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Chapter 1

Introduction

DNA, or deoxyribonucleic acid, is known as one of the most interesting
and mysterious biological molecules. It belongs to a class of biopolymer and
has a very important biological function especially its ability to conserve and
transfer genetic information. In 1953, Watson and Crick [1] discovered the double
helix structure of DNA. It is composed of two linear polymers. Each polymer
consists of monomeric units called nucleotide. Each nucleotide is made up of
three components: sugar (furanose-derivative deoxyribose), phosphate (PO )
and one of the four bases, adenine (A), guanine (G), thymine (7) and cytosine
(C). Two linear polymers are held together between some combinations of these
bases by hydrogen bonds which is called the Watson-Crick base pairing. They are
wound around a common axis to form a double helix (Fig.1.1). The A base only
pairs with 71", and the G base only pairs with C!. These pairs are the formation
of double helix. The diameter of the helix is 20 A and the adjacent bases are 3.4

A apart along the axis with 36° angle respect to one another.

In 1962, Eley and Spivey [2] were the first to suggest that DNA could



Figure 1.1: Diagram showing the double helix structure of DNA [3].

be a conductor because of the formation of a 77- band across the different bases.
Recently, physicists and chemists have become increasingly interested in the elec-
tronic properties of the DNA. The process of a charge transfer, the movement of
a charge from one molecule to another molecule or one end of the molecule to the
other is one of the most fundamental concept in chemistry and material science.

They are widely used in studying corrosion and photosynthesis.

Many experiments are conducted in order to find the first clue about the
charge transfer mechanisms in DNA. Indirect measurements of the charge transfer
in DNA and direct measurements of Current—Voltage or I-V characteristics are

the two major experiments being investigated.



Fink et al. [4] performed the first direct measurement of the conducting
properties of DNA. The resulting I-V characteristics are shown in Fig.(1.2). It
was found that A-DNA (a DNA of virus named lamda) is a good conductor, with
a resistance comparable to that of conducting polymers. The experiment was
done in vacuum, where a drop of solution containing DNA was placed onto a
gold-covered carbon foil with 2 wm holes. The holes were imaged with a low-
energy electron point source (LEEPS) microscope, which is claimed that it does

not radioactively damage DNA [4,5].

U
U
i a0 2 49
o Valtage (mb)
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b fH g -

Figure 1.2: Diagram showing I-V characteristics of DNA ropes. (a) I-V curve for
a single rope 600 nm long. (b) I-V curve for two ropes in parallel [5].



In other direct measurements, researchers have found that DNA acts as
a large band gap semiconductor. For instance, Porath et al.[6] measured the
conductivity in poly(dG)-poly(dC) DNA. The homogenous sequence of DNA is
ideal for overlap of m-orbital in adjacent base pairs. These experiments were done
using a 10.4-nm-long DNA and electrostatically trapping technique to position
single DNA molecules between two electrodes. The I-V characteristics of these
experiments are shown in Fig.(1.3). It can be seen that poly(dG)-poly(dC) DNA

behaved like a semiconductor with a large band gap.

Current (nA)

Voltage (V)

Figure 1.3: Diagram showing -V characteristics for poly(dG)-poly(dC) DNA
molecule. The difference curves show repeated measurements. The upper inset
shows the experimental set up and the lower inset shows the electrodes separated
by a 8 nm gap [6] .

Recently, Pablo et al.[7] have performed measurements on the resistance



of A-DNA and their results suggested that A-DNA is an insulator. The contradic-
tory results arise from many experimental conditions i.e, base sequences, lengths,

temperatures, experimental techniques and so on.

Over the past several years, many theoretical models for the charge trans-
fer have been proposed to account for differing experimental results. For instance,
the coherent tunnelling have been proposed by Eley and Spivey in 1962, the in-
coherent phonon-assisted hopping have been proposed by Ly et al.[8] in 1996 and
Jortner [9] in 1998, the classical diffusion under thermal fluctuations have been
proposed by Bruinsma et al. in 2000 [10], the variable range hopping between
localized state have been proposed by Yu and Song [11] in 2001 and the charge
carriers assisted by polarons have been proposed by Conwell et al.[12] in 2000 and

Rakhmanova et al. {13]in 2001.

In this work, we are interested in an electron moving in DNA. The DNA
molecule is usually immersed in‘some thermal bath. The base pairs which are
held together with a weak hydrogen are vibrated by thermal bath. We propose
a model Hamiltonian for an electron moving in DNA, consisting of three parts:
the kinetic energy of the electron, the energy of the base pair vibrations which
are modelled simply as the harmonic oscillators, and the interaction between the

electron and the base pair vibrations. In this model, it is easy to evaluate the



ground state energy and the effective mass of the electron by using Feynman’s
path integral which has been applied widely to other problems and various fields
of theoretical physics, such as the polaron problem [14] of which the ground state

energy and the effective mass can be evaluated successfully .

In this thesis, Feynman’s path integral method with an example is pre-
sented in Chapter 2. In Chapter 3, our model Hamiltonian for an electron moving
in DNA is presented. The approximate propagator and the density matrix in-
cluding the off-diagonal part will also be calculated by using a variational method
with the two-particle model trial action introduced by Samathiyakanit [15]. In
Chapter 4, the ground state energy and the effective mass of the electron are
obtained from the density matrix from Chapter 3 as well as numerical results and
discussions. Conclusion for our model Hamiltonian and the results are given in

the last chapter.



Chapter 2

Feynman’s Path Integral Theory

To solve the problem of electron moving in DNA the powerful technique
of Feynman’s path integral is chosen. Using this method, the problem can be
simplified from many body problem into one body problem by exact integrating
over harmonic oscillator coordinates. The ground state energy and the effective
mass can be evaluated analytically. Before we present our calculation in the
next chapter, we would like to review the Feynman’s path integral and some

applications which can be applied to our work.

2.1 The classical action

In classical mechanics, the principle of least action expresses the condition that
determines the particular path x.(t) out of all the possible paths for a particle,
from an initial point x, at time ¢, to a final point x; at time t,. Therefore, a
certain quantity S for each path can be computed. Moreover, the classical path

Xq(t) is the path that S is extremum. Then the value of S is unchanged in the



first order if the path x(¢) is modified slightly. The action S is expressed as

ty
S:/)U&xﬂ% (2.1)
ta

where L is the Lagrangian of the system. For a particle of mass m moving in a

potential V' (x,t) , the Lagrangian is a function of position and time:

L:%Q—V@ﬁ. (2.2)
2.2 The quantum-mechanical amplitude

In quantum mechanics, the total amplitude to go from a point a to another point
b is contributed by every paths, including the classical path, x4(t), and every
paths gets the same weight, nevertheless, contributes at different phase. The
phase of contribution from each path is S/h. The probability P (b,a) to go from

a point x, at the time ¢, to a point x; at time t, is
P (bya)=|K (b, a)|2. (2.3)

The K (b,a), which is called the propagator; is.an amplitude to-go from a to b,

is the sum of contribution ¢ [x (¢)] from each path, thus the propagator is

K (b,a) = Z ¢ x ()], (2.4)

over all paths
from a to b



where the phase is proportional to the action S as

¢ [x(t)] = const.exp {%S [x (t)]} : (2.5)

The constant term is a normalizing factor. Fig.(2.1) shows the continuum of paths
linking the end points. In classical approximation, each path has a different action
and contributes with a different phase. The contributions of the paths essentially
cancel each other, so that no net contribution arises. On the other hand for the
special path x.(t), which S is an extremum, a small change in path produces, in
first order at least, no change in S. In this region, all the contributions from the
paths are closely in phase (5). For this reason, only for paths in the vicinity of
x.(t) is important. In this way the classical laws of motion originate from the

quantum laws

2.3 The sum over paths

Actually, the way to evaluate the propagator in-Eq.(2.4), which is called path
integration, is very complicated. In 1948 Feynman {16] proposed another way to
perform a new formalism of propagator [K (b,a)], by dividing the time intervals
into small interval, i,e. ¢ — 0. This provides, a set of times ¢, t5, t3... between
the values t, and t,, where t;,1 = t;,. . At each time , ¢;, one selects some special

point x; and constructs a path by a straight line. This is shown in Fig.(2.2). It
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Figure 2.1: Diagram showing the classical path 1, Z(¢), which has the action
S minimum. If the path is varied by dz (¢), to path 2, the integral suffers no
first-order change.

is possible to define a sum over all paths constructed in this manner by taking a
multiple integral over all values of x; for 7 from 1 to N —1, where

Ne = tb_tmg:tiJrl_ti,
to =7 thin = ty,

Xg = X4, XN = Xp- (2.6)

The resulting equation is

Xm dX2 dXN_1
K (b —ll_I)I(l) // /exp{ b,a} T A A (2.7)
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ty

\
AN

liv1

Xa Xi Xix Xb

Figure 2.2: A diagram showing the sum over all paths.

where
ty
Sfboa] = / LGk, 1) dt, (2.8)
£z

and the normalizing factor is

m

i (2m’h€)1/2 (2.9

Eq.(2.7) is suggested by Feynman in a less restrictive notation as

K (6of= /Dx ® exp{%S[b, a]}. (2.10)

It is called the Feynman’s path integral. The symbol [ Dx (t) refers to an inte-

gration over all possible paths connecting the point (xp, ;) to point (x4, 1,) .
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2.3.1 Path integral of a free particle

The first example is a free particle with the Lagrangian
L=—%*(t). (2.11)

From previous section, the one dimensional propagator is presented as

, i 9 omihe\ "/
K (Xp, to; X, ta) = lli% exp o, ; (x; —Xi-1)" | dx3...dxXN_1 - )

(2.12)
This is an integral of the form ffooo dax exp [—ax? + bx|, which is called a gaussian

integral. Since the integral of gaussian is again gaussian, we may carry out the

integrations on one variable after the other with the help of the formula

7dX1 [ﬁh(@] Z 2 { [#ﬁ(s)} [(x2 —%1)" = (x1 — xo)z}}

—0o0

- [#(25)} X L { [#@g)] [(x2 — %0)°] } : (2.13)

When the integration is finished, and the limit is taken, the result is.

R e rem Mt | e S S HE

2.4 The quadratic Lagrangian

In general, since the path integral is still in gaussian form, it is possible to carry

out the integral over all paths by the method that described in the previous
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section. Nevertheless, in general problem which it is complicated to perform, for
example, the forced harmonic oscillator problem. Consequently, some additional
mathematical techniques will be introduced, which help us to sum over paths in
some certain situations. Generally, the Lagrangian will be in the quadratic form
which the corresponding action S contains the path x (¢) up to the second power.
Accordingly, to explain how the method work in such cases so we starting with

the Lagrangian in the form,
Lx,%t)=a®)X +b@)xx +ct)x* +d(t)x +e(t)x+ f(t), (2.15)

where the action is the integral of this Lagrangian with respect to time between

two fixed end points. Certainly the propagator that we wish to determine is

ty

K(xb,tb;xa,ta):/Dx(t)eXp %/L()’(,x,t)dt : (2.16)

ta

This is the integral over all paths which go from position x, at time ¢, to position
x;, at time t,. Therefore, a different way to solve this difficult problem is required.
Now let us start with the classical path between the specified end points, x.(t),
which the corresponding action S is extremum. Moreover, any path x(¢) can be
expressed as the sum of the classical path, x.(), and a new variable y (¢). That
is

x(t) = xa(t) +y (1) (2.17)
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Because the classical path is completely fixed, dx; = dy; and the path differential
Dx (t) can be replaced by Dy (t) . That is to say, instead of defining a point on the
path by its distance x(¢) from an arbitrary coordinate axis, we measure instead
the deviation y (f) from the classical path shown in Fig.(2.3) The function y (¢)

satisfies under the condition

y(la) =y (&) =0. (2.18)

Figure 2.3: Difference between the classical path x(¢) and the some possible
alternative paths x(t) is a function of y (¢) with fixed end points .

Here, we start with the time ¢t = t, and end at time ¢t = t;,. So that the
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the action S can be written as,

Sk®)] = Skxalt)+y ()]

— /{a(t) [X2(t) + 2%a )y (t) +y* ()] +...f ()} dt. (2.19)

It is obvious that the integral of all terms involving exclusively x.(t) is exactly
the classical action and the integral of all terms that are linear in y (¢) precisely
vanishes. So, all the remaining terms in the integral are second-order terms in

y (t) only. That is

tp

S ()] = S [xalt)] + /dt [a ()3 () +o ()Y )y () +c()y* ()] (2.20)

ta

The integral over paths does not depend upon the classical path, so that the

propagator becomes

K (Xp, ty; Xa, ta) = eXP{%S[Xcz(t)]}

ty

i o ()32 (1)
X/Dy“)e’(p ﬁ/‘“{+b<t>y<t>y<t>+c<t>y2<t>

ta

Since all paths y (¢) start from and return to the point y = 0, the integral over
paths can be an only function of time, at the end points. This means that the

propagator can be expressed as,

K (xp, ty; Xq,ta) = F (L, ta) exp {%Scl(xb,xa)} ) (2.22)
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Accordingly, the propagator is determined except for multiplying factor
F (ty,t,), which may be determined by some other known properties of the so-
lution. However, for a quadratic Lagrangian, Van-Vleck and Pauli had verified

that the pre-factor F'(,,t,) can be evaluated exactly by using the formula

e
F (tb,ta) = \/det |:'27T—h axbaxa SCZ<Xb7Xa):| . (223)

So that Eq.(2.22) becomes

1 02 )
K (xp, tp; X, ta) = \/det {ﬁ aXbaancl(xb,xa)] X exp {ﬁsd(x”’x“)} . (2.24)

It is interesting to note that the expression K ~ exp {éScl} is exact for the case

that S is in quadratic form.

2.5 The path integral formulation of density ma-
trices

The density matrix can be written in the form

P B 3 Db e, (2.25)

1

o> 1 is the absolute temperature. It is' remarkable that the above

where [ =
expression bears a close resemblance to the general expression for the propagator

which is written as

K (%, 15 Xa, ta) = Y 65 (%) ¢ (x,) e /I Fallete), (2.26)
J
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The validity of this expression is restricted to situations in which the Hamiltonian
is constant in time and t, > t,. However, this situation is implied in statistical
mechanics; for only if the Hamiltonian is constant in time can equilibrium be
achieved. The difference between the form of Eq.(2.25) and that of Eq.(2.26) is
in the argument of the exponential. If the time difference ¢, — ¢, of Eq.(2.26)
is replaced by —i3h, we see that expression for the density matrix is formally
identical to the expression for the propagator corresponding to an imaginary

negative time interval.

We can develop the similarity between these two expression from another
point of view. Suppose we write the density matrix in a way which makes it look

a little bit more like a propagator, thus, k (x, t; X,, ta) for p(xp,%,), where

E (Xp by Xay ta) = Z i (xp) Of (x4 ) e~ (ue=ta) /1B (2.27)

Then the Eq.(2.27) becomes identical with Eq.(2.25) if x,= X/, x,= %, u, = Oh
and u, = 0. If we differentiate k partially with respect to w,, we get

ok
—h——
8ub

= -y (xp) Gi(x0) € LT/ A5 (2.28)
Now we recall that F;¢; (x') = H¢; (x') and let H, imply operations only upon

the variables x;, ,we can write

ok (ba)

S = ik (b.a), (2.29)
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or, to put the same thing another way

_%l;a) = Hyp (b, a), (2.30)

with simple Hamiltonian involving only momenta and coordinates, we have been
able to write the propagator as a path integral. For example, if the Hamiltonian

is given by
n? d?

" 2mdx®

V(x), (2.31)

then the solution for then propagator over a very short time interval t5 —t; = ¢

is

, (2.32)

B m \1/2 im (xp — Xa)2 1 Xy + Xq
G (ba) = (27rz'h5> P [ﬁ_ £ A\ ﬁ&:V

which can be directly verified by substitution Eq.(2.32) into Eq.(2.31). By build-
ing up a product of many propagators of Eq.(2.32) and taking the limit as the
time interval € goes to 0 and the number of terms in the product becomes infinite,
we have produced a path integral describing the propagator over a finite period of
time. We can produce a solution to Eq.(2.29) in the same manner. The solution
for an infinitesimal interval of w, —u, = 71 is given by substituting ¢ = in into

Eq.(2.32). Thus

m V2 m Xp—Xq 2 Xp1TXq
k(xb,n;xa,()):(ﬁ) o [_( /2) ( );77\/[( xa) /2]

(2.33)
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Where this is a valid solution of Eq.(2.29) and can be demonstrated by direct
substitution of Eq.(2.33) into Eq.(2.29). The rule for the combination of functions
defined for successive values of u is the same as the rule for the combination of

propagators for successive intervals of time. That is,

T / ks (b, oV B (e;a) dx.. (2.34)

That this result still holds follows from the fact that Eq.(2.28) is a first-order
derivative in u. This rule can be used to obtain the path integral to define k (b, a)

as

—

ke (X0, 03 X, ) = / {exp {— e [2—’;7 (i1 = %)° + 1V <xi>} }] N d;"'.

- (2.35)

The normalizing constant a now becomes

5 1/2
o <7T—h77> , (2.36)

m
and the integral is carried-out over all paths geing from x, to x; ( that is, x;
is x, for i = 0 and x;, for i = N ) in the interval u, — u, = Nn. The result
of this derivation is that if we consider a path x (u) as a function which gives a
coordinate in terms of the parameter u, and if we call & the derivative dx/du,

then
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It is noticed that Eq.(2.37) can be obtained by just substituting —iu and

—ifh into T and ¢, respectively of the propagator G (X, tp; Xa, t) as follows

p(xp,%,) = G (xp, ty = —i0h; Xq,t, = 0) . (2.38)

In Feynman’s path integral, the very important quantity is the propagator
which contains all informations of the system such as wave function, ground state
energy, effective mass and so on. To evaluate the propagator the Largargian is
modelled and the action is obtained. For quadratic Lagrangian the propagator
can be evaluated exactly by integrating over all paths and the density matrix can

be obtained from the propagator directly.



Chapter 3

The model Hamiltonian for an
electron moving along DNA

In this chapter, the one dimensional model Hamiltonian for an electron
moving in DNA is presented. In order to approximate our model propagator the
Feynman’s path integral and a variational method are applied. In the last section

the density matrix corresponding to our model is evaluated.

3.1 An electron moving along DNA model

In our simplified model, the helicoidal structure of DNA is modelled as a long
cylinder where each base pair vibrates classically‘and harmonically. In this model
we consider an electron moving in the axial direction along DNA in one dimension
and interacting with the base pair vibrations while localizing on them. The

Hamiltonian model for an electron moving along DNA consists of three parts,

H= Hel + Hhm' + H'mt- (31)
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Figure 3.1: A model of an electron moving and interacting with the base pair
vibrations (A —T,G — O).

The first part H,; represents the kinetic energy of an electron moving over the

base pairs,

H, = -mi?(t), (3.2)

where m is the mass of an electron in DNA and z(t) presents the coordinate of an
electron with respect to the origin. &(¢) is the velocity of an electron. The second
part Hj,, deseribes the dynamics of the base pair vibrations as the harmonic

oscillators,

Hhr = 5 M3 (37 (0) + 937 ()], (33)
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where index k denotes the kth base pair or an oscillator. The reduced mass and
the vibration frequency of each base pair are M’ and (2, respectively. Also, y, k(%)
is the displacement of a kth oscillator from its equilibrium. The last term H;,;
represents the interaction between an electron and the oscillators which modelled

as a Dirac delta function,
Hip= M'Q*a > " yi (1) 6 [ (£) — yo] (3.4)
k

The coefficient « is a coupling constant and yg; represents the position of the

kth oscillator from the origin.

e @ 4—@—» 4—@& 4—@—»
e === - - - --- >
X Yok .
origin v . o B X-axis

Figure 3.2: Sketch of the helicoidal structure of DNA model, the base pairs being
presented by the ellipses. The parameters z, 4o and y,, are as indicated.

Then the Lagrangian corresponding to the Hamiltonian in Eq.(3.1) can

be easily evaluated using Legendre transform, as followed

L= Z pigi — H. (3.5)
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Therefore,
1 . 1., . /
L= §m$2 (t) + oM S k() = QR ()] — M ye (8) 8 [ (1) — you] -
k k

(3.6)
Next, the oscillator coordinates ¥, can be eliminated by defining the transforma-
tion function for the electron and the oscillators, from an initial point at time
t =0 to a final point at time ¢ = 7" and with the boundary conditions z (0) = z,,

x(T) =z and yx (0) =y (') = y. Thus, we have

(@, Y1, YN, T3 Ty Yy yn, 03)

— / Dz (t /Dy1 / Dyn (t exp[hS]
= /x Dx(t)exp{ﬁfo dt mi’ }H/ykDyk exp{h/ dtS(yk)},

where

S = /0 dt {%ma&2 (t) + %M/Z [z (t) — Q%yi (1] — M’Q%Zyk (t) o[z (t) — yO,k]} ,

k
and

St = [ de {0 - 0% 0] - M (0510 (0) - il (39

The path integrals over the oscillator coordinates y; can be performed using the

result [1] for the forced harmonic oscillator of which the Lagrangian is equal to
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M7 (t) — Q22 (¢)] — f (t) yk (t) . The time dependent force, in this case, is
() = M'Q%ad [x (t) — yox). After integrating over the oscillator coordinates the

transformation function can be written as

(xp, T3 24,0;) =/ (@p, Y1, YN, 15 Ty Y1y - YN, 05 ) dyrdys...dyn,

— [2@' sin (%)}N/Dx (t) exp {% /OT dt%m/fQ (t)
- M '93 / Z / / dtdso [ () — yox) 6 [ (5) — you]

oo [QSi(r-f(;2 |It)— sh)] } (3.10)

Because the interested quality is the effect of the coupling between an
electron and the oscillators, the prefactor in Eq.(3.10) can be ignored. Therefore
the transformation function without the prefactor is now called “our model’s
propagator K (xp,24;1)". From the relation >, 6 [z (£) — yox] 0 [z (s) — you| =
po [z (t) — x (s)] where p is a number of the oscillators per length, the propagator

K (xp,x4;T) can be written as

K (39,20 T) — / Da (1) exp (%SD), (3.11)

where Sp is the action of our model

cos [Q (L — |t —s])] .

T 4 1 T T
_ T2 “Ar'03 42 _ 2
Sp —/0 dt2mx (t)+4MQ « p/o /0 dtdso [z (t) — x (9)] sin (0T
(3.12)
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Since an integral representation of the § function is [17]

e ()~ (o)) = 5 [ dgexp {igle ()~ 2 5))}. (313)

—0o0
an action of our model Sp can be written in a new form,

cos [Q (% — |t = s|)]
sin (Q1) ’

(3.14)

5o | kw40 / ) / " ads [ et gia o0 - ()

where C' = =M'Q3a?p.

3.2 Variational method

Since our model’s action Sp in Eq.(3.14) is not in a quadratic form, our model’s
propagator K (zy,z,;T) cannot be evaluated exactly. To perform further calcu-
lations, a variational method is applied to carry out the path integral for the
propagator K (zy,2,;T). A trial action Sy is chosen so that the propagator in

Eq.(3.11) can be approximated [18] as

Ky B Yo Ko (wpaa /) <exp {% (Sp= 50)}> o (315)

So

where the propagator K (zy,24; 1) is defined as

Ko (23, 20: T) = / Da (£) exp (%so) , (3.16)

and the average over Sy, (O) is defined as

_ [ Dz (t)exp (£5) O
| D (t) exp (%So) ’

(O)s, (3.17)
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where O is the quantity to be averaged.

The averaged quantity in Eq.(3.15) is expanded using the cumulant ex-
pansion. To approximate the propagator, the first-order cumulant approximation
is chosen, because the first-order term is the averaged but the next terms are the

fluctuation. That is

<exp{%(SD —50)}>SO Nexp{% (Sp —50>SO}, (3.18)

therefore, the approximate propagator K (z,2,;T) can be obtained as

K (zp,2;T) = Ki(xy,xaT),

)
Ky (xp,20;T) = Ko (xp, xq4; L) exp <ﬁ (Sp — So)> : (3.19)
So

3.3 The trial action

In this problem we choose a trial action with two variation parameters Sy (k,w)
following Samathiyakanit [7]. This trial action is-modelled from a free electron
interacting harmonically with a fictitious particle of mass M with x is a spring
constant and the harmonic frequency is w = \/IQ/—M . The Lagrangian correspond-

ing to this model is

Lo (5, M) = 2532 (8) + =37 (t) — = |2 () — y (1), (3.20)



28

where y (t) is a coordinate of fictitious particle. The coordinate y (t) can be
eliminated by using the path integral for a forced harmonic oscillator and setting
Ya (t) = yp(t), where y, (t) and y,(t) are the starting point and the ending point

respectively . After integrating over y(t) by using the Gaussian formula

o 5 2
/ dpe™ P TP = \/Eeia, (3.21)
— a

the trial action of this model is

S () = /0 dt%m? (t)—%/ dtds [z () — o sy L0 G =1t =sD]

0 0 sin (CU?)

(3.22)

where £ and w are two variational parameters. The propagator Ky (zp,2q;T)
associating to the trial action in Eq.(3.22) has already been evaluated exactly by

Samathiyakanit [7]. That is

g

v-sin (‘“

|

m )1/2

Ko (2, 20;T) = (2m’hT

=

w sin (“

&

el [ () + G i e}

M
where a reduced mass p.= n % and a frequency v = /k/pand v? = W?+k/m.

m +

3.4 - The approximate propagator

The approximate propagator K (xp,x,;T) can be evaluated by first evaluating

this quantity (Sp — So)g, , where

(Sp = So)s, = (Sp)g, = (So)s, - (3.24)
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Noting that the kinetic energy term %mx'Q (t) is canceled out. From

Eq.(3.22) the first term of the right hand side in Eq.(3.24) is

B T rr  cos[Q(L—|t—s])] ,
(Sp)g, = C’/O /0 dtds /_Oo dq - (Q%) (exp {ig[z (t) — = (s)]})g, »

(3.25)

and from Eq.(3.14) the second term of the right hand side in Eq.(3.24) is

(S, = =% [ dtdscos[wsgf(;g)'s')] (1)~ (s)P)g,-  (3.26)

The quantity (exp{ig[xz(t) —=2(s)]})s, in Eq.(3.25) is expanded using the cumulant
expansion. Because the trial action Sy is a quadratic action, the valid terms are
the first and the second order terms and the next terms vanish. Thus the quantity

(exp {ig [z (t) — 7 (s)]})g, can be approximated as

(exp {ig [z (t) — 2 (s)]})g, = exp {iq (z(t) = (s))g,

Next, for evaluating the two quantities (x () — x (s))g, and ([z(t) —= (3)]2>SO
the generating functional must be taken into account (see Appendix A). From

this technique we obtain

(@ () —a(s))g, = Alwp = 2a) (3.28)
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and
([z () =2 (5)]")g, = B+ A (2 — )’ (3.29)
where
A:M{sm[%(t—si:?j([gg—(t+s))} +(t]\;)}7 (3.30)
and
5 ;ZZ {2ysin 5 (& —;)S]izi?%[%(T— =) - Aij o] (T — |t_8|)}‘

(3.31)
From Eq.(3.27), Eq.(3.28), Eq.(3.29), Eq.(3.30) and Eq.(3.31), the averaged quan-
tities (Sp)g, and (Sp)g, in Egs.(3.25) and (3.26) can be evaluated. Therefore, we

obtained

(Sohs — //dtds/ cos | SH; ;)1Tt)—8|)}

X exp {z’qA (xp — x4) — EB}

//ddCOS __:Lt_sm (B + A2z — 2,)?] .

sin (w 2)

(3.32)

Substituting the averaged quantity in Eq.(3.32) into Eq.(3.19) the approximate
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propagator of our model K (23, z,;7) can be written as

K ( T) = Ko ex / / dtds/ d ¢ S i Sm
(1; Y ll? X Ql
1 (2, o (Tp, p q - ( )

X exp {qu (xp — x4) — —B}

2

zmw/ / Wi cos «—ITt)— Sm [B+A2<xb_xa)2} }

sin (w B

(3.33)

3.5 The density matrix

For convenience in taking a limit for finding the interested quantity such as the
ground state energy and the effective mass, the approximate propagator has to
be transformed into the density matrix by just replacing 7', t, s asT — —ifh, t —
—it and s — —is. After performing this process the deunsity matrix p; (xp, z4; )

which corresponds to the approximate propagator K (z,, z,; 1) will be obtained.

(1, %03 ) (5, 2439) /ﬁh/ﬁhdtd / PRCLIG sl akl))
s Las == Tpy Ly X ex S
p1 (Zp, @ Po (Zp p q smh (Qﬁh)

st s1.9)]

+;(1—w—>[ﬁhcoth< B) 1]

Bh rBh cog — s )
/ / bl sinh ﬂ|) MA% (p — x4) }7 (3.34)

XWp%@rwa&
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where pg (xp, x4;3) is the density matrix which corresponds to the propagator

Ko (xp, zq;T),

| - m O\ V2 vsinh (£0%)
po (T, Ta; B) = (QWﬁf-ﬂ) [m

(3.35)
R 2 o L T e
and
-af f fREBRRE ==
M;h |t —s|Bh— |t—s|} (3.37)

2

Noting that the term % (1 — —) [ Bh coth( ﬁh) — 1} in Eq.(3.35) has

been derived using the expansion

/ﬂh/ﬁhd Scosh w( h—|t—s|)]
8 my? sinh (w2)

X{Ql/smh [£ (¢t — s)] sinh [£ (BR — [t — s|)] V2
m sinh (2671) Mph

[t | (B = |t — s]) }

by setting |t — s| = v and using the relation

/Oﬁ/oﬁdtdsg(|t—8|):2/Oﬂdu(ﬁ—u)g(u). (3.38)
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In this chapter, the model Hamiltonian for an electron moving along DNA
is proposed and the Lagrangian is obtained using Legendre transform. The os-
cillator coordinates are eliminated using the path integrals over the oscillator
coordinates. To evaluate the propagator, a variational method is applied by
choosing a trial action Sy. The first cumulant approximation is chosen to approx-
imate the propagator. Lastly, the density matrix is obtained from the propagator

by replacing T' by —ih.



Chapter 4

The ground state energy and the
effective mass

In this chapter, the ground state energy and the effective mass are com-
puted. According to the density matrix obtained in Chapter 3, the off-diagonal
part provides the formula for the effective mass called “Feynman mass”. In the

“last section, a numerical method is applied to calculate the ground state energy

and the effective mass.

4.1 The definition of the effective mass

In this thesis, an electron moving along DNA and interacting with the oscillators
(the base pair vibrations) is considered by neglecting oscillator-escillator interac-
tions. By considering an electron in this way, it will have an effective mass higher

than that of an isolated electron mass. The effective mass is denoted by m*.

The definition of the effective mass can be determined in several ways.

The most common way is to extract it from the coeflicient of the momentum in
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the following equation,

2

E = Eo+ 2

4.1
v (1)

where Ej is the ground state energy or self-energy and m* is the effective mass.

The effective mass can be determined by another way, suggested by Feyn-
man [14]. We assume that the particle moves between the initial point R, and
final point Ky with a time interval 7. Its mean group velocity U is then

| Ry—R

U
T

(4.2)

By considering an electron at low velocities, the density matrix can be
expressed in an approximate form of a free particle as

mp |Ry — Ry

B—o0
~ TN )
p exp of3 2577

(4.3)

where mg is the effective mass called Feynman mass. It can be derived from the
|Ry — Ry|” dependent term, called the off-diagonal part. The ground state energy

Ey can be derived from the diagonal part.

4.2  Evaluation of the effective mass

In order to evaluate the effective mass, the off-diagonal part of the density matrix

obtained in Chapter 3 is exploited. The limiting condition (z; — z,) — 0 is taken
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into account. The exponential term exp [ig (7, — 7) A1] can then be expanded in
a power series of (zp — x,) . By keeping these expansion terms up to the second

order, we obtain

Bh ppn cosh [Q (2 — |t — 5[)]
p1 (T, Ta; B) = po (s, Ta; B) X €Xxp / / dtds/ dq smh (Qg—)
2

— s ﬁ)} [1 — g (2 — Ta)? A%J

+§- (1 - ‘:—z> [Kﬁncoth (—V—ﬁh) S 1}

+_— Bh /ﬁﬁ cosh [w (—' ~ |t =s])] A2 (g, — 1,)? }, (4.4)

smh( ﬂﬁ)

X exp [—

where the function pg (zp,z4;08), A1 and f (|t —s|,5) are shown in Eq.(3.33),
Eq.(3.34) and Eq.(3.35), respectively. Next, the system is considered at very low
temperatures and a very low velocity, so the limiting conditions become  — oo,
and (zp — z,) — 0. Accordingly the hyperbolic function in volving (¢ + s) is
damped out and hyperbolic function in volving (¢ — s) in the density matrix

Eq.(4.4) can be approximated as,

cosh[ (———]t sm
sinh (Q%ﬁ)
exp [0(2 — ft— o] + o0 (=0 (2 — li— )] pocr

= p— (Q%ﬁ) mp—— ) — exp (—Qt —s),

cosh {w %’E__it_ﬂ o
[sirgh (W) ) 2 exp (~wlt —s}).
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By using the relation
B rB B
| [ atasge=s) = 2 ["au(s-wgt).
o Jo 0
-y Qﬂ/ dug (u) , (4.5)
0

the expression

c /ﬁh /ﬁhdtds/ cosh [ (' —t - 5])] ¢2 Az [ é%f (¢ — Sl’ﬂ)jl (0 — 7)°,

smh (Q &)

in the density matrix Eq.(4.4) becomes

S oo 2 2h
-Cp / dqq® /0 dugd® {—M%ﬁ} X eXp [~2—qrﬁ-17f(u,ﬁ—> c0) —Qu} (26 — 7a)?,

(4.6)
where f (u,f — 00) can be written in terms of parameters w and v only as
=
flu,B—o0)=w (1 — ——2—) (1—e™) + .
v
Also, the last term of the density matrix becomes
kw [ w2 (zp — T4)°
7 dun®~— e exp (— wu)]——%h?—— (4.7)

Finally, the electron coordinates (%, — z,) are transformed into the center of mass

coordinates of the two particle model system, as

Ry — Ry = % (zp — za), (4.8)

where mg = m + M is the total mass.
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According to Eq.(4.8), Eq.(4.6), Eq.(4.7) and Eq.(4.8), the oﬁ—diagonal

part of the density matrix can be approximately written as
01 (Tp, gy f— 00) ~ exp{ — [m, + 2C/ dqu/ duu?
—o0 0
X €Xp ~ﬁf(|t—s§ B8 — o0) — Qu
2mu? ’

—»%Q—J 000 duu® exp (—wu)]@%} (4.9)

The last term of Eq.(4.9) can be integrated to give —M . This M together with

m, will give m, the bare mass of the electron in DNA.

Noting that the hyperbolic term g% coth (-g—ﬁh) in pg (zp, T4; 8) does not

enter into the calculation, because it is damped out as 8 — oo [19)].

Then by comparing Eq.(4.9) with Eq.(4.3) and integrating over ¢ variable,

the effective mass m*can be expressed as

i\ 32 oo
m* (v,w) = m + Cy/mv’ (%—) /0 dun® exp (—Qu) [f (|t — 5], 8 — 00)] /%,
(4.10)

or

m (1 w) =14 —C—ﬁlﬁ (%?—)3/2 /000 dun® exp (=Qu) [f (It — 5], 8 = OO)]_g/2 .

m m

(4.11)

The integral in Eq.(4.11) cannot be performed in a closed form, so the

numerical integration is required for complete determination.
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4.3 Evaluation the ground state energy

To evaluate the ground state energy the diagonal part of the density matrix is

considered. So we have
) m /2 [ sinh (%ﬁh)
pr(0,0:6) = (27r5712> Lsinh (25h)
X EXP {% (1 — %i) [ Bhcoth (V,Bﬁ) — 1]

' cosh Q (—— — u)]
+—/ i ( ﬁhwu)/ % Smh Qﬁh)

X eXp ["% 7 (u, 5)} } (4.12)

Next, the limiting condition is taken as (3 — co. So the density matrix Eq.(4.12)

can be written approximately as
m \"2 v
p1(0,0; 8 — 00) ~ (W) (;)
{exp (%ﬁ (w— y)) X exp [%ﬁﬁ <1 — -‘;—j;)}
X exp (205/000 du/C>o dq exp {_, i

(4.13)

The ground state energy of our system can be evaluated by comparing Eq.(4.13)

with Eq.(4.3)and integrating over ¢ variable. Thus we get

h

2muy?

172 o0
] / duf (u, B — oo)"l/2 exp (—Qu),
0

(4.14)

Ey(v,w) = (1 - —) —2CV/r Ii
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where the quantities v, w are considered as two variational parameters which may
. . - o m* (v,w)
be varied separately to obtain a minimum value of Ey. Similar to the —————= the

integral in Fy (v,w) requires the numerical integration for complete calculation.

4.4 Numerical method

In sections 4.2 and 4.3 the formulas of the effective mass and the ground state
energy of our system are evaluated. In this section, the ground state energy which
is dependent on the two variable parameters is minimized. After that the best

value of the two parameters are kept to calculate the effective mass.

4.4.1 The minimization process

For convenience in the minimization process the variational parameters are changed

, where 7 = ©. So the

so that Ey (v,w) — Fg(v,r) and
v

m* (v, w) al m* (v,r)
m m

new expressions of the ground state energy Ey(v,r) and the effective mass per

3
mass T W)
m

in Eq.(4.14) and Eq.(4.11) respectively, become

h g hrle -
Eo(v,r) = —f (1-r)?—-2Cy7 [2mu2] /0 duf (u, B — 00) 2 exp (—Qu),
(4.15)
- Cym® (2m\*? [ -
m_(myﬂ = ——\:ni (Eﬂl) ./0 dun exp (—2u) [f (|t — ], — 00)] ™",

(4.16)
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where C = o-M'Q3a?p. Similarly f(u,8 — o0) can be rewritten in terms of

parameters  and v as
fw,B—00)=v(1—r")(1—e")+ viriu. (4.17)

The realistic input parameters for DNA molecules are given as follows [23]: Q2 =

6.252 x 10'2 s, M’ = 4.982 x 10=% kg, p = 0.204118 A~1.

In order to minimize the ground state energy, the curve surface of Ey is
plotted versus two parameters v, 7 and the minimum area of the Fjy is searched
by eyes (see Appendix B). After that the MATHEMATICA program with Find-
Minimum function is applied (see Appendix B) to choose the best values of the

two parameters v, r which minimize Fj.

4.4.2 Results and discussions

After applying the MATHEMATICA program to the formula of the ground state
energy in Eq.(4.15), the ground state energy versus the coupling constant « is
plotted in Fig.(4.1). It is shown that the ground state energy Ey decreases slowly
in the first region of small o (the weak coupling region). After that it decreases
rapidly as « increases in the large « region (the strong coupling region). By
substituting the values of the two parameters v and r which minimize £y into

*

Eq.(4.16) the results of ™ are shown in Fig.(4.2) and Table (4.1). The results
m
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*

m
of
m

start from 1 and increase slowly in the weak coupling region and more

rapidly in the strong coupling region.

0.0000 -

-.0005 -

-0010 -

-0015

Ejp (Ry)

-0020

-.0025 A+

-.0030 A

-.0035 T T T T T T

Figure 4.1: The relation between the ground state energy £y and the coupling
constant .

The characteristic of the parameter v plotted versus a is shownin Fig.(4.3).
It can be seen that v varies from 0 and inereases slowly in the weak coupling re-
gion but it increases rapidly in the strong coupling region. The curve of r versus

o is shown in Fig.(4.4). It shows that r (r = E) varies from 1 to 0 as « increases
v
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Figure 4.2: The relation between 1""—; and the coupling constant o.

and it has an interesting characteristic that its slope decreases rapidly around «
dr . R
between 4 and 7. The value of 7o 8 plotted versus « in Fig.(4.5). The lowest
e

point of the curve in Fig.(4.5) indicates the phase transition occurs at a = 5.76.

* *

m m
curve in Fig.(4:2), we see that — is close to 1
m

When we look closely at the
in the weak coupling region and turns smoothly into large values in the strong
coupling region. The physical interpretation is that an electron behaves as a free

electron in the week coupling region and becomes a massive particle in the strong
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| a m*/m [ o m*/m
0.001 1.00 3 1.30
0.002 1.00 4 1.68
0.005 1.00 4.5 2.02
0.01 1.00 5 2.57
0.02 1.00 5.5 3.58
0.05 1.060 6 5.78

0.1 1.00 7 27.42

0.2 1.00 8 124.481

0.5 1.01 9 400.38
1 1.03 10 1048.52
2 1.12

Table 4.1: The relation between m*/m and the coupling constant .

coupling region.

An analytical form of the ground state energy in the weak coupling region
can be derived. Following the curves in Fig.(4.3) and Fig.(4.4), some limiting
conditions can be taken in this region. This is of interest because it leads to an
analytic expression. Since r — 1 and v < 1, the ground state energy in Eq.(4.15)
can be approximated analytically. By considering the function f (u, 3 — oo) first,
the exponential term in Eq.(4.17) can be expanded in a power series and by

keeping only the second order term, we get

fw,B—00) = v(l-7%)[1-1—w)]+r’r’y, (4.18)

I/ZU.

Q

Therefore, the ground state energy in the weak coupling limit Fyp (weak) in
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Figure 4.3: The relation between the parameter v and the coupling constant a.

Eq.(4.15) can be approximated as

h
2mu?

B (weak) ~ %(14)2—20\/7?[ r/z /0 " duvtuexp (—Qu).  (4.19)

h
Because r — 1, the term 7}? (1—7r)? in Eq.(4.19) is negligible. After integrating
over u, the analytical formula of the ground state energy in the weak coupling

limit is

2m
~ — 4.2
Eo (weak) = 2C74/ ey (4.20)
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1.2

1.0

Parameterr

0.0 ~

Figure 4.4: The relation between the parameter r and the coupling constant a.

where C' = 2= M'Q%c?p. By substituting the realistic values of M’,Q and p into

Eq.(4.20), we obtain

Ey (weak) =~ —1.61 x 10°a*Ry. (4.21)

The analytical approximation of the ground state energy in the strong coupling

region is too complicated to perform. The fitted curve using the least-squares
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Figure 4.5: The relation between the g:; and the coupling constant a.

method of the ground state energy Fj is
Ep=1.23x107%-9.29 x 10+ 2.51 x 107%a* =~ 4.57 x 107 %> Ry. (4.22)

The numerical results of £y are compared to the analytical formula of Ej (weak)
and the fit curve of the ground state energy Ey in Fig.(4.6). We find that in the
weak coupling region the approximate Fy (weak) and the fit curve of the ground

state energy Fj are close to the numerical results. But in strong coupling region,
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Figure 4.6: Comparison of the numerical ground state energy Fg with the ap-
proximate Fg (weak) and the fitted curve of Ep.

only the fitted curve of the ground state energy Fy is close to the numerical results.

It is also shown that the physical behavior in the two regions are different.

Our model can be used to explain other systems which compose of a

moving electron interacting with harmonic oscillators. The formulas of the ground

*

state energy and the effective mass per bare mass can be used by inserting

the value of the oscillator mass M’, the vibration frequency 2, and the number
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of the oscillator per length p which correspond to the true system into Eq.(4.14)
and Eq.(4.11) respectively. In this model we consider an electron moving in one
dimension but in the real DNA this is not a true one dimensional system. It is
thus considered as a quasi one dimensional system. More realistic calculations
should include an angular part of electron wave functions but it is too difficult to

be performed by using Feynman’s path integration.



Chapter 5

Conclusion

In this work, the model for an electron moving along DNA is presented.
It is modelled‘ as an electron moving and interacting with harmonic oscillators
while the interaction term is modelled as a Dirac delta function. The oscillator-
oscillator interaction term is neglected. The ground state energy and the effective

mass of the electron are evaluated by using Feynman’s path integral method.

First of all, the oscillators’ coordinates can be eliminated by setting up
a transformation function which connects the initial and the final states of the
electron and the oscillators. After eliminating the oscillators’ coordinates, the
transformation function without the prefactor is called the propagator. This
propagator cannot be evaluated exactly. The approximate propagator can be
evaluated by using the variational method with a trial action proposed by Sa-

yakanit [15]. The approximate propagator is transformed into the density matrix.

The formulas of the ground state energy and the effective mass are derived

from the diagonal part and the off-diagonal part respectively. The MATHEMAT-



ol

ICA program is chosen to calculate the ground state energy and the Feynman

effective mass numerically.

In the weak coupling region, the ground state energy Ey decreases slowly
as the coupling constant « increases. While it increases rapidly in the strong
coupling region, the analytical formula of the ground state energy in the weak
coupling region is Eg (weak) &~ —1.61 x 10°a® Ry and the fitted curve of the
ground state energy is By = 1.23 x 107° — 9.29 x 10+ 2.51 x 107°a? — 4.57 x

*

107602 Ry. The effective mass per mass starts from 1 and increases slowly

in the weak coupling region then it increases rapidly when the phase transition
occurs at the coupling constant which is approximately equal to 5.76. It shows
that, in the weak coupling region the behavior of the electron is like a free electron
while it behaves like a heavy particle in the strong coupling region. This means
that if we apply an external force such as an electric field to this system, an
electron in the weak coupling will move easily than that in the strong coupling
region. The conductivity of DNA molecules is measured experimentally and found
that it behaves like either a conductor or an insulator as shown in Fig.(1.2) and
Fig.(1.3) in Chapter 1. This confliet of the results may come from the difference

of the coupling constant range operated in those experiments.

To improve our model, the interaction term should be modified by using
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more realistic interactions such as a Coulomb interaction. Furthermore, if the
oscillator vibrations are very strong, these must be modelled as the anharmonic
oscillators also the distribution of the frequency ) can be included that is the
vibration frequency of each base pair is different. If the dynamics in the angular
part is included into the model Hamiltonian, the degree of freedom of our system
will be more realistic. Our model can be used to explaining other systems (such
as an electron moving in polymer chain problem) which have a moving electron

interacting with the harmonic oscillators.
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Appendix A:

The generating function

The average over quantities like (x (£)) or (z () x (s)) can be evaluated

from the generating functional

; [ Dz (t) exp|+ S—i—foT dif (t)z(1))]
<exp[ﬁ / () (t) dt]>g e ;)Dx<(t) - ) , (A1)

with end point condition x (7") = x,, 2 (0) = x, and f (¢) is a time- dependent
arbitrary function. By following the standard way of evaluation of the path
integration from Feynman and Hibbs [1] the path integral on the right-hand side
of above equation can be reduced to an exponential of a two classical function,

that is

<exp[% / f®)z @ dt]>so = / Da (1) exp[% (sf-sa)l. (a2

where S fz is the classical action which corresponds to the action S/,

Sf:S+/0Tdtf(t)x(t)

and S, is the classical action which corresponds to the action S.
The interesting quantities (x (¢)) and (x (t) z (s)) can be obtained by dif-

ferentiating Eq.(A.2) with respect to the function f (¢) and setting it to zero.



That is

<x(t)exp[%/f(t)x(t) dt]>s0 _ %%(t) {exp[i (51 -
!

Therefore, by evaluating both sides when f(¢) = 0, we obtain

f
() = ﬁf—%

¥ic )

We can continue this process to get the second derivative as

(@ (02 () (—’?) i el (5 - 54)

29

(A.3)
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Figure B.1: The curve surface of the ground state energy £y and the two varia-
tional parameters v and r where o equal to 10. -



{* This program minimizes the ground state energy
EQC where the coupling constant a egual to 1x)

Clearth, m,q, o, M, ¢, p, r, v, 1]

h=1;

m=0.5;

0= 6,252 10" (2.0600687 10°%) ™ ;
as=1;

M= 4.9824 10 (1.8218779% 1070 ;
o=0.5(3.47;
C= pox M e GiQ {Bx ) ”13

NIntegrate|Exp(-a»u}

1
* {\/ {vae (1=« (l-Expl-vul) +vZ2rZx ) )’
{u, 0, Infinity}], {x, 1}, {v, 0.000915)]
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{» The effective mass/mass can be calculated by
substituting the values of r and v from the
minimization program into the following programs)

Clearth, m, 0, a, M, ¢, p, =, v, 0l

h= 1;

‘mm 0.5;

o= 6.252x 10"+ (2.0600687 » 10'% 7 ;

a=1;

M= 4.982+ 10" (1.8218779% 107 F;

p=0.53.47"

C=pr M o« o {B= ?2‘}'1;

r=0.9881222210114119;

v = 0.0009152083072018303;

1 € oV e [ 208 2,

Nintegrate[Exp(-0+u) #U e

| 2 )?
(¥ &1~ 22) s (1-Bxpi{-vau]) +v2axauy |
, {u, 0, Infinity}]
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