Q {pé’a +04G,, BO} is also a charged fluid sphere. Furthermore, all charged fluid

spheres for a fixed B, can also be written in this form.

Proof for corollary 2: Suppose {4’0, Ba}and {é’o, Bb} represent charged fluid spheres.
The solutions could satisfy (3.6)

2r°B, (£,)"+(r*By = 2B,r ) (&, ) +(2-2B, + B, 'r +167Ar°)(£,) =0,  (3.48)
and

2r°By (&, )"+(r*By = 2B,r)(, ) +(2-2B, + B, 'r +167Ar%) (&, ) =0.  (3.49)
Multiplying (3.48) with p and multiplying (3.49) with g and adding together give
2r’B, (pg, "+ag, ")+(rZBO ‘—ZBOr)(pga '+9¢, ‘)+(2—ZB0 +B,'r +167rAr2)(p§a +q¢,)=0.

(3.50)

That is the solution { p£, +0¢,, By} also represents charged fluid sphere.

3.3.2 Application of the solution generating theorems on Tolman-Bayin solution

The Tolman-Bayin solution is the applied solution from Tolman VI and Bayin solution
by S. Ray and B. Das (Ray & Das, 2004). It is a model for electromagnetic mass model.

The total charge on the sphere can be calculated using radius, q=Kr" where n is
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an integer. With the condition n=0, the given form of The Tolman-Bayin solution metric

with n=0 is

2 2\t
ds? =—(1—2—m+q—2jdt2 +[1—2i2j dr? + r2dQ?. (3.51)
r r r

The Tolman-Bayin solution represents Schwarzschild coordinates metric with charge.
Application of theorem 1 to the Tolman-Bayin solution

By comparing the Tolman-Bayin metric with the Schwarzschild coordinates metric,
the ¢, can be written as follows

2

2m

= 1-——+—=.
o = r2 (3.52)

In applying theorem 1, use A, in the form below

AO_[("Q)T p{j(rCO)'d } 2%

This equation is rearranged from equation (3.8)

A :( &(1) J exp {2 (610 6016 () dr}.

Go(r)+rdy'(r) o(r) &o(r)+1d,'(r)

From calculations using the Maple programme, we obtain

A, =20 +[4|n[m—1D[1—q—zj. (3.54)
mr r m

Then for all A4, the new metric is

2
dr 5 42

ds® =—,(r)dt +—Bo(r)+/1A0(r)+r

(3.55)

With this A,, the metric also satisfies charged fluid spheres.
Application of theorem 2 to the Tolman-Bayin solution

The given form of The Tolman-Bayin solution for n=0 is
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2 2\t
dszz—[l—z—m+q—2]dt2+[l—2iz) dr? +r’dQ?, (3.56)
rr r
then
2m ¢’
50: 1—T+r—2, (357)
and
2 2
B, =( —rizj- (3.58)

Theorem 2 can be applied to the Tolman-Bayin metric using equation (3.26)

rdr

Zo(r):O'-FEJ.é/O(r)Z—\/m. (359)

rdr
2m  q* ) |, 2¢° ’
PASAS. 1 e
[ r +r2j[ r?
2q°

We can approximate 1-—- term by considering the velocity of light and the
r

(3.60)

20°G
r2c4 :
Therefore, to reduce the complexity of calculation, this term can be approximated to

gravitational constant. The term, together with the constants, is written as 1—

20°G

rZC4

3 3 _ 2In(=2mr +qg° +r?
a’n(r+g) d’in(r-g) oo e )[m“_mzq;}
Am+4q Am-4q (m+q)(m-q)

1 under the condition < 1. By using the Maple programme, we obtain

1
Z, =a+g[5r2+2mr+

arctan lﬂ
2 J-m? +q? ., 1
——|Mm" —mq+_ IB (3.61)
[m+q][m-q]y-m°+q 8

then for all o and &, the new metric is

—+
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2
ds? ==, (r)*Z,(r)’dt? +B‘L()+ r2d0?. (3.62)
r

0

With this Z;, the metric also satisfies anisotropic pressure fluid spheres.

3.3.3 Classifying charged fluid spheres

In referrence to P. Boonserm et. al. (Boonserm et al., 2005), we use a similar concept
to classify charged fluid spheres into seed and non-seed metrics based on the

following definitions.

Definition (seed metric): take a metric g and apply theorem 1 or theorem 2 to it. Two
different cases are possible: each of the applications supplies us with a new solution,
[Tl(g):fég :A:’Tz(g)]. We define a metric with this pattern as a seed metric. For
example, we apply theorem 1 to the Tolman-Bayin metric to derive a new solution
(see equation (3.54)). In addition, when we apply theorem 2 to the Tolman-Bayin

metric, we derive a new solution (see equation (3.61)).

Definition (non-seed metric): take a metric g and apply theorem 1 or theorem 2 to
it. Two different cases are possible: only one of the applications supplies us with a
new solution, while the other one gives us the same metric we started with

[Tl(g)é g] or [Tz (g)é g]. These metrics are non-seed metrics.

In the classifying step, the generated solutions are classified either as seed or non-seed
solutions. If the generated solution can give rise to a new solution after reapplying it
with every generating theorem, the solution is regarded as a seed type. On the other
hand, if the reapplication of the generated solution with the generating theorems only
results in a new solution from just one generating theorem, the solution is classified

as a non-seed type.
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3.4 Conclusions

The solution generating theorems for anisotropic pressure spheres can be constructed
in terms of the geometric solution of the Einstein field equations, in Schwarzschild
coordinates, for a charged fluid sphere. Theorem 1 can generate a new solution in
terms of variation of the component of radial coordinate by transforming radial
component and fixing time component. Theorem 2 transforms time scaling
component to another solution which still satisfy charged fluid sphere system while
the radius component is fixed. Both theorems can generate solutions that satisfy
anisotropic pressure spheres. The idempotent property and corollary of the theorems
are presented in this thesis. The application of the solution generating theorems has
been tested with the Tolman-Bayin metric which is one of the static charged type for
anisotropic pressure model. We use the maple programme for calculating a new
solution from the theorem 1 and theorem 2. As a result, the new solution is obtained
from theorem 1 and theorem 2. Finally, we define classification of the types of

solutions into seed and non-seed by the solution generating theorems.
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Chapter 4

Interior solution for charged fluid spheres

In this chapter, we introduce an interior solution of charged fluid spheres by
generalizing the TOV equation. The interior solution of the Einstein field equations,
with perfect fluid sphere constrain, satisfies the TOV equation. The electromagnetic
field and scalar field inside a sphere are considered in this case (Bayin, 1982; Herrera
et al., 2008; Patel & Mehta, 1995; Sulaksono, 2015). In addition, we will construct a
solution generating theorem for an interior solution of anisotropic pressure spheres in
pressure and density profiles. The interior solution is important to link general relativity

to astrophysics.

4.1 Charged fluid spheres

In astrophysics, the interior properties of a stellar structure are often presented in
pressure and density profiles. The interior information of an astrophysical objects can
determine the type of an object, e.g. white dwarf star, neutron star. Almost all of the
stars are anisotropic pressure objects because they always contain charged particles,
magnetic field or scalar field. The interior solution of the Einstein field equations in
general relativity for ideal objects, perfect fluid spheres, is described by the TOV
equation. For improving the solution to get close the realistic objects, we need to
consider the anisotropic property of pressures. As in chapter 3, the simple expression

of anisotropic pressure spheres can be written in terms of energy momentum stress

tensor,
p 0 0 O
T 0 p 0 0f (4.1)
a 0 0 p O
0 0 0 p
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In this chapter, the pressure profiles are emphasized more than in previous chapter.
The TOV equation will be modified to depend on the electromagnetic charged and

scalar field.

4.2 The modified TOV equation

In this work, we cannot use the perfect fluid constrains because of the electromagnetic
field and the massless scalar field within this object. The TOV equation was thus
generalized to involve the electromagnetic and the scalar field. This model is close to

the realistic objects in our universe such as a Neutron star.

Because of the presence of electromagnetic field and scalar field, the interior
properties of an object differ from properties of perfect fluid sphere. In reference to
Mimicking static charged fluid spheres in general relativity by P. Boonserm (Boonserm
et al., 2007), we can obtain interior solution of anisotropic pressured system via
modifying the TOV equation. The energy momentum stress tensor of anisotropic
pressured fluid sphere is linear combination of stress tensor of electric charge,

magnetic field, and scalar field

T =(p; + P, )VV°+p,g®, (4.2)
al ac 1 al Cl
Temb:F gchbd _Zg b(chF d)’ (43)
al - 1 al Cl
T =4°" -2 9" (97000, (4.9)

where F, is a field strength tensor, V*? is a four velocity, ¢ is a scalar field, and the
notation A, expresses V A. By using the covariant conservation of the total energy
momentum stress tensor V,T® =0 and considering the unit vector in the radial

direction, we obtain a modified TOV equation @5)

(pf + Py )V;gvb +g* ([ Py :';b + O-s¢;b)_ F* (O_emvb) =0.

a

A four-velocity V?* is defined by 4 where dz? =—-g,,dx“dx". We can construct
T

the modified TOV equation with refers the form of the TOV equation as follows
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do, __(pi+po)(m+dzpir’) o E  dg -
dr r’(1-2m/r) Ji-2m/r Cdr’ '
drg—ir):47z[pf + O+, |17, @.7)

Equation (4.6) shows the relationship of a fluid pressure p;, a fluid density ps,

electromagnetic density o,,, and scalar field density o,. The other equation is a

em

definition of mass for charged fluid spheres.

4.3 The solution generating theorems and the modified TOV equation

The solution generating theorems for the modified TOV equation can be constructed
in terms of pressure and density by Riccati equation solution for theorem 1, and

definition of mass on the modified TOV equation in theorem 2.

Theorem 1: Suppose we know two specific solutions p, and p, and fix
my(r) = J. P, (r)r?dr, the generated general solution for the modified TOV equation

is

o O (Ao o (e .1
I = C

where A is constant. (4.8)
Proof of theorem 1: The form of Riccati equation is
PO _ o)+ )P+ 7)) @9)
The modified TOV equation is
dp, (o +p)(m+dzpr’) o E dg @10

dr r’(1-2m/r) \/1_2m/r_"5?

where p;, Ps,0gy and o are fluid density, fluid pressure, electromagnetic charge

density and scalar field density, respectively.
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dp, oM o,.E %_(erpf 47rr3)

dr :_r2(1—2m/r)_\/1—2m/r_65 dr r*(1-2m/r) Ps

3

A
r’(1-2m/r) " (4.11)

We can treat the modified TOV equation as a Riccati equation where

a(r)y=——L0 Gt 49
©or*(l-2m/r) i—2m/r Cdr’
m+ p, 4xr®
ﬂ(r)——(2 4T
r*(1-2m/r)
Arr?
7(r)__(1—2m/r)

The one-parameter general solution may be written as

Aexp{—fy(r)pl(r)dr} pl(r)Jr(l—/I)exp{—jy(r)p2 (r)dr} P, (r)
ﬂ,exp{—j;/(r)pl(r)dr}+(1—ﬁ.)exp{—'[;/(r)p2 (r)dr}

p(r)=

(4.12)

Theorem 2: Suppose we know two specific solutions p, and p, and fix ¢,, where

the auxiliary function g, is

3,
do(r)= To(r)+47z(r)r : (4.13)
r?[1-2m,(r)/r]
The generated general solution for the modified TOV equation is given by
p(r)=py(r)+ops(r)+op:(r) and m(r)y=my(r)+om(r), where
3
5m(r):_47z[5pc+6pp]r | @.10)
1+2rg,(r)
op(0)  1+87zp,(r)r? r 1-rg,(r)
opc(r) = expy2| go(r)-————~dr, (4.15)
¢ [1+rg,(r)] 1-2my(r) /¥ -([ * 14rg,(r)

_so [l _E dg _ 1+2rg, (r)
om0 -0 [ 12 e

(4.16)
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m, (r)+4zp, (r)r’

Proof of theorem 2: Function r) is defined as r)= can
of of uncti do(r) i ' go( ) rz[l—ZmO(r)/r]
be rearranged in term of m,(r) as
rr?—4 rre
1+2rg,(r)
We hold g,(r) fixed for this transformation,
4rsp, (r)r’
§m0(r):—u. (4.18)
1+2rg,(r)
From the definition of m,(r)
dm,(r)
#:m[pf + O+, |1, (4.19)
domy(r) _ 47[ 8, +60,,+ 50, |1, (4.20)
dr
4rsp, (r)r’
47[[5pf +o0,, +5c75}r2 =i —pf—() ,
dr{ 1+2rg,(r)
op, (r)r’
op; =i2i —& - oo, —00,. (4.21)
r*dr{ 1+2rg,(r)
We substitute equation (4.21) into the modified TOV equation and simplify it as
follows
dop; So, E d¢
" _(Sp. +6 = _ S0, ——, (4.22)
dr (91 +0P1 )9 Ji-2mir dr
dop, 1d( op,(nrd oo, E d¢
——=—|-———| ————|-60,,—00,+5 - o, —,
dr [ r? dr (1+ 2rg, (r) Oen =00 T OP 10 T = T %
(4.23)

1+rg,(r) |dop; 4 1_1 r’ S
1+2rg,(r) | dr % dr |1+2rg,(r) Ps
dg go(r)}-

E
— o | —g.(r) |-60.| 22—
emL/l—Zm/r 9ol )} S[dr

(4.24)
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We obtain a first order linear nonhomogeneous differential equation for op,(r). We
can solve the equation by using integrating factor. The general form of a first order

linear nonhomogeneous ordinary differential equation is

y+P(r)y=Q(r). (4.25)
This equation gives a solution in terms of the combination of a particular solution

and the complementary solution

y(r)=y.(r)+y,(r), (4.26)
where
—ij(r)dr
ye(r)=Ce?™ 4.27)
—_F[P(r)dr —jP(r)dr
Yo(r)=e® [Q(rer dr (4.28)
From equation (4.24)
3
p(r)=| L2290 g )| 1= 9T , (4.29)
1+rg(r) dr [1+2rg,
_ __E d¢ _ 1+2rgy(r)
Q(r) = {5% { iomit go(r)}+5os{ 3 go(r)HLHgo(r)}- (4.30)

Therefore, the solution is OP; =0 P. +0Pp, Where

op. =Ce

—

[1+2rgy (r) L4 L} g
| 1+rg(r) }go(f){ dr{1+2rgo(r) ' 3 om 1+8p0 (r)rz
4ar®1-2my(r)/r’

I E dg 1+ 2rg,(r)
_{_[50_% { _om/r - go(r)}+ o0, {E_ go(r)}}}{ 1+rg, () }5pc :|dr'

(4.32)

(4.31)

§pp =5pc

O ey =

The new solution in terms of mass is shifted from the initial m,(r) with the variation

sm(r) = 4rsp,r’ =_47z[5pc+5pp]r3 (4.32)
1+2rg,(r) 1+2rg,(r)
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Theorem 2 can generate new solution for mass and pressure in forms

m(r) =m,+6m(r), and p;(r)=p,(r)+5p, +5p..

4.4 The effect of charge on pressure

From the modified TOV equation, we consider an effect of electric charge on the

pressure profile (Boonserm et al., 2016).
4.4.1. Special case: when p is constant and o is zero

In this case, the generalized TOV equation becomes

dp; _ (pf +pf)(m+47[pfr3)_ o E (4.33)

dr r?(1-2m/r) Vi-2m/r’

supplemented with

amto = 4ap(N)r* =47z (p; + Py ) 1. 30
dr
Integrating the above equation, we obtain
4
m(r)=§7l'(pf +pem)r3' (435)

Substituting m(r) into the generalized TOV equation, we can numerically solve for

P; as shown in Figure 3.
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Figure 3: The fluid pressure as a function of radius
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4.4.2. The effect between charge and pressure

We consider the relationship between electric charge and pressure inside a sphere. We
assume fluid density, and electric field are fixed at all radius. Consider with neutron
star model, we suppose the total electric charge inside the star depends on a mass of
the star (Chamel, Haensel, Zdunik, & Fantina, 2013; Malheiro & Ray, 2004). The charge

can be calculated by comparing to the mass of the sun

Q=10 Ml = 2x10% Coulomb.

sun

The charge density is considered to be constant for all radius of the object. The
4
relationship between charge density and the total for this case is o, =§7Z'I’3Q.

Therefore, the range of the charged density can be approximated in order of
10" —102C/m®. For a star with maximum radius R =10*m, the electric charge affects

the perfect fluid pressure at radius r=5x10°m, which can be calculated using the

maple programme. The results of the numerical calculation are presented in table 2.

Charge density o, Pressure p; (N/m?)
(C/m?)
4x10" 1.090x10*
6x10" 1.111x10*
8x10" 1.131x10*
1x10% 1.152x10%
1.2x10% 1.173x10*

Table 2: The effect of charged density on the pressure for the modified TOV

equation at radius 5x10°m in special case p, =10°kg/m® with R=10'm
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From table 2, we can see that when the charge density increases, the pressure also
increases. Changing charge affects the fluid pressure. For example, we compare the
case 0, =6x10"C/m°, with the case o, =8x10"C/m* as shown in Figure 4 and 5,

respectively.

14 x 102
12 x 102
1% 107
C8ox 107

of
6. % 107

4.x 107

2.% 107

2000 4000 6000 8000 10000

¥

Figure 4: The fluid pressure for &, =6x10"C/m* with the
fluid pressure at the center p; (r = O) =1.408x10%* N/m?

15% 10

1.x10%

Pl

5. % 107

20000 4000 6000 BODO 10000

¥

Figure 5: The fluid pressure for o, =1.2x10%kg/m® with the fluid
pressure at the center p; (r =0)=1.564x10* N/m’
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We found that the higher electric charge gives a higher fluid pressure. Consider at the

center of the sphere where the fluid pressure is the highest, the electric charge increase

by 2 times, the pressure increase by approximately 1.07 times. Additionally, the star

with same maximum radius 10* has the effect of electric charge to the fluid pressure

as shown in table 4.

Fluid density p, Pressure p; (N/m?)
(kg/m?)
2x10% 4.359x10%
4x10° 1.710x10%
610" 3.822x10%
8x10” 6.773x10%
1x10* 1.056x 10

Table 3: The effect of fluid density on the pressure for the generalized TOV equation

at radius 5x10°m in special case o, =8x10"C/m® with R=10"m

We can see that when the fluid density increases, the pressure also increases rapidly.

Therefore only the electromagnetic charge affects the fluid pressure are less than fluid

density.
1.4 %102
12 % 102
1. x 1078
8 % 107
a2
6. % 107

4.% 107

2.%x 105

2000 4000 6000 000 10000
”

Figure 6: The fluid pressure for o, =8x10"C/m® and p, =10"kg/m® with

the fluid pressure at the

center p; (r=0)=1.408x10*N/m?
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5. % 10%°

4.% 10%°

3x 1070
pf

2% 10°°

1. x 106

2000 4000 6000 BODO 10000

»

Figure 7: The fluid pressure for o, =8x10"C/m® and p, =2x10*kg/m?
with the fluid pressure at the center p; (r = O) =5.611x10%° N/m?

Figure 6 and 7 show the effect of the fluid density on fluid pressure. We can see that
when the fluid density increases by 2 times, the pressure can increase by

approximately 2.98 times.

4.5 Conclusions

The modified TOV equation is derived to get close a real object such as charged star
or neutron star by setting a combination of energy momentum stress tensor of perfect
fluid sphere, electromagnetic charge, and scalar field. The solution generating
theorems for the modified TOV equation can be created. Theorem 1 gives a general
form of a new solution in terms of two known pressures. For Theorem 2, the derived
forms of a solution are a new pressure and a shifted term of mass. Both forms are
written in terms of charge and infinitesimal variation of pressure at the center.
Moreover, we can consider for the effects of charge on the modified TOV equation.
The pressure of fluid spheres grows when the charge increases. The electric charge

density affects the pressure less than fluid density.
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Chapter 5

Conclusions

The thesis began with the overall review of this work. The thesis focuses on a problem
of the anisotropic pressure spherical system. General theory of relativity has been
described for the understanding of the relevant background information. The theory
provides a new idea in the explanations of a system in the form of spacetime geometry.
The field is interesting because it can explain certain physical phenomena more
precisely than classical mechanics. In this thesis, general relativity is briefly reviewed,
particularly focusing on the Einstein field equations and the TOV equation. The
anisotropy of pressure is a property of charged fluid spheres, which is one of the
solutions of the Einstein field equations. The perfect fluid spheres are important in our
work. This system is an ideal approximation for presenting an object in general
relativity. However, we modified the system to involve a charged fluid sphere, which

is more suitable for studying a realistic stellar object.

A solution generating theorem is a technique we use in studying the anisotropic
pressure system. The theorems are constructed for the generation of both a spacetime
solution and an interior solution. For a spacetime solution, we have constructed two
theorems that can generate a solution. Applications of the theorems are performed
on Tolman-Bayin type solution. The new solutions are obtained via the application of

the theorems.

Considering metric solution, we focus on the solution as a type of Schwarzschild
coordinates. Static and spherically symmetric are the characteristics of the coordinates.
The solution is denoted as {go(r), Bo(r)}, where &, (r) represents a scaling in time
coordinate and B, (r) indicates a geometric property along the radial coordinate. The
electromagnetic field and scalar field are added into the constraint of charged fluid
spheres. The solution generating theorems for an anisotropic pressure sphere is created
in a similar way to the method used in the construction of the theorems for a perfect

fluid sphere. The theorems we obtain are as follows;



64

In deriving theorem 1, the ¢,(r) term is held fixed, while the By(r) term is
transformed to By + A4, (). The new solution is {&y, By + 44, (&, )}, where

A { A0 ] oo {2 (40060160 dr} 5
G (D +1¢, (1) 20 S (D+1¢,(1)

We can see that the new solution has a different appearance to the initial solution,

only in term of the radial coordinate. The shifted term is a function of time scaling of

the initial solution.

In deriving theorem 2, from theorem 1, the B, (r) term is held fixed, while the &, (r)
term is transformed to ¢,Z, (£, B, ), with the new solution being {£,Z,(&,.B,). B, }

where

rdr
&o(N?By(r)

We can see that the new solution has a different appearance to the initial solution,

Z,(r)= a+gj (5.2)

only in time coordinate. The shift of the component of time coordinate has been

shown to depend on its own scaling factor ¢, (r) and By (r).

For the interior solution, the modified TOV describes the internal structure of a charged
fluid sphere. It is derived from the TOV equation combined with the electromagnetic
field and the scalar field. The solution of the modified TOV equation can be written in
terms of the initial pressure p, and the initial density p,. A mass is defined by

density, thus m, can be a solution of the modified TOV equation.

In constructing theorem 1, the theorem can be simplified in the form of Riccati
equation in term of perfect fluid pressure P;. Hence we can use the general solution
of the Riccati equation as a solution of the modified TOV equation. Fixing m, leads to
the constant p, in the transformation. For the starting solutions p, and p,, a

generated solution by theorem 1 is in the form of

}texp{—jy(r)pl(r)dr} pl(r)+(1—/1)exp{—J'7/(r)p2 (r)dr

}pz(r).
ﬂexp{—jy(r)pl(r)dr}+(1—ﬂu)exp{—_|';/(r)p2 (r)dr}

(5.3)

p(r) =
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In building theorem 2, the definition of mass, for charged fluid spheres, is substituted
into the modified TOV equation. With integration by-parts, a form of the new solution

can be written as p; (r)=p,(r)+Jp, +5pcand m(r)=m,+Sm(r), where

5p =Ce_ﬂli+2rrg(fg)}g°()[ W{Mrgo(r)H __om 1+8p,(r)r? ’ (5.4)
¢ 4rr®1-2my(r)/r
o p(0) 1+87rp0(r)r 1- rgo(r)

op.(r)= (5.5)
P g, T T-2m() /7 J PO g, "

4zspr’  Ar[Sp.+6p, |1

- (5.6)
1+2rg,(r) 1+2rg,(r)

sm(r)=-

For the first advantage of the solution generating theorems, we can obtain a solution
without solving through the complicated the Einstein field equations. As for the other
advantage, the relationship between the distinct solutions is apparent through the
theorem. However, the solution generating theorems have a limitation. An initial
solution is needed to make the theorem. This is especially true for theorem 1, where
the theorem, derived from the modified TOV equation, requires 2 initial solutions in
determining a new solution. Because of this, the solution generating theorems cannot
generate a complete set of solutions for charged fluid spheres. It can only build

solutions under the condition of a starting solution.

Considering the effect of charge on pressure, a relationship between electric charge
and fluid pressure can be considered using the modified TOV equation. The absence
of the scalar field and the constant electric field are the conditions necessary for our
special case. First, we investigate the pressure by varying the radius of an object at a
constant scalar field. The fluid pressure reduces when radius increases. The charge
density has an effect on the fluid pressure. When the charge density increases, the

pressure also rises.

In this thesis, the solution generating theorems for charged fluid spheres are created
in terms of metric and interior solution. They can be beneficial in solving for the
solution of charged fluid spheres. The modified TOV equation is analyzed for the

influence of charge on the pressure. This is a little step in the field of astronomy in
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trying to understand a realistic spherical object. In the future, if unknown solutions are
observed, the solution generating theorems can prove to be one of the several

techniques that can be helpful in understanding the solutions even more.

As for further work, the other forms of metric in Schwarzschild coordinates should also
be applied with the solution generating theorems for the generation of a new solution.
With a higher number of generated solutions, the relationship between charged fluid
sphere solutions will become clearer. Moreover, a solution generating theorem can
also be constructed in other coordinates of metric. The solution from the modified
TOV equation can be investigated for other physical quantities, e.g. central red shift
and surface shift. Almost all types of fluid spheres have a non-constant fluid density
along its radius. Hence, the electric charge effects can be considered in comparing the
fluid pressure with variation of fluid density in terms of the radius. Additionally, the
electric field, in terms of electric charge density, may also have an effect on the fluid

pressure.
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Appendix Al

Example of some starting charged fluid sphere metrics

Solution of the Einstein field equations, which provides descriptions of spheres with

electromagnetic charge, is one of the models for realistic astronomical objects. The

solution can be a starting metric for the solution generating theorems. Some of the

anisotropic pressured fluid spheres in metric form are presented in the table below.

Name

Metric form (dsz)

Reissner-Nordstrom

(for a non-rotating

charged spherical object)

R: R
_(1—&+—g]dt2+[l—&+—§] dr? +r?dQ?.
ro ror

Tikekar

(for positive pressure and
negative gradient

pressure)

2 4 2 2 N2 T
- A —E—7L2+ir4 +B,/1—r—2 i 7r2 dt?
24 12R° 24R R°18 8R

Tolman-Bayin

(specific choice N=0
and the total
gravitational mass m ,

and radius a

2 2 -1
—(1—2—m+q—2jdt2+(1—2i2J dr® +r’dQ’.
a a a

Psuedo-spheroidal

(where A and B are
constants, and

u* ={k/(k-1)}(1+r*/R?)

2 1+—
—(Au+B{uIog(u+\/u2—1)—\/u2—1}) dt® + ?2

+r2dQ?.

In this thesis, the solutions from applying the theorems are calculated in Maple

programme. The code of calculation for the Tolman-Bayin solution is shown below.




Calculation for the application of theorem 1 on the Tolman-Bayin metric
The form of Tolman-Bayin metric with n =0

2 2\
dszz—(l—z—m+q—2Jdt2+(1—2i2] dr’ +r’dQ>.
r r r

> restart

2-m _qi
> f(r) = [1-2 + L

r r

>
d
> 4
drf(r)
2m 24
1 2 3
1 r r
2 2
/1_2m +q_2
r 7
d
> 4 drf(”)
d
r drf(V)Jrf(F)
2
2m 2q
(225
¥ r
2
2m_2g
) 2 V[ 2 3 J
1 — m_|_q— L r r
r 2 2 >
' / 2m g
-2 L
r r
2
e fi-2me s
r v
d
4'@/’(?)
> dr
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2 2 2
_4_q+41n(2m2_2q2_w]
mr m

2
4ln(2m2_2qz_M]qz

Calculation for the application of theorem 2 on the Tolman-Bayin metric

> restart

> r dr

2-m 2-m'q2 q4
1- + -—
¥ ¥

3

1 2 qg In(r+q)

- 2 4 N = 1)

2r+ mr+ Am+4gq
21n(—2mr+q2+r2)m

(m+q) (m—q)

_21n(—2mr—|—q2+r2)m2q2

(m+q) (m—q)

4

_'_L 1n(—2mr+q2+r2)q4
4 (m+gq) (m—q)
4 arctan[L M] m
. 2 /_mz+q2
2 2
(m+gq) (m—q)y -m +gq
6 arctan[L ﬂj m q2
2 /_m2+q2
2 2
(m+q) (m—q)y -m" +q
2arctan[iﬂjmq4
. 2 /_mz+q2
2 2
(m+gq) (m—q)y -m" +gq
g In(r—gq)
4m—4q



Considering the effects of charge on fluid pressure, the calculated pressures and

graphs in each specific case are created using codes as follows;

Calculation for the effect of charge on pressure

>
>

>

restart
with( plots) :
G = 6.67-10"

11
c:=3-10°
rhof = 10"

sigmaem = §- 10!

rho == rhof + sigmaem

m = i-Pi-rho-r3
3
E:=1
d _
TOV = — pf(r) =
dr

2
C

G- (rhof-i- 2(r).

) .

G = 6.670000000 107!
¢ == 300000000
rhof := 10000000000000

sigmaem = 800000000000

p :=10800000000000

m := 14400000000000 7 7>

E=1

2

L AP (r) j
C

rz-(l—

sigmaem-E

_2:G'm

C r

1

2-G'm j

Ccr

73



TOV = ipf(r) =
dr

- (6.670000000 107! ( 10000000000000

|
+730000000000000000 2 (’"))

[ 14400000000000 7 7

1 3 2
+ 22500000000000000 " 7 (r))j/ (1

— 6.705415360 10714/%))

800000000000

J 16705415360 1074 2

> T0V1 == eval(TOV, sigmaem=8-10“)

4 -
T0V1I: ar pf(r)

- (6.670000000 107! ( 10000000000000

|
+50000000000000000 % (r))

[ 14400000000000 7 7

1 3 2
+33500000000000000 *" 7 (r))j/ (=

— 6.705415360 10714 /2))

800000000000

J 16705415360 1074 2

> pl == dsolve( {TOVI,pf( 104) = 0}, type = numeric,
range =1 ..104) :
> odeplot(pl)

74



> pl(5-10°)

15%10%

1= 10™

B

5. x 1073

2000 4000 6000 3000 10000

r

[ =5000., pf(r) = 1.13154627538709 10>*]
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Appendix A2

Electromagnetic tensor
In classical electrodynamics, Maxwell’s equations cover almost all descriptions about
the static and dynamic of the electromagnetic phenomena. The electric field is
introduced as a result of the existence of electric charge. Meanwhile, an origin of the
magnetic field is an electric current. They have self-inducing effect, which is a
property of the electromagnetic wave#. Because an electric field and a magnetic
field can be detected using different methods, they are separated as different
quantities. However, in general relativity, these two quantities can be defined by the

same tensor: which is the field strength tensor Fﬂv

represented as follows,

E = FOi, (A2.1)

1 .
B = ~ i F*, (A2.2)

where & is Levi-Civita symbol. The contravariant form of Field strength tensor in

Cartesian coordinates in four dimension is

0 -E-E, -E

y z
e |E O B B, 29
E, B, 0 -B/ '
E, -B, B, 0

for € =1. The energy momentum stress tensor for the electromagnetic field can be

written in terms of field strength tensor
em;b

al ac 1 al Cl
T® =F*g F™ 79 "(FaF*). (A2.4)

This tensor is used in the construction of the energy momentum stress tensor for a

charge fluid sphere.
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