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Chapter 1 
Introduction 

From the idea brought about in physics regarding the relationship between mass 
(energy) and spacetime curvature, which has been presented through the Einstein field 
equations, in general relativity, cosmology as a field has grown up tremendously, 
producing a lot of new knowledge in the understanding of the universe.  This thesis 
looks at the anisotropic pressure sphere problem in general relativity.  The spherical 
symmetry is a condition to solve for a new solution of the Einstein field equations 
( Bondi, 1947; Boonserm, Visser, & Weinfurtner, 2005; Buchdahl, 1959) .  An anisotropic 
pressure system is interesting because it has characteristics that resemble a real 
spherical stellar object. However, solving the Einstein field equations for a new solution 
is complicated even though we have the symmetry and the required physical 
conditions. A useful technique that we use in the study to obtain a new solution, the 
anisotropic solution, is a solution generating theorem.  The theorem can generate a 
new solution if we have an existing known solution.  

 

1.1 Introduction to general relativity 

The background topics that we need in the understanding of this thesis are presented 
in Chapter 2.  The general theory of relativity is a field that many physicists are 
interested in, which was first published in 1915 by the famous physicist Albert Einstein. 
The theory introduces a different perspective in the understanding of the universe 
from classical mechanics, particularly focusing on ideas about gravity ( Carrol, 2014; 
Hartle, 2014) .  In classical physics, gravity is a result of an attraction of one mass to 
another mass.  We can detect this attraction in term of force.  If the mass disappears, 
the force is lost simultaneously. However, according to general relativity, the classical 
idea of gravitational force is not a completely correct concept.  The gravity is instead 
expressed as a consequence of a mass on spacetime.  According to the theory, the 
spacetime region at which matter is located will be curved because of the presence 
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of mass.  This curvature is recognized as gravity.  Any other mass in proximity is also 
aware of curvature, and therefore, aware of the presence of gravity in spacetime. 
Anything that travels through spacetime has its speed limit not exceeding the speed 
of light. If the mass suddenly disappears, the other mass has to take the time to realize 
the absence of the gravity. The important concept of the general theory of relativity is 
the Einstein field equations, which express the relationship between mass (or energy) 
and the geometry of spacetime,  

8 ,G GT    

where G  is an Einstein tensor, G  is a gravitational constant, and T  is energy 
momentum stress tensor. The Einstein field equations are a set of nonlinear differential 
equations with coupling variables. It is hard to solve the equations directly without any 
assumptions or symmetry.  The first physicist who solved for the exact solution was 
Karl Schwarzschild. He applied spherical symmetry to Einstein’s theory to explain the 
gravitational field produced by some objects in a model of fluid spheres (Carrol, 2014; 
Hartle, 2014). After that, perfect fluid spheres became known as the first approximation 
in a construction of a realistic model for a general relativistic star ( Boonserm et al. , 
2005; Boonserm, Visser, & Weinfurtner, 2007; Delgaty & Lake, 1998; Lake, 2003; Rahman 
& Visser, 2002). 

 

1.2 The model of perfect fluid spheres 

We assume that all spherical objects can be equated to a perfect fluid sphere, allowing 
for symmetry that makes the Einstein field equations simpler. Perfect fluid spheres can 
represent a spherically symmetric ideal object, which is filled by mass or energy.  The 
definitions for perfect fluid in this work differ from fluid mechanics. They are expressed 
in terms of energy-momentum-stress tensor (Carrol, 2014);  

 

T

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

.

T T T T

T T T T
T

T T T T

T T T T



 
 
 
 
 
 

(1.2) 

(1.1) 
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The quantity  describes four momentum  across the surface constant . 

In general relativity, the three properties associated with perfect fluid are:  no shear 
stress, no heat (energy) conduction, and isotropic pressure. In Veilbein formalism, these 
properties direct the energy-momentum-stress tensor of perfect fluid to the following 
diagonal matrix;  

 

where  is the pressure and  is the density of the fluid. For the isotropic property, 
the pressure in every direction must be equal.  Using equation ( 1. 1) , we obtain a 
constraint for perfect fluid spheres in terms of the Einstein tensor ,G   

 

The hat symbols above the coordinates are used to represent the quantities in Veilbein 
formalism.  This form has a non-coordinate basis and agrees with the observer’ s view 
(Boonserm et al. , 2005; Carrol, 2014; Delgaty & Lake, 1998) .  The constraint will be 
used to construct a solution generating theorem in the later section. 

  
1.3 The Tolman-Oppenheimer-Volkov (TOV) equation 

To express a system in physics, we may have to be familiar with physical observations 
such as mass and energy.  In general relativity, the system, which is considered as a 
spherical object in this thesis, is described by the metric. Using the properties of perfect 
fluid sphere and the Einstein field equations, the interior solution of a perfect fluid 
spherical object obeys the Tolman-Oppenheiner-Volkov (TOV) equation as follows,  

 

 

T p x

ˆˆ

0 0 0

0 0 0
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0 0 0
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The TOV equation provides the relationship between the pressure profile p  and the 
density profile ,  the m  term refers to the mass. For astronomy related calculations, 
information of an object can more easily be obtained in terms of pressure and density 
rather than the geometry of spacetime around it. 

 

1.4 Solution generating theorems 

The method used in studying anisotropic fluid spheres in this work is referred to as a 
solution generating theorem. The prime concept of the theorem is to generate a new 
solution from an initial solution.  In reference to ‘ Generating perfect fluid spheres in 
general relativity’  by P.  Boonserm et.  al.  ( Boonserm et al. , 2 0 05 ) , the theorem 
transformations are based on spacetime geometry of perfect fluid spheres in terms of 
the static Schwarzschild coordinates metric, 

 

The solution is denoted by , where it satisfies the perfect fluid sphere 
constraint   

For theorem 1, the  term is transformed to  The solution after 
applying the theorem is  The new solution is also a solution 
of perfect fluid spheres, where the  term should be in the form 

 

For theorem 2, the  is transformed to  The solution after applying 
the theorem is  The new solution is also a solution of perfect 
fluid spheres, where the  term should be in the form 

 

Theorem 3 and theorem 4 are a combination of theorem 1 and theorem 2. Theorem 
3 is the application of theorem1 followed by theorem 2.  The steps involved in the 
application of theorem 4 are the reverse of theorem 3. 
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Besides, a solution generating theorem can also be constructed for the TOV equation 
with a different approach in reference to ‘ Solution generating theorems for the TOV 
equation’ by P. Boonserm et. al. (Boonserm et al., 2007). Assuming that we obtain the 
initial pressure  and the initial density , they can be transformed to new 
solutions in terms of  and   

For theorem (P1), the initial density  is fixed. The TOV equation is in the form of 
nonhomogeneous differential equation, referred to as the Riccati equation.  The new 
solution for the TOV equation is 0 ,p p  where 

 

where  is  at the center of the sphere,    
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,

1 2 /
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 and 0m  is 

initial mass. 

For theorem (P2), the initial pressure  and the initial density  are transformed to 

0p p   and , respectively, 

 

 

Considering the solutions of both theorems, the physical reasonableness of the 
generated solutions depends on the initial solution.  If the initial solution has a finite 
and positive pressure and density at the center, new solutions are well behaved. 
Therefore, theorem (P1) and theorem (P2) have a restriction where a black hole cannot 
be generated by the solution of a star.  We can easily consider the physical meaning 
of the solution in terms of the TOV equation rather than a metric form. 
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1.5 Charged fluid spheres and an anisotropy of pressure 

The perfect fluid sphere is an ideal concept to explain an object.  In an approach to 
real object; however, this concept must be modified. In this thesis, we are particularly 
interested in anisotropic fluid spheres.  In Chapter 3, the charged fluid sphere is 
presented as an anisotropic pressure system. The property, which is unlike the perfect 
fluid sphere, where the radial pressure is not equal to the transverse pressure.  The 
energy momentum stress tensor for anisotropic pressure system can be written as 
follows, 

 

Considering the Einstein field equations, the radial Einstein tensor differs from the 
transverse, 

 

A stellar object always has properties of an anisotropy of pressure. One kind of object 
which is similar to anisotropic fluid spherical objects is a neutron star.  The star is 
classified as a type of compact star.  The existence of electric charge, magnetic field 
and scalar field in the star are causes of anisotropy. 

In this thesis, we construct a solution generating theorem for charged fluid spheres. 
Considering the solution in metric form, we assume the solution is in the form of 
Schwarzschild coordinates metric, 

 

The solution is denoted by  Following the derived steps of perfect 
fluid spheres, we have to set up a constraint for charged fluid spheres, 

 

Therefore we can construct the theorems as follows; 
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For theorem 1, the  term is transformed to  The solution after 
applying the theorem is  The new solution is also a solution 
of charged fluid spheres, where the  term should be in the form 

 

For theorem 2, the  term is transformed to  The solution after 
applying the theorem is  The new solution is also a solution of 
charged fluid spheres, where the  term should be in the form 

 

The results are similar to the solution generating theorems for perfect fluid spheres. 
After that, we use the theorems to generate new solutions of the charged fluid sphere, 
which is the Tolman-Bayin type with  

 

For the application of theorem 1, the  term is transformed to  
where 

 

For the application of theorem 2, the  term is transformed to  where 
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1.6 The modified TOV equation for charged anisotropic pressure system 

The solution of the Einstein field equations in metric form is not enough to understand 
charged fluid spheres. Research in the area of astrophysics always involves the interior 
properties.  Therefore we should construct a solution generating theorem for the 
interior solution of charged anisotropic pressure spherical system in terms of pressure 
and density.  The solution is improved from the TOV equation by adding an 
electromagnetic field and scalar field ( Boonserm, Ngampitipan, & Visser, 2015) .  With 
the conservation of energy momentum tensor 0,T 

   the modified TOV equation 
for charged fluid spheres is 

 
2( )

4 ,f em s

dm r
r

dr
         

where   and are perfect fluid pressure, perfect fluid density, 
electromagnetic density, and scalar field density.  

For theorem 1, the initial density  is fixed. The modified TOV equation is in the 
form of nonhomogenous differential equation, which is the Riccati equation. Assuming 
that we obtain the initial solutions  and  the new solution for the TOV equation 
is  where 

 

 

where  is a constant. 

For theorem 2, the initial pressure  and the initial density  are transformed to 
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The new solutions from theorem 2 depend on the electromagnetic field and scalar 
field. In addition, we also consider the effect of charge on pressure. For a special case: 
when  is constant and  is zero, the pressure of fluid spheres rises when the charge 
increases. 

 

1.7 Structure of the thesis 

This thesis starts with an introduction to general relativity in Chapter 2.  The general 
relativity is linked to classical mechanics by special relativity.  The involved physics 
quantities are also explained.  An important method in this thesis, which is a solution 
generating theorem, is presented.  After that, Chapter 3 contains the relevant 
information about our interested system, anisotropic pressure sphere.  A dominant 
characteristic of anisotropy is the difference in the radial pressure and the transverse 
pressure because of charge. We also construct a solution generating theorem here. In 
Chapter 4, the theorems are created for the interior solution of charged fluid spheres 
using the modified TOV equation.  Moreover, the effect of electric charge on pressure 
is also examined.  Lastly, the results of the thesis and further works are concluded in 
Chapter 5.  
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Chapter 2 
Relativity and solution generating theorem 

This thesis works on the idea of general relativity which presents a different approach 
to distinguish physics from classical physics. This chapter describes about background 
knowledge of the thesis.  Moreover, definitions of the relevant physics quantity are 
explained, such as tensor and the Einstein field equations which is the main idea to 
construct the new theorems.  We will introduce about the solutions of the Einstein 
field equations in both metric form and interior solution.  The important algorithmic 
technique we use in the thesis is a solution generating theorem.  In this chapter we 
explain the construction of the solution generating theorems for perfect fluid sphere 
in form of metric solution and interior solution. 

 

2.1 Special relativity 

Classical mechanics can describe motion and interaction between objects in daily life 
by using Newton’s laws of motion. But the laws cannot completely explain mechanical 
phenomena at extreme conditions. For example, classical mechanics gives the wrong 
description about an object which moving at the speed near the speed of light.  In 
1905, Albert Einstein presented the theory that gives the concept different from 
classical mechanics but more precisely, special relativity. The theory makes an impact 
on physics and is a starting point of modern physics (Carrol, 2014). 

Einstein’s idea is about setting up an inertial frame and another frame that moves with 
constant velocity with respect to the inertial frame. 

Special relativity was constructed by 2 postulates, 

1. Physical laws are the same in all inertial frames. 

2. The velocity of light (in vacuum) is constant in all inertial frames. 

For the first postulate, a phenomenon that happens in all inertial frames should obey 
the same laws of physics. The second postulate is supported by Michelson-Morley 
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experiment (Hartle, 2014 ) .  Light velocity does not depend on how fast an observer 
travels.  This idea opposes relative speed in Newton’ s Laws.  This postulate allows 
observers in different frames to be able to observe same event in different time 
duration.   

Because of the two postulates of relativity, time is seen as a coordinate.  The time 
interval of an event as observed in different frames may be different. Therefore, time 
is coordinate same as spatial coordinates.  The transformation from one frame to 
another frame is Lorentz transformation.  This transformation includes both rotation 
and boost. The rotation transforms spatial coordinates between two frames. The boost 
leaves the spatial coordinates as it is, while transforms only the time component.  As 
for the 4 dimensions, Lorentz transformation relates two initial frames via both time 
coordinate and the spatial coordinates. The definition of metric for flat spacetime can 
be seen from the line element (metric) in the Minkowski coordinates, 

2 2 2 2 2 2.ds c dt dx dy dz       

The metric can describe geometric property of a spacetime.  This Minkowski metric 
presents a spacetime with no energy or mass. We can write the metric in terms of the 
infinitesimal coordinate displacement dx  and metric tensor     

 

The Greek subscripts are run the number 0 to 3, where zero is defined as the time 
coordinate and the others run for three spatial coordinates.  Einstein summation 
convention is used for summation of all running index without summation sign.  The 
metric tensor  stands for metric tensor of a Minkowski metric, 

 

The metric tensor is related to the matrix  that is defined via the Lorentz 
transformation by  
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The matrix  is constant square matrix and depends on the initial frame and relative 
frame. The example of ,  which describes the transformed frame boosts in x 
direction of the initial frame, is 

0 0

0 0
.

0 0 1 0

0 0 0 1





 

 

 
 

  
 
 
 

 

 

2.2 General relativity 

 

 

 

 

 

 

 

 

 

General theory of relativity was first published in 1915, which introduced a completely 
new perspective in the understanding of physics. The theory presents new ideas about 
gravity ( Carrol, 2 0 14 ; Hartle, 2 0 14 ) .  This theory is involved with mass and energy. 
Special relativity is a subsection of general relativity, as shown in Figure 1, and describes 
the flat spacetime.  In classical physics, gravity relates to a force exerted by a mass, 
which attracts another mass in certain proximity.  If the mass disappears, the force is 
suddenly lost.  However, according to general relativity, gravity is not a force.  It is a 
consequence of a mass or energy on spacetime. The spacetime where matter sits will 
be curved because of the presence of mass.  This curvature is recognized as gravity. 
Any other mass in proximity is also aware of the presence of gravity in spacetime. 



General relativity 

Special relativity 

flat 
curved spacetime 

accelerating universe 
mass 

energy 

massless 

charge 

scalar field 

vacuum 
acceleration 

Figure 1: Special relativity as a specific case of general relativity 
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Anything that travels through spacetime has its speed limit not exceeding the speed 
of light. If the mass suddenly disappears, the other mass has to take the time to realize 
the missing gravity.  The another concept of gravity is about an equivalent principle. 
The principle was presented by Einstein.  He thought there is no difference for 
experiment between constant acceleration and uniform gravity.  Hence, the object in 
the constant accelerated frame is equivalent to the objects with free fall moving from 
the influence of gravity.  The key basis of the theory is the Einstein’ s field equations 
which express the relationship between mass ( or energy)  and the geometry of 
spacetime,  

 

The right hand side of the equation describes the mass and the energy, while the left 
hand side is the spacetime curvature part of the equation. The Einstein field equations 
are nonlinear differential equations with coupling variables.  It is hard to solve the 
equations directly without any assumption or symmetry. The first physicist who solved 
for the exact solution was Karl Schwarzschild.  He applied spherical symmetry with 
Einstein’ s theory to explain the gravitational field produced by some objects 
( Boonserm et al. , 2005) .  In this thesis, we also make use of spherical symmetry.  For 
astronomical objects in the universe, we can see that almost all objects are spherical. 
By using this symmetry together with model development, we may be able to predict 
the spacetime around a star.  

 

2.2.1 Metric 

In classical mechanics, coordinates are only reference positions of physical 
phenomenon. An object’s move path is influenced by other masses or energy. On the 
contrary, general relativity explains an action from one mass to another mass is not 
direct action.  The influence is acted on the spacetime and it transfers the action to 
another mass. Therefore, the spacetime in general relativity are important and have a 
role in interaction in physics.  How to express the geometric property of spacetime, in 

8 .G GT  (2.5) 
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4 dimensions, is to use metric.  The general form of metric, which is consistent to the 
spherically symmetric metric, is presented in the form as follows  

 
 

2
22 2 2 2 ,

dr
ds r dt r d

B r
       

which is the type of metric we use in this thesis. The term  r  shows the scaling of 
time coordinate and  B r  shows the curve on radial coordinate. This metric is written 
in spherical coordinate for simply explanation of a spherical symmetry object.  The 
metric tensor  in special relativity is turned to be  for a curved spacetime 
which can be obtained from line elements for a curved spacetime 

2 .ds g dx dx 

  

  

2.2.2 Vector and dual vector 

In general relativity, an interaction is observed in 4 dimensions.  We need a higher 
dimensional quantity to explains the phenomena.  A tensor is introduced as a type of 
quantity for a better understanding of the concept of physics.  Vector in relativity is a 
first step for definition of a tensor.  

A difference between two coordinates, in general relativity, can be explain by general 
coordinate transformation.  The concept of the transformation is similar to Lorentz 
transform but done on curved spacetime. From general coordinate transformation, the 
coordinate 'x  change from the coordinate dx  by 

'
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
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A vector represents magnitude and direction.  The notation we use to define a 
component of vector is the letter with upper index,  We can transform the 
component of a vector   to another frame as follows 

 

The basis vector is defined as a letter with lower index,  
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General coordinate transformation of basis vector differs from the vector, 

 

We can define the quantity that opposes to vector, a dual vector or one- form.  It is a 
mapping of vector in to real space,  

 

where is a scalar. The transformation for a component of dual vector is 

 

For the basis dual vector has a transformation rule likes vector 

 

A vector and a dual vector are defined by general coordinate transformation which 
depends on the properties of spacetime.  By this definition, we will explain a tensor 
quantity that expresses physical property in general relativity. 

 

2.2.3 Tensor 

We can construct a tensor as a quantity that has property of both vector and dual 
vector. The tensor rank  is expressed in term of a result of tensor product   as 
follows 
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In this thesis, the tensors that we use agree with this general coordinate 
transformation. 
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2.2.4 Energy-momentum stress tensor 

The metric of spacetime gives a clear understanding about geometric property of 
spacetime.  The curvature of spacetime is a result of mass or energy.  Considering in 
particle and energy, this part can be described by a square matrix, energy momentum 
stress tensor  This quantity is defined by the flux of four-momentum  across a 
surface , 

  

From the definition,  is an energy density,  refer to an energy flux through the 
plane ,  describe the momentum density in  direction, and  are the flux of 

momentum in thi  component flow through the plane  The energy momentum 
stress tensor is symmetric and should be consistent to the conservation of energy-
momentum condition, 

0,T 

   

where the symbol   is covariant derivative.  It is defined by V
V V

x


  

 




  


 

for 

  is a Christoffel connection.  The condition is useful to construct the interior 
solution of anisotropic pressure system in this thesis. 

 

2.2.5 The Einstein field equations 

After publishing of special relativity in 1905, Albert Einstein had been developed the 
more general case and he succeed.  The general theory of relativity was published in 
1916 and brought a big change to Modern physics.  The fundamental idea of general 
relativity is a relationship between spacetime curvature and mass or energy which is 
described by the Einstein field equations 

8 ,G GT    

where  is Einstein tensor, defined by 
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1
,

2
G R g R     

where R  is a Ricci tensor, R  is a Ricci scalar, and g  is a metric tensor. 

To derive an Einstein tensor vG  starts from a metric tensor ,g  which can be 
obtained from line element as follows 

2 .ds g dx dx 

  

The Christoffel connection can be derived from derivatives of metric tensor, 

 
1

.
2

g g g g 

              

The Christoffel connection can lead to a Ricci tensor and Ricci scalar as foollows 

,R      

                  

.R R g

  

The Einstein field equations show the dynamic of gravity as a result of curved 
spacetime.  This equation is too complicated to solve for an exact solution.  The 
solution of this equation is obtained by supposing some symmetry to a system. In this 
thesis, the symmetry is anisotropic fluid spheres.  However, before we go to this part, 
we have to consider in first step of approximation, perfect fluid spheres. 

 

2.3 Perfect fluid spheres 

The Einstein field equations are composed of Ricci tensor Ricci scalar  and 
metric tensor  These quantities are highly nonlinear differential equation, which 
are coupled with each other.  We cannot solve the equation directly without 
formulating an assumption to make it simpler.  One year after publishing the general 
theory of relativity, Karl Schwarzschild become the first person to successfully solve 
for the spherically symmetric solution with the perfect fluid sphere condition 
(Boonserm et al., 2005). We assume that all matter in a star can be equated to perfect 
fluid spheres, allowing for symmetry that makes the Einstein field equations simpler. 
Perfect fluid spheres can represent a spherically symmetric ideal object which is filled 

,R ,R

.g

(2.18) 
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by mass or energy.  The definitions for perfect fluid in this work differ from fluid 
mechanics. They are expressed in terms of energy-momentum-stress tensor ;  

 

The quantity  describes four momentum  across the surface constant  
(Carrol, 2014). 

In general relativity, the three properties associated with perfect fluid are; no shear 
stress, no heat ( energy)  conduction, and isotropic pressure.  For presenting an 
observer’s view, we can use the non-coordinate basis known as the Vielbein formalism. 
It presents the basis vector, which does not depend on any coordinates.  In Vielbein 
formalism, the properties direct the energy-momentum- stress tensor of perfect fluid 
to the following diagonal matrix (Boonserm et al., 2005),  

 

For isotropic property of interior pressure, the pressure in every direction must be 
equal.  This property allows us to reduce complexity of density distribution inside an 
object. Using equation (1), we obtain Einstein tensor  for perfect fluid spheres, and 
perfect fluid constraints 

 

The hat symbols above the coordinates are used to represent the quantities in Veilbein 
formalism. This form is in non-coordinate basis and agrees with the observer’s view. 

 

2.4 The solution generating theorems for perfect fluid sphere metric 

Subsequently, many solutions of the Einstein field equations with perfect fluid 
constraints were explored in various coordinate systems (Bondi, 1947; Buchdahl, 1959; 
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Thairatana, 2 0 13 ) .  Each solution explains different systems in different conditions. 
Recently, some algorithmic techniques have been developed to generate new 
solutions from known perfect fluid spheres (Boonserm et al., 2005, 2007). This is very 
interesting because we no longer need to solve the Einstein field equations directly to 
obtain the solutions.  The idea of a solution generating theorem is presented as in 
Figure 2.  This concept also classifies the type of metric solution and exhibits the 
association of the solutions in distinct conditions.  
 
 
 
 

 
 
 
 
 
 
 
 
 

For constructing the solution generating theorems, a metric of an object was written 
in suitable coordinates.  By definition of the geometric element of the Einstein field 

equation, 1
,

2
G R g R     Einstein tensor G  can be obtained from the metric. 

We can set perfect fluid constraints to for ordinary differential equation, which can 
be used to build the solution generating theorems.  These theorems deform perfect 
fluid spheres in terms of spacetime geometry.  In reference to the solution generating 

theorems for perfect fluid spheres by P.  Boonserm ( Boonserm et al. , 2 0 05 ) , the 

generating theorems for Schawarszchild metric with perfect fluid sphere conditions 
were constructed as follows.  The coordinates that we want to work is Schwarzschild 
coordinates,  

G

new solution 
initial 

solution 
Solution generating 

theorem 

System condition 
(example: perfect fluid 

spheres condition) 

satisfy satisfy 

Figure 2: The working of a solution generating theorem under system condition 
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For describing perfect fluid sphere object, the different conditions of any systems 
influence to and terms.  So, the both terms will be transformed to other 
metric form.  Suppose  represents a perfect fluid sphere.  According to 
perfect fluid spheres constraint, , and deriving the Einstein tensor in 

topic 2.2.5, we can obtain  
 

or in rearranged form of , 
  

This equation is under the condition of perfect fluid spheres in Schwarzschild 
coordinates.  The solution that corresponds to equation ( 2. 27)  is also a perfect fluid 
sphere solution of the Einstein field equations. 
 
Four theorems for perfect fluid sphere 
For theorem 1, suppose we know the solution of perfect fluid spheres  
we can generate the new solution by fixing the  term and extending the 
term to  The  can be derived by setting a new solution 

to satisfy equation (2.27). 
Theorem 1: Suppose  represents a perfect fluid sphere. Define 

 

Then for all , the geometry defined by holding  fixed and setting 

 

is also a perfect fluid sphere. That is, the mapping 
 

takes perfect fluid spheres into perfect fluid spheres. 
Theorem 1 transforms a solution to a new solution with the different time scaling but 
the geometric property about spatial parts remain the same. 
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For theorem 2, suppose we know the solution of perfect fluid spheres  
we can generate the new solution by transforming the  term to  
and holding the term.  The  term can be derived by setting a new 
solution  satisfy equation (2.28). 
 
Theorem 2: Let  describe a perfect fluid sphere. Define 

 

then for all  and , the geometry defined by holding  fixed and setting 

 

is also a perfect fluid sphere. That is, the mapping 
 

takes perfect fluid spheres into perfect fluid spheres. 
Theorem 2 transforms a solution to a new solution with the different radial explanation 
but the description about time part remains the same. 
 
Theorem 3: If represents a perfect fluid sphere, then for all  and 

 the three parameter geometry defined by 

  

is also a perfect fluid sphere, where  is 

 

That is 

 

 
For constructing the theorems, suppose we know the solution of perfect fluid spheres 
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 0 0 0 0 0,Z B     while holding the 1B  term.  The  0 0 1,Z B  term and  0 0  
term can be derived by setting new solutions  0 1, B  and   0 0 0 1 1, ,Z B B   satisfy 
equation ( 2. 27)  and ( 2. 28) , respectively.  Theorem 3 transforms a solution to a new 
solution with the different geometric property of radial and new time scaling. 
 
Theorem 4: If  represents a perfect fluid sphere, then for all and 

, the three-parameter geometry defined by 

 

is also a perfect fluid sphere, where  is defined as 

 

depending on , whereas before 
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That is  

  

 
For constructing the theorems, suppose we know the solution of perfect fluid spheres 

, we can generate a new solution by reversing the steps of theorem 3. 
First we apply theorem 2 to the initial solution. Therefore, the term is extended 
to  while  is held.  After that, by applying theorem 1, the 

 term is transformed to  0 0 1 ,B     while holding the term.  The 
 term and  term can be derived by setting new solutions  1 0, B

and   1 0 0 1, B       satisfy equation (2.28) and (2.27), respectively. Theorem 4 
transforms a solution to a new solution with the different geometric property of radial 
and new time scaling. 
Four theorems transform a solution in metric terms.  The theorems can generate new 
solutions from known solution but sometimes the generated solutions have the same 
mathematical form as the initial solution of generation.  We can classify the type of 
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solutions from generation of four theorems to be seed and non- seed solutions 
(Boonserm et al., 2005). 
If a solution gives a new solution from both theorem 1 and theorem 2, the solution is 
a seed solution or a seed metric. 
If a solution gives a new solution from either theorem 1 or theorem 2, the solution is 
a non-seed solution or a non-seed metric  
 

 Seed solution Non-seed solution 

Theorem 1 New solution New solution initial solution 

Theorem 2 New solution initial solution New solution 
Table 1: Types of the solution, divided from the solution generating theorems 

 
2.5 Interior solution of perfect fluid sphere and the TOV equation  

For the solution generating theorems, the theorem transformations are based on 
spacetime geometry.  But for us, a star can more easily be observed in terms of mass 
and energy rather than the geometry of spacetime around it. Because the star matter 
can be expressed by energy-momentum-stress tensor in terms of pressure and density, 
the solution generating theorems should be applied to physical observables: pressure 
and density.  

The relationship between pressure and density profile is given in the Tolman-
Oppenheimer-Volkov (TOV) equation; 

 

 

 

2.6 The solution generating theorems for the pressure and density terms 

The Tolman-Oppenheimer-Volkov (TOV) equation describes the interior properties of 
spherical static perfect fluid object as a relationship between two physical observables, 
pressure  and density  For a fluid sphere object, which contains electric charge, 
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magnetic field, and scalar field, the pressure becomes anisotropic. We deform the TOV 
equation in terms of  and .p   

Before considering interior part of a perfect fluid sphere system, we first cite to the 
solution generating theorems on the TOV equation in perfect fluid system.  Referring 
to the article ‘Solution generating theorems for the TOV equation’ by P. Boonserm et 
al.  ( Boonserm et al. , 2 0 07 ) , the solution generating theorems for the TOV equation 
were developed as follows.  

 

Theorem (P1): Let  and  solve the TOV equation, and hold 
 as fixed. Define an auxiliary function  by 

 

Then the general solution to the TOV equation is  where 

 

and where  is the shift in the central pressure. 

Theorem ( P1)  gives a new solution in terms of the variation of pressure.  The mass is 
fixed allows us to solve for  by perturbing solution of Riccati equation.  The 
physical reasonableness at the center of a new solution, in terms of pressure, depend 
on the well- behaved properties of the initial pressure the initial density  
the central pressure and the central density.  

Theorem (P2): Let  and  solve the TOV equation, and hold  fixed, 
such that  
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Then the general solution to the TOV equation is given by  
and  where 

 

and  

 

Here is the shift in the central density. By explicitly combining these formulae 
we have 

 

and 

 

Theorem (P2)  transforms pressure and mass terms with holding the function .  We 
obtain a shift in pressure and mass by transforming of theorem ( P2)  through relating 
between mass and density in the TOV equation.  

 
2.7 Conclusions 

The theory of relativity gives an idea in understanding the physical phenomenon using 
the concept of spacetime curvature After that, the physicist found this approach can 
explain and predict an interaction more precisely and correctly than Newtonian 
mechanics.  Special relativity is a special case of general relativity.  In this thesis, our 
work is based on general theory of relativity.  The work will perform on both matter 
and energy part and spacetime part. 

In this chapter, new solutions of perfect fluid spheres can be generated by applying 
theorems to initial solution. We can classify solutions of perfect fluid spheres to seed 
and non-seed metrics by considering results after applying theorem 1 and theorem 2. 
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We have established several relationships among the generating theorem . The 
transformation theorems provide the unexpected structure of perfect fluid spheres 
solutions and yield a new way of viewing the interrelationships between different 
static fluid spheres. 

Moreover, the solution generating theorems for the TOV equation in terms of 
pressure and density can be generated. The deformed solutions are parameterized in 
terms of  and .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c cp
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Chapter 3  
Charged fluid sphere and solution generating theorem 

The main work of this thesis is to consider anisotropic pressure spherical system. The 
system is interesting because it is the next step which try to explain a realistic object 
in our universe after perfect fluid spheres. The important method, that we use, is also 
a solution generating theorem.  Therefore, building steps of the theorems for charged 
fluid spheres are similar to the algorithm in Chapter 2. The application of the solution 
generating theorems for charged fluid spheres is also shown in this chapter. 

 

3.1 Introduction to anisotropic pressure spheres 

For describing the interior of a spherical object in the general relativistic frame, some 
objects can be considered using the concept of perfect fluid spheres for simplicity. 
The absence of heat conduction and shear stress, and the presence of isotropic 
pressure are the characteristics of perfect fluid spheres. In this thesis, we are interested 
in generating a solution for charged fluid spheres ( Bayin, 1 9 82 ; Herrera, Ospino, & Di 
Prisco, 2008 ; Patel & Mehta, 1995 ) .  The particular property of anisotropic pressure, 
which differs from the property of perfect fluid spheres, is that the radial pressure and 
the transverse pressure are not equal.  One cause of anisotropy is the presence of 
charge inside an object. Charged fluid spheres with anisotropic pressure are models for 
describing a charged star such as a neutron star (Boonserm et al., 2015; Heintzmann & 
Hillebrandt, 1 9 7 5 ; Sulaksono, 2 0 1 5 ) .  An important tool in studying fluid sphere 
solutions is a solution generating algorithm. This technique can be used to generate a 
new solution from known solutions without having to solve the Einstein field equations 
directly.  A solution generating theorem for charged fluid spheres are constructed in 
terms of the metric of spacetime.  

Many solutions of the Einstein field equations with perfect fluid constraints were 
explored in various coordinate systems (Bondi, 1947; Buchdahl, 1959). Each solution 
explains different systems in different conditions.  Recently, some algorithmic 
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(3.1) 

techniques have been developed to generate new solutions from known perfect fluid 
spheres ( Boonserm et al. , 2005, 2007; Thairatana, 2013) .  This concept also classifies 
the type of metric solution and exhibits the association of the solutions in distinct 
conditions.   

Perfect fluid spheres are the first approximation of solution for many objects. But there 
are also many other spherical objects that do not fit the properties of perfect fluid 
spheres.  One kind of such object is a neutron star.  The radial pressure of a neutron 
star may differ from its tangential pressure ( Boonserm et al. , 2 0 15 ; Heintzmann & 
Hillebrandt, 1975; Sulaksono, 2015). The applied idea for these stars is referred to as 
charged fluid spheres with anisotropic pressure.  

For finding a solution generating theorem, a metric (or line element) of an object was 
written in a suitable coordinate. By definition of the geometric element of the Einstein 

field equations,  the Einstein tensor  can be obtained from 

the metric.  We can set the fluid constraints to for ordinary differential equation, 
which can be used to build the solution generating theorems. These theorems deform 
fluid spheres in terms of spacetime geometry. 

In case of spherical objects with a charge on the inside, the electromagnetic charge 
makes the pressures of the objects become anisotropic.  The radial pressure and the 
transverse pressure in these kinds of objects are unequal.  The energy-momentum-
stress tensor for anisotropic pressure spheres is 

 

The constraint of perfect fluid spheres cannot be used in constructing the solution 
generating theorems.  Therefore, we have to set a new ordinary differential equation 
that satisfies charged fluid spheres from the Einstein field equations.  This equation 
gives an Einstein tensor that agrees with the anisotropic energy momentum stress 
tensor.  This model is a primary model that can be applied to a real object in our 
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(3.2) 

universe; the neutron stars ( Bayin, 1982; Boonserm et al. , 2015; Patel & Mehta, 1995; 
Sulaksono, 2015). 

 
3.2 Anisotropic pressure system: a neutron star 

The type of compact star that a star will eventually become, in the end point, is up 
to the mass of the star. A neutron star is one type of an end point star. It is the result 
of gravitational collapse of a star into a very small size compared to the mass.  The 
matter of the star is condensed and any chemical potential becomes broken up. 
Finally, there are only neutrons and elementary particles that remain in the star 
(Herrera et al., 2008; Ray & Das, 2004). 

In studying a neutron star, we can observe the star as pulsars which are created from 
the rapid rotation of the neutron star.  Pulsars are the key evidence of magnetic field 
in the stars.  Additionally, the large magnetic field that can be observed indicate that 
the magnetic field in a star are anisotropic (Sulaksono, 2015). Moreover, we also found 
that the matter within a neutron star constitutes several particle types with different 
charges.  The lightest charged particles, electrons, pass into the boundary and create 
an unbalanced electric field on the surface of the star.  The electric field affects the 
energy- momentum- stress tensor, the tensor that was filled with four- momentum 
across the surface, which gives us the anisotropic pressure. A neutron star is an example 
of an anisotropic pressure object that we are particularly interested in this study.  

 
3.3 The solution generating theorems for charged anisotropic pressure spheres 
and classifying steps 

Suppose the solution of charged fluid spheres in Schwarzschild coordinates is defined 
as a specific metric (Boonserm et al., 2005) 

  

 

where  or with the notation 

2
2 2 2 2 2

0

0

( ) ,
( )

dr
ds r dt r d

B r
    

2 2 2 2sin ,d d d    
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(3.4) 

(3.5) 

(3.3)  

From the definition of Einstein tensor, we obtain its components (Boonserm et al., 
2015) 

 

 

 

 

Then setting  we obtain a second order homogeneous linear ODE 
for  as 

  

which can be rearranged to a first order nonhomogeneous linear ODE for  B r  as 

 

 
3.3.1 The solution generating theorems for charged anisotropic pressure spheres 

Theorem 1: Suppose  represents a charged fluid sphere. Define 

 

We can define a new metric solution for charged fluid sphere with fixed  as 
follows 

 

where  is a constant. The mapping for theorem 1 is 

      1 0 0 0 0 0 0: , , .T B B        

If we apply theorem 1 at the second time, we get the same form of the solution as 
applying theorem 1 first time. Therefore,  is “idempotent”, in the sense that 
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          1 1 2 1 1 0 0 0 0 0 0

1
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n

n i

i

T T T B B      


  
   
  
   

For a general form 

 

 

the symbol  represents “equality up to relabeling of the parameters”(Boonserm 
et al., 2005). 

 

Proof for theorem 1: Assume the metric represents a charged fluid sphere 

 

We know  and are solutions of charged fluid sphere. Therefore, they satisfy ODE 
(3.7)  

 

If we modified the metric as 

 

where      1 0 0 .B r B r r    For this metric, and  also satisfy charged fluid 
spheres  

 

 

Substituting  into equation (3.15) 

  

                          

Using equation (3.7) gives 
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This first order homogeneous linear differential equation in Δ0 leads to 

 

 

Proof for idempotent property: For a second application of theorem 1, the mapping 
is 

 

where 2 1 2 0( ) ( ) ( )B r B r r    and . So, 

 
For n applications of theorem 1, the mapping is 

 
 

Corollary 1: Let  and  both represent charged fluid spheres, then for 
all p,  is also a charged fluid sphere.  Furthermore, all fluid 
spheres for a fixed  can also be written in this form. 

 

Proof for corollary 1: Suppose   and represent charged fluid spheres, 
the solutions could satisfy (3.7) 

 

 

 

also represents charged fluid spheres, 
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From (3.24) – [ *(3.22) + *(3.23)]; 

 

Therefore,  represent a charged fluid sphere. 

 

Theorem 2: Suppose represents a charged fluid sphere. Define 

 

Then for all  and  we can define a new metric solution for charged fluid sphere 
with fixed  as follows 

 

The mapping of theorem 2 is 

      2 0 0 0 0 0 0 0: , , , .T B Z B B      

If we apply theorem 2 at a second time, we get the same form of the solution as 
applying theorem 2 first time. Therefore,  is “idempotent”, in the sense that [1, 11, 
22] 

 

where 

  

 

Proof for theorem 2: Assume the metric represents a charged fluid sphere 
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We know and  are solutions of charged fluid sphere. Therefore, they satisfy ODE 
(3.6)  

 

The generated metric should be in the form as follows 
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Then  For this metric, and also satisfy charged fluid spheres  

 

Substituting into equation (3.6) 
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Substituting  0 r  into equation (3.6), equation (3.34) reduces to 
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Integrating over r,  

 

we obtain 

0 0 0

1
ln ' 2ln ln ln .

2
Z B r c       

Then, 

 

0 0B

   2 2 2

0 0 0 0 0 0 0 02 '' ' 2 ' 2 2 ' 16 0.r B r B B r B B r r          

1 0 0( ) ( ) ( ).r r Z r  1 0B

   2 2 2

0 1 0 0 1 0 0 12 '' ' 2 ' 2 2 ' 16 0.r B r B B r B B r r          

1 0 0( ) ( ) ( )r r Z r 

2 2

0 0 0 0 0 0 0 0' 2 ' 2 2 ' 16 0.r B B r Z B B r r Z               

0 0

0 0

2 ' ' 1
.

2

B

B r




   

0 0 0

0 0 0

'' 2 ' ' 1
,

' 2

Z B
dr dr dr dr

Z B r




      

0 2

0 0

' .
r

Z
B






(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 



 46 

for all 0 0' 0, 0Z   and 0 0.B      

Finally, 

 

 

Proof for idempotent property: For a second application of theorem 2, the mapping is 
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Theorem 2 has idempotent property only in special case ( for all ) 

 
and for n applications of theorem 2 with the same and    

 
For large n 

 
Corollary 2:  Let and both represent charged fluid spheres, then for 
all p, q    is also a charged fluid sphere. Furthermore, all charged fluid 
spheres for a fixed can also be written in this form. 

 

Proof for corollary 2: Suppose and  represent charged fluid spheres. 
The solutions could satisfy (3.6) 

 

and 
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Multiplying (3.48) with p and multiplying (3.49) with q and adding together give  

 

 

That is the solution 0,a bp q B  also represents charged fluid sphere. 

 

3.3.2 Application of the solution generating theorems on Tolman-Bayin solution 

The Tolman-Bayin solution is the applied solution from Tolman VI and Bayin solution 
by S. Ray and B. Das (Ray & Das, 2004). It is a model for electromagnetic mass model. 

The total charge on the sphere can be calculated using radius, nq r   where n  is 
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an integer. With the condition n=0, the given form of The Tolman-Bayin solution metric 
with n=0 is 

 

The Tolman-Bayin solution represents Schwarzschild coordinates metric with charge. 

Application of theorem 1 to the Tolman-Bayin solution  

By comparing the Tolman-Bayin metric with the Schwarzschild coordinates metric, 

the 0  can be written as follows 
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In applying theorem 1, use 0  in the form below 

 

This equation is rearranged from equation (3.8)  

 

From calculations using the Maple programme, we obtain 
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Then for all , the new metric is 

 

 

With this , the metric also satisfies charged fluid spheres. 

Application of theorem 2 to the Tolman-Bayin solution  

The given form of The Tolman-Bayin solution for n=0 is 
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then 
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Theorem 2 can be applied to the Tolman-Bayin metric using equation (3.26) 
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Therefore, to reduce the complexity of calculation, this term can be approximated to 
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With this , the metric also satisfies anisotropic pressure fluid spheres. 

 
3.3.3 Classifying charged fluid spheres 

In referrence to P. Boonserm et. al. (Boonserm et al., 2005), we use a similar concept 
to classify charged fluid spheres into seed and non- seed metrics based on the 
following definitions. 

 

Definition (seed metric): take a metric and apply theorem 1 or theorem 2 to it. Two 
different cases are possible: each of the applications supplies us with a new solution, 

 We define a metric with this pattern as a seed metric.  For 

example, we apply theorem 1 to the Tolman- Bayin metric to derive a new solution 
( see equation ( 3. 54) ) .  In addition, when we apply theorem 2 to the Tolman- Bayin 
metric, we derive a new solution (see equation (3.61)). 

 

Definition (non-seed metric): take a metric  and apply theorem 1 or theorem 2 to 
it.  Two different cases are possible:  only one of the applications supplies us with a 
new solution, while the other one gives us the same metric we started with 

 or   These metrics are non-seed metrics.  

In the classifying step, the generated solutions are classified either as seed or non-seed 
solutions.  If the generated solution can give rise to a new solution after reapplying it 
with every generating theorem, the solution is regarded as a seed type.  On the other 
hand, if the reapplication of the generated solution with the generating theorems only 
results in a new solution from just one generating theorem, the solution is classified 
as a non-seed type.  
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3.4 Conclusions 

The solution generating theorems for anisotropic pressure spheres can be constructed 
in terms of the geometric solution of the Einstein field equations, in Schwarzschild 
coordinates, for a charged fluid sphere.  Theorem 1 can generate a new solution in 
terms of variation of the component of radial coordinate by transforming radial 
component and fixing time component.  Theorem 2 transforms time scaling 
component to another solution which still satisfy charged fluid sphere system while 
the radius component is fixed.  Both theorems can generate solutions that satisfy 
anisotropic pressure spheres. The idempotent property and corollary of the theorems 
are presented in this thesis.  The application of the solution generating theorems has 
been tested with the Tolman-Bayin metric which is one of the static charged type for 
anisotropic pressure model.  We use the maple programme for calculating a new 
solution from the theorem 1 and theorem 2. As a result, the new solution is obtained 
from theorem 1 and theorem 2.  Finally, we define classification of the types of 
solutions into seed and non-seed by the solution generating theorems.  
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Chapter 4 
Interior solution for charged fluid spheres 

In this chapter, we introduce an interior solution of charged fluid spheres by 
generalizing the TOV equation.  The interior solution of the Einstein field equations, 
with perfect fluid sphere constrain, satisfies the TOV equation.  The electromagnetic 
field and scalar field inside a sphere are considered in this case (Bayin, 1982; Herrera 
et al. , 2008; Patel & Mehta, 1995; Sulaksono, 2015). In addition, we will construct a 
solution generating theorem for an interior solution of anisotropic pressure spheres in 
pressure and density profiles. The interior solution is important to link general relativity 
to astrophysics.  

 

4.1 Charged fluid spheres 

In astrophysics, the interior properties of a stellar structure are often presented in 
pressure and density profiles.  The interior information of an astrophysical objects can 
determine the type of an object, e.g. white dwarf star, neutron star. Almost all of the 
stars are anisotropic pressure objects because they always contain charged particles, 
magnetic field or scalar field.  The interior solution of the Einstein field equations in 
general relativity for ideal objects, perfect fluid spheres, is described by the TOV 
equation.  For improving the solution to get close the realistic objects, we need to 
consider the anisotropic property of pressures.  As in chapter 3, the simple expression 
of anisotropic pressure spheres can be written in terms of energy momentum stress 
tensor, 

ˆˆ
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In this chapter, the pressure profiles are emphasized more than in previous chapter. 
The TOV equation will be modified to depend on the electromagnetic charged and 
scalar field. 

 
4.2 The modified TOV equation 

In this work, we cannot use the perfect fluid constrains because of the electromagnetic 
field and the massless scalar field within this object.  The TOV equation was thus 
generalized to involve the electromagnetic and the scalar field. This model is close to 
the realistic objects in our universe such as a Neutron star.  

Because of the presence of electromagnetic field and scalar field, the interior 
properties of an object differ from properties of perfect fluid sphere.  In reference to 

Mimicking static charged fluid spheres in general relativity by P. Boonserm (Boonserm 

et al. , 2 0 07 ) , we can obtain interior solution of anisotropic pressured system via 
modifying the TOV equation.  The energy momentum stress tensor of anisotropic 
pressured fluid sphere is linear combination of stress tensor of electric charge, 
magnetic field, and scalar field 
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where abF  is a field strength tensor, aV  is a four velocity,   is a scalar field, and the 
notation  expresses .  By using the covariant conservation of the total energy 

momentum stress tensor 0ab

bT   and considering the unit vector in the radial 
direction, we obtain a modified TOV equation 

 

A four- velocity  is defined by ,
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 where  We can construct 

the modified TOV equation with refers the form of the TOV equation as follows 
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Equation ( 4. 6)  shows the relationship of a fluid pressure  a fluid density  
electromagnetic density , and scalar field density  The other equation is a 
definition of mass for charged fluid spheres. 

 
4.3 The solution generating theorems and the modified TOV equation  

The solution generating theorems for the modified TOV equation can be constructed 
in terms of pressure and density by Riccati equation solution for theorem 1, and 
definition of mass on the modified TOV equation in theorem 2. 

Theorem 1: Suppose we know two specific solutions  and  and fix 
, the generated general solution for the modified TOV equation 

is  
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 where  is constant.  

Proof of theorem 1: The form of Riccati equation is 

 
The modified TOV equation is 
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where  and  are fluid density, fluid pressure, electromagnetic charge 
density and scalar field density, respectively. 
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We can treat the modified TOV equation as a Riccati equation where 
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The one-parameter general solution may be written as 

 

 

Theorem 2: Suppose we know two specific solutions  and  and fix , where 
the auxiliary function  is 

 

The generated general solution for the modified TOV equation is given by 
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Proof of theorem 2: Function  is defined as  can 

be rearranged in term of  as 
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We substitute equation (4.21) into the modified TOV equation and simplify it as 
follows 
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We obtain a first order linear nonhomogeneous differential equation for .  We 
can solve the equation by using integrating factor.  The general form of a first order 
linear nonhomogeneous ordinary differential equation is 

   ' .y P r y Q r    

This equation gives a solution in terms of the combination of a particular solution 
and the complementary solution 

      ,c py r y r y r   

where 

 
 

0 ,

r

r

P r dr

Cy r Ce
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 
 

0 0 .

r r

r r

P r dr P r dr

Py r e Q r e dr
  
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From equation (4.24) 
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The new solution in terms of mass is shifted from the initial  with the variation 

    

( )fp r

0 ( )m r

 
 3 3

0 0

4 4
.

1 2 ( ) 1 2 ( )

f C P
p r p p r

m r
rg r rg r

   



   

 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

(4.32) 



 58 

Theorem 2 can generate new solution for mass and pressure in forms 
 and   

 
4.4 The effect of charge on pressure 

From the modified TOV equation, we consider an effect of electric charge on the 
pressure profile (Boonserm et al., 2016).  

4.4.1. Special case: when  is constant and is zero 

In this case, the generalized TOV equation becomes 

 
supplemented with 

 

Integrating the above equation, we obtain 

  34
( ) .

3
f emm r r     

Substituting  into the generalized TOV equation, we can numerically solve for 

fp  as shown in Figure 3. 
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(4.33) 

(4.34) 

(4.35) 

Figure 3: The fluid pressure as a function of radius 
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4.4.2. The effect between charge and pressure 

We consider the relationship between electric charge and pressure inside a sphere. We 
assume fluid density, and electric field are fixed at all radius.  Consider with neutron 
star model, we suppose the total electric charge inside the star depends on a mass of 
the star (Chamel, Haensel, Zdunik, & Fantina, 2013; Malheiro & Ray, 2004). The charge 
can be calculated by comparing to the mass of the sun 

20 2010 2 10 Coulomb.
sun

M
Q

M


 
 

The charge density is considered to be constant for all radius of the object.  The 

relationship between charge density and the total for this case is 34
.

3
em r Q   

Therefore, the range of the charged density can be approximated in order of 
11 12 310 10 C/m .  For a star with maximum radius 410 m,R   the electric charge affects 

the perfect fluid pressure at radius 35 10 m,r    which can be calculated using the 
maple programme. The results of the numerical calculation are presented in table 2. 

 

Charge density  
(C/m3) 

Pressure  (N/m2) 

 

 

 

 

 

 

 

 

 

 

Table 2: The effect of charged density on the pressure for the modified TOV 
equation at radius 35 10 m   in special case 13 310 kg/mf   with 410 mR   

 

em fp

114 10 241.090 10

116 10 241.111 10

118 10 241.131 10

121 10 241.152 10

121.2 10 241.173 10
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From table 2, we can see that when the charge density increases, the pressure also 
increases.  Changing charge affects the fluid pressure.  For example, we compare the 

case 11 36 10 C/m ,em    with the case 11 38 10 C/mem    as shown in Figure 4 and 5, 
respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The fluid pressure for 11 36 10 C/mem    with the 
fluid pressure at the center   24 20 1.408 10 N/mfp r        

Figure 5: The fluid pressure for 12 31.2 10 kg/mem    with the fluid 
pressure at the center   24 20 1.564 10 N/mfp r        
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We found that the higher electric charge gives a higher fluid pressure. Consider at the 
center of the sphere where the fluid pressure is the highest, the electric charge increase 
by 2 times, the pressure increase by approximately 1. 07 times.  Additionally, the star 
with same maximum radius 410  has the effect of electric charge to the fluid pressure 
as shown in table 4.  

Fluid density f  
(kg/m3) 

Pressure  (N/m2) 

132 10   244.359 10   

134 10  251.710 10   
136 10  253.822 10   
138 10  256.773 10  
141 10  261.056 10   

Table 3: The effect of fluid density on the pressure for the generalized TOV equation 
at radius 35 10 m  in special case 11 38 10 C/mem    with 410 mR   

We can see that when the fluid density increases, the pressure also increases rapidly. 
Therefore only the electromagnetic charge affects the fluid pressure are less than fluid 
density. 

 

 

 

 

 

 

 

 

 

fp

Figure 6: The fluid pressure for 11 38 10 C/mem    and 14 310 kg/mf   with 
the fluid pressure at the center   26 20 1.408 10 N/mfp r     
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Figure 6 and 7 show the effect of the fluid density on fluid pressure.  We can see that 
when the fluid density increases by 2 times, the pressure can increase by 
approximately 2.98 times.  

 

4.5 Conclusions 

The modified TOV equation is derived to get close a real object such as charged star 
or neutron star by setting a combination of energy momentum stress tensor of perfect 
fluid sphere, electromagnetic charge, and scalar field.  The solution generating 
theorems for the modified TOV equation can be created.  Theorem 1 gives a general 
form of a new solution in terms of two known pressures.  For Theorem 2, the derived 
forms of a solution are a new pressure and a shifted term of mass.  Both forms are 
written in terms of charge and infinitesimal variation of pressure at the center. 
Moreover, we can consider for the effects of charge on the modified TOV equation. 
The pressure of fluid spheres grows when the charge increases.  The electric charge 
density affects the pressure less than fluid density. 

Figure 7: The fluid pressure for 11 38 10 C/mem    and 14 32 10 kg/mf    
with the fluid pressure at the center   26 20 5.611 10 N/mfp r     
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Chapter 5 
Conclusions 

The thesis began with the overall review of this work. The thesis focuses on a problem 
of the anisotropic pressure spherical system.  General theory of relativity has been 
described for the understanding of the relevant background information.  The theory 
provides a new idea in the explanations of a system in the form of spacetime geometry. 
The field is interesting because it can explain certain physical phenomena more 
precisely than classical mechanics.  In this thesis, general relativity is briefly reviewed, 
particularly focusing on the Einstein field equations and the TOV equation.  The 
anisotropy of pressure is a property of charged fluid spheres, which is one of the 
solutions of the Einstein field equations. The perfect fluid spheres are important in our 
work.  This system is an ideal approximation for presenting an object in general 
relativity.  However, we modified the system to involve a charged fluid sphere, which 
is more suitable for studying a realistic stellar object.  

A solution generating theorem is a technique we use in studying the anisotropic 
pressure system. The theorems are constructed for the generation of both a spacetime 
solution and an interior solution.  For a spacetime solution, we have constructed two 
theorems that can generate a solution.  Applications of the theorems are performed 
on Tolman-Bayin type solution. The new solutions are obtained via the application of 
the theorems.  

Considering metric solution, we focus on the solution as a type of Schwarzschild 
coordinates. Static and spherically symmetric are the characteristics of the coordinates. 
The solution is denoted as  where  represents a scaling in time 
coordinate and  indicates a geometric property along the radial coordinate. The 
electromagnetic field and scalar field are added into the constraint of charged fluid 
spheres. The solution generating theorems for an anisotropic pressure sphere is created 
in a similar way to the method used in the construction of the theorems for a perfect 
fluid sphere. The theorems we obtain are as follows; 

 0 0( ), ( ) ,r B r 0 ( )r

0 ( )B r
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In deriving theorem 1, the  term is held fixed, while the  term is 
transformed to  The new solution is  where 

 

We can see that the new solution has a different appearance to the initial solution, 
only in term of the radial coordinate.  The shifted term is a function of time scaling of 
the initial solution.  

In deriving theorem 2, from theorem 1, the  term is held fixed, while the  
term is transformed to  with the new solution being  
where 

 

We can see that the new solution has a different appearance to the initial solution, 
only in time coordinate.  The shift of the component of time coordinate has been 
shown to depend on its own scaling factor  0 r  and  0 .B r  

For the interior solution, the modified TOV describes the internal structure of a charged 
fluid sphere.  It is derived from the TOV equation combined with the electromagnetic 
field and the scalar field. The solution of the modified TOV equation can be written in 
terms of the initial pressure   and the initial density  A mass is defined by 
density, thus   can be a solution of the modified TOV equation.  

In constructing theorem 1, the theorem can be simplified in the form of Riccati 
equation in term of perfect fluid pressure  Hence we can use the general solution 
of the Riccati equation as a solution of the modified TOV equation. Fixing  leads to 
the constant  in the transformation.  For the starting solutions  and  a 
generated solution by theorem 1 is in the form of   
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(5.1) 

(5.2) 

(5.3) 
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In building theorem 2, the definition of mass, for charged fluid spheres, is substituted 
into the modified TOV equation. With integration by-parts, a form of the new solution 
can be written as and  where 

 

 

 
For the first advantage of the solution generating theorems, we can obtain a solution 
without solving through the complicated the Einstein field equations. As for the other 
advantage, the relationship between the distinct solutions is apparent through the 
theorem.  However, the solution generating theorems have a limitation.  An initial 
solution is needed to make the theorem. This is especially true for theorem 1, where 
the theorem, derived from the modified TOV equation, requires 2 initial solutions in 
determining a new solution. Because of this, the solution generating theorems cannot 
generate a complete set of solutions for charged fluid spheres.  It can only build 
solutions under the condition of a starting solution.  

Considering the effect of charge on pressure, a relationship between electric charge 
and fluid pressure can be considered using the modified TOV equation.  The absence 
of the scalar field and the constant electric field are the conditions necessary for our 
special case.  First, we investigate the pressure by varying the radius of an object at a 
constant scalar field. The fluid pressure reduces when radius increases . The charge 
density has an effect on the fluid pressure. When the charge density increases, the 
pressure also rises. 

In this thesis, the solution generating theorems for charged fluid spheres are created 
in terms of metric and interior solution.  They can be beneficial in solving for the 
solution of charged fluid spheres.  The modified TOV equation is analyzed for the 
influence of charge on the pressure.  This is a little step in the field of astronomy in 
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trying to understand a realistic spherical object. In the future, if unknown solutions are 
observed, the solution generating theorems can prove to be one of the several 
techniques that can be helpful in understanding the solutions even more. 

As for further work, the other forms of metric in Schwarzschild coordinates should also 
be applied with the solution generating theorems for the generation of a new solution. 
With a higher number of generated solutions, the relationship between charged fluid 
sphere solutions will become clearer.  Moreover, a solution generating theorem can 
also be constructed in other coordinates of metric.  The solution from the modified 
TOV equation can be investigated for other physical quantities, e. g.  central red shift 
and surface shift.  Almost all types of fluid spheres have a non- constant fluid density 
along its radius. Hence, the electric charge effects can be considered in comparing the 
fluid pressure with variation of fluid density in terms of the radius.  Additionally, the 
electric field, in terms of electric charge density, may also have an effect on the fluid 
pressure. 
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Appendix A1  

Example of some starting charged fluid sphere metrics 

Solution of the Einstein field equations, which provides descriptions of spheres with 
electromagnetic charge, is one of the models for realistic astronomical objects. The 
solution can be a starting metric for the solution generating theorems. Some of the 
anisotropic pressured fluid spheres in metric form are presented in the table below. 

Name Metric form  2ds   

Reissner-Nordstrom 

(for a non-rotating 
charged spherical object) 

1
2 2

2 2 2 2

2 2
1 1 .

Q Qs s
R RR R

dt dr r d
r r r r



   
             
   

  

 

Tikekar 

(for positive pressure and 
negative gradient 
pressure)  

2
3/2

2 4 2 2
2

2 4 2 2

11 7 49 1 7
1

24 12 24 8 8

r r r r
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R R R R
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2 2 2

0

1
.dr r d

B
    

Tolman-Bayin 

(specific choice 0n   
and the total 
gravitational mass m , 
and radius a   

1
2 2

2 2 2 2

2 2

2 2
1 1 .

m q q
dt dr r d

a a a



   
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Psuedo-spheroidal 

(where A  and B  are 
constants, and 
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r

R



      


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In this thesis, the solutions from applying the theorems are calculated in Maple 
programme. The code of calculation for the Tolman-Bayin solution is shown below. 
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Calculation for the application of theorem 1 on the Tolman-Bayin metric 
The form of Tolman-Bayin metric with 0n    

1
2 2

2 2 2 2 2

2 2

2 2
1 1 .

m q q
ds dt dr r d

r r r



   
          

   

 

 
>  

>  

 

>  

>  

 

>  

 

>  
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>  

 
Calculation for the application of theorem 2 on the Tolman-Bayin metric 
>  

> 

 

>  
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Considering the effects of charge on fluid pressure, the calculated pressures and 
graphs in each specific case are created using codes as follows; 
 
Calculation for the effect of charge on pressure 
>  
>  

>  

 

>  

 

>  

 

>  

 

>  

 

>  

 

>  

 

>  
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>   

>  

>  
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Appendix A2  
Electromagnetic tensor 

In classical electrodynamics, Maxwell’s equations cover almost all descriptions about 
the static and dynamic of the electromagnetic phenomena. The electric field is 
introduced as a result of the existence of electric charge. Meanwhile, an origin of the 
magnetic field is an electric current. They have self-inducing effect, which is a 
property of the electromagnetic waveห. Because an electric field and a magnetic 
field can be detected using different methods, they are separated as different 
quantities. However, in general relativity, these two quantities can be defined by the 
same tensor: which is the field strength tensor F  represented as follows, 

0 ,i iE F  

1
,

2

jk

i ijkB F   

where ijk  is Levi-Civita symbol. The contravariant form of Field strength tensor in 
Cartesian coordinates in four dimension is 

0

0
,

0

0

x y z

x Z y

y z x

z y x

E E E

E B B
F

E B B

E B B



   
 


 
 
 

  

 

for 1.c   The energy momentum stress tensor for the electromagnetic field can be 
written in terms of field strength tensor 

 ;

1
.

4

ab ac bd ab cd

em b cd cdT F g F g F F   

This tensor is used in the construction of the energy momentum stress tensor for a 
charge fluid sphere. 
 

(A2.1) 

(A2.2) 

(A2.3) 

(A2.4) 
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