การแยกกราฟหลายส่วนบริบูรณ์ออกเป็นยูเนียนของวัฏจักรที่ไม่มีส่วนร่วมกัน

> วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาคณิตศาสตร์ ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์ จุพาลงกรณ์มหาวิทยาลัย

> ปีการศึกษา 2556 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาง (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ที่สงผ่านทางบัณฑิตวิทยาลัย

DECOMPOSITION OF COMPLETE MULTIPARTITE GRAPHS INTO DISJOINT UNIONS OF CYCLES

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Program in Mathematics

Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Academic Year 2013
Copyright of Chulalongkorn University

Thesis Title

By
Field of Study
Thesis Advisor
Thesis Co-advisor

DECOMPOSITION OF COMPLETE MULTIPARTITE GRAPHS INTO DISJOINT UNIONS OF CYCLES

Miss Uthoomporn Jongthawonwuth
Mathematics
Assistant Professor Chariya Uiyyasathian, Ph.D.
Professor Saad I. El-Zanati, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctoral Degree
 (Professor Supot Hannongbua, Dr.rer.nat.)
(Associate Professor Patanee Udomkavanich, Ph.D.)
..
(Assistant Professor Chariya Uiyyasathian, Ph.D.)
..................O........................Thesis Co-advisor
(Professor Saad I. El-Zanati, Ph.D.)
...Examiner
(Associate Professor Yotsanan Meemark, Ph.D.)

Examiner
(Teeraphong Phongpattanacharoen, Ph.D.)
..External Examiner
(Professor Narong Punnim, Ph.D.)

อุทุมพร จงถาวรวุฒิ : การแยกกราฟหลายส่วนบริบูรณ์ออกเป็นยูเนียนของวัฏจักรที่ไม่มี ส่วนร่วมกัน (DECOMPOSITION OF COMPLETE MULTIPARTITE GRAPHS INTO DISJOINT UNIONS OF CYCLES) อ. ที่ปรึกษาวิทยานิพนธ์หลัก : ผศ.ดร.จริยา อุ่ยยะเสถียร, อ. ที่ปรึกษาวิทยานิพธ์ร่วม : Prof. Dr. Saad I. El-Zanati, 76 หน้า.

ให้ G เป็นกราฟที่มี n จุด โดยที่ n เป็นจำนวนคี่ แต่ละจุดมีดีกรี 2 และให้ v เป็นจำนวน เต็มบวก คำถามที่น่าสนใจคือเมื่อไหร่จะสามารถแยกกราฟบริบูรณ์ K_{v} ออกเป็นกราฟ G ได้ ถ้า $v \equiv 1$ หรือ $n(\bmod 2 n)$ แล้ว v จะสอดคล้องกับเงื่อนไขจำเป็นของการแยกกราฟบริบูรณ์ K_{v} ออกเป็นกราฟ G ได้ ถ้ากราฟ G มีกราฟย่อยที่เป็นวัฏจักรที่มีจำนวนจุดเป็นคี่เพียงวงเดียวเท่านั้น แล้วเป็นที่ทราบว่าจะสามารถแยกกราฟบริบูรณ์ K_{v} ออกเป็นกราฟ G ได้ สำหรับทุก $v \equiv 1(\bmod 2 n)$ ในวิทยานิพนธ์ฉบับนี้ เราเน้นการศึกษาการแยกกราฟหลายส่วนบริบูรณ์ออกเป็น กราฟ G สำหรับจำนวนเต็มบวก r และ s ให้ $K_{r \times s}$ แทนกราฟหลายส่วนบริบูรณ์ที่มี r ส่วนแต่ ละส่วนมีจำนวนจุดเป็น s เราได้ขยายวิธีการสร้างระบบสามเหลี่ยมสไตน์เนอร์ของโบสเพื่อแสดง การมีอยู่ของการแยกกราฟหลายส่วนบริบูรณ์ $K_{(2 k+1) \times n}$ ออกเป็นกราฟ G สำหรับทุกจำนวนเต็ม บวก k และการมีอยู่ของการแยกกราฟหลายส่วนบริบูรณ์ $K_{k^{\prime} \times 2 n}$ ออกเป็นกราฟ G สำหรับทุก จำนวนเต็ม $k^{\prime} \geq 3$ นอกจากนี้ถ้า G ประกอบด้วยกราฟวัฏจักรสองวง แล้วเราสามารถแยกกราฟ บริบูรณ์ K_{v} ออกเป็นกราฟ G สำหรับทุก $v \equiv n(\bmod 2 n)$ เว้นแต่ $G=C_{4} \cup C_{5}$ และ $v=9$ ยิ่ง ไปกว่านั้น ถ้า G ประกอบจากวัฏจักรสามวงที่แต่ละวงมีจำนวนจุดเป็นคี่ แล้วเรายังพบว่าสามารถ แยกกราฟหลายส่วนบริบูรณ์ $K_{(2 k+1) \times n}$ สำหรับทุกจำนวนเต็มบวก k และ $K_{k^{\prime} \times 2 n}$ สำหรับทุก จำนวนเต็ม $k^{\prime} \geq 3$ ออกเป็นกราฟ G ได้และสามารถแยกกราฟบริบูรณ์ K_{v} ออกเป็นกราฟ G ได้ สำหรับทุก $v \equiv 1(\bmod 2 n)$ เว้นแต่ $v=4 n+1$

ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์ ลายมือชื่อนิสิต สาขาวิชาคณิตศาสตร์ ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก ปีการศึกษา 2556 ลา................................ 2 อื่อชื่อ อ.ที่ปรึกษาวิทยานิพนธ์ร่วม \qquad
\# \# 5373870323 : MAJOR MATHEMATICS
KEYWORDS : G-DESIGN / G-DECOMPOSITION / STEINER TRIPPLE SYSTEM / THE BOSE CONSTRUCTION / THE OBERWOLFACH PROBLEM

UTHOOMPORN JONGTHAWONWUTH : DECOMPOSITION OF COMPLETE MULTIPARTITE GRAPHS INTO DISJOINT UNIONS OF CYCLES. ADVISOR : ASST. PROF. CHARIYA UIYYASATHIAN, Ph.D., CO-ADVISOR : PROF. SAAD I. EL-ZANATI, Ph.D., 76 pp.

Let G be a 2-regular graph of odd order n and let v be a positive integer. It is of interest to know when there exists a G-decomposition of K_{v}. If $v \equiv 1$ or $n(\bmod 2 n)$, then v satisfies the necessary conditions for the existence of a G decomposition of K_{v}. If G contains exactly one odd cycle, it is known that there exists a G-decomposition of K_{v} for all $v \equiv 1(\bmod 2 n)$. In this dissertation, we focus on G-decompositions of complete multipartite graphs. For positive integers r and s, let $K_{r \times s}$ denote the complete multipartite graph with r parts of order s each. We use a novel extension of the Bose construction for Steiner triple systems to show that there exists a G-decomposition of $K_{(2 k+1) \times n}$ for every positive integer k and a G-decomposition of $K_{k^{\prime} \times 2 n}$ for every integer $k^{\prime} \geq 3$. Furthermore, if G has only two components, we find G-decompositions of K_{v} for all $v \equiv n(\bmod 2 n)$ unless $G=C_{4} \cup C_{5}$ and $v=9$. Additionally, if G consists of three odd cycles, we find G-decompositions of $K_{(2 k+1) \times n}$ for every positive integer k, of $K_{k^{\prime} \times 2 n}$ for every integer $k^{\prime} \geq 3$, and of K_{v} for all $v \equiv 1(\bmod 2 n)$, except $v=4 n+1$.

Department:Mathematics and Computer Science Student's Signature:
Field of Study : Mathematices........... Advisor's Signature:

Academic Year \qquad Co-advisor's Signature :

ACKNOWLEDGEMENTS

I am greatly indebted to Professor Dr. Saad I. El-Zanati, my thesis co-advisor, for his willingness to sacrifice his time to mentor me throughout the preparation of this thesis. I would like to express my special thanks to my thesis advisor Assistant Professor Dr. Chariya Uiyyasathian for her invaluable suggestions and encouragement. I also would like to thank Associate Professor Dr. Patanee Udomkavanich, Associate Professor Dr. Yotsanan Meemark, Dr. Teeraphong Phongpattanacharoen, and Professor Dr. Narong Punnim. Their suggestions and comments are sincerely appreciated. In addition, I would like to thank the Development and Promotion of Science and Technology Talents Project for the financial support. Finally, I would like to thank my family and friends for their encouragement throughout my study.

CONTENTS

page

ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH v
ACKNOWLEDGEMENTS vi
CONTENTS vii
LIST OF FIGURES ix
CHAPTER
I INTRODUCTION 1
1.1 Prologue 1
1.2 Definitions and notation 3
1.3 Graph decompositions and graph designs 6
II REVIEW OF THE LITERATURE 8
2.1 Steiner triple systems 8
2.2 The Bose construction 9
2.3 The quasigroup with hole construction 11
2.4 Decompositions of complete graphs and complete multipartite graphs into 2-regular graphs 13
2.5 The Oberwolfach problem 15
2.6α-Labelings 16
III MAIN RESULTS 18
3.1 On extensions of the Bose construction 18
3.2 Additional notation 23
3.3 A G-decomposition of $K_{(2 k+1) \times n}$ and of $K_{k^{\prime} \times 2 n}$ 25
3.3.1 G consisting of one even cycle and one odd cycle 30
3.3.2 G consisting of any number of even cycles and one odd cycle 36
3.3.3 G consisting of three odd cycles 62
IV SUMMARY AND OPEN PROBLEMS 71
4.1 Summary 71
4.2 Open problems 71
REFERENCES 73
VITA 76

LIST OF FIGURES

Figure page
1.1 Isomorphic graphs 4
1.2 A path and a cycle 5
1.3 A complete graph, a complete bipartite graph and a complete mul- tipartite graph 6
2.1 An idempotent commutative quasigroup of order 5 and one triple from the Bose construction of a Steiner triple system of order 15. 11
2.2 A commutative quasigroup of order 6 with holes and one triple from the corresponding C_{3}-decomposition of $K_{3 \times 6}$. 13
2.3 A α-labeling of G where $G=C_{8}$ or $C_{6} \cup C_{6}$ 17
3.1 A path P of size 9 whose edges have lengths $0, \pm 1, \pm 2, \pm 4, \pm 5$. 21
3.2 An idempotent commutative quasigroup of order 3 and one copy of a C_{5} from the corresponding of C_{5}-decomposition of K_{15}. 23
3.3 Examples of the $P(k)$ notation 24
3.4 Examples of $P(a, b, k)$ and $Q(a, b, k)$ 25
3.5 The cycle C with paths G_{1}, G_{2}, G_{3} and G_{4} where $t=2$ in Lemma 3.827 27
3.6 The cycle C where $t=2$ in Lemma 3.8 27
3.7 The cycle C with paths G_{1}, G_{2}, G_{3} and G_{4} where $t=2$ in Lemma 3.929
3.8 The cycle C where $t=2$ in Lemma 3.9 29
3.9 The cycle C with paths G_{1} and G_{2} where $t=2$ in Lemma 3.10 31
3.10 The cycle C where $t=2$ in Lemma 3.10 31
3.11 An example of C and P in case 1 of Lemma 3.11 32
3.12 An example of C and P in case 2.1 of Lemma 3.11 33
3.13 An example of C and P in case 2.2 of Lemma 3.11 34
3.14 An example of C and P in case 3 of Lemma 3.11 34
3.15 A graph $M=M_{1} \cup M_{2} \cup M_{3}$ where each of M_{i} admits an α-labeling 41
3.16 A labeling f of $M=M_{1} \cup M_{2} \cup M_{3}$ 42
3.17 An embedding of $M=M_{1} \cup M_{2} \cup M_{3}$ in $K_{41,41}$ by using the labeling f^{\prime}. 46
3.18 An embedding of $G=C_{12} \cup C_{6} \cup C_{6} \cup C_{8} \cup P_{8}$ in $K_{41,41} \ldots \ldots$
3.19 A graph $M=M_{1} \cup M_{2} \cup \cdots \cup M_{5}$ where each M_{i} admits an α-labeling. 56
3.20 An embedding of $G=C_{8} \cup C_{8} \cup C_{4} \cup C_{4} \cup C_{4} \cup C_{10} \cup P_{2}$ in $K_{41,41} \quad 56$
3.21 A graph $M=M_{1} \cup M_{2} \cup M_{3} \cup M_{4}$ where each M_{i} admits an α-labeling 60
3.22 An embedding of $G=C_{12} \cup C_{6} \cup C_{6} \cup C_{8} \cup C_{4} \cup C_{14} \cup P_{4}$ in $K_{55,55} \quad 61$
$3.23 C_{r, s}, C_{r, s}^{\prime}$ and $C_{r, s}^{\prime \prime}$ where $x=y=1$ and $z=4 \ldots 64$
$3.24 C_{r, s}, C_{r, s}^{\prime}$ and $C_{r, s}^{\prime \prime}$ where $x=4, y=2$ and $z=5 \ldots 68$

CHAPTER I

INTRODUCTION

1.1 Prologue

Let G and K be graphs with G a subgraph of K. A G-decomposition of K, or a (K, G)-design, is a partition of the edge set of K into subgraphs isomorphic to G. A $\left(K_{v}, G\right)$-design is also known as a G-design of order v.

One of the better studied problems in G-designs is the case when G is a cycle. Necessary and sufficient conditions for the existence of C_{n}-designs of order v were found about a decade age by Alspach and Gavlas [8] and by Šajna [40]. Necessary and sufficient conditions for the existence of a G-design of order v when G is a 2-regular graph of order at most 10 are found in [5]. For a general 2-regular graph G of order n, the problem of finding necessary and sufficient conditions for the existence of a G-design of order v is far from settled. It is expected however that for such a G, there will exist a G-design of order v for all $v \equiv 1(\bmod 2 n)$. This has been confirmed when G is bipartite (see [19] and [10]), when G is almost-bipartite [15], when G is $r C_{m}$ where m is odd [22], and when G has two components (see [2], [11] and [14]). If in addition n is odd and $(G, v) \notin\left\{\left(C_{4} \cup C_{5}, 9\right),\left(C_{3} \cup C_{3} \cup C_{5}, 11\right)\right\}$, then a G-design of order v for all $v \equiv n(\bmod 2 n)$ is likely to exist.

A well-known problem on decompositions of complete graphs into 2-regular graphs is the Oberwolfach Problem. Let G be a 2-regular graph of odd order n. The problem of determining whether there exists a G-decomposition of K_{n} is known as the Oberwolfach Problem. This problem was settled in 1989 by Alspach, Schellenberg, Stinson, and Wagner [9] in the case when all the components of G are isomorphic to the same cycle. More recently, Traetta [43] settled the case when G consists of two components. The general problem however is far from settled. For example, very little is known when G consists of three components
(see [13] for some known results).
It is easy to see that $K_{2 k n+n}$ can be decomposed into $K_{(2 k+1) \times n}$ and $2 k+1$ copies of K_{n}. Let G of odd order n be a 2-regular graph. Notice that if there is a G-decomposition of K_{n} and a G-decomposition of $K_{(2 k+1) \times n}$, then there is a G decomposition of $K_{2 k n+n}$. If $G=C_{3}$, a popular construction for G-decompositions of $K_{6 k+3}$ is known as the the Bose construction for Steiner triple systems.

This dissertation is organized as follows. The first chapter is the introduction including all definitions and notations of graphs used frequently in this dissertation, and also the definitions of graph decompositions and graph designs.

Chapter 2 is dedicated to a brief survey of the literature. It begins with Steiner triple systems. The Bose construction, a well-known construction for Steiner triple systems of order $3(\bmod 6)$, is presented. We then discuss decompositions of complete graphs and of complete multipartite graphs into 2-regular graphs. We also give an overview of the Oberwolfach problem which is concerned with determining whether there exists a G-decomposition K_{n}, where G is a 2-regular graph of odd order n. Finally, α-labelings of bipartite graphs are discussed.

The next chapter contains our main results. We first show how the Bose construction for Steiner triple systems of order $6 k+3$ can be naturally extended to obtain C_{n}-decompositions of $K_{2 n k+n}$ for all odd $n \geq 5$ and all positive integers k. We then show that if G of odd order n is a 2 -regular almost-bipartite graph or is the vertex-disjoint union of three odd cycles, then there exists a G-decomposition of $K_{(2 k+1) \times n}$ for every positive integer k. If G consists of only two components, we combine the G-decomposition the $K_{(2 k+1) \times n}$ result with Traetta's result on the Oberwolfach problem to show that there exists a G-decomposition of K_{v} for all $v \equiv n(\bmod 2 n)$ unless $G=C_{4} \cup C_{5}$ and $v=9$. We also show that there exists a G-decomposition of $K_{k \times 2 n}$ for all integers $k \geq 3$. Furthermore, when G is the vertex-disjoint union of three odd cycles, we find a G-decomposition of $K_{2 k n+1}$ for all positive integers $k \neq 2$. Our research has resulted in three research papers ([17], [31], and [30]). In particular, the results on the decompositions of complete multipartite graphs into the vertex-disjoint union of three odd cycles will appear
in the Australasian Journal of Combinatorics [31].
Finally, the last chapter contains the summary of our results and several related open problems are presented.

1.2 Definitions and notation

A graph G is an ordered pair $(V(G), E(G))$, where $V(G)$ is a finite set of objects called vertices and $E(G)$ is a set of 2-element subsets of $V(G)$, called edges. We will refer to $V(G)$ as the vertex set of G and to $E(G)$ as the edge set of G. The order and the size of G are $|V(G)|$ and $|E(G)|$, respectively.

If $e=\{u, v\}$ is an edge of a graph G, we say that u and v are the endvertices of e and that u and v are adjacent. In this case, we also say that u and e are incident, as are v and e. Furthermore, if e_{1} and e_{2} are distinct edges of G incident with a common vertex, then e_{1} and e_{2} are adjacent edges. It is often convenient to denote an edge by $u v$ or $v u$ rather than by $\{u, v\}$. The degree of a vertex v in a graph G is the number of edges in G that are incident with v, which is denoted by $\operatorname{deg}_{G} v$ or simply by $\operatorname{deg} v$ if G is clear from the context. A vertex of degree 0 is called an isolated vertex in G. We write $G-e(G-u)$ for the subgraph of G obtained by deleting an edge e (a vertex u).

It is customary to define or describe a graph G by means of a diagram in which each vertex of G is represented by a point (often drawn as a small circle or some similar object) and each edge $e=\{u, v\}$ of G is represented by a line segment or curve that joins the points corresponding to u and v. We then refer to this diagram as the graph G itself. There are occasions when we are only interested in the structure of a graph defined by a diagram and the vertex set of the graph is irrelevant. In this case, we refer to the graph as an unlabeled graph. The two graphs in Figure 3.4 are examples of such unlabeled graphs.

The union of graphs G_{1}, \ldots, G_{k}, written $G_{1} \cup \cdots \cup G_{k}$, is the graph with vertex set $\bigcup_{i=1}^{k} V\left(G_{i}\right)$ and edge set $\bigcup_{i=1}^{k} E\left(G_{i}\right)$. The graph obtained by taking the union of graphs G and H with disjoint vertex sets is the disjoint union. The vertex-disjoint union of r copies of a graph G will be denoted by $r G$.

A graph G is a subgraph of a graph H if $V(G) \subseteq V(H)$ and $E(G) \subseteq E(H)$; in such a case, we also say that H contains G as a subgraph. Whenever a subgraph G of a graph H has the same order as H, then G is called a spanning subgraph of H. The complement \bar{G} of a graph G is the graph with vertex set $V(G)$ defined by $\{u, v\} \in E(\bar{G})$ if and only if $\{u, v\} \notin E(G)$.

A graph G is regular of degree r if $\operatorname{deg} v=r$ for each vertex v of G. Such graphs are called r-regular. A graph is complete if every two of its vertices are adjacent. A complete graph of order n is therefore ($n-1$)-regular and has size $\binom{n}{2}$. We denote this graph by K_{n}. The first graph in Figure 1.3 is K_{8}, the complete graph of order 8.

An isomorphism from a simple graph G to a simple graph H is a bijection $f: V(G) \rightarrow V(H)$ such that $\{u, v\} \in E(G)$ if and only if $\{f(u), f(v)\} \in E(H)$. We say G is isomorphic to H, written $G \cong H$, if there is an isomorphism from G to H.

Figure 1.1: Isomorphic graphs

A path is a graph whose vertices can be ordered so that two vertices are adjacent if and only if they are consecutive in the list. A path is empty if it contains only one vertex and thus no edges. Note that a nonempty path starts with a vertex of degree 1 and ends with a vertex of degree 1. These two vertices are called the endpoints of the path. All other vertices between the first and the last vertex of a path have degree 2. If the first vertex in a path G is u and the last vertex is v, then G is called a $u-v$ path or a path from u to v. A path with n vertices is often denoted by P_{n}.

We denote the directed path with vertices $x_{0}, x_{1}, \ldots, x_{k}$, where x_{i} is adjacent
to $x_{i+1}, 0 \leq i \leq k-1$, by $\left(x_{0}, x_{1}, \ldots, x_{k}\right)$. The first vertex of this path is x_{0}, the second vertex is x_{1}, and the last vertex is x_{k}. If $G_{1}=\left(x_{0}, x_{1}, \ldots, x_{j}\right)$ and $G_{2}=\left(y_{0}, y_{1}, \ldots, y_{k}\right)$ are directed paths with $x_{j}=y_{0}$, then by $G_{1}+G_{2}$ we mean the path $\left(x_{0}, x_{1}, \ldots, x_{j}, y_{1}, y_{2}, \ldots, y_{k}\right)$.

A cycle is a graph with an equal number of vertices and edges whose vertices can be placed around a circle so that two vertices are adjacent if and only if they appear consecutively along the circle. The number of vertices in a cycle is called its length. The cycle with n vertices is denoted by C_{n} or n-cycle. We sometimes denote the cycle with vertex set $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and edge set $\left\{\left\{x_{i}, x_{i+1}\right\}: 1 \leq i \leq\right.$ $n-1\} \cup\left\{x_{n}, x_{1}\right\}$ by $\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$. We note that $\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\left(x_{n}, x_{1}\right)=$ $\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$. A cycle is even if its length is even; otherwise, it is odd. Figure 1.2 shows the path P_{5} and the cycle C_{6}.

A vertex u is said to be connected to a vertex v in a graph G if there exists a $u-v$ path in G. A graph G is connected if every pair of its vertices is connected. A graph that is not connected is disconnected. The relation "is connected to" is an equivalence relation on $V(G)$. The subgraphs of G induced by the resulting equivalence classes are called the components of G.

Figure 1.2: A path and a cycle

A spanning subgraph of a graph G is a referred to as a factor of G. A k regular factor is called a k-factor. A spanning cycle in a graph G is also called a Hamiltonian cycle in G.

A graph G is k-partite, $k \geq 1$, if $V(G)$ can be partitioned into into k subsets $V_{1}, V_{2}, \ldots, V_{k}$ (called partite sets) such that every element of $E(G)$ joins a vertex of V_{i} to a vertex of $V_{j}, i \neq j$. Note that every graph is k-partite for some k; indeed, if G has order n, then G is n-partite. If G is a 1-partite graph of order n,
then $G=\bar{K}_{n}$. For $k=2$, such graphs are called bipartite graphs, and for $k=3$ they are are called tripartite graphs. A non-bipartite graph G is almost-bipartite if G contains an edge e whose removal renders G bipartite. For example, cycles of odd length are almost-bipartite.

A complete k-partite graph G is a k-partite graph with partite sets $V_{1}, V_{2}, \ldots, V_{k}$ having the added property that if $u \in V_{i}$ and $v \in V_{j}, i \neq j$, then $\{u, v\} \in E(G)$. If $\left|V_{i}\right|=n_{i}$, then this graph is denoted by $K\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ or $K_{n_{1}, n_{2}, \ldots, n_{k}}$. (The order in which the numbers $n_{1}, n_{2}, \ldots, n_{k}$ are written is not important.) Note that a complete k-partite graph is complete if and only if $n_{i}=1$ for all i, in which case it is K_{k}. A complete bipartite graph with partite sets V_{1} and V_{2}, where $\left|V_{1}\right|=r$ and $\left|V_{2}\right|=s$, is then denoted by $K(r, s)$ or more commonly $K_{r, s}$. We will denote the complete multipartite graph with $r \geq 3$ partite sets of order s each by $K_{r \times s}$. The complete bipartite graph $K_{3,4}$ and the complete tripartite graph $K_{3 \times 4}$ are shown in Figure 1.3.

Figure 1.3: A complete graph, a complete bipartite graph and a complete multipartite graph

1.3 Graph decompositions and graph designs

A decomposition of a graph K is a set $\Gamma=\left\{G_{1}, G_{2}, \ldots, G_{t}\right\}$ of subgraphs of K such that the edge sets of the graphs G_{i} form a partition of the edge set of K. If G_{i} is a Hamiltonian cycle, then the decomposition is called the Hamiltonian decomposition. If each G_{i} is isomorphic to a subgraph G of K, such decomposition
is called a G-decomposition of K or a (K, G)-design. A $\left(K_{v}, G\right)$-design is also known as a G-design of order v. The study of graph decompositions is known as the study of graph designs or simply as the study of G-designs. For recent surveys on G-designs, we direct the reader to [3] and [12].

A popular tool for finding (K, G)-designs is through the use of graph labelings. A labeling of a graph G is an assignment of integers to the vertices of G subject to certain conditions. Graph labelings were first introduced by Rosa in the late 1960s. Rosa [37] showed that certain basic labelings of a graph G with n edges yielded G-decompositions of $K_{2 n+1}$. Additionally, other stricter labeling yielded G-decomposition of $K_{2 n k+1}$ for all positive integers k. A survey of various of Rosatype labelings that summarize some of the related results can be found in [18]. For a comprehensive look at general graph labelings, we direct the reader to a dynamic survey on the topic by Gallian [21]. We will focus on one of the labelings defined by Rosa [37] for bipartite graphs in Section 2.6.

CHAPTER II

REVIEW OF THE LITERATURE

In this chapter, we give a brief survey of the literature for results related to decompositions of complete graphs and complete multipartite graphs into 2regular graphs. We begin by looking at Steiner triple systems and one of the popular constructions for them and some of its generalizations. Next, we discuss decompositions of complete graphs and of complete multipartite graphs into 2regular graphs. We also discuss the Oberwolfach problem and some of the recent progress made on it. Finally, we discuss α-labelings which we will use in obtaining our results.

2.1 Steiner triple systems

A Steiner triple system of order v is an ordered pair (S, \mathcal{T}), where S is a finite set of v points or symbols, and \mathcal{T} is a set of 3 -element subsets of S called triples, such that each pair of distinct elements of S occurs together in exactly one triple of \mathcal{T}.

Example 2.1. If $S=\{0,1,2,3,4,5,6\}$ and $\mathcal{T}=\{\{0,1,3\},\{1,2,4\},\{2,3,5\}$, $\{3,4,6\},\{4,5,0\},\{5,6,1\},\{6,0,2\}\}$, then (S, \mathcal{T}) is a Steiner triple system of order 7.

Note that a Steiner triple system of order v is equivalent to a C_{3}-decomposition of K_{v}.

Steiner triple systems were evidently defined for the first time in 1844 by W.S.B. Woolhouse [44]. In 1847, T.P. Kirkman [32] proved that a Steiner triple system of order v exists if and only if $v \equiv 1$ or $3(\bmod 6)$. In 1939, R.C. Bose published a construction for a Steiner triple of order $v \equiv 3(\bmod 6)$ that is much
simpler than the one given by Kirkman. In this construction, he made use of idempotent commutative quasigroups. We will refer to this construction as the Bose construction. Our work can be viewed as an extension of the Bose construction.

2.2 The Bose construction

Let \mathbb{N} denote the set of nonnegative integers. Let $n \in \mathbb{N}$ and \mathbb{Z}_{n} the group of integers modulo n. If a and b are integers, we denote $\{a, a+1, \ldots, b\}$ by $[a, b]$ (if $a>b$, then $[a, b]=\varnothing)$.

A quasigroup of order q is a pair (Q, o) where Q is a set of size q, say $Q=[1, q]$, and \circ is a binary operation on Q such that for every pair of elements $a, b \in Q$, the equations $a \circ x=b$ and $y \circ a=b$ have unique solutions. The quasigroup is idempotent if $i \circ i=i$ for eyery $i \in Q$ and it is commutative if $i \circ j=j \circ i$ for all $i, j \in Q$. Note that in such a quasigroup, if $a \neq b$, then a, b, and $a \circ b$ are distinct. It has long been known that an idempotent commutative quasigroup of order q exists if and only if q is odd (see [34]). The Bose construction is described as follow:

Let $v=6 k+3$ for some positive integer k, and let (Q, \circ) be an idempotent commutative quasigroup of order $2 k+1$, where $Q=[1,2 k+1]$. Let $S=\mathbb{Z}_{3} \times Q$, and define \mathcal{T} to contain the following two types of triples:

Type 1: For $1 \leq i \leq 2 k+1,\{(0, i),(1, i),(2, i)\} \in \mathcal{T}$.
Type 2: For $1 \leq i<j \leq 2 k+1,\{(0, i),(0, j),(1, i \circ j)\},\{(1, i),(1, j),(2, i \circ j)\}$, $\{(2, i),(2, j),(0, i \circ j)\} \in \mathcal{T}$.

Then (S, \mathcal{T}) is a Steiner triple system of order $6 k+3$.

Example 2.2. We will use the Bose construction to produce a Steiner triple system (S, \mathcal{T}) of order 15 . Let (Q, \circ) be the idempotent commutative quasigroup of order 5 shown in Figure 2.1. Let $S=\mathbb{Z}_{3} \times[1,5]$ and let \mathcal{T} contain the following

35 triples:

Type 1: $\{\{(0,1),(1,1),(2,1)\},\{(0,2),(1,2),(2,2)\},\{(0,3),(1,3),(2,3)\}$, $\{(0,4),(1,4),(2,4)\},\{(0,5),(1,5),(2,5)\}\}$

Type 2: $\quad i=1, j=2$

$$
\begin{array}{cc}
\{(0,1),(0,2),(1,1 \circ 2=5)\} & \{(0,1),(0,3),(1,1 \circ 3=2)\} \\
\{(1,1),(1,2),(2,1 \circ 2=5)\} & \{(1,1),(1,3),(2,1 \circ 3=2)\} \\
\{(2,1),(2,2),(0,1 \circ 2=5)\} & \{(2,1),(2,3),(0,1 \circ 3=2)\} \\
i=1, j=4 & i=1, j=5 \\
\{(0,1),(0,4),(1,1 \circ 4=3)\} & \{(0,1),(0,5),(1,1 \circ 5=4)\} \\
\{(1,1),(1,4),(2,1 \circ 4=3)\} & \{(1,1),(1,5),(2,1 \circ 5=4)\} \\
\{(2,1),(2,4),(0,1 \circ 4=3)\} & \{(2,1),(2,5),(0,1 \circ 5=4)\} \\
i=2, j=3 & i=2, j=4 \\
\{(0,2),(0,3),(1,2 \circ 3=4)\} & \{(0,2),(0,4),(1,2 \circ 4=1)\} \\
\{(1,2),(1,3),(2,2 \circ 3=4)\} & \{(1,2),(1,4),(2,2 \circ 4=1)\} \\
\{(2,2),(2,3),(0,2 \circ 3=4)\} & \{(2,2),(2,4),(0,2 \circ 4=1)\} \\
i=2, j=50 N G K 0 R N U N I V E R T=3, j=4
\end{array}
$$

$$
\{(0,2),(0,5),(1,2 \circ 5=3)\}
$$

$$
\{(1,2),(1,5),(2,2 \circ 5=3)\}
$$

$$
\{(2,2),(2,5),(0,2 \circ 5=3)\}
$$

$$
i=3, j=5
$$

$$
\{(0,3),(0,5),(1,3 \circ 5=1)\}
$$

$$
\{(0,4),(0,5),(1,4 \circ 5=2)\}
$$

$$
\{(1,3),(1,5),(2,3 \circ 5=1)\}
$$

$$
\{(1,4),(1,5),(2,4 \circ 5=2)\}
$$

$$
\{(2,3),(2,5),(0,3 \circ 5=1)\}
$$

$$
\{(2,4),(2,5),(0,4 \circ 5=2)\}
$$

-	1	2	3	4	5
1	1	5	2	3	4
2	5	2	4	1	3
3	2	4	3	5	1
4	3	1	5	4	2
5	4	3	1	2	5

Figure 2.1: An idempotent commutative quasigroup of order 5 and one triple from the Bose construction of a Steiner triple system of order 15.

In terms of graphs, we note that the triples of Type 1 in \mathcal{T} form a $C_{3^{-}}$ decomposition of $(2 k+1) K_{3}$ and the triples of Type 2 form a C_{3}-decomposition of $K_{(2 k+1) \times 3}$. Since all edges of $K_{6 k+3}$ can be separated into edges of $(2 k+1) K_{3}$ and edges of $K_{(2 k+1) \times 3}$, we have the desired result.

2.3 The quasigroup with hole construction

A variation on the Bose Construction makes use of quasigroups of even order with holes of size two. For an integer $k \geq 3$, let $Q=[1,2 k]$ and for $i \in[1, k]$, let $h_{i}=\{2 i-1,2 i\}$. Let $H=\left\{h_{1}, h_{2}, \ldots, h_{k}\right\}$. In what follows, all elements $h_{i} \in H$ are called holes. A quasigroup with holes H is a quasigroup (Q, \circ) of order $2 k$ in which for each $h_{i} \in H$, we have $\left(h_{i}, \circ\right)$ is a subquasigroup of (Q, \circ). It is known that for every $k \geq 3$, there exists a commutative quasigroup (Q, \circ) of order $2 k$ with holes H (see [34]). Commutative quasigroups of order $2 k$ with holes H are used to construct C_{3}-decompositions of $K_{k \times 6}$ for every integer $k \geq 3$. This C_{3}-decompositions of $K_{k \times 6}$ is then combined a C_{3}-decomposition of K_{7} to obtain a Steiner triple system of order $6 k+1$.

Let $k \geq 3$ be an integer and for $i \in[1, k]$, let $h_{i}=\{2 i-1,2 i\}$ and $g_{i}=\mathbb{Z}_{3} \times h_{i}$. Let $Q=[1,2 k]$ and $H=\left\{h_{1}, h_{2}, \ldots, h_{k}\right\}$. Let (Q, \circ) be a commutative quasigroup of order $2 k$ with holes H. Let $S=\{\infty\} \cup\left(\mathbb{Z}_{3} \times[1,2 k]\right)$. For $1 \leq i \leq k$, let \mathcal{T}_{i} consist of the triples in a Steiner triple system of order 7 on the symbols $\{\infty\} \cup g_{i}$.

Consider the following:
(1) let $\mathcal{T}^{\prime}=\bigcup_{i=1}^{k} \mathcal{T}_{i}$, and,
(2) for $1 \leq i<j \leq 2 k,\{i, j\} \notin H$, let $\mathcal{T}^{\prime \prime}$ contain the triples $\{(0, i),(0, j),(1, i \circ j)\}$, $\{(1, i),(1, j),(2, i \circ j)\},\{(2, i),(2, j),(0, i \circ j)\}$.

Then $\left(S, \mathcal{T}^{\prime} \cup \mathcal{T}^{\prime \prime}\right)$ is a Steiner triple system of order $6 k+1$.

Example 2.3. We will use the quasigroups with hole construction to produce a Steiner triple system of order 19. For $i \in[1,3]$, let $h_{i}=\{2 i-1,2 i\}$ and $g_{i}=\mathbb{Z}_{3} \times h_{i}$. Let $Q=[1,6]$ and $H=\left\{h_{1}, h_{2}, h_{3}\right\}$. Let $(Q, 0)$ be the commutative quasigroup of order 6 with holes H shown in Figure 2.2. Let $S=\{\infty\} \cup\left(\mathbb{Z}_{3} \times[1,6]\right)$. For $i \in[1,3]$, let \mathcal{T}_{i} consist of the triples from a Steiner triple system of order 7 on the symbols $\{\infty\} \cup g_{i}$ and let $\mathcal{T}^{\prime}=\bigcup_{i=1}^{3} \mathcal{T}_{i}$. Then each \mathcal{T}_{i} contains the following triples:

$$
\begin{array}{ll}
\{(0,2 i-1),(1,2 i-1),(0,2 i)\} & \{\infty,(0,2 i-1),(2,2 i-1)\} \\
\{(1,2 i-1),(2,2 i-1),(1,2 i)\} & \{\infty,(0,2 i),(2,2 i-1)\} \\
\{(2,2 i-1),(0,2 i),(2,2 i)\} & \{\infty,(2,2 i),(1,2 i-1)\} \\
\{(1,2 i),(2,2 i),(0,2 i-1)\} &
\end{array}
$$

For $1 \leq i<j \leq 6$, with $\{i, j\} \notin H$, let $\mathcal{T}^{\prime \prime}$ contain the following triples:

$$
i=1, j=3 \text { ONGIORIN UNIVERS } i=1, j=4
$$

$$
\begin{array}{cc}
\{(0,1),(0,3),(1,1 \circ 3=5)\} & \{(0,1),(0,4),(1,1 \circ 4=6)\} \\
\{(1,1),(1,3),(2,1 \circ 3=5)\} & \{(1,1),(1,4),(2,1 \circ 4=6)\} \\
\{(2,1),(2,3),(0,1 \circ 3=5)\} & \{(2,1),(2,4),(0,1 \circ 4=6)\} \\
i=1, j=5 & i=1, j=6 \\
\{(0,1),(0,5),(1,1 \circ 5=3)\} & \{(0,1),(0,6),(1,1 \circ 6=4)\} \\
\{(1,1),(1,5),(2,1 \circ 5=3)\} & \{(1,1),(1,6),(2,1 \circ 6=4)\} \\
\{(2,1),(2,5),(0,1 \circ 5=3)\} & \{(2,1),(2,6),(0,1 \circ 6=4)\} \\
i=2, j=4 & i=2, j=5
\end{array}
$$

$$
\left.\begin{array}{cc}
\{(0,2),(0,4),(1,2 \circ 4=5)\} & \{(0,2),(0,5),(1,2 \circ 5=4)\} \\
\{(1,2),(1,4),(2,2 \circ 4=5)\} & \{(1,2),(1,5),(2,2 \circ 5=4)\} \\
\{(2,2),(2,4),(0,2 \circ 4=5)\} & \{(2,2),(2,5),(0,2 \circ 5=4)\} \\
i=2, j=6 & i=3, j=5 \\
\{(0,2),(0,6),(1,2 \circ 6=3)\} & \{(0,3),(0,5),(1,3 \circ 5=1)\} \\
\{(1,2),(1,6),(2,2 \circ 6=3)\} & \{(1,3),(1,5),(2,3 \circ 5=1)\} \\
\{(2,2),(2,6),(0,2 \circ 6=3)\} & \{(2,3),(2,5),(0,3 \circ 5=1)\} \\
i=3, j=6=1=4, j=6
\end{array}\right\}
$$

Then $\left(S, \mathcal{T}^{\prime} \cup \mathcal{T}^{\prime \prime}\right)$ is a Steiner triple system of order 19.

Figure 2.2: A commutative quasigroup of order 6 with holes and one triple from the corresponding C_{3}-decomposition of $K_{3 \times 6}$.

2.4 Decompositions of complete graphs and complete multipartite graphs into 2-regular graphs

The problem of investigating decompositions of complete graphs into 2-regular graphs is one of the more popular problems in the study of G-designs. Perhaps the oldest such problem is the study of C_{3}-decompositions of K_{v}. It dates back
to 1844 (see [44]) and later became known as the study of Steiner triple systems (see Chapter 2.1). In 1847, T.P. Kirkman [32] proved that there exists a $C_{3^{-}}$ design of order v if and only if $v \equiv 1$ or $3(\bmod 6)$. It was not until the early 1960's that researchers began investigating other C_{n}-decompositions of complete graphs. Anton Kotzig and Alex Rosa are credited with publishing some of the earliest such investigations (see for example [33], [38], and [39]). Over the next three decades, several others made significant contributions to the general problem (see for example [29] and [27]). The problem of finding necessary and sufficient conditions for the existence of a C_{n}-design of order v was settled completely a little over a decade ago by Alspach and Gavlas [8] and by Šajna [40]. Necessary and sufficient conditions for the existence of a G-design of order v are found in [5] when G is a 2-regular graph of order at most 10. For a general 2-regular graph G of order n, the problem of finding necessary and sufficient conditions for the existence of a G-decomposition of K_{v} is far from settled. It is expected however that for such a G-decomposition will exist for all $v \equiv 1(\bmod 2 n)$. This has been confirmed when G is bipartite (see [19] and [10]), when G is almost-bipartite [15], when G is $r C_{m}$ where m is odd [22], and when G has two components (see [2], [11] and [14]). If in addition n is odd and $(G, v) \notin\left\{\left(C_{4} \cup C_{5}, 9\right),\left(C_{3} \cup C_{3} \cup C_{5}, 11\right)\right\}$, then a G-design of order v for all $v \equiv n(\bmod 2 n)$ is likely to exist. The case $v=n$ is known as the Oberwolfach problem (see Section 2.5).

In recent years, numerous authors have investigated C_{n}-decompositions of complete multipartite graphs. Particular focus has been placed on C_{3}-decompositions of complete multipartite graphs. Such decompositions fall under the umbrella of the study of group divisible designs (see [23] for a summary). The problem of $C_{2 k}$-decompositions of the complete bipartite graph $K_{m, n}$ was settled completely by Sotteau in [41]. In [36], Piotrowski settled the problem of G-decompositions of $K_{n, n}$ when G is a 2-regular bipartite graph of order $2 n$. In [35], Liu settled the problem of $k C_{m}$-decompositions of $K_{r \times s}$ in the case when $k m=r s$. We are not aware of any work that has been done on G-decompositions of complete multipartite graphs when G is a 2-regular graph with non-uniform components and the
complete graph is not bipartite.

2.5 The Oberwolfach problem

Let t be a positive integer. For $i \in[1, t]$, let $r_{i} \geq 1$ and $m_{i} \geq 3$ be integers. Let $n=r_{1} m_{1}+r_{2} m_{2}+\cdots+r_{t} m_{t}$. Let G be the 2-regular graph of order n consisting of the vertex-disjoint union $r_{1} C_{m_{1}} \cup r_{2} C_{m_{2}} \cup \cdots \cup r_{t} C_{m_{t}}$. The Oberwolfach problem $O P\left(m_{1}^{r_{1}}, m_{2}^{r_{2}}, \ldots, m_{t}^{r_{t}}\right)$ is a problem of determining whether there exists a G-decomposition of K_{n} if n is odd or of $K_{n}-I$, where I is a 1 -factor, if n is even. The Oberwolfach problem was posed by G. Ringel in 1967 at a meeting in Oberwolfach, Germany. It was first mentioned in the literature in [24].

Example 2.4. A solution to $O P(3,4)$ looks as follows, where the vertices of K_{7} are labeled $0,1, \ldots, 6$.

$1^{\text {st }} 2$-factor	$2^{\text {nd }} 2$-factor	$3^{\text {rd }} 2$-factor
$\langle 0,1,4\rangle$	$\langle 0,2,5\rangle$	$\langle 0,3,6\rangle$
$\langle 2,3,5,6\rangle$	$\langle 3,4,6,1\rangle$	$\langle 4,5,1,2\rangle$

It is known that $O P(3,3), O P(3,3,3,3), O P(4,5)$ and $O P(3,3,5)$ have no solutions (see [13]). The followings are some of the known results on the Oberwolfach problem.

Theorem 2.5. The following Oberwolfach problems all have solutions.
(i) $O P\left(m^{t}\right)$ for all $t \geq 1$ and $m \geq 3$ (see [9]);
(ii) $O P\left(m_{1}^{r_{1}}, m_{2}^{r_{2}}, \ldots, m_{t}^{r_{t}}\right)$ for $r_{1} m_{1}+r_{2} m_{2}+\cdots+r_{t} m_{t} \leq 17$;
(iii) $O P\left(3^{k}, 4\right)$ for all odd $k \geq 1$ (see [16]);
(iv) $O P\left(3^{k}, 5\right)$ for all even $k \geq 4$ (see [42]);
(v) $O P\left(r^{k}, n-k r\right)$ for $n \geq 6 k r-1, k \geq 1, r \geq 3$;
(vi) $O P(r, n-r)$ for $3 \leq r \leq 9$ and $n \geq r+3$ (see [26]);
(vii) $O P(r, r, n-2 r)$ for $r=3,4$ and $n \geq 2 r+3$ (see [26]);
(viii) $O P\left(2 r_{1}, 2 r_{2}, \ldots, 2 r_{k}\right)$ for all $r_{i} \geq 2$ and $r_{1}+r_{2}+\cdots+r_{k}$ odd (see [25]);
(ix) $O P(r, r+1)$ and $O P(r, r+2)$ for $r \geq 3$;
(x) $O P(2 r+1,2 r+1,2 r+2)$ for $r \geq 1$;
(xi) $O P(3,4 r, 4 r)$ for $r \geq 1$;
(xii) $O P\left(4^{k}, 2 r+1\right)$ for $k \geq 0$ and $r \geq 1$;
(xiii) $O P\left((4 s)^{k}, 2 r+1\right)$ for $k \geq 0$ and $r \geq 1$;

Although the general problem is far from settled, Traetta [43] recently settled the case when G has two components.

Theorem 2.6. Let $a \geq 2$ and $b \geq 1$ be integers and let $n=2 a+2 b+1$. There exists a $\left(C_{2 a} \cup C_{2 b+1}\right)$-decomposition of K_{n} if and only if $(a, b) \neq(2,2)$.

2.6α-Labelings

In 1967, Rosa [37] introduced a hierarchy of labelings of simple graphs. We use one such labeling in our approach. Let G be a bipartite graph with n edges and vertex bipartition $\{A, B\}$. An α-labeling of G is an injection $f: V(G) \rightarrow \mathbb{N}$ such that

- $f(a)<f(b) \leq n$ for all $a \in A$ and $b \in B$,
- $\{|f(u)-f(v)|:\{u, v\} \in E(G)\}=[1, n]$.

For every such α-labeling, there necessarily exists an integer λ, called the critical value of the α-labeling f, such that $\max (A)=\lambda$ and $\min (B)=\lambda+1$.

Rosa [37] showed that if G has an α-labeling, then there exists a G-decomposition of $K_{2 n k+1}$ for all positive integers k. Moreover, α-labelings can be used to obtain decompositions of complete bipartite graphs. For example, if a bipartite graph G of size n admits an α-labeling, then there exists a G-decomposition of $K_{n, n}$ (see

Figure 2.3: A α-labeling of G where $G=C_{8}$ or $C_{6} \cup C_{6}$
[28]). In [37], Rosa showed that if a 2-regular bipartite graph G of size n admits an α-labeling, then we must have $n \equiv 0(\bmod 4)$.

In [37], Rosa determined when an even cycle admits an α-labeling.
Theorem 2.7. C_{n} has an α-labeling if and only if $n \equiv 0(\bmod 4)$.

In [2], Abrham and Kotzig settled the corresponding result for the union of two even cycles.

Theorem 2.8. $C_{2 n} \cup C_{2 m}$ has an α-labeling if and only if $2 n+2 m \equiv 0(\bmod 4)$.

Because we are concerned with 2-regular graphs, we note the following results on α-labelings.

Theorem 2.9. The following 2-regular bipartite graphs admit α-labelings.
(i) $r C_{4}$ if and only if $r \neq 3$ (see [1]).
(ii) $C_{2 m_{1}} \cup C_{2 m_{2}} \cup C_{2 m_{3}}$ if and only if $2 m_{1}+2 m_{2}+2 m_{3} \equiv 0(\bmod 4)$ (see [20]).

CHAPTER III

MAIN RESULTS

In this chapter, we use novel extensions of the Bose construction for Steiner triple systems to show that there exist a G-decomposition of $K_{(2 k+1) \times n}$ for every positive integer k and a G-decomposition of $K_{k^{\prime} \times 2 n}$ for every integer $k^{\prime} \geq 3$ where G is a 2-regular almost-bipartite graph of odd order n. We obtain similar results when G consists of three odd length cycles. In Section 3.1, we focus on the case when G as a single cycle. We also show that there exists a C_{n}-decomposition of K_{v} for all $v \equiv n(\bmod 2 n)$. In Subsection 3.3.1, we concentrate when G has only two components. Additionally, we find a G-decomposition of K_{v} for all $v \equiv n$ $(\bmod 2 n)$. In Subsection 3.3.2, we consider the case when G consists of any number of even cycles and one single odd cycle. Finally, in Subsection 3.3.3, we consider the case when G consists of three odd cycles. In the last case, we also obtain a G-decomposition of K_{v} for all $v \equiv 1(\bmod 2 n)$, except when $v=4 n+1$.

3.1 On extensions of the Bose construction

We begin with some sufficient conditions for the existence of a G-decomposition of $K_{(2 k+1) \times n}$ and of $K_{k^{\prime} \times 2 n}$ for all integers $k \geq 1$ and $k^{\prime} \geq 3$. These ideas make use of extensions of the Bose construction for Steiner triple systems.

Let $n \geq 3$ be an odd integer and let k be a positive integer. Let $K_{(2 k+1) \times n}$ have vertex set $\mathbb{Z}_{n} \times[1,2 k+1]$ with the obvious vertex partition. For $i \in[1, k]$, let $h_{i}=$ $\{2 i-1,2 i\}$ and $g_{i}=\mathbb{Z}_{n} \times h_{i}$. Let $H=\left\{h_{1}, h_{2}, \ldots, h_{k}\right\}$. Let $V\left(K_{k \times 2 n}\right)=\mathbb{Z}_{n} \times[1,2 k]$ with the vertex-set partition $\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}$. For $r<s$, if $e=\{(i, r),(j, s)\}$ is an edge in $K_{(2 k+1) \times n}$ or in $K_{k \times 2 n}$, define the length of e to be $j-i$ if $j \geq i$; otherwise the length of e is $n+(j-i)$. Thus, between any two parts, there are edges of lengths $0,1, \ldots, n-1$. We will often write $-j$ for edge length $n-j$ when
n is understood. Therefore, between any two parts, there are edges of lengths $0, \pm 1, \pm 2, \ldots, \pm \frac{(n-1)}{2}$.

Let K be a subgraph of the graph with vertex set $\mathbb{Z}_{n} \times[1,2 k+1]$. For a positive integer ℓ, the graph $K+\ell$ has vertex set $\{(i+\ell, z):(i, z) \in V(K)\}$ and edge set $\{\{(i+\ell, r),(j+\ell, s)\}:\{(i, r),(j, s)\} \in E(K)\}$.

Lemma 3.1. Let G of odd order n be a 2-regular almost-bipartite graph and let $e \in E(G)$ be such that $G-e$ is bipartite. Let $G^{\prime}=G-u$ where $u \in V(G)$ is incident to e. Let P of size $\ell \leq n-2$ be the component of G^{\prime} that is a path. Let $K_{n, n}$ have vertex set $\mathbb{Z}_{n} \times[1,2]$ with the obvious vertex partition. Assume that there exists an embedding of G^{\prime} in $K_{n, n}$ with one edge of each length in $[-(n-1) / 2,(n-1) / 2] \backslash\{ \pm z\}$ for some $z \in[1,(n-1) / 2]$ and such that the endpoints of P are $(j, 1)$ and $(j, 2)$ for some $j \in[0, n-1]$. Then there exists a G-decomposition of $K_{(2 k+1) \times n}$ for every positive integer k.

Proof. Let k be a positive integer and let $V\left(K_{(2 k+1) \times n}\right)=\mathbb{Z}_{n} \times[1,2 k+1]$ with the obvious vertex partition. Let (Q, \circ) be an idempotent commutative quasigroup of order $2 k+1$, where $Q=[1,2 k+1]$.

Fix r and s with $1 \leq r<s \leq 2 k+1$. Let $G_{r, s}^{\prime}$ and $P_{r, s}$ be the embeddings (as in the hypothesis of the lemma) of G^{\prime} and P, respectively, in the subgraph of $K_{(2 k+1) \times n}$ with vertex set $\mathbb{Z}_{n} \times\{r, s\}$ and the obvious vertex partition. Let (j, r) and (j, s) denote the endpoints of $P_{r, s}$ and let z be as in the hypothesis. We construct from $G_{r, s}^{\prime}$ a graph $G_{r, s}$, isomorphic to G, by adding the edges $\{(j, r),(j+$ $z, r \circ s)\}$ and $\{(j, s),(j+z, r \circ s)\}$ at the endpoints of $P_{r, s}$. Let $G_{r, s}^{*}=\left\{G_{r, s}+x\right.$: $0 \leq x \leq n-1\}$. Note that $G_{r, s}^{*}$ contains n distinct copies of G. Moreover, in the subgraph of $K_{(2 k+1) \times n}$ with vertex set $\mathbb{Z}_{n} \times\{r, s\}, G_{r, s}^{*}$ contains all the edges of length i for all $i \in[-(n-1) / 2,(n-1) / 2] \backslash\{ \pm z\}$.

Let $\mathcal{C}=\left\{G_{r, s}+x: 1 \leq r<s \leq 2 k+1,0 \leq x \leq n-1\right\}$ and note that \mathcal{C} contains $\binom{2 k+1}{2} n$ distinct copies of G. We will show that every edge of $K_{(2 k+1) \times n}$ appears on some copy of G in \mathcal{C}. Let $e=\{(i, r),(j, s)\}$ with $r<s$ be an arbitrary edge of $K_{(2 k+1) \times n}$. Let t^{\prime} be the unique solution to $r \circ t^{\prime}=s$ and let $\alpha^{\prime}=\min \left\{r, t^{\prime}\right\}$ and $\beta^{\prime}=\max \left\{r, t^{\prime}\right\}$. Let $t^{\prime \prime}$ be the unique solution to $s \circ t^{\prime \prime}=r$ and let $\alpha^{\prime \prime}=\min \left\{s, t^{\prime \prime}\right\}$
and $\beta^{\prime \prime}=\max \left\{s, t^{\prime \prime}\right\}$. If $j-i \in[-(n-1) / 2,(n-1) / 2] \backslash\{ \pm z\}$, then e belongs to $G_{r, s}+x$ for some x with $0 \leq x \leq n-1$. If $j-i=z$, then e belongs to $G_{\alpha^{\prime}, \beta^{\prime}}+x$ where $0 \leq x \leq n-1$. If $j-i=-z$, then e belongs to $G_{\alpha^{\prime \prime}, \beta^{\prime \prime}}+x$ where $0 \leq x \leq n-1$. Since every edge of $K_{(2 k+1) \times n}$ appears on some copy of G in \mathcal{C} and since \mathcal{C} contains $\binom{2 k+1}{2} n$ distinct copies of G, it follows that \mathcal{C} is a decomposition of $K_{(2 k+1) \times n}$ into copies of G.

Lemma 3.2. Let G of odd order n be a 2-regular almost-bipartite graph and let $e \in E(G)$ be such that $G-e$ is bipartite. Let $G^{\prime}=G-u$ where $u \in V(G)$ is incident to e. Let P of size $\ell \leq n-2$ be the component of G^{\prime} that is a path. Let $K_{n, n}$ have vertex set $\mathbb{Z}_{n} \times[1,2]$ with the obvious vertex partition. Assume that there exists an embedding of P in $K_{n, n}$ with one edge of each length in $[-(n-$ $1) / 2,(n-1) / 2] \backslash\{ \pm z\}$ for some $z \in[1,(n-1) / 2]$ and such that the endpoints of P are $(j, 1)$ and $(j, 2)$ for some $j \in[0, n-1]$. Then there exists a G-decomposition of $K_{k \times 2 n}$ for every integer $k \geq 3$.

Proof. Let $k \geq 3$ be an integer and let $Q=[1,2 k]$. For $i \in[1, k]$, let $h_{i}=\{2 i-$ $1,2 i\}$ and $g_{i}=\mathbb{Z}_{n} \times h_{i}$. Let $H=\left\{h_{1}, h_{2}, \ldots, h_{k}\right\}$. Let $V\left(K_{k \times 2 n}\right)=\mathbb{Z}_{n} \times[1,2 k]$ with the vertex-set partition $\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}$. Let $(Q, 0)$ be an idempotent commutative quasigroup of order $2 k$ with holes H.

Fix r and s with $1 \leq r<s \leq 2 k$ and $\{r, s\} \notin H$. Let $G_{r, s}^{\prime}$ and $P_{r, s}$ be the embeddings (as in the hypothesis of the lemma) of G^{\prime} and P, respectively, in the subgraph of $K_{k \times 2 n}$ with vertex set $\mathbb{Z}_{n} \times\{r, s\}$ and the obvious vertex partition. Let (j, r) and (j, s) denote the endpoints of $P_{r, s}$ and let z be as in the hypothesis. We construct from $G_{r, s}^{\prime}$ a graph $G_{r, s}$, isomorphic to G, by adding the edges $\{(j, r),(j+z, r \circ s)\}$ and $\{(j, s),(j+z, r \circ s)\}$ at the endpoints of $P_{r, s}$.

We proceed in the same fashion as in the proof of Lemma 3.1. Let $\mathcal{C}=$ $\left\{G_{r, s}+x: 1 \leq r<s \leq 2 k,\{r, s\} \notin H\right.$ and $\left.0 \leq x \leq n-1\right\}$ and note that \mathcal{C} contains $\binom{2 k}{2} n$ distinct copies of G. For the proof that every edge of $K_{k \times 2 n}$ appears on some copy of G in \mathcal{C}, we proceed in the same fashion as the proof of Lemma 3.1.

Next, we prove a lemma about the existence of paths with certain edge lengths
in $K_{n, n}$.

Lemma 3.3. Let $n \geq 3$ be an odd integer and let $x \leq n$ be a positive integer. Let $K_{n, n}$ have vertex set $\mathbb{Z}_{n} \times[1,2]$ with the obvious vertex partition. For positive integers $d_{1}, d_{2}, \ldots, d_{x-1}$ with $d_{1}<d_{2}<\cdots<d_{x-1} \leq(n-1) / 2$, there exists an embedding of a path P of size $2 x-1$ in $K_{n, n}$ whose edges have lengths $0, \pm d_{1}, \pm d_{2}, \ldots, \pm d_{x-1}$. Furthermore, $V(P) \subseteq\left[0, d_{x-1}\right] \times[1,2]$.

Proof. If $x=1$, let P be the path consisting of the edge $\{(0,1),(0,2)\}$. Otherwise, for $k \in[1, x-1]$, define $v_{k}=\sum_{i=0}^{k-1}(-1)^{i} d_{x-1-i}$. Note that since $d_{1}<d_{2}<\cdots<d_{x-1}$, we have that $v_{1}>v_{3}>\cdots$ and $v_{2}<v_{4}<\cdots$. Consider the path of size $x-1$ given by $P^{\prime}:(0,1),\left(v_{1}, 2\right),\left(v_{2}, 1\right),\left(v_{3}, 2\right), \ldots$ where P^{\prime} ends with $\left(v_{x-1}, 2\right)$ if $x-1$ is odd or $\left(v_{x-1}, 1\right)$ if $x-1$ is even. Observe that the lengths of the edges on P^{\prime}, in the order encountered, are $d_{x-1}, d_{x-2}, \ldots, d_{1}$. Next consider the path $P^{\prime \prime}:(0,2),\left(v_{1}, 1\right),\left(v_{2}, 2\right),\left(v_{3}, 1\right), \ldots$ where $P^{\prime \prime}$ ends with $\left(v_{x-1}, 1\right)$ if $x-1$ is odd or $\left(v_{x-1}, 2\right)$ if $x-1$ is even, and observe that the edges on $P^{\prime \prime}$, in the order encountered, are $-d_{x-1},-d_{x-2}, \ldots,-d_{1}$. Construct the path P from the paths P^{\prime} and $P^{\prime \prime}$ by adding the edge from $\left(v_{x-1}, 1\right)$ to $\left(v_{x-1}, 2\right)$ in $K_{n, n}$. Note that P has size $2 x-1$, the edges of P have lengths $0, \pm d_{1}, \pm d_{2}, \ldots, \pm d_{x-1}$, and $V(P) \subseteq\left[0, d_{x-1}\right] \times[1,2]$.

Figure 3.1: A path P of size 9 whose edges have lengths $0, \pm 1, \pm 2, \pm 4, \pm 5$.

Theorem 3.4. For all odd integers $n \geq 3$, there exists a C_{n}-decomposition of $K_{(2 k+1) \times n}$ for all positive integers k and of $K_{k^{\prime} \times 2 n}$ for all integers $k^{\prime} \geq 3$.

Proof. Label the vertex set of $K_{n, n}$ with the elements of the set $\mathbb{Z}_{n} \times[1,2]$ with the obvious vertex bipartition. It is sufficient to show that there exists an embedding
of a path P of size $n-2$ in $K_{n, n}$ with one edge of each length in $[-(n-1) / 2,(n-$ 1)/2] $\backslash\{ \pm z\}$ for some $z \in[1,(n-1) / 2]$ and such that the endpoints of P are $(j, 1)$ and $(j, 2)$ for some $j \in[0, n-1]$. By Lemma 3.3, there exists an such embedding of a path P of size $n-2$ using the edge lengths in $[-(n-3) / 2,(n-3) / 2]$ with endpoints $(0,1)$ and $(0,2)$. In the lemma we would use $d_{1}=1, d_{2}=2, \ldots, d_{(n-3) / 2}=$ $(n-3) / 2$, so $V(P) \subseteq[0,(n-3) / 2] \times[1,2]$. Thus, by Lemma 3.1 and Lemma 3.2, we conclude that there exists a G-decomposition of $K_{(2 k+1) \times n}$ for every positive integer k and a G-decomposition of $K_{k^{\prime} \times 2 n}$ for every integer $k^{\prime} \geq 3$.

It has long been known that if $n \geq 3$ is odd, then there exists a C_{n}-decomposition of K_{n}. This result is often credited to Walecki (see [4] for details).

Theorem 3.5. For any odd integers $n \geq 3$, there exists a C_{n}-decomposition of K_{n} 。

By combining the results from Theorem 3.4 and Theorem 3.5, we obtain the following previously known result (see [29]).

Theorem 3.6. There exists a C_{n}-decomposition of $K_{2 k n+n}$ for all odd integers $n \geq 3$ and all positive integers k.

Proof. Observe that $K_{2 k n+n}=(2 k+1) K_{n} \cup K_{(2 k+1) \times n}$ for all positive integers k. By Theorem 3.5, there exists a C_{n}-decomposition of K_{n} and hence of $(2 k+1) K_{n}$ and by Theorem 3.4, there exists a C_{n}-decomposition of $K_{(2 k+1) \times n}$. The result follows.

Example 3.7. We give an example of a C_{5}-decomposition of K_{15}.
Let K_{15} have vertex set $\mathbb{Z}_{5} \times[1,3]$. For each $i \in[1,3]$, there exists a $C_{5^{-}}$ decomposition of the K_{5} with vertex set $\mathbb{Z}_{5} \times i$ (by Theorem 3.5.) Then for each $i \in[1,3]$, we have two copies of C_{5} as follows:

$$
\langle(0, i),(1, i),(2, i),(4, i),(3, i)\rangle,\langle(0, i),(2, i),(3, i),(1, i),(4, i)\rangle
$$

Thus we have a C_{5}-decomposition of $3 K_{5}$.
It remains to find a C_{5}-decomposition of the complete multipartite subgraph $K_{3 \times 5}$. Let $Q=[1,3]$ and let (Q, \circ) denote a commutative idempotent quasigroup
of order 3 in Figure 3.2. For fixed r and s with $1 \leq r<s \leq 3$, Let $P_{r, s}$ denote the path $((0, r),(1, s),(1, r),(0, s))$. We construct a 5 -cycle $G_{r, s}$ from $P_{r, s}$ by adding the edges $\{(0, r),(2, r \circ s)\}$ and $\{(0, s),(2, r \circ s)\}$. Let $G_{r, s}^{*}=\left\{G_{r, s}+x: x \in \mathbb{Z}_{5}\right\}$. The 5 -cycle $G_{1,2}+1$ is shown in Figure 3.2. Then the cycles in $G_{1,2}^{*} \cup G_{1,3}^{*} \cup G_{2,3}^{*}$ give a C_{5}-decomposition of $K_{3 \times 5}$. The 5 copies of C_{5} in $G_{1,2}^{*}$ are listed below:

$$
\begin{aligned}
& \langle(0,1),(1,2),(1,1),(0,2),(2,1 \circ 2=3)\rangle, \\
& \langle(1,1),(2,2),(2,1),(1,2),(3,1 \circ 2=3)\rangle, \\
& \langle(2,1),(3,2),(3,1),(2,2),(4,1 \circ 2=3)\rangle, \\
& \langle(3,1),(4,2),(4,1),(3,2),(0,1 \circ 2=3)\rangle, \\
& \langle(4,1),(0,2),(0,1),(4,2),(1,1 \circ 2=3)\rangle .
\end{aligned}
$$

Since $K_{15}=3 K_{5} \cup K_{5 \times 3}$, we have a C_{5}-decomposition of K_{15}.

$$
(0,1) \bullet \quad(0,2) \bullet \quad(0,3) \bullet
$$

Figure 3.2: An idempotent commutative quasigroup of order 3 and one copy of a C_{5} from the corresponding of C_{5}-decomposition of K_{15}.

Before proceeding with the remainder of our results, we need some additional notation.

3.2 Additional notation

We denote the directed path with vertices $x_{0}, x_{1}, \ldots, x_{k}$, where x_{i} is adjacent to $x_{i+1}, 0 \leq i \leq k-1$, by $\left(x_{0}, x_{1}, \ldots, x_{k}\right)$. The first vertex of this path is x_{0},
the second vertex is x_{1}, and the last vertex is x_{k}. If $G_{1}=\left(x_{0}, x_{1}, \ldots, x_{j}\right)$ and $G_{2}=\left(y_{0}, y_{1}, \ldots, y_{k}\right)$ are directed paths with $x_{j}=y_{0}$, then by $G_{1}+G_{2}$ we mean the path $\left(x_{0}, x_{1}, \ldots, x_{j}, y_{1}, y_{2}, \ldots, y_{k}\right)$.

For the remainder of this chapter, we consider only subgraphs of a complete bipartite graphs $K_{m, m}$ with vertex set $[0, m-1] \times[1,2]$ and the obvious vertex bipartition. Furthermore, if m, n, and i are integers with $m \leq n$, we denote $\{(m, i),(m+1, i), \ldots,(n, i)\}$ by $[(m, i),(n, i)]$

Let $P(k)$ be the path with k edges and $k+1$ vertices given by $((0,1),(k, 2),(1,1)$, $(k-1,2),(2,1),(k-2,2), \ldots,(\lceil k / 2\rceil,\lceil k / 2\rceil-\lfloor k / 2\rfloor+1))$. Note that the set of vertices of this graph is $A \cup B$, where $A=[(0,1),(\lfloor k / 2\rfloor, 1)], B=[(\lfloor k / 2\rfloor+$ $1,2),(k, 2)]$, and every edge joins a vertex of A to one of B. Furthermore, the set of lengths of the edges of $P(k)$ is $[1, k]$.

Figure 3.3: Examples of the $P(k)$ notation

Now let a be a nonnegative integer and b be an integer such that $|b| \leq\lfloor k / 2\rfloor+1$, and let us add $(a, 0)$ to all the vertices of A and $(b, 0)$ to all the vertices of B. We denote the resulting graph by $P(a, b, k)$. Note that this graph has the following properties.

P1 $P(a, b, k)$ is a path with first vertex $(a, 1)$ and second vertex $(b+k, 2)$. Its last vertex is $(a+k / 2,1)$ if k is even and $(b+(k+1) / 2,2)$ if k is odd.

P2 Each edge of $P(a, b, k)$ joins a vertex of $A^{\prime}=[(a, 1),(\lfloor k / 2\rfloor+a, 1)]$ to a vertex of $B^{\prime}=[(\lfloor k / 2\rfloor+1+b, 2),(k+b, 2)]$.
P3 The set of edge lengths of $P(a, b, k)$ is $[b-a+1, b-a+k]$.
Now consider the directed path $Q(k)$ obtained from $P(k)$ replacing each vertex (i, j) with $(k-i, 3-j)$. The new graph is the path $((k, 2),(0,1),(k-$
$1,2),(1,1), \ldots,(\lfloor k / 2\rfloor,\lfloor k / 2\rfloor-\lceil k / 2\rceil+2))$. The set of vertices of $Q(k)$ is $A \cup B$, where $A=[(0,1),(\lceil k / 2\rceil-1,1)]$ and $B=[(\lceil k / 2\rceil, 2),(k, 2)]$, and every edge joins a vertex of A to one of B. The set of edge lengths is still $[1, k]$.

We again add $(a, 0)$ to the vertices of A and $(b, 0)$ to vertices of B, where a is nonnegative integer and b is an integers with $|b| \leq\lceil k / 2\rceil$. We denote the resulting graph by $Q(a, b, k)$. Note that this graph has the following properties.

Q1 $Q(a, b, k)$ is a path with first vertex $(k+b, 2)$. Its last vertex is $(b+k / 2,2)$ if k is even and $(a+(k-1) / 2,1)$ if k is odd.

Q2 Each edge of $Q(a, b, k)$ joins a vertex of $A^{\prime}=[(a, 1),(a+\lceil k / 2\rceil-1,1)]$ to a vertex of $B^{\prime}=[(b+\lceil k / 2\rceil, 2),(b+k, 2)]$.
Q3 The set of edge lengths of $Q(a, b, k)$ is $[b-a+1, b-a+k]$.

For ease of notation, we henceforth use i_{r} and i_{s} to denote the vertices (i, r) and (i, s), respectively.

Figure 3.4: Examples of $P(a, b, k)$ and $Q(a, b, k)$

3.3 A G-decomposition of $K_{(2 k+1) \times n}$ and of $K_{k^{\prime} \times 2 n}$

Let A and B be finite subsets of the integers. If $\max (A) \leq \min (B)$, we will write $A \leq B$. We define $A<B, A \geq B$, and $A>B$ analogously. Let $K_{n, n}$ have vertex set $\mathbb{Z}_{n} \times[1,2]$ with the obvious vertex partition. We prove three lemmas about the existence of an embedding of C_{m} with certain edge lengths in $K_{n, n}$ to use in Subsection 3.3.1 and Subsection 3.3.2. The constructions depend on the congruence class of m modulo 8 .

Lemma 3.8. Let $n \geq 11$ and $m \geq 10$ be integers such that n is odd, $m \equiv 2$ $(\bmod 8)$, and $m / 2 \leq(n-1) / 2$. Let $K_{n, n}$ have vertex set $\mathbb{Z}_{n} \times[1,2]$ with the obvious vertex partition. If $m=8 t+2$, then there exists an embedding of a cycle C of size m in $K_{n, n}$ with one edge of each length in $\pm[2,4 t+2]$. Furthermore, $V(C) \subseteq[0,4 t+2] \times[1,2]$.

Proof. To embed a cycle C of size m in $K_{n, n}$, let

$$
C=G_{1}+G_{2}+G_{3}+G_{4}+\left((4 t+2)_{1},(2 t+1)_{2}, 0_{1}\right)
$$

where

$$
\begin{aligned}
& G_{1}=P(0,2 t+1,2 t+1) \\
& G_{2}=Q(t+2, t+3,2 t-1) \\
& G_{3}=P(2 t+1,0,2 t-1) \\
& G_{4}=Q(3 t+2,-(t+1), 2 t+1) .
\end{aligned}
$$

We then show that $G_{1}+G_{2}+G_{3}+G_{4}+\left((4 t+2)_{1},(2 t+1)_{2}, 0_{1}\right)$ is a cycle of size m. Note that by P1 and Q1 the first vertex of G_{1} is 0_{1}, and the last vertex is $(3 t+2)_{2}$; the first vertex of G_{2} is $(3 t+2)_{2}$, and the last vertex is $(2 t+1)_{1}$; the first vertex of G_{3} is $(2 t+1)_{1}$, and the last vertex is t_{1}; the first vertex of G_{4} is t_{1}, and the last vertex is $(4 t+2)_{1}$. For $1 \leq i \leq 4$, let A_{i} and B_{i} denote the sets labeled A^{\prime} and B^{\prime} in P2 and Q2, we compute

$$
\begin{array}{ll}
A_{1}=\left[0_{1}, t_{1}\right], & B_{1}=\left[(3 t+2)_{2},(4 t+2)_{2}\right], \\
A_{2}=\left[(t+2)_{1},(2 t+1)_{1}\right], & B_{2}=\left[(2 t+3)_{2},(3 t+2)_{2}\right], \\
A_{3}=\left[(2 t+1)_{1},(3 t)_{1}\right], & B_{3}=\left[t_{2},(2 t-1)_{2}\right], \\
A_{4}=\left[(3 t+2)_{1},(4 t+2)_{1}\right], & B_{4}=\left[0_{2}, t_{2}\right] .
\end{array}
$$

Thus,

$$
A_{1}<A_{2} \leq A_{3}<A_{4} \text { and } B_{4} \leq B_{3}<B_{2} \leq B_{1}
$$

Note that $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\left\{(3 t+2)_{2}\right\}, V\left(G_{2}\right) \cap V\left(G_{3}\right)=\left\{(2 t+1)_{1}\right\}$, and $V\left(G_{3}\right) \cap$ $V\left(G_{4}\right)=\left\{t_{2}\right\}$; otherwise, G_{i} and G_{j} are vertex-disjoint for $i \neq j$. Therefore, $G_{1}+G_{2}+G_{3}+G_{4}+\left((4 t+2)_{1},(2 t+1)_{2}, 0_{1}\right)$ is a cycle of size m.

Next, let E_{i} denote the set of edge lengths in G_{i} for $1 \leq i \leq 4$. By P3 and Q3, we have edge lengths

$$
\begin{aligned}
& E_{1}=[2 t+2,4 t+2], \\
& E_{2}=[2,2 t], \\
& E_{3}=[-2 t,-2], \\
& E_{4}=[-(4 t+2),-(2 t+2)] .
\end{aligned}
$$

Moreover, the path $\left((4 t+2)_{1},(2 t+1)_{2}, 0_{1}\right)$ consists of edges lengths $-(2 t+1)$ and $2 t+1$. Thus, C has edge lengths $\pm[2,4 t+2]$.

Figure 3.5: The cycle C with paths G_{1}, G_{2}, G_{3} and G_{4} where $t=2$ in Lemma 3.8

Figure 3.6: The cycle C where $t=2$ in Lemma 3.8

Lemma 3.9. Let $n \geq 15$ and $m \geq 14$ be integers such that n is odd, $m \equiv 6$ $(\bmod 8)$, and $m / 2 \leq(n-1) / 2$. Let $K_{n, n}$ have vertex set $\mathbb{Z}_{n} \times[1,2]$ with the obvious vertex partition. If $m=8 t+6$, then there exists an embedding of a cycle C of size m in $K_{n, n}$ with one edge of each length in $\pm[1,4 t+4] \backslash\{ \pm 2\}$. Furthermore, $V(C) \subseteq[0,4 t+4] \times[1,2]$.

Proof. To embed a cycle C of size m in $K_{n, n}$, let

$$
C=G_{1}+G_{2}+\left((2 t+3)_{2},(2 t+2)_{1},(2 t+1)_{2}\right)+G_{3}+G_{4}+\left((4 t+4)_{1},(2 t+2)_{2}, 0_{1}\right)
$$

where

$$
\begin{aligned}
& G_{1}=P(0,2 t+2,2 t+2) \\
& G_{2}=P(t+1, t+3,2 t-1) \\
& G_{3}=Q(2 t+4,2,2 t-1) \\
& G_{4}=P(3 t+3, \dashv(t+2), 2 t+2) .
\end{aligned}
$$

We then show that $G_{1}+G_{2}+\left((2 t+3)_{2},(2 t+2)_{1},(2 t+1)_{2}\right)+G_{3}+G_{4}+((4 t+$ $\left.4_{1},(2 t+2)_{2}, 0_{1}\right)$ is a cycle of size m. Note that by P1 and Q1, the first vertex of G_{1} is 0_{1}, and the last vertex is $(t+1)_{1}$; the first vertex of G_{2} is $(t+1)_{1}$, and the last vertex is $(2 t+3)_{2}$; the first vertex of G_{3} is $(2 t+1)_{2}$, and the last vertex is $(3 t+3)_{1}$; the first vertex of G_{4} is $(3 t+3)_{1}$, and the last vertex is $(4 t+4)_{1}$. For $1 \leq i \leq 4$, let A_{i} and B_{i} denote the sets labeled A^{\prime} and B^{\prime} in $\mathbf{P 2}$ and $\mathbf{Q 2}$, we compute

$$
\begin{array}{ll}
A_{1}=\left[0_{1},(t+1)_{1}\right], & B_{1}=\left[(3 t+4)_{2},(4 t+4)_{2}\right], \\
A_{2}=\left[(t+1)_{1},(2 t)_{1}\right], \text { รณัมหาวิท } B_{2}=\left[(2 t+3)_{2},(3 t+2)_{2}\right], \\
A_{3}=\left[(2 t+4)_{1},(3 t+3)_{1}\right], & B_{3}=\left[(t+2)_{2},(2 t+1)_{2}\right], \\
A_{4}=\left[(3 t+3)_{1},(4 t+4)_{1}\right], & B_{4}=\left[0_{2}, t_{2}\right] .
\end{array}
$$

Thus,

$$
A_{1} \leq A_{2}<A_{3} \leq A_{4} \text { and } B_{4}<B_{3}<B_{2}<B_{1} .
$$

Note that $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\left\{(t+1)_{1}\right\}$, and $V\left(G_{3}\right) \cap V\left(G_{4}\right)=\left\{(3 t+3)_{1}\right\}$; otherwise, G_{i} and G_{j} are vertex-disjoint for $i \neq j$. Therefore, $G_{1}+G_{2}+\left((2 t+3)_{2},(2 t+\right.$ $\left.2)_{1},(2 t+1)_{2}\right)+G_{3}+G_{4}+\left((4 t+4)_{1},(2 t+2)_{2}, 0_{1}\right)$ is a cycle of size m.

Next, let E_{i} denote the set of edge labels in G_{i} for $1 \leq i \leq 4$. By P3 and Q3,
we have edge lengths

$$
\begin{aligned}
& E_{1}=[2 t+3,4 t+4], \\
& E_{2}=[3,2 t+1], \\
& E_{3}=[-(2 t+1),-3], \\
& E_{4}=[-(4 t+4),-(2 t+3)] .
\end{aligned}
$$

Moreover, the path $\left((2 t+3)_{2},(2 t+2)_{1},(2 t+1)_{2}\right)$ consists of edges lengths 1 and -1 , and the path $\left((4 t+4)_{1},(2 t+2)_{2}, 0_{1}\right)$ consists of edges lengths $-(2 t+2)$ and $2 t+2$. Thus, C has edge lengths $\pm[1,4 t+4] \backslash\{ \pm 2\}$.

Figure 3.7: The cycle C with paths G_{1}, G_{2}, G_{3} and G_{4} where $t=2$ in Lemma 3.9

Figure 3.8: The cycle C where $t=2$ in Lemma 3.9

Lemma 3.10. Let $n \geq 5$ and $m \geq 4$ be integers such that n is odd, $m \equiv 0$ $(\bmod 4)$, and $m / 2 \leq(n-1) / 2$. Let $K_{n, n}$ have vertex set $\mathbb{Z}_{n} \times[1,2]$ with the obvious vertex partition. If $m=4 t$, then there exists an embedding of a cycle C of size m in $K_{n, n}$ with one edge of each length in $\pm[1,2 t]$. Furthermore, $V(C) \subseteq$ $[0,2 t+1] \times[1,2]$.

Proof. To embed a cycle C of size m in $K_{n, n}$, let

$$
C=G_{1}+G_{2}+\left((2 t+1)_{1}, 1_{2}, 0_{1}\right),
$$

where

$$
\begin{aligned}
& G_{1}=P(0,2 t+1,2 t+1), \\
& G_{2}=Q(t+2, t+3,2 t-1) .
\end{aligned}
$$

We then show that $G_{1}+G_{2}+\left((2 t+1)_{1}, 1_{2}, 0_{1}\right)$ is a cycle of size m. Note that by $\mathbf{P} 1$ and $\mathbf{Q 1}$ the first vertex of G_{1} is 0_{1}, and the last vertex is $(t+1)_{2}$; the first vertex of G_{2} is $(t+1)_{2}$, and the last vertex is $(2 t+1)_{1}$. For $i \leq i \leq 2$, let A_{i} and B_{i} denote the sets labeled A^{\prime} and B^{\prime} in P2 and Q2, we compute

$$
\begin{array}{ll}
A_{1}=\left[0_{1},(t-1)_{1}\right] & B_{1}=\left[(t+1)_{2},(2 t)_{2}\right], \\
A_{2}=\left[(t+2)_{1},(2 t+1)_{1}\right], & B_{2}=\left[2_{2},(t+1)_{2}\right] .
\end{array}
$$

Thus,

$$
A_{1} \leq A_{2} \text { and } B_{2} \leq B_{1} \text {. }
$$

Note that $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\left\{(t+1)_{1}\right\}$ otherwise, G_{1} and G_{2} are vertex-disjoint. Therefore, $G_{1}+G_{2}+\left((2 t+1)_{1}, 1_{2}, 0_{1}\right)$ is a cycle of size m.

Next, let E_{i} denote the set of edge labels in G_{i} for $1 \leq i \leq 2$. By P3 and Q3, we have edge lengths

$$
\begin{aligned}
& E_{1}=[2,2 t], \\
& E_{2}=[-(2 t-1),-1] .
\end{aligned}
$$

Moreover, the path $\left((2 t+1)_{1}, 1_{2}, 0_{1}\right)$ consists of edges lengths $-2 t$ and 1. Thus, C has edge lengths $\pm[1,2 t]$.

3.3.1 G consisting of one even cycle and one odd cycle

Let G of odd size n be the vertex-disjoint union of one even cycle and one odd cycle. In this section, we will show how to construct a G-decomposition of

Figure 3.9: The cycle C with paths G_{1} and G_{2} where $t=2$ in Lemma 3.10

Figure 3.10: The cycle C where $t=2$ in Lemma 3.10
$K_{(2 k+1) \times n}$ for all positive integers k and of $K_{k^{\prime} \times 2 n}$ for all integers $k^{\prime} \geq 3$. To obtain these results, it suffices to show that there exists an embedding of G that satisfies the statements in Lemma 3.1 and Lemma 3.2. Furthermore, if we combine these results with the results in Theorem 2.6, we obtain a G-decomposition of K_{v} where $v \equiv n(\bmod 2 n)$, unless $G=C_{4} \cup C_{5}$ and $v=9$. Furthermore, we obtain necessary and sufficient conditions for a G-decomposition of K_{v} when n is a prime power.

Lemma 3.11. Let G be vertex-disjoint union of a cycle C of size m and a path P of size $2 \ell-1$ where $m, \ell>0$ are integers and m is even. Let $n=m+2 \ell+1$ and let $K_{n, n}$ have vertex set $\mathbb{Z}_{n} \times[1,2]$ with the obvious vertex partition. Then there exists an embedding of G in $K_{n, n}$ with one edge of each length in $[-(n-1) / 2,(n-$ 1) $/ 2] \backslash\{ \pm z\}$ for some $z \in[1,(n-1) / 2]$ and such that the endpoints of P are 0_{1} and 0_{2}.

Proof. Let $n=m+2 \ell+1$ and $V\left(K_{n, n}\right)=\mathbb{Z}_{n} \times[1,2]$ with the obvious vertex partition. We proceed by cases depending on the congruence class of m modulo 8 .

Case 1. Suppose $m \equiv 2(\bmod 8)$. Let $m=8 t+2$ for some positive integer t. By Lemma 3.8, there exists an embedding of a cycle C of size m with edge lengths $\pm[2,4 t+4]$ in $K_{n, n}$. Furthermore, $V(C) \subseteq[0,4 t+2] \times[1,2]$.

We next give an embedding of P of size $2 \ell-1$ in $K_{n, n}$. If $\ell=1$, then by Lemma 3.3, there exists an embedding of a path P^{*} of size 1 using edge length 0 with endpoints 0_{1} and 0_{2}. Let $P=P^{*}+(4 t+3)$ with endpoints $(4 t+3)_{1}$ and $(4 t+3)_{2}$. Note that $4 t+3<8 t+5=n$. Thus, the edge set of G has one edge of each length $i \in[-(4 t+2), 4 t+2] \backslash\{ \pm 1\}=[-(n-1) / 2,(n-1) / 2] \backslash\{ \pm 1\}$.

Suppose that $\ell \geq 2$. By Lemma 3.3, there exists an embedding of a path P^{*} of size $2 \ell-1$ using edge lengths $\{-1,0,1\} \cup \pm[(4 t+3),(n-3) / 2]$ with endpoints 0_{1} and 0_{2}. In the lemma we would use $d_{1}=1, d_{2}=4 t+3, \ldots, d_{\ell-1}=(n-3) / 2$, so $V\left(P^{*}\right) \subseteq[0,(n-3) / 2] \times[1,2]$. Let $P=P^{*}+(4 t+3)$ with endpoints $(4 t+3)_{1}$ and $(4 t+3)_{2}$. Then $V(P) \subseteq[4 t+3,(n-3) / 2+(4 t+3)] \times[1,2]$. Note that $(n-3) / 2+(4 t+3)=(n+m+1) / 2=(2 n-2 \ell) / 2<n$ and P is vertex disjoint from C. Thus, the edge set of G has one each of each length $i \in[-(n-3) / 2,(n-3) / 2]$, except the edge lengths $\pm(n-1) / 2$. Figure 3.11 shows an embedding of C and P in $K_{n, n}$ where $t=1$ and $\ell=2$

Figure 3.11: An example of C and P in case 1 of Lemma 3.11

Case 2. Suppose $m \equiv 6(\bmod 8)$. Let $m=8 t+6$ where t is nonnegative integer.
Case 2.1. $t=0$. Let $C^{*}=\left\langle 0_{1}, 3_{2}, 2_{1}, 0_{2}, 3_{1}, 2_{2}\right\rangle$ be an embedding of C. Its edge lengths are $3,1,-2,-3,-1,2$.

We next give an embedding of P of size $2 \ell-1$ in $K_{n, n}$. If $\ell=1$, then by Lemma 3.3, there exists an embedding of a path P^{*} of size 1 using edge length 0 with endpoints 0_{1} and 0_{2}. Let $P=P^{*}+4$ with endpoints 4_{1} and 4_{2}. Note that $4<9=n$. Thus, the edge set of G has one edge of each length $i \in[-3,3]$, except the edge lengths ± 4.

Suppose that $\ell \geq 2$. By Lemma 3.3, there exists an embedding of a path P^{*} of size $2 \ell-1$ using edge lengths $\{0\} \cup \pm[4,(n-3) / 2]$ with endpoints 0_{1}
and 0_{2}. In the lemma, we would use $d_{1}=4, d_{2}=5, \ldots, d_{\ell-1}=(n-3) / 2$, so $V\left(P^{*}\right) \subseteq[0,(n-3) / 2] \times[1,2]$. Let $P=P^{*}+4$ with endpoints 4_{1} and 4_{2}. Then $V(P) \subseteq[4,(n-3) / 2+4] \times[1,2]$. Note that $(n-3) / 2+4=(n+5) / 2=$ $(2 n-2 \ell+2) / 2<n$ since $\ell>1$, and P is vertex disjoint from C. Thus, the edge set of G has one each of each length $i \in[-(n-3) / 2,(n-3) / 2]$, except the edge lengths $\pm(n-1) / 2$. Figure 3.12 shows an embedding of C and P in $K_{n, n}$ where $t=0$ and $\ell=5$.

Figure 3.12: An example of C and P in case 2.1 of Lemma 3.11
Case 2.2. $t \geq 1$. By Lemma 3.8, there exists an embedding of a cycle C of size m with edge lengths $\pm[1,4 t+4] \backslash\{ \pm 2\}$ in $K_{n, n}$. Furthermore, $V(C) \subseteq$ $[0,4 t+4] \times[1,2]$.

We next give an embedding of P of size $2 \ell-1$ in $K_{n, n}$. If $\ell=1$, then by Lemma 3.3, there exists an embedding of a path P^{*} of size 1 using edge length 0 with endpoints 0_{1} and 0_{2}. Let $P=P^{*}+(4 t+5)$ with endpoints $(4 t+5)_{1}$ and $(4 t+5)_{2}$. Note that $4 t+5<8 t+9=n$. Thus, the edge set of G has one edge of each length $i \in[-(4 t+4), 4 t+4] \backslash\{ \pm 2\}=[-(n-1) / 2,(n-1) / 2] \backslash\{ \pm 2\}$.

Suppose that $\ell \geq 2$. By Lemma 3.3, there exists an embedding of a path P^{*} of size $2 \ell-1$ using edge lengths $\{-2,0,2\} \cup \pm[4 t+5,(n-3) / 2]$ with endpoints 0_{1} and 0_{2}. In the lemma we would use $d_{1}=2, d_{2}=4 t+5, \ldots d_{\ell-1}=(n-3 / 2)$, so $V\left(P^{*}\right) \subseteq[0,(n-3) / 2] \times[1,2]$. Let $P=P^{*}+4 t+5$ with endpoints $(4 t+5)_{1}$ and $(4 t+5)_{2}$. Then $V(P) \subseteq[4 t+5,(n-3) / 2+(4 t+5)] \times[1,2]$. Note that $(n-3) / 2+(4 t+5)=(n+m+1) / 2=(2 n-2 \ell) / 2<n$ and P is vertex disjoint from C. Thus, the edge set of G has one each of each length $i \in[-(n-3) / 2,(n-3) / 2]$, except the edge lengths $\pm(n-1) / 2$. Figure 3.13 shows an embedding C and P in $K_{n, n}$ where $t=1$ and $\ell=3$.

Figure 3.13: An example of C and P in case 2.2 of Lemma 3.11
Case 3. Suppose $m \equiv 0(\bmod 4)$. Let $m=4 t$ for some positive integer t. By Lemma 3.10, there exists an embedding of a cycle C of size m with edge lengths $\pm[1,2 t]$ in $K_{n, n}$. Furthermore, $V(C) \subseteq[0,2 t+1] \times[1,2]$.

We next give an embedding of P of size $2 \ell-1$ in $K_{n, n}$. If $\ell=1$, then by Lemma 3.3, there exists an embedding of a path P^{*} of size 1 using edge length 0 with endpoints 0_{1} and θ_{2}. Let $P=P^{*}+(2 t+2)$ with endpoints $(2 t+2)_{1}$ and $(2 t+2)_{2}$. Note that $2 t+2<4 t+3=n$. Thus, the edge set of G has one edge of each length $i \in[-2 t, 2 t]$, except the edge lengths $\pm(2 t+1)$.

Suppose that $\ell \geq 2$. By Lemma 3.3, there exists an embedding of a path P^{*} of size $2 \ell-1$ using edge lengths $\{0\} \cup \pm[2 t+1,(n-3) / 2]$ with endpoints 0_{1} and 0_{2}. In the lemma we would use $d_{1}=2 t+1, d_{2}=2 t+2, \ldots, d_{\ell-1}=(n-3) / 2$, so $V\left(P^{*}\right) \subseteq[0,(n-3) / 2] \times[1,2]$. Let $P=P^{*}+(2 t+2)$ with endpoints $(2 t+2)_{1}$ and $(2 t+2)_{2}$. Then $V(P) \subseteq[2 t+2,(n-3) / 2+(2 t+2)] \times[1,2]$. Note that $(n-3) / 2+(2 t+2)=(n+m+1) / 2=(2 n-2 \ell) / 2<n$ and P is vertex disjoint from C. Thus, the edge set of G has one each of each length $i \in-(n-3) / 2,(n-3) / 2$], except the edge lengths $\pm(n-1) / 2$. Figure 3.14 shows an embedding of C and P in $K_{n, n}$ where $t=2$ and $\ell=5$.

Figure 3.14: An example of C and P in case 3 of Lemma 3.11

Theorem 3.12 is obtained by combining the results from Lemma 3.11 and Lemma 3.1 to show that there exists a G-decomposition of $K_{(2 k+1) \times n}$ for all positive integers k. Also, by combining the results from Lemma 3.11 and Lemma 3.2 to prove the existence of a G-decomposition of $K_{k^{\prime} \times 2 n}$ for all integers $k^{\prime} \geq 3$.

Theorem 3.12. Let G be a 2-regular graph of odd order n consisting of exactly two cycles. Then there exists a G-decomposition of $K_{(2 k+1) \times n}$ for all positive integers k, and of $K_{k^{\prime} \times 2 n}$ for all integer $k^{\prime} \geq 3$.

By combining the results from Theorem 2.6 and Theorem 3.12 we obtain the following theorem.

Theorem 3.13. Let G be a 2-regular graph of odd order n consisting of exactly two cycles. There exists a G-decomposition of K_{v} for all $v \equiv n(\bmod 2 n)$ unless $G=C_{4} \cup C_{5}$ and $v=9$.

Proof. In [5], it is shown that there exists a $\left(C_{4} \cup C_{5}\right)$-decomposition of K_{v} if and only if $v \equiv 1$ or $9(\bmod 18)$ and $v \neq 9$. For all other G, let $v=2 k n+n$. Observe that $K_{v}=(2 k+1) K_{n} \cup K_{(2 k+1) \times n}$. By Theorem 2.6, there exists a G decomposition of K_{n} and hence of $(2 k+1) K_{n}$ and by Theorem 3.12, there exists a G-decomposition of $K_{(2 k+1) \times n}$. The result follows.

If n in Theorem 3.12 is a power of a prime, then we have the following corollary.
Corollary 3.14. Let G be a 2-regular graph of odd order n consisting of exactly two cycles. If n is a prime power, then there exists a G-decomposition of K_{v} if and only if $v \equiv 1$ or $n(\bmod 2 n)$, unless $G=C_{4} \cup C_{5}$ and $v=9$.

Proof. The necessary conditions for the existence of a G-decomposition of K_{v} are $n \mid v(v-1) / 2$ and $v \geq n$ is odd. If $n=p^{k}$, where p is prime, then we have $2 p^{k} \mid v(v-1)$ and $v \geq p^{k}$ is odd. Since v and $v-1$ are relatively prime, either $p^{k} \mid v$ or $p^{k} \mid v-1$. Thus, $v \equiv 1$ or $p^{k}\left(\bmod 2 p^{k}\right)$.

It is known that there exists a G-decomposition of K_{v} for all $v \equiv 1(\bmod 2 n)$ (see [11] and [5]). By Theorem 3.13, there exists a G-decomposition of K_{v} for all $v \equiv n(\bmod 2 n)$ unless $G=C_{4} \cup C_{5}$ and $v=9$. The result follows.

3.3.2 G consisting of any number of even cycles and one odd cycle

In this section, we extend the idea of the construction in Subsection 3.3.1 to prove that there exists a G-decomposition of $K_{(2 k+1) \times n}$ for all positive integers k and of $K_{k^{\prime} \times 2 n}$ for all integers $k^{\prime} \geq 3$ where G of size n is an almost-bipartite graph consisting of any number of even cycles and one odd cycle. For this construction, we need to use the properties of α-labelings of even cycles to get a new labeling.

Let M_{i} be a bipartite graph of size m_{i}, with α-labeling f_{i}, critical value λ_{i}, and vertex bipartition $\left\{A_{i}, B_{i}\right\}$ for all i such that $1 \leq i \leq w$. Let M of size m be a disjoint-union of w bipartite graphs, M_{i} of size m_{i} where $i=1,2, \ldots, w$. That is, $M=M_{1} \cup M_{2} \cup \cdots \cup M_{w}$ with size $m=m_{1}+m_{2}+\cdots+m_{w}$.

Lemma 3.15. For $1 \leq i \leq w$, let M_{i} be a bipartite graph of size m_{i} that admits an α-labeling with critical value λ_{i}. If $\lambda_{1} \geq \lambda_{\left\lceil\frac{w}{2}\right\rceil+1} \geq \lambda_{2} \geq \lambda_{\left\lceil\frac{w}{2}\right\rceil+2} \geq \cdots$, then

$$
0 \leq \sum_{i=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{i}-\sum_{i=\left\lceil\frac{w}{2}\right\rceil+1}^{w} \lambda_{i}<m_{1}
$$

Proof. Let $k=w$ if w is even and let $k=(w+1) / 2$ if w is odd. Then by the hypothesis, $\lambda_{1} \geq \lambda_{\left\lceil\frac{w}{2}\right\rceil+1} \geq \lambda_{2} \geq \lambda_{\left\lceil\frac{w}{2}\right\rceil+2} \geq \cdots \geq \lambda_{k}$. Hence we have both of the following:

$$
0 \leq \lambda_{1}-\lambda_{\left\lceil\frac{w}{2}\right\rceil+1}+\lambda_{2}-\lambda_{\left\lceil\frac{w}{2}\right\rceil+2}+\cdots+(-1)^{w-1} \lambda_{k}=\sum_{i=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{i}-\sum_{i=\left\lceil\frac{w}{2}\right\rceil+1}^{w} \lambda_{i}
$$

and

$$
0 \leq \lambda_{\left\lceil\frac{w}{2}\right\rceil+1}-\lambda_{2}+\lambda_{\left\lceil\frac{w}{2}\right\rceil+2}-\lambda_{3}+\cdots+(-1)^{w-2} \lambda_{k}=\sum_{i=\left\lceil\frac{w}{2}\right\rceil+1}^{w} \lambda_{i}-\sum_{i=2}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{i} .
$$

Therefore,

$$
0 \leq \sum_{i=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{i}-\sum_{i=\left\lceil\frac{w}{2}\right\rceil+1}^{w} \lambda_{i}=\lambda_{1}-\left(\sum_{i=\left\lceil\frac{w}{2}\right\rceil+1}^{w} \lambda_{i}-\sum_{i=2}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{i}\right) \leq \lambda_{1}<m_{1}
$$

Lemma 3.16. For $1 \leq i \leq w$, let M_{i} be the bipartite graph of size m_{i} with vertex bipartition $\left\{A_{i}, B_{i}\right\}$ that admits α-labeling f_{i} with critical value $\lambda_{i}=\max \left(f_{i}\left(A_{i}\right)\right)$ such that $\lambda_{1} \geq \lambda_{\left\lceil\frac{w}{2}\right\rceil+1} \geq \lambda_{2} \geq \lambda_{\left\lceil\frac{w}{2}\right\rceil+2} \geq \cdots$. Let $M=M_{1} \cup M_{2} \cup \cdots \cup M_{w}$ and $m=\sum_{i=1}^{w} m_{i}$. Let $A_{L}=\bigcup_{i=1}^{\left\lceil\frac{w}{2}\right\rceil} A_{i}$ and $A_{R}=\bigcup_{i=\left\lceil\frac{w}{2}\right\rceil+1}^{w} A_{i}$ and define B_{L} and B_{R} analogously. Let a, b, c, d be integers such that $0 \leq a<c$ and $b, d \in[a, c]$, and let $n=m+c+d+1$. Define a labeling function $f: V(M) \rightarrow[a, n-1]$ by

$$
f(v)= \begin{cases}f_{i}(v)+\sum_{j=1}^{i-1}\left(\lambda_{j}+1\right)+a, & v \in A_{i} \subseteq A_{L} \\ f_{i}(v)+\sum_{j=i+1}^{w}\left(\lambda_{j}+1\right)+b, & v \in A_{i} \subseteq A_{R} \\ f_{i}(v)+\sum_{j=1}^{i-1}\left(\lambda_{j}+1\right)+a+\sum_{j=i+1}^{\left.\Gamma \frac{w}{2}\right\rceil} m_{j}+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+i}^{w} m_{j}+c, & v \in B_{i} \subseteq B_{L} \\ f_{i}(v)+\sum_{j=i+1}^{w}\left(\lambda_{j}+1\right)+b+\sum_{j=1}^{i-\left\lceil\frac{w}{2}\right\rceil} m_{j}+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{i-1} m_{j}+d, & v \in B_{i} \subseteq B_{R}\end{cases}
$$

Then both $\left.f\right|_{A_{L} \cup B_{L}}$ and $\left.f\right|_{A_{R} \cup B_{R}}$ are injective. Furthermore, $f\left(A_{L}\right) \cap f\left(B_{R}\right)=$ $\varnothing=f\left(A_{R}\right) \cap f\left(B_{L}\right)$.

Proof. First, we consider $\left.f\right|_{\left(A_{L} \cup B_{L}\right)}$. For $1 \leq i \leq\left\lceil\frac{w}{2}\right\rceil$, we have

$$
\begin{gathered}
\min \left(f\left(A_{i}\right)\right)=0+\sum_{j=1}^{i-1}\left(\lambda_{j}+1\right)+a, \\
\max \left(f\left(B_{i}\right)\right)=m_{i}+\sum_{j=1}^{i-1}\left(\lambda_{j}+1\right)+a+\sum_{j=i+1}^{\left\lceil\frac{w}{2}\right\rceil} m_{j}+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+i}^{w} m_{j}+c .
\end{gathered}
$$

Note that

$$
\min \left(f\left(A_{1}\right)\right)=a \text { and } \max \left(f\left(B_{1}\right)\right)=m+c+a<m+c+d+1=n
$$

For $1 \leq i \leq\left\lceil\frac{w}{2}\right\rceil-1$, we have

$$
\begin{aligned}
\max \left(f\left(A_{i}\right)\right) & =\lambda_{i}+\sum_{j=1}^{i-1}\left(\lambda_{j}+1\right)+a=\sum_{j=1}^{i}\left(\lambda_{j}+1\right)+a-1=\min \left(f\left(A_{i+1}\right)\right)-1, \\
\min \left(f\left(B_{i}\right)\right) & =\left(\lambda_{i}+1\right)+\sum_{j=1}^{i-1}\left(\lambda_{j}+1\right)+a+\sum_{j=i+1}^{\left\lceil\frac{w}{2}\right\rceil} m_{j}+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+i}^{w} m_{j}+c \\
& =\sum_{j=1}^{i}\left(\lambda_{j}+1\right)+a+\left(\sum_{j=i+2}^{\left\lceil\frac{w}{2}\right\rceil} m_{j}+m_{i+1}\right)+\left(\sum_{j=\left\lceil\frac{w}{2}\right\rceil+i+1}^{w} m_{j}+m_{\left\lceil\frac{w}{2}\right\rceil+i}\right)+c \\
& =\left(m_{i+1}+\sum_{j=1}^{i}\left(\lambda_{i}+1\right)+a+\sum_{j \leq i+2}^{\left\lceil\frac{w}{2}\right\rceil} m_{j}+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+i+1}^{w} m_{j}+c\right)+m_{\left\lceil\frac{w}{2}\right\rceil+i} \\
& =\max \left(f\left(B_{i+1}\right)\right)+m_{\left\lceil\frac{w}{2}\right\rceil+i}
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\max \left(f\left(A_{\left\lceil\frac{w}{2}\right\rceil}\right)\right) & =\lambda_{\left\lceil\frac{w}{2}\right\rceil}+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil-1}\left(\lambda_{j}+1\right)+a \\
& <\left(\lambda_{\left\lceil\frac{w}{2}\right\rceil}+1\right)+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil-1}\left(\lambda_{j}+1\right)+a+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+\left\lceil\frac{w}{2}\right\rceil}^{w} m_{j}+c \\
& =\left(\lambda_{\left\lceil\frac{w}{2}\right\rceil}+1\right)+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil-1}\left(\lambda_{j}+1\right)+a+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{\left\lceil\frac{w}{2}\right\rceil} m_{j}+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+\left\lceil\frac{w}{2}\right\rceil}^{w} m_{j}+c \\
& =\min \left(f\left(B_{\left\lceil\frac{w}{2}\right\rceil}\right)\right) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
a \leq f\left(A_{1}\right)<f\left(A_{2}\right)<\cdots<f\left(A_{\left\lceil\frac{w}{2}\right\rceil}\right)<f\left(B_{\left\lceil\frac{w}{2}\right\rceil}\right)<f\left(B_{\left\lceil\frac{w}{2}\right\rceil-1}\right) & <\cdots \\
\cdots & \cdots f\left(B_{1}\right) \leq n-1 .
\end{aligned}
$$

Next, we consider $\left.f\right|_{A_{R} \cup B_{R}}$. Note that for $\left\lceil\frac{w}{2}\right\rceil+1 \leq i \leq w$, we have

$$
\begin{gathered}
\max \left(f\left(A_{i}\right)\right)=\lambda_{i}+\sum_{j=i+1}^{w}\left(\lambda_{j}+1\right)+b \\
\min \left(f\left(B_{i}\right)\right)=\left(\lambda_{i}+1\right)+\sum_{j=i+1}^{w}\left(\lambda_{j}+1\right)+b+\sum_{j=1}^{i-\left\lceil\frac{w}{2}\right\rceil} m_{j}+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{i-1} m_{j}+d
\end{gathered}
$$

and for $\left\lceil\frac{w}{2}\right\rceil+1 \leq i \leq w-1$, we have

$$
\begin{aligned}
& \min \left(f\left(A_{i}\right)\right)=0+\sum_{j=i+1}^{w}\left(\lambda_{j}+1\right)+b \\
&=\left(\lambda_{i+1}+\sum_{j=i+2}^{w}\left(\lambda_{j}+1\right)+b\right)+1 \\
&=\max \left(f\left(A_{i+1}\right)\right)+1, \\
& \max \left(f\left(B_{i}\right)\right)= m_{i}+\sum_{j=i+1}^{w}\left(\lambda_{j}+1\right)+b+\sum_{j=1}^{i-\left\lceil\frac{w}{2}\right\rceil} m_{j}+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{i-1} m_{j}+d \\
&= m_{i}+\left(\sum_{j=i+2}^{w}\left(\lambda_{j}+1\right)+\left(\lambda_{i+1-\left\lceil\frac{w}{2}\right\rceil}^{i+1))+b+\left(\sum_{j=1} m_{j}-m_{i+1-\left\lceil\frac{w}{2}\right\rceil}\right)+}\right.\right. \\
&\left(\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{i} m_{j}=m_{i}\right)+d \\
&=\left(\left(\lambda_{i+1}+1\right)+\sum_{j \neq i+2}^{w}\left(\lambda_{j}+1\right)+b+\sum_{j=1}^{i+1-\left\lceil\frac{w}{2}\right\rceil} m_{j}+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{i} m_{j}+d\right)-m_{i+1-\left\lceil\frac{w}{2}\right\rceil} \\
&= \min \left(f\left(B_{i+1}\right)\right)-m_{i+1-\left\lceil\frac{w}{2}\right\rceil .}
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\max \left(f\left(A_{w}\right)\right) & =\lambda_{w}+\sum_{j=i+1}^{w}\left(\lambda_{j}+1\right)+b \text { RIVNERSITY } \\
& <\left(\lambda_{w}+1\right)+\sum_{j=i+1}^{w}\left(\lambda_{j}+1\right)+b+\sum_{j=1}^{w-\left\lceil\frac{w}{2}\right\rceil} m_{j}+\sum_{j=1}^{w-1} m_{j}+d \\
& =\min \left(f\left(B_{w}\right)\right)
\end{aligned}
$$

Also, observe that

$$
\min \left(f\left(A_{w}\right)\right)=b \geq a \text { and } \max \left(f\left(B_{w}\right)\right) \leq m+b+d<m+c+d+1=n
$$

Hence,

$$
\begin{aligned}
a \leq f\left(A_{w}\right)<f\left(A_{w-1}\right)<\cdots<f\left(A_{\left\lceil\frac{w}{2}\right\rceil+1}\right)<f\left(B_{\left\lceil\frac{w}{2}\right\rceil+1}\right)< & f\left(B_{\left\lceil\frac{w}{2}\right\rceil+2}\right)<\cdots \\
& \cdots<f\left(B_{w}\right) \leq n-1 .
\end{aligned}
$$

Since for each $i \in[1, w]$ the α-labeling f_{i} is injective, f is also injective on each A_{i} and B_{i}, and the first result follows. Finally, consider

$$
\begin{equation*}
\max \left(f\left(A_{L}\right)\right)=\max \left(f\left(A_{\left\lceil\frac{w}{2}\right\rceil}\right)\right)=\lambda_{\left\lceil\frac{w}{2}\right\rceil}+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil-1}\left(\lambda_{j}+1\right)+a=\left\lceil\frac{w}{2}\right\rceil-1+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+a . \tag{3.1}
\end{equation*}
$$

By Lemma 3.15, we have

$$
\begin{aligned}
\max \left(f\left(A_{L}\right)\right) & <\left\lceil\frac{w}{2}\right\rceil-1+m_{1}+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{w} \lambda_{j}+a \\
& <\lambda_{\left\lceil\frac{w}{2}\right\rceil+1}+m_{1}+\left(\left\lceil\frac{w}{2}\right\rceil-1+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{w} \lambda_{j}\right)+b+d \\
& \leq \lambda_{\left\lceil\frac{w}{2}\right\rceil+1}+m_{1}+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{w}\left(\lambda_{j}+1\right)+b+d \\
& =\lambda_{\left\lceil\frac{n}{2}\right\rceil+1}+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{w}\left(\lambda_{j}+1\right)+b+\sum_{j=1}^{\left(\lceil\lceil \rceil+1)-\left\lceil\frac{w}{2}\right\rceil\right.} m_{j}+\sum_{j=\left\lceil\left\lceil\frac{w}{2}\right\rceil+1\right.}^{\left(\left\lceil\frac{w}{2}\right\rceil+1\right)-1} m_{j}+d \\
& =\min \left(f\left(B_{\left\lceil\frac{w}{2}\right\rceil+1}\right)\right)=\min \left(f\left(B_{R}\right)\right) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \min \left(f\left(B_{L}\right)\right)=\min \left(f\left(B_{\left\lceil\frac{w}{2}\right\rceil}\right)\right) \\
& =\left(\lambda_{\left\lceil\frac{w}{2}\right\rceil}+1\right)+\sum_{j=1}^{\text {จฬาลโ步 }\rceil-1}\left(\lambda_{j}+1\right)+a+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{\left\lceil\frac{w}{2}\right\rceil} m_{j}+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+\left\lceil\frac{w}{2}\right\rceil}^{w} m_{j}+c \\
& =\left(\lambda_{\left\lceil\frac{w}{2}\right\rceil}+1\right)+\left(\left\lceil\frac{w}{2}\right\rceil-1+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil-1} \lambda_{j}\right)+a+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{\left\lceil\frac{w}{2}\right\rceil} m_{j}+\sum_{j=\left\lceil\frac{w}{2}\right\rceil\left\lceil\left\lceil\frac{w}{2}\right\rceil\right.}^{w} m_{j}+c \\
& =\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+a+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+\left\lceil\frac{w}{2}\right\rceil}^{w} m_{j}+c .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\min \left(f\left(B_{L}\right)\right)=\min \left(f\left(B_{\left\lceil\frac{w}{2}\right\rceil}\right)\right)=\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+a+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+\left\lceil\frac{w}{2}\right\rceil}^{w} m_{j}+c, \tag{3.2}
\end{equation*}
$$

and by Lemma 3.15,

$$
\begin{aligned}
\min \left(f\left(B_{L}\right)\right) & \geq\left\lceil\frac{w}{2}\right\rceil+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{w} \lambda_{j}+a+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+\left\lceil\frac{w}{2}\right\rceil}^{w} m_{j}+c \\
& >\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{w}\left(\lambda_{j}+1\right)+a+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+\left\lceil\frac{w}{2}\right\rceil}^{w} m_{j}+c \\
& \geq\left(\sum_{j=\left\lceil\frac{w}{2}\right\rceil+2}^{w}\left(\lambda_{j}+1\right)+\left(\lambda_{\left\lceil\frac{w}{2}\right\rceil+1}+1\right)\right)+b \\
& >\lambda_{\left\lceil\frac{w}{2}\right\rceil+1}+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+2}^{w}\left(\lambda_{j}+1\right)+b \\
& =\max \left(f\left(A_{\left\lceil\frac{w}{2}\right\rceil+1}\right)\right)=\max \left(f\left(A_{R}\right)\right),
\end{aligned}
$$

and thus the second result follows.

Example 3.17. We illustrate the results from Lemma 3.16 here.
Let $M=M_{1} \cup M_{2} \cup M_{3}$ where $M_{1}=C_{6} \cup C_{6}, M_{2}=C_{8}$ and $M_{3}=C_{12}$. In this example, $m=32$ and $w=3$. By Theorem 2.7 and Theorem 2.8, each M_{i} admits an α-labeling f_{i} with critical value λ_{i} and vertex bipartition $\left\{A_{i}, B_{i}\right\}$ shown as in Figure 3.15. Note that $\lambda_{1}=6, \lambda_{2}=3$ and $\lambda_{3}=5$ and $\lambda_{1} \geq \lambda_{3} \geq \lambda_{2}$. Let

Figure 3.15: A graph $M=M_{1} \cup M_{2} \cup M_{3}$ where each of M_{i} admits an α-labeling $A_{L}=A_{1} \cup A_{2}, A_{R}=A_{3}, B_{L}=B_{1} \cup B_{2}$, and $B_{R}=B_{3}$, and let $a=b=4=c=d$.

Let $n=32+4+4+1=41$. Define a labeling function $f: V(M) \rightarrow[4,40]$ by

$$
f(v)= \begin{cases}f_{i}(v)+\sum_{j=1}^{i-1}\left(\lambda_{j}+1\right)+4, & v \in A_{1} \cup A_{2} \\ f_{i}(v)+4, & v \in A_{3} \\ f_{i}(v)+\sum_{j=1}^{i-1}\left(\lambda_{j}+1\right)+\sum_{j=i+1}^{2} m_{j}+\sum_{j=2+i}^{3} m_{j}+8, & v \in B_{1} \cup B_{2} \\ f_{i}(v)+\sum_{j=1}^{i-2} m_{j}+8, & v \in B_{3}\end{cases}
$$

Then we have the graph M that satisfies a new labeling f as shown in Figure 3.16. We can observe that $\left.f\right|_{A_{L} \cup B_{L}}$ and $\left.f\right|_{A_{R} \cup B_{R}}$ are injective. Furthermore, $f\left(A_{L}\right) \cap f\left(B_{R}\right)=\varnothing=f\left(A_{R}\right) \cap f\left(B_{L}\right)$.

Figure 3.16: A labeling f of $M=M_{1} \cup M_{2} \cup M_{3}$

Next, we show how to obtain an embedding of M in $K_{n, n}$.
Lemma 3.18. Let $a, b, c, d, m_{i}, m, w, M, f, A_{L}, A_{R}, B_{L}$ and B_{R} be defined as for Lemma 3.16. Let $n=m+c+d+1$ and let $K_{n, n}$ have vertex set $\mathbb{Z}_{n} \times[1,2]$ with the obvious vertex partition. Define a labeling function $f^{\prime}: V(M) \rightarrow V\left(K_{n, n}\right)$ by

$$
f^{\prime}(v)= \begin{cases}f(v)_{1}, & \text { if } v \in A_{L} \\ f(v)_{2}, & \text { if } v \in A_{R} \\ f(v)_{2}, & \text { if } v \in B_{L} \\ f(v)_{1}, & \text { if } v \in B_{R}\end{cases}
$$

Then f^{\prime} is an injective labeling under M. Furthermore, define $\bar{f}^{\prime}: E(M) \rightarrow$ $[0, m+c+d]$ such that if $e=\left\{v_{1}, v_{2}\right\} \in E(M)$, then $\bar{f}^{\prime}(e)=f^{\prime}\left(v_{2}\right)-f^{\prime}\left(v_{1}\right)$ if $f^{\prime}\left(v_{2}\right) \geq f^{\prime}\left(v_{1}\right)$ and $\bar{f}^{\prime}(e)=n+f^{\prime}\left(v_{2}\right)-f^{\prime}\left(v_{1}\right)$, otherwise. Then $\bar{f}^{\prime}(E(M))=$ $[c+1, c+m]$.

Proof. Recall that for $1 \leq i \leq w$, the set of edge lengths $\bar{f}_{i}\left(E\left(M_{i}\right)\right)=\left[1, m_{i}\right]$, because f_{i} is an α-labeling of M_{i}. Also, Lemma 3.16 ensures us that f^{\prime} is injective. We now consider the set of edge lengths of M under f^{\prime}. Note that

$$
\bar{f}^{\prime}\left(E\left(M_{\left\lceil\frac{w}{2}\right\rceil}\right)\right)= \begin{cases}{\left[c+1, c+m_{\left\lceil\frac{w}{2}\right\rceil}\right],} & \text { if } w \text { odd } \\ {\left[c+m_{w}+1, c+m_{w}+m_{\left\lceil\frac{w}{2}\right\rceil}\right],} & \text { if } w \text { even }\end{cases}
$$

We have edge labels

$$
\begin{aligned}
\bar{f}^{\prime}\left(E\left(M_{w}\right)\right) & =n-\left(\bar{f}_{w}\left(E\left(M_{w}\right)\right)+\sum_{j=1}^{w-\left\lceil\frac{w}{2}\right\rceil} m_{j}+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{w-1} m_{j}+d\right) \\
& =\left(\sum_{i=1}^{w} m_{j}+c+d \neq 1\right)-\left(\left[1, m_{w}\right]+\sum_{j=1}^{w-\left\lceil\left\lceil\frac{w}{2}\right\rceil\right.} m_{j}+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{w-1} m_{j}+d\right) \\
& =(c+1)+\left(\sum_{j=1}^{w} m_{j}-\sum_{j=1}^{w-\left\lceil\frac{w}{2}\right\rceil} m_{j}-\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{w-1} m_{j}\right)-\left[1, m_{w}\right] \\
& =(c+1)+\left(\sum_{j=1}^{w} m_{j}-\sum_{j=1}^{w-\left\lceil\frac{w}{2}\right\rceil} m_{j}-\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{w-1} m_{j}\right)+\left[0, m_{w}-1\right]-m_{w} \\
& =c+\left(\sum_{j=w-\left\lceil\frac{w}{2}\right\rceil+1}^{w} m_{j}-\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{w-1} m_{j}\right)+\left[1, m_{w}\right]-m_{w} \\
& =\left[1, m_{w}\right]+c+\sum_{j=w-\left\lceil\frac{w}{2}\right\rceil+1}^{w} m_{j}-\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{w} m_{j} .
\end{aligned}
$$

That is

$$
\bar{f}^{\prime}\left(E\left(M_{w}\right)\right)= \begin{cases}{\left[c+m_{\left\lceil\frac{w}{2}\right\rceil}+1, c+m_{\left\lceil\frac{w}{2}\right\rceil}+m_{w}\right],} & \text { if } w \text { odd } \\ {\left[c+1, c+m_{w}\right],} & \text { if } w \text { even }\end{cases}
$$

Thus $\bar{f}^{\prime}\left(E\left(M_{w}\right)\right)>\bar{f}^{\prime}\left(E\left(M_{\left\lceil\frac{w}{2}\right\rceil}\right)\right)$ if w is odd and $\bar{f}^{\prime}\left(E\left(M_{w}\right)\right)<\bar{f}^{\prime}\left(E\left(M_{\left\lceil\frac{w}{2}\right\rceil}\right)\right)$ if w is even. Next, for $1 \leq i \leq\left\lceil\frac{w}{2}\right\rceil-1$, we have edge lengths

$$
\begin{aligned}
\bar{f}^{\prime}\left(E\left(M_{i}\right)\right) & =\bar{f}_{i}\left(E\left(M_{i}\right)\right)+\sum_{j=i+1}^{\left\lceil\frac{w}{2}\right\rceil} m_{j}+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+i}^{w} m_{j}+c \\
& =\left[1, m_{i}\right]+\sum_{j=i+1}^{\left\lceil\frac{w}{2}\right\rceil} m_{j}+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+i}^{w} m_{j}+c .
\end{aligned}
$$

Note that $\max \left(\bar{f}^{\prime}\left(E\left(M_{1}\right)\right)\right)=c+\sum_{j=1}^{w} m_{j}=c+m$.
For $1 \leq i \leq\left\lceil\frac{w}{2}\right\rceil-1$, we have edge labels

$$
\begin{aligned}
\bar{f}^{\prime}\left(E\left(M_{\left\lceil\frac{w}{2}\right\rceil+i}\right)\right) & =n-\left(\bar{f}_{\left\lceil\frac{w}{2}\right\rceil+i}\left(E\left(M_{\left\lceil\frac{w}{2}\right\rceil+i}\right)\right)+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil+\left(i-\left\lceil\frac{w}{2}\right\rceil\right)} m_{j}+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1} m_{j}+d\right) \\
& =\left(\sum_{i=1}^{w} m_{j}+(c+d)+1\right)-\left(\left[1, m_{\left\lceil\frac{w}{2}\right\rceil+i}\right]+\sum_{j=1}^{i} m_{j}+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{\lceil \rceil+i-1} m_{j}+d\right) \\
& =(c+1)+\left(\sum_{j=1}^{w} m_{j}-\sum_{j=1}^{i} m_{j}-\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{\left\lceil\frac{w}{2}\right\rceil+i-1} m_{j}\right)-\left[1, m_{\left\lceil\frac{w}{2}\right\rceil+i}\right] \\
& =(c+1)+\left(\sum_{j=1}^{w} m_{j}-\sum_{j=1}^{i} m_{j}-\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{\lceil \rceil+i-1} m_{j}\right)+\left[0, m_{\left\lceil\frac{w}{2}\right\rceil+i}-1\right]-m_{\left\lceil\frac{w}{2}\right\rceil+i} \\
& =c+\left(\sum_{j=i+1}^{w} m_{j}-\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{\left\lceil\frac{w}{2}\right\rceil+i-1} m_{j}\right)+\left[1, m_{\left\lceil\frac{w}{2}\right\rceil+i}\right]-m_{\left\lceil\frac{w}{2}\right\rceil+i}^{w} \\
& =\left[1, m_{\left\lceil\frac{w}{2}\right\rceil+i}\right]+c+\sum_{j=i+1}^{\infty} m_{j}-\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{\left\lceil\frac{w}{2}\right\rceil+i} m_{j} .
\end{aligned}
$$

Since

$$
\begin{aligned}
\sum_{j=i+1}^{\left\lceil\frac{w}{2}\right\rceil} m_{j}+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+i}^{w} m_{j} & =\sum_{j=i+1}^{\left\lceil\frac{w}{2}\right\rceil} m_{j}+\left(\sum_{j=\left\lceil\frac{w}{2}\right\rceil+i+1}^{w} m_{j}+m_{\left\lceil\frac{w}{2}\right\rceil+i}\right) \\
\text { CHULALONG } & =\left(\sum_{j=i+1}^{\left\lceil\frac{w}{2}\right\rceil} m_{j}+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+i+1}^{w} m_{j}\right)+m_{\left\lceil\frac{w}{2}\right\rceil+i} \\
& =\sum_{j=i+1}^{w} m_{j}-\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{\left\lceil\frac{w}{2}\right\rceil+i} m_{j}+m_{\left\lceil\frac{w}{2}\right\rceil+i},
\end{aligned}
$$

we have

$$
\bar{f}^{\prime}\left(E\left(M_{i}\right)\right)=\left[1, m_{i}\right]+\max \left(\bar{f}^{\prime}\left(E\left(M_{\left\lceil\frac{w}{2}\right\rceil+i}\right)\right)\right) .
$$

Since

$$
\begin{aligned}
\sum_{j=i+1}^{w} m_{j}-\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{\left\lceil\frac{w}{2}\right\rceil+i} m_{j} & =\left(\sum_{j=i+1}^{\left\lceil\frac{w}{2}\right\rceil} m_{j}+m_{i+1}\right)+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+i+2}^{w} m_{\left\lceil\frac{w}{2}\right\rceil+j} \\
& =\sum_{j=i+1}^{\left\lceil\frac{w}{2}\right\rceil} m_{j}+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+i+2}^{w} m_{\left\lceil\frac{w}{2}\right\rceil+j}+m_{i+1}
\end{aligned}
$$

we have

$$
\bar{f}^{\prime}\left(E\left(M_{\left\lceil\frac{w}{2}\right\rceil+i}\right)\right)=\left[1, m_{\left\lceil\frac{w}{2}\right\rceil+i}\right]+\max \left(\bar{f}^{\prime}\left(E\left(M_{i+1}\right)\right)\right) .
$$

Therefore, all edge lengths of M are distinct because

$$
\begin{array}{r}
c+m \geq \bar{f}^{\prime}\left(E\left(M_{1}\right)\right)>\bar{f}^{\prime}\left(E\left(M_{\left\lceil\frac{w}{2}\right\rceil+1}\right)\right)>\bar{f}^{\prime}\left(E\left(M_{2}\right)\right)>\bar{f}^{\prime}\left(E\left(M_{\left\lceil\frac{w}{2}\right\rceil+2}\right)\right)>\cdots \\
\cdots>\bar{f}^{\prime}\left(E\left(M_{k}\right)\right),
\end{array}
$$

where $k=\left\lceil\frac{w}{2}\right\rceil$ if w is odd and $k=w$ if w is even. Note that

$$
\min \left(\bar{f}^{\prime}\left(E\left(M_{k}\right)\right)\right)=c+1
$$

Since $\overline{f^{\prime}}\left(E\left(M_{i}\right)\right) \cap \bar{f}^{\prime}\left(E\left(M_{j}\right)\right) \equiv \varnothing$ for all $i \neq j$, and $|E(M)|=m$, we have $\bar{f}^{\prime}(E(M))=[c+1, c+m]$.

Example 3.19. We illustrate the results from Lemma 3.18 here.
Let $M=M_{1} \cup M_{2} \cup M_{3}$ where $M_{1}=C_{6} \cup C_{6}, M_{2}=C_{8}$ and $M_{3}=C_{12}$. Then M is the same graph in Example 3.17 and all vertices of each M_{i} were labelled as the graph on the top in Figure 3.17. Let $a, b, c, d, m_{i}, m, n, w, f, A_{L}, A_{R}, B_{L}$, and B_{R} be defined as for Example 3.17. Recall that $m=32, w=3, n=41$, and $a=b=4=c=d$. Let $V\left(K_{41,41}\right)=\mathbb{Z}_{41} \times[1,2]$ with obvious vertex partition. Define a labeling function $f^{\prime}: V(M) \rightarrow V\left(K_{41,41}\right)$ by

$$
f^{\prime}(v)= \begin{cases}f(v)_{1}, & \text { if } v \in A_{L}=A_{1} \cup A_{2} \\ f(v)_{2}, & \text { if } v \in A_{R}=A_{3} \\ f(v)_{2}, & \text { if } v \in B_{L}=B_{1} \cup B_{2} \\ f(v)_{1}, & \text { if } v \in B_{R}=B_{3}\end{cases}
$$

By using the labeling f^{\prime}, we can embed M in $K_{41,41}$ as Figure 3.17. Observe that f^{\prime} is an injective labeling under M. Furthermore, define $\bar{f}^{\prime}: E(M) \rightarrow[0,40]$ such that if $e=\left\{v_{1}, v_{2}\right\} \in E(M)$, then $\bar{f}^{\prime}(e)=f^{\prime}\left(v_{2}\right)-f^{\prime}\left(v_{1}\right)$ if $f^{\prime}\left(v_{2}\right) \geq f^{\prime}\left(v_{1}\right)$ and $\bar{f}^{\prime}(e)=n+f^{\prime}\left(v_{2}\right)-f^{\prime}\left(v_{1}\right)$, otherwise. Then $\bar{f}^{\prime}(E(M))=[5,36]$.

In Corollary 3.20, we give bounds on the labels of the graph M that is embedded in $K_{n, n}$.

Figure 3.17: An embedding of $M=M_{1} \cup M_{2} \cup M_{3}$ in $K_{41,41}$ by using the labeling f^{\prime}

Corollary 3.20. Let $a, b, c, d, m_{i}, m, w, M, A_{L}, A_{R}, B_{L}, B_{R}, f$, and f^{\prime} be defined as for Lemmas 3.16-3.18, and $n=m+c+d+1$. Let $x=\max \left\{f^{\prime}\left(A_{L}\right), f^{\prime}\left(A_{R}\right)\right\}$ and $y=\min \left\{f^{\prime}\left(B_{L}\right), f^{\prime}\left(B_{R}\right)\right\}$. Then $f^{\prime}(M) \subseteq([a, x] \cup[y, n-1]) \times[1,2]$.

Proof. Let $K_{n, n}$ have vertex set $\mathbb{Z}_{n} \times[1,2]$ with the obvious vertex partition.
Recall that $f: V(M) \rightarrow[a, n-1]$ and $f^{\prime}: V(M) \rightarrow V\left(K_{n, n}\right)$ such that $f^{\prime}=f$. Since $f\left(A_{L}\right)<f\left(B_{L}\right)$ and $f\left(A_{R}\right)<f\left(B_{R}\right)$, we have $\max \left(f^{\prime}\left(A_{L}\right)\right)<\min \left(f^{\prime}\left(B_{L}\right)\right)$ and $\max \left(f^{\prime}\left(A_{R}\right)\right)<\min \left(f^{\prime}\left(B_{R}\right)\right)$. Moreover, in the last part of the proof of Lemma 3.16, we showed that

$$
\max \left(f\left(A_{L}\right)\right)<\min \left(f\left(B_{R}\right)\right) \text { and } \max \left(f\left(A_{R}\right)\right)<\min \left(f\left(B_{L}\right)\right)
$$

Thus,

$$
\begin{aligned}
& \max \left(f^{\prime}\left(A_{L}\right)\right)=\max \left(\left(f\left(A_{L}\right)\right)_{1}\right)<\min \left(\left(f\left(B_{R}\right)\right)_{1}\right)=\min \left(f^{\prime}\left(B_{R}\right)\right) \\
& \max \left(f^{\prime}\left(A_{R}\right)\right)=\max \left(\left(f\left(A_{R}\right)\right)_{2}\right)<\min \left(\left(f\left(B_{L}\right)\right)_{2}\right)=\min \left(f^{\prime}\left(B_{L}\right)\right) .
\end{aligned}
$$

We conclude that $x<y$, thus the result follows.

In the next corollary, we give exact values for the x and y from the the proofs of Lemmas 3.25-3.27. The exactly values of x and y are shown in the next corollary.

Corollary 3.21. Let $a, b, c, d, m_{i}, m, w, M, A_{L}, A_{R}, B_{L}, B_{R}, f$ and f^{\prime} be defined as for Lemmas 3.16-3.18, and $n=m+c+d+1$. Let x and y be defined as for Corollary 3.20. Then

$$
\begin{gathered}
x=\max \left\{\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\left\lceil\frac{w}{2}\right\rceil\right.} \lambda_{j}+a-1,\left\lfloor\frac{w}{2}\right\rfloor+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{w} \lambda_{j}+b-1\right\}, \\
y= \begin{cases}\min \left\{\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+a+c,\left\lfloor\frac{w}{2}\right\rfloor+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{w} \lambda_{j}+b+d+m_{1}\right\}, & \text { if } w \text { odd } ; \\
\left.\min \left\{\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+a+c\right\rceil m_{w},\left\lfloor\frac{w}{2}\right\rfloor+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{w} \lambda_{j}+b+d+m_{1}\right\}, & \text { if } w \text { even } .\end{cases}
\end{gathered}
$$

Proof. Since $f^{\prime}=f$, we can/investigate x and y from the function f. From equations (3.1) and (3.2) in the proof of Lemma 3.16, we have

$$
\begin{gathered}
\max \left(f\left(A_{L}\right)\right)=\max \left(f\left(A_{\left\lceil\frac{w}{2}\right\rceil}\right)\right)=\left\lceil\frac{w}{2}\right\rceil-1+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+a, \\
\min \left(f\left(B_{L}\right)\right)=\max \left(f\left(B_{\left\lceil\frac{w}{2}\right\rceil}\right)\right)=\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+a+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+\left\lceil\frac{w}{2}\right\rceil}^{w} m_{j}+c .
\end{gathered}
$$

Note that

$$
\min \left(f\left(B_{L}\right)\right)= \begin{cases}\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+a+c, & \text { if } w \text { odd } \\ \left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+a+m_{w}+c, & \text { if } w \text { even }\end{cases}
$$

In the proof of Lemma 3.16, we have

$$
\begin{aligned}
\max \left(f\left(A_{R}\right)\right) & =\max \left(f\left(A_{\left\lceil\frac{w}{2}\right\rceil+1}\right)=\lambda_{\left\lceil\frac{w}{2}\right\rceil+1}+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+2}^{w}\left(\lambda_{j}+1\right)+b\right. \\
& =\left\lfloor\frac{w}{2}\right\rfloor+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{w} \lambda_{j}+b-1
\end{aligned}
$$

$$
\begin{aligned}
\min \left(f\left(B_{R}\right)\right) & =\min \left(f\left(B_{\left\lceil\frac{w}{2}\right\rceil+1}\right)\right. \\
& =\left(\lambda_{\left\lceil\frac{w}{2}\right\rceil+1}+1\right)+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+2}^{w}\left(\lambda_{j}+1\right)+b+\sum_{j=1}^{\left(\left\lceil\frac{w}{2}\right\rceil+1\right)-\left\lceil\frac{w}{2}\right\rceil} m_{j}+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{\left(\left\lceil\frac{w}{2}\right\rceil+1\right)-1} m_{j}+d \\
& =\left\lfloor\frac{w}{2}\right\rfloor+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{w} \lambda_{j}+b+d+m_{1} .
\end{aligned}
$$

Thus,

$$
\begin{gathered}
x=\max \left\{\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\left\lceil\frac{w}{2}\right\rceil\right.} \lambda_{j}+a-1,\left\lfloor\frac{w}{2}\right\rfloor+\sum_{j=\left\lceil\frac{n}{2}\right\rceil+1}^{w} \lambda_{j}+b-1\right\}, \\
y= \begin{cases}\min \left\{\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+a+c,\left\lfloor\frac{w}{2}\right\rfloor+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{w} \lambda_{j}+b+d+m_{1}\right\}, & \text { if } w \text { odd } \\
\left.\min \left\{\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+a+c\right\rceil m_{w},\left\lfloor\frac{w}{2}\right\rfloor+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{w} \lambda_{j}+b+d+m_{1}\right\}, & \text { if } w \text { even. }\end{cases}
\end{gathered}
$$

This concludes the proof.
Lemma 3.22. Let M of size m be the vertex-disjoint union of 2-regular bipartite graphs, each of which admits an α-labeling. Let G be the vertex-disjoint union of the graph M and a path P of size $2 \ell-1$, where ℓ is a positive integer. Let $n=m+2 \ell+1$ and let $K_{n, n}$ have vertex set $\mathbb{Z}_{n} \times[1,2]$ with the obvious vertex partition. Then there exists an embedding of G in $K_{n, n}$ with one edge of each length in $[-(n-1) / 2,(n-1) / 2] \backslash\{ \pm z\}$ for some $z \in[1,(n-1) / 2]$ and such that the endpoints of P are j_{1} and j_{2} for some $j \in[0, n-1]$.

Proof. Let $M=M_{1} \cup M_{2} \cup \cdots \cup M_{w}$ such that each M_{i} admits an α-labeling f_{i} with critical value λ_{i} and $\lambda_{1} \geq \lambda_{\left\lceil\frac{w}{2}\right\rceil+1} \geq \lambda_{2} \geq \lambda_{\left\lceil\frac{w}{2}\right\rceil+2} \geq \cdots$. Let $a, b, c, d, f, f^{\prime}$, and \bar{f}^{\prime} be defined as for Lemmas 3.16-3.18 and $n=m+2 \ell+1$. Let $V\left(K_{n, n}\right)=\mathbb{Z}_{n} \times[1,2]$ with the obvious vertex bipartition, and assume that $a=b=c=d=\ell$. We will embed G in $K_{n, n}$ by giving embeddings of both M and P. To embed M, define a labeling function

$$
h: V(M) \rightarrow[\ell, n-1], h^{\prime}: V(M) \rightarrow V\left(K_{n, n}\right), \overline{h^{\prime}}: E(M) \rightarrow[0, n-1]
$$

by $h=f, h^{\prime}=f^{\prime}$ and $\bar{h}^{\prime}=\bar{f}^{\prime}$. Then by Lemma 3.18, h^{\prime} is an injective labeling of M and $h^{\prime}(V(M)) \subseteq[\ell, n-1] \times[1,2]$. Furthermore $\bar{h}^{\prime}(E(M))=[\ell+1, \ell+m]=$ $\pm[l+1, m / 2+\ell]$.

By Lemma 3.3, there exists an embedding of P of size $2 \ell-1$ by using the edge lengths in $\{0\} \cup \pm[1, \ell-1]$ with endpoints 0_{1} and 0_{2}. In the lemma, we would use $d_{1}=1, d_{2}=2, \ldots, d_{\ell-1}=\ell-1$, so $V(P) \subseteq[0, \ell-1] \times[1,2]$.

Thus, M and P are vertex disjoint and the edge set of G has one edge of each length $i \in[-(m / 2+\ell), m / 2+\ell] \backslash\{ \pm \ell\}$.

Example 3.23. We illustrate the results from Lemma 3.22 here.
Let G be the vertex-disjoint union of $C_{12}, C_{6}, C_{6}, C_{8}$, and P_{8}. Let $M_{1}=C_{6} \cup C_{6}$, $M_{2}=C_{8}$ and $M_{3}=C_{12}$. Then by Theorem 2.7 and Theorem 2.8, each M_{i} admits an α-labeling f_{i} with critical value λ_{i} and vertex bipartition $\left\{A_{i}, B_{i}\right\}$ (see Figure 3.15). Then $\lambda_{1} \geq \lambda_{3} \geq \lambda_{2}$. Let $a, b, c, d, f, f^{\prime}$ and \bar{f}^{\prime} be defined as for Lemmas 3.16-3.18. Let $M=M_{1} \cup M_{1} \cup M_{3}$. Then $G=M \cup P_{8}$. Since $\ell=2$, we have $a=b=2=c=d$ and $n=m+2 \ell+1=41$. The vertex labeling f^{\prime} of M is shown in Figure 3.17. Let $V\left(K_{41,41}\right)=\mathbb{Z}_{41} \times[1,2]$ with obvious vertex partition. To embed M in $K_{41,41}$, define labeling functions

$$
h: V(M) \rightarrow[4,40], h^{\prime}: V(M) \rightarrow V\left(K_{41,41}\right), \bar{h}^{\prime}: E(M) \rightarrow[0,40]
$$

by $h=f, h^{\prime}=f^{\prime}$ and $\overline{h^{\prime}}=\overline{f^{\prime}}$. Note that the set of edge lengths of M is $\bar{h}^{\prime}(E(M))=[\ell+1, \ell+m]= \pm[l+1, m / 2+\ell]= \pm[5,20]$.

By Lemma 3.3, there exists an embedding P of P_{8} such that $V(P) \subseteq[0,3] \times$ $[1,2]$ and with edge lengths set $\{0\} \cup \pm[1,3]$. Thus G can be embedded in $K_{41,41}$ with the edge set of G having one edge of each length $i \in[-20,20] \backslash\{ \pm 4\}$ (see Figure 3.18).

Theorem 3.24. Let M be a 2-regular bipartite graph of order $m \equiv 0(\bmod 4)$. Let G be the disjoint union of M and a cycle C of size $2 \ell+1$ where ℓ is a positive integer and $n=m+2 \ell+1$. Then there exists a G-decomposition of $K_{(2 k+1) \times n}$ for all positive integers k and of $K_{k^{\prime} \times 2 n}$ for all integers $k^{\prime} \geq 3$.

Proof. Since $m \equiv 0(\bmod 4)$, the graph M is the union of graphs that admit α-labelings. Combine with Lemma 3.22 and Lemma 3.1, we obtain a G decomposition of $K_{(2 k+1) \times n}$ for all positive integers k. By Lemma 3.22 and Lemma 3.2, a G-decomposition of $K_{k^{\prime} \times n}$ exists for all integers $k^{\prime} \geq 3$.

Figure 3.18: An embedding of $G=C_{12} \cup C_{6} \cup C_{6} \cup C_{8} \cup P_{8}$ in $K_{41,41}$

Next, we focus on the case when the number of cycles of order $2(\bmod 4)$ in G is odd.

Lemma 3.25. Let M of size m be the vertex-disjoint union of 2-regular bipartite graphs that admit α-labeling. Let G be the vertex-disjoint union of M, a cycle C of size $m^{\prime} \equiv 2(\bmod 4)$ and a path P of size 1 . Let $n=m+m^{\prime}+3$ and let $K_{n, n}$ have vertex set $\mathbb{Z}_{n} \times[1,2]$ with the obvious vertex partition. Then there exists an embedding of G in $K_{n, n}$ with one edge of each length in $[-(n-1) / 2,(n-1) / 2] \backslash$ $\{ \pm z\}$ for some $z \in[1, n-1]$ and such that the endpoints of P are j_{1} and j_{2} for some $j \in[0, n-1]$.

Proof. Let $M=M_{1} \cup M_{2} \cup \cdots \cup M_{w}$ such that M_{i} admits an α-labeling f_{i} with critical value λ_{i} and vertex bipartition $\left\{A_{i}, B_{i}\right\}$ where $\lambda_{1} \geq \lambda_{\left\lceil\frac{w}{2}\right\rceil+1} \geq \lambda_{2} \geq \lambda_{\left\lceil\frac{w}{2}\right\rceil+2} \geq$ \cdots. Let $a, b, c, d, f, f^{\prime}, \bar{f}^{\prime}, A_{L}, A_{R}, B_{L}$ and B_{R} be defined as for Lemmas 3.163.18 and $n=m+m^{\prime}+3$. Let $V\left(K_{n, n}\right)=\mathbb{Z}_{n} \times[1,2]$ with the obvious vertex bipartition. We will embed the graph G in $K_{n, n}$, consisting of the graph M of size m, the cycle C of size m^{\prime} and the path P of size 1 .

Case 1. Suppose that w is even. Assume that $a=1=b$ and $c=\frac{m^{\prime}}{2}+1=d$.

Let x and y be defined as for Corollary 3.21. Then

$$
\begin{gathered}
x=\max \left\{\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j},\left\lfloor\frac{w}{2}\right\rfloor+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{w} \lambda_{j}\right\}=\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}, \\
y=\min \left\{\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+2+\frac{m^{\prime}}{2}+m_{w},\left\lfloor\frac{w}{2}\right\rfloor+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{w} \lambda_{j}+2+\frac{m^{\prime}}{2}+m_{1}\right\} .
\end{gathered}
$$

Define a labeling function

$$
h: V(M) \rightarrow[1, n-1], h^{\prime}: V(M) \rightarrow V\left(K_{n, n}\right), \bar{h}^{\prime}: E(M) \rightarrow[0, n-1]
$$

by $h=f, h^{\prime}=f^{\prime}$ and $\overline{h^{\prime}}=\bar{f}^{\prime}$. Then by Lemma 3.18, h^{\prime} is a injective labeling under M and $h^{\prime}(M) \subseteq([1, x] \cup[y, n-1]) \times[1,2]$. Furthermore M has a set of edge lengths

$$
\bar{h}^{\prime}(E(M))=\left[\frac{m^{\prime}}{2}+2, m+\frac{m^{\prime}}{2}+1\right]= \pm\left[\frac{m^{\prime}}{2}+2, \frac{m}{2}+\frac{m^{\prime}}{2}+1\right] .
$$

By Lemma 3.3, there exists an embedding of the path P of size 1 using edge length 0 with endpoints 0_{1} and 0_{2}. Next, we will embed the graph M of size m and the cycle C of size m^{\prime} by considering the congruence class of m modulo 8 .

Case 1.1. Suppose that $m^{\prime} \equiv 2(\bmod 8)$. Let $m^{\prime}=8 t+2$ for some positive integer t. Recall that M has a set of edge lengths

$$
\begin{gathered}
\bar{h}^{\prime}(E(M))= \pm\left[\frac{m^{\prime}}{2}+2, \frac{m}{2}+\frac{m^{\prime}}{2}+1\right], \\
y=\min \left\{\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+4 t+3+m_{w},\left\lfloor\frac{w}{2}\right\rfloor+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{w} \lambda_{j}+4 t+m_{1}+3\right\} .
\end{gathered}
$$

By Lemma 3.8, there exists an embedding of a cycle C^{*} of size m^{\prime} with edge lengths

$$
\pm[2,4 t+2]= \pm\left[2, \frac{m^{\prime}}{2}+1\right] .
$$

Furthermore, $V\left(C^{*}\right) \subseteq[0,4 t+2] \times[1,2]$. Let $C=C^{*}+(x+1)$. Then $V(C) \subseteq$ $[x+1,4 t+2+(x+1)] \times[1,2]$. By using Lemma 3.15, note that $4 t+2+(x+1)=$ $4 t+3+\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}<y$.

Thus the edge set of G has one edge of each length $i \in\left[-\left(\frac{m}{2}+\frac{m^{\prime}}{2}+1\right), \frac{m}{2}+\right.$ $\left.\frac{m^{\prime}}{2}+1\right] \backslash\{ \pm 1\}$.

Case 1.2. Suppose that $m^{\prime} \equiv 6(\bmod 8)$. Let $m^{\prime}=8 t+6$ for some nonnegative integer t.

Subcase 1.2(a). $t=0$. Then M has a set of edge lengths

$$
\bar{h}^{\prime}(E(M))= \pm\left[5, \frac{m}{2}+4\right] .
$$

Recall that

$$
y=\min \left\{\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+m_{w}+5,\left\lfloor\frac{w}{2}\right\rfloor+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{w} \lambda_{j}+m_{1}+5\right\} .
$$

To embed C of size m^{\prime} in $K_{n, n}$, let $C^{*}=\left\langle 0_{1}, 3_{2}, 2_{1}, 0_{2}, 3_{1}, 2_{2}\right\rangle$. Its lengths are $3,-1,2,-3,1,-2$. Let $C=C^{*}+(x+1)$. Then $V(C) \subseteq[x+1,3+(x+1)] \times[1,2]$. By Lemma 3.15, note that $3+(x)+1)=\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+4<y$.

Thus, M, C and P are vertex-disjoint, and the edge set of G has one edge of each length $i \in\left[-\left(\frac{m}{2}+4\right), \frac{m}{2}+4\right] \backslash\{ \pm 4\}$.

Subcase 1.2(b). $t \geq 1$. Then M has a set of edge lengths

$$
\begin{gathered}
\bar{h}^{\prime}(E(M))= \pm\left\lfloor\frac{m^{\prime}}{2}+2, \frac{m}{2}+\frac{m^{\prime}}{2}+1\right], \\
y=\min \left\{\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+4 t+5+m_{w},\left\lfloor\frac{w}{2}\right\rfloor+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{w} \lambda_{j}+4 t+5+m_{1}\right\} .
\end{gathered}
$$

By Lemma 3.9, there exists an embedding of a cycle C^{*} of size m^{\prime} with edge lengths is

$$
\pm[1,4 t+4)] \backslash\{ \pm 2\}]= \pm\left[1, \frac{m^{\prime}}{2}+1\right] \backslash\{ \pm 2\} .
$$

Furthermore, $V\left(C^{*}\right) \subseteq[0,4 t+4] \times[1,2]$. Let $C=C^{*}+1$. Then $V(C) \subseteq$ $[x+1,4 t+4+(x+1)] \times[1,2]$. By Lemma 3.15, note that $4 t+4+(x+1)=$ $4 t+5+\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}<y$.

Thus the edge set of G has one edge of each length $i \in\left[-\left(\frac{m}{2}+\frac{m^{\prime}}{2}+1\right), \frac{m}{2}+\right.$ $\left.\frac{m^{\prime}}{2}+1\right] \backslash\{ \pm 2\}$.
Case 2. Suppose that w is odd. Let $m^{\prime}=4 t+2$ for some positive integer t, and assume that $a=2=d, b=2 t+2$ and $c=4 t+2$. By Corollary 3.21, we have

$$
x=\max \left\{\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+1,\left\lfloor\frac{w}{2}\right\rfloor+\sum_{j=\left\lceil\frac{n}{2}\right\rceil+1}^{w} \lambda_{j}+2 t+1\right\},
$$

$$
y=\min \left\{\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+4 t+4,\left\lfloor\frac{w}{2}\right\rfloor+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{w} \lambda_{j}+2 t+4+m_{1}\right\}
$$

Define a labeling function

$$
h: V(M) \rightarrow[2, n-1], h^{\prime}: V(M) \rightarrow V\left(K_{n, n}\right), \overline{h^{\prime}}: E(M) \rightarrow[0, n-1]
$$

by $h=f, h^{\prime}=f^{\prime}$ and $\overline{h^{\prime}}=\bar{f}^{\prime}$. Then by Lemma 3.18, h^{\prime} is a injective labeling under M. Furthermore, M has a set of edge lengths

$$
\bar{h}^{\prime}(E(M))=[4 t+3,4 t+2+m]=\left[m^{\prime}+1, \frac{m}{2}+\frac{m^{\prime}}{2}+1\right] \cup\left[-\left(\frac{m}{2}+\frac{m^{\prime}}{2}+1\right),-3\right] .
$$

To embed C of size $4 t+2$ in $K_{n, n}$, let

$$
C=G_{1}+G_{2}+\left(2_{2}, 1_{1}, 0_{2},(2 t+4+m)_{1}\right)
$$

where

$$
\begin{aligned}
& G_{1}=P(m+2 t+4,0,2 t+1), \\
& G_{2}=Q(m+3 t+6,-(t-3), 2 t-2)
\end{aligned}
$$

We then show that $G_{1}+G_{2}+\left(2_{2}, 1_{1}, 0_{2},(m+2 t+4)_{1}\right)$ is a cycle of size $4 t+2$. Note that by P1 and Q1, the first vertex of G_{1} is $(m+2 t+4)_{1}$, and the last vertex is $(t+1)_{2}$; the first vertex of G_{2} is $(t+1)_{2}$, and the last vertex is 2_{2}. For $1 \leq i \leq 2$, let $A_{i}(C)$ and $B_{i}(C)$ denote the sets labeled A^{\prime} and B^{\prime} in $\mathbf{P} 2$ and $\mathbf{Q 2}$, we compute

$$
\begin{array}{ll}
A_{1}(C)=\left[(m+2 t+4)_{1},(m+3 t+4)_{1}\right], & B_{1}(C)=\left[(t+1)_{2},(2 t+1)_{2}\right], \\
A_{2}(C)=\left[(m+3 t+6)_{1},(m+4 t+4)_{1}\right], & B_{2}(C)=\left[2_{2},(t+1)_{2}\right] .
\end{array}
$$

Thus,

$$
A_{1}(C)<A_{2}(C) \text { and } B_{2}(C) \leq B_{1}(C)
$$

Note that $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\left\{(t+1)_{2}\right\}$; otherwise, G_{1} and G_{2} are vertex disjoint. Therefore, $G_{1}+G_{2}+\left(2_{2}, 1_{1}, 0_{2},(m+2 t+4)_{1}\right)$ is a cycle of size $4 t+2$.

Next, let $E_{i}(C)$ denote the set of edge labels in G_{i} for $1 \leq i \leq 2$. By P3 and Q3, we have edge lengths

$$
\begin{aligned}
& E_{1}(C)=[-(m+2 t+3),-(m+3)]=\left[\frac{m^{\prime}}{2}+1, m^{\prime}\right], \\
& E_{2}(C)=[-(m+4 t+2),-(m+2 t+5)]=\left[3, \frac{m^{\prime}}{2}-1\right] .
\end{aligned}
$$

Moreover, the path $\left(2_{2}, 1_{1}, 0_{2},(m+2 t+4)_{1}\right)$ consists of edges lengths $1,-1$, and $-(m+2 t+4)=2 t+1=\frac{m^{\prime}}{2}$.

Note that in this case

$$
\begin{gathered}
\min (\underbrace{\left(h^{\prime}\left(A_{L}\right)\right)}=\min \left(h^{\prime}\left(A_{1}\right)\right)=2 \\
\max \left(h^{\prime}\left(B_{w}\right)\right)=m_{w}+b+\sum_{j=1}^{\left|\frac{w}{2}\right|} m_{j}+\sum_{j=\left\lceil\frac{w}{2}+1\right\rceil}^{w-1} m_{j}+d<b+d+m=2 t+4+m .
\end{gathered}
$$

Also,

$$
\begin{gathered}
\min \left(h^{\prime}\left(A_{R}\right)\right)=\min \left(h^{\prime}\left(A_{w}\right)\right)=b=2 t+2, \\
\max \left(h^{\prime}\left(B_{L}\right)\right)=\max \left(h^{\prime}\left(B_{1}\right)\right)=m+a+c=m+4 t+4=n-1 .
\end{gathered}
$$

Since

$$
2=\min \left(h^{\prime}\left(A_{L}\right)\right)<\max \left(h^{\prime}\left(B_{R}\right)\right)<2 t+4+m=\min \left(A_{1}(C) \cup A_{2}(C)\right)
$$

$$
n-1=\max \left(h^{\prime}\left(B_{L}\right)\right)>\min \left(h^{\prime}\left(A_{R}\right)\right)=2 t+2>2 t+1=\max \left(B_{1}(C) \cup B_{2}(C)\right)
$$ we have M and C are vertex disjoint.

By Lemma 3.3, there exists an embedding of a path P^{*} of size 1 using edge length 0 with endpoints 0_{1} and 0_{2}. Let $P=P^{*}+(x+1)$ with endpoints $(x+1)_{1}$ and $(x+1)_{2}$. Note that $2 t+2<4 t+3=n$. Thus, the edge set of G has one edge of each length $i \in[-2 t, 2 t]$, except the edge lengths $\pm(2 t+1)$. Since $x+1<y$, we have P is vertex disjoint from M and C. Thus, the edge set of G has one edge of each length $i \in\left[-\left(\frac{m}{2}+\frac{m^{\prime}}{2}+1\right), \frac{m}{2}+\frac{m^{\prime}}{2}+1\right] \backslash\{ \pm 2\}$.

Example 3.26. We illustrate the results from Lemma 3.25 here.
Let G be the vertex-disjoint union of $C_{10}, C_{8}, C_{8}, C_{4}, C_{4}, C_{4}$ and P_{2}. Let $M_{1}=C_{8}, M_{2}=C_{4}, M_{3}=C_{4}, M_{4}=C_{8}$ and $M_{5}=C_{4}$. Then by Theorem 2.7, each
M_{i} admits an α-labeling f_{i} with critical value λ_{i} and vertex bipartition $\left\{A_{i}, B_{i}\right\}$. Figure 3.19 illustrates the α-labeling of M_{i}. Then $\lambda_{1} \geq \lambda_{4} \geq \lambda_{2} \geq \lambda_{5} \geq \lambda_{3}$. Let $a, b, c, d, f, f^{\prime}, \bar{f}^{\prime}, A_{L}, A_{R}, B_{L}$ and B_{R} be defined as for Lemmas 3.16-3.18. Let $M=M_{1} \cup M_{2} \cup \cdots \cup M_{5}$. Then $G=M \cup C_{10} \cup P_{2}$. Note that $m^{\prime}=10, m=28$ and $t=2$. Then $n=m+m^{\prime}+3=41$. Since $10 \equiv 2(\bmod 8)$ and M consists of five subgraphs M_{i}, we need to use Case 2 in Lemma 3.25 to embed G in $K_{41,41}$. In this case, we assume that $a=2=d, b=2 t+2=6$ and $c=4 t+2=10$.

To embed M in $K_{41,41}$, define a labeling function

$$
h: V(M) \rightarrow[2,40], h^{\prime}: V(M) \rightarrow V\left(K_{41,41}\right), \bar{h}^{\prime}: E(M) \rightarrow[0,40]
$$

by $h=f, h^{\prime}=f^{\prime}$ and $\overline{h^{\prime}}=\bar{f}^{\prime}$. Then the vertices of M are labelled as in Figure 3.20. Note that $V(M) \subset([2,11] \cup[20,40]) \times[1,2]$ and the set of edge lengths of M is $\bar{h}^{\prime}(E(M))=[11,20] \cup[-20,-3]$.

To embed C_{10} in $K_{41,41}$, let $C=G_{1}+G_{2}+\left(2_{2}, 1_{1}, 0_{2}, 36_{1}\right)$ be an embedding of C_{10} where $G_{1}=P(36,0,5)$ and $G_{2}=Q(40,1,2)$. For $1 \leq i \leq 2$, let $A_{i}(C)$ and $B_{i}(C)$ denote the sets labeled A^{\prime} and B^{\prime} in $\mathbf{P} 2$ and Q2, we compute

$$
\begin{aligned}
& A_{1}(C)=\left[(m+2 t+4)_{1},(m+3 t+4)_{1}\right]=\left[36_{1}, 38_{1}\right], \\
& B_{1}(C)=\left[(t+1)_{2},(2 t+1)_{2}\right]=\left[3_{2}, 5_{2}\right], \\
& A_{2}(C)=\left[(m+3 t+6)_{1},(m+4 t+4)_{1}\right]=\left\{40_{1}\right\}, \\
& B_{2}(C)=\left[2_{2},(t+1)_{2}\right]=\left[2_{2}, 3_{2}\right] .
\end{aligned}
$$

Then $V(C)=(([36,40] \cup\{1\}) \times\{1\}) \cup(([2,5] \cup\{0\}) \times\{2\})$ and the set of edge lengths of C is $[6,10] \cup[3,4] \cup\{-1,1,5\}$. Thus, C is vertex disjoint from M.

Let x and y be defined as for Corollary 3.20. Then we can note that

$$
x=\max \left(\bigcup_{i=1}^{5} h^{\prime}\left(A_{i}\right)\right)=11 \text { and } y=\min \left(\bigcup_{i=1}^{5} h^{\prime}\left(B_{i}\right)\right)=20
$$

By Lemma 3.3, there exists an embedding P^{*} of P_{2} in $K_{41,41}$ with endpoints 0_{1} and 0_{2}, and its edge length 0 . Let $P=P^{*}+(x+1)=P^{*}+12$ with endpoints 12_{1} and 12_{2}. Hence, G can be embedded in $K_{41,41}$ so that the edge set of G has one edge of each length $i \in[-20,20] \backslash\{ \pm 2\}$.

Figure 3.19: A graph $M=M_{1} \cup M_{2} \cup \cdots \cup M_{5}$ where each M_{i} admits an α-labeling.

Figure 3.20: An embedding of $G=C_{8} \cup C_{8} \cup C_{4} \cup C_{4} \cup C_{4} \cup C_{10} \cup P_{2}$ in $K_{41,41}$

Lemma 3.27. Let M of size m be the vertex-disjoint union of any 2-regular bipartite graphs, each of which admits an α-labeling. Let G be the vertex-disjoint union of M, a cycle C of size m^{\prime} and a path P of size $2 \ell-1$ where $m^{\prime} \equiv 2(\bmod 4)$ and $\ell \geq 2$ is an integer. Let $n=m+m^{\prime}+2 \ell+1$ and let $K_{n, n}$ have vertex set $\mathbb{Z}_{n} \times[1,2]$ with the obvious vertex partition. Then there exists an embedding of G in $K_{n, n}$ with one edge of each length in $[-(n-1) / 2,(n-1) / 2] \backslash\{ \pm z\}$ for some $z \in[1,(n-1) / 2]$ and such that the endpoints of P are j_{1} and j_{2} for some $j \in[0, n-1]$.

Proof. Let $M=M_{1} \cup M_{2} \cup \cdots \cup M_{w}$ such that M_{i} admits an α-labeling f_{i} with critical value λ_{i} and vertex bipartition $\left\{A_{i}, B_{i}\right\}$ where $\lambda_{1} \geq \lambda_{\left\lceil\frac{w}{2}\right\rceil+1} \geq \lambda_{2} \geq \lambda_{\left\lceil\frac{w}{2}\right\rceil+2} \geq$ \cdots. Let $a, b, c, d, f, f^{\prime}, \bar{f}^{\prime}, A_{L}, A_{R}, B_{L}$ and B_{R} be defined as for Lemmas 3.16-
3.18 and $n=m+m^{\prime}+2 \ell+1$. Let $V\left(K_{n, n}\right)=\mathbb{Z}_{n} \times[1,2]$ with the obvious vertex bipartition. We will embed the graph G, consisting of the graph M of size m, the cycle C of size m^{\prime} and the path P of size $2 \ell-1$.
Case 1. $m^{\prime}=6$. To embed M of size m in $K_{n, n}$, assume that $a=b=c=d=$ $\ell+3$. Define a labeling function

$$
h: V(M) \rightarrow[\ell+3, n-1], h^{\prime}: V(M) \rightarrow V\left(K_{n, n}\right), \overline{h^{\prime}}: E(M) \rightarrow[0, n-1]
$$

by $h=f, h^{\prime}=f^{\prime}$ and $\overline{h^{\prime}}=\bar{f}^{\prime}$. Then by Lemma 3.18, h^{\prime} is a injective labeling under M and $h^{\prime}(M) \subseteq([\ell+3, x] \cup[y, n-1]) \times[1,2]$. Furthermore M has a set of edge lengths

$$
\bar{h}^{\prime}(E(M)) \equiv[\ell+4, m+\ell+3]= \pm\left[\ell+4, \frac{m}{2}+\ell+3\right] .
$$

Let x and y be defined as for Corollary 3.21. Then

$$
x=\max \left\{\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+\ell+2,\left\lfloor\frac{w}{2}\right\rfloor+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{w} \lambda_{j}+\ell+2\right\}=\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+\ell+2,
$$

$y= \begin{cases}\min \left\{\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+2 \ell+6,\left\lfloor\frac{w}{2}\right\rfloor+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{w} \lambda_{j}+2 \ell+6+m_{1}\right\}, & \text { if } w \text { odd } ; \\ \min \left\{\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+2 \ell+6+m_{w},\left\lfloor\frac{w}{2}\right\rfloor+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{w} \lambda_{j}+2 \ell+6+m_{1}\right\}, & \text { if } w \text { even. }\end{cases}$
To embed C of size $6 K_{n, n}$, let $C^{*}=\left\langle 0_{1}, 3_{2}, 2_{1}, 0_{2}, 3_{1}, 2_{2}\right\rangle$. Its edge lengths are $3,-1,2,-3,1,-2$. Let $C=C^{*}+(x+1)$. Then $V(C) \subseteq[x+1,3+(x+1)] \times[1,2]$. By Lemma 3.15 and $\ell \geq 2$, we have $3+\left(\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+\ell+3\right)=\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+\ell+6<y$.

By Lemma 3.3, there exists an embedding of P of size $2 \ell-1$ using the edge lengths in $\{0\} \cup \pm\{4, \ell+2\}$ with endpoints 0_{1} and 0_{2}. In the lemma we would use $d_{1}=4, d_{2}=5, \ldots, d_{\ell-1}=\ell+2$, so $V(P) \subseteq[0, \ell+2] \times[1,2]$.

Thus the edge set of G has one edge of each length $i \in\left[-\left(\frac{m}{2}+\ell+3\right), \frac{m}{2}+\ell+\right.$ $3] \backslash\{ \pm(\ell+3)\}$
Case 2. $m^{\prime} \geq 10$. First we will embed a graph M in $K_{n, n}$, assume that $a=b=$ $c=d=\ell+\frac{m^{\prime}}{2}$.

Let x and y be defined as for Corollary 3.21. Then

$$
\begin{gathered}
x=\max \left\{\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+\ell+\frac{m^{\prime}}{2}-1,\left\lfloor\frac{w}{2}\right\rfloor+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{w} \lambda_{j}+\ell+\frac{m^{\prime}}{2}-1\right\} \\
=\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+\ell+\frac{m^{\prime}}{2}-1, \\
y= \begin{cases}\min \left\{\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+2 \ell+m^{\prime},\left\lfloor\frac{w}{2}\right\rfloor+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{w} \lambda_{j}+2 \ell+m^{\prime}+m_{1}\right\}, & \text { if } w \text { odd; } \\
\min \left\{\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+2 \ell+m^{\prime}+m_{w},\left\lfloor\frac{w}{2}\right\rfloor+\sum_{j=\left\lceil\frac{w}{2}\right\rceil+1}^{w} \lambda_{j}+2 \ell+m^{\prime}+m_{1}\right\}, & \text { if } w \text { even. }\end{cases}
\end{gathered}
$$

Define a labeling function

$$
h: V(M) \rightarrow\left[\ell+\frac{m^{\prime}}{2}, n-1\right], h^{\prime}: V(M) \rightarrow V\left(K_{n, n}\right), \bar{h}^{\prime}: E(M) \rightarrow[0, n-1]
$$

by $h=f, h^{\prime}=f^{\prime}$ and $\overline{h^{\prime}}=\overline{f^{\prime}}$. Then by Lemma 3.18, h^{\prime} is a injective labeling under M and $h^{\prime}(M) \subseteq\left(\left[\ell+\frac{m^{\prime}}{2}, x\right] \cup[y, n-1]\right) \times[1,2]$. Furthermore M has a set of edge lengths

$$
\bar{h}^{\prime}(E(M))=\left[\ell+\frac{m^{\prime}}{2}+1, \ell+\frac{m^{\prime}}{2}+m\right]= \pm\left[\ell+\frac{m^{\prime}}{2}+1, \ell+\frac{m^{\prime}}{2}+\frac{m}{2}\right] .
$$

For an embedding of the remaining graphs C of size m^{\prime} and P of size $2 \ell-1$ in $K_{n, n}$, we will consider 2 cases.

Case 2.1. $m^{\prime} \equiv 2(\bmod 8)$. Let $m^{\prime}=8 t+2$ for some positive integer t. By Lemma 3.8, there exists an embedding of a cycle C^{*} of size m^{\prime} with edge lengths

$$
\pm[1,4 t+2]= \pm\left[1, \frac{m^{\prime}}{2}+1\right]
$$

and $V\left(C^{*}\right) \subseteq[0,4 t+2] \times[1,2]$. Let $C=C^{*}+(x+1)$. Then $V(C) \subseteq[x+1,4 t+$ $2+(x+1)] \times[1,2]$. Note that by using Lemma 3.15, we have $4 t+2+(x+1)=$ $\frac{m^{\prime}}{2}+1+\left(\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+\ell+\frac{m^{\prime}}{2}\right)=\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+\ell+m^{\prime}+1<y$. Thus, C is vertex disjoint from M.

By Lemma 3.3, there exists an embedding of P of size $2 \ell-1$ using the edge lengths in $\{-1,0,1\} \cup \pm\left[\frac{m^{\prime}}{2}+2, \ell+\frac{m^{\prime}}{2}-1\right]$ with endpoints 0_{1} and 0_{2}. In the
lemma we would use $d_{1}=1, d_{2}=\frac{m^{\prime}}{2}+2, \ldots, d_{\ell-1}=\ell+\frac{m^{\prime}}{2}-1$, so $V(P) \subseteq$ $\left[0, \ell+\frac{m^{\prime}}{2}-1\right] \times[1,2]$.

Thus, M, P and C are vertex disjoint, and the edge set of G has one edge of each length $i \in\left[-\left(\frac{m}{2}+\frac{m^{\prime}}{2}+\ell\right), \frac{m}{2}+\frac{m^{\prime}}{2}+\ell\right] \backslash\left\{ \pm\left(\frac{m^{\prime}}{2}+\ell\right)\right\}$.

Case 2.2. Suppose that $m^{\prime} \equiv 6(\bmod 8)$. Let $m^{\prime}=8 t+6$ for some positive integer t. By Lemma 3.9, there exists an embedding of a cycle C^{*} of length m^{\prime} with edge lengths

$$
\pm[1,4 t+4] \backslash\{ \pm 2\}= \pm\left[1, \frac{m^{\prime}}{2}+1\right] \backslash\{ \pm 2\}
$$

and $V\left(C^{*}\right) \subseteq[0,4 t+4] \times[1,2]$. Let $C=C^{*}+(x+1)$. Then $V(C) \subseteq[x+1,4 t+$ $4+(x+1)] \times[1,2]$. Note that by using Lemma 3.15, we have $4 t+4+(x+1)=$ $\frac{m^{\prime}}{2}+1+\left(\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+\ell+\frac{m^{\prime}}{2}\right)=\left\lceil\left\lceil\frac{w}{2}\right\rceil+\sum_{j=1}^{\left\lceil\frac{w}{2}\right\rceil} \lambda_{j}+\ell+m^{\prime}+1<y\right.$.

By Lemma 3.3, there exists an embedding of P of size $2 \ell-1$ using the edge lengths in $\{0\} \cup\{ \pm 2\} \cup \pm\left[\frac{m^{\prime}}{2}+2, \frac{m^{\prime}}{2}+\ell-1\right]$ with endpoints 0_{1} and 0_{2}. In the lemma we would use $d_{1}=2, d_{2}=\frac{m^{\prime}}{2}+2, \ldots, d_{\ell-1}=\ell+\frac{m^{\prime}}{2}-1$, so $V(P) \subseteq$ $\left[-\left(\ell+\frac{m^{\prime}}{2}-1\right), \ell+\frac{m^{\prime}}{2}-1\right] \times[1,2]$.

Thus the edge set of G has one edge of each length $i \in \pm\left[-\left(\frac{m}{2}+\frac{m^{\prime}}{2}+\ell\right), \frac{m}{2}+\right.$ $\left.\frac{m^{\prime}}{2}+\ell\right] \backslash\left\{ \pm\left(\frac{m^{\prime}}{2}+\ell\right)\right\}$.

Example 3.28. We illustrate the results from Lemma 3.27 here.
Let G be the vertex-disjoint union of $C_{14}, C_{12}, C_{8}, C_{6}, C_{6}, C_{4}$ and P_{4}. Let $M_{1}=C_{6} \cup C_{6}, M_{2}=C_{8}, M_{3}=C_{12}$ and $M_{4}=C_{4}$. Then by Theorem 2.7 and Theorem 2.8, M_{i} admits an α-labeling f_{i} with critical value λ_{i} and vertex bipartition $\left\{A_{i}, B_{i}\right\}$. Figure 3.21 illustrates the α-labeling of M_{i}. Then $\lambda_{1} \geq$ $\lambda_{3} \geq \lambda_{2} \geq \lambda_{4}$. Let $a, b, c, d, f, f^{\prime}, \bar{f}^{\prime}, A_{L}, A_{R}, B_{L}$ and B_{R} be defined as for Lemmas 3.16-3.18. Let $M=M_{1} \cup M_{2} \cup M_{3} \cup M_{4}$. Then $G=M \cup C_{14} \cup P_{4}$. Note that $m^{\prime}=14, m=36$ and $\ell=2$. Then $n=m+m^{\prime}+2 \ell+1=55$. Since $14 \equiv 6$ $(\bmod 8)$, we need to use Case 2.2 in Lemma 3.27 to embed G in $K_{55,55}$. In this case, we assume that $a=b=c=d=9$.

To embed M in $K_{55,55}$, define a labeling function

$$
h: V(M) \rightarrow[9,54], h^{\prime}: V(M) \rightarrow V\left(K_{55,55}\right), \overline{h^{\prime}}: E(M) \rightarrow[0,54]
$$

by $h=f, h^{\prime}=f^{\prime}$ and $\overline{h^{\prime}}=\bar{f}^{\prime}$. Then the vertices of M are labelled as in Figure 3.21. Note that the set of edge lengths of M is $\bar{h}^{\prime}(E(M))= \pm[10,27]$.

Let x and y be be defined as for Corollary 3.20. Then we can observe that

$$
x=\max \left(\bigcup_{i=1}^{4} h^{\prime}\left(A_{i}\right)\right)=19 \text { and } y=\min \left(\bigcup_{i=1}^{4} h^{\prime}\left(B_{i}\right)\right)=32 .
$$

Note that $V(M) \subseteq([9,19] \cup[32,54] \times[1,2]$.
By Lemma 3.9, there exists an embedding of a cycle C^{*} of size 14 with edge lengths $\pm[1,8] \backslash\{ \pm 2\}$, and $V\left(C^{*}\right) \subseteq[0,8] \times[1,2]$. Let $C=C^{*}+(x+1)=C^{*}+20$ be an embedding of C_{14}. Note that $V(C) \subseteq[20,28] \times[1,2]$. Thus C is vertex disjoint from M.

Finally, by Lemma 3.3, there exists an embedding P of P_{4} using the edge lengths in $\{-2,0,2\}$ with endpoints 0_{1} and 0_{2}, and $V(P) \subseteq[0,2] \times[1,2]$.

Hence, G can be embedded in $K_{n, n}$ with edge set of G has one edge of each length $i \in[-27,27] \backslash\{ \pm 9\}$.

Figure 3.21: A graph $M=M_{1} \cup M_{2} \cup M_{3} \cup M_{4}$ where each M_{i} admits an α-labeling

By using the results of Lemmas 3.1-3.2, we obtain the following theorem.
Theorem 3.29. Let G be a 2-regular graph of odd order n consisting of any number of even cycles and only one odd cycle. There exists a G-decomposition of $K_{(2 k+1) \times n}$ for all positive integers k and of $K_{k^{\prime} \times 2 n}$ for all integers $k^{\prime} \geq 3$.

Proof. Let $M=M_{1} \cup M_{2} \cup \cdots \cup M_{w}$ where M_{i} is an even cycle of size m_{i}, and let $m=m_{1}+m_{2}+\cdots+m_{w}$. Let $G=M \cup C_{m^{\prime}}$ of size n where $m^{\prime} \geq 3$ is an odd integer. If $w=1$, then G has only two components; G consists of one even cycle and one odd cycle. Then the results follow from Theorem 3.12. Assume that

Figure 3.22: An embedding of $G=C_{12} \cup C_{6} \cup C_{6} \cup C_{8} \cup C_{4} \cup C_{14} \cup P_{4}$ in $K_{55,55}$
$w \geq 2$. If $m \equiv 0(\bmod 4)$, we are done (see Theorem 3.24). Suppose that $m \equiv 2$ $(\bmod 4)$. Let $M^{*}=\left\{M_{i}: M_{i} \subseteq M\right.$ and $\left.m_{i} \equiv 2(\bmod 4)\right\}$. Then $\left|M^{*}\right|$ is odd. Let $C_{m^{\prime}}$ be one of the cycles in M^{*}. The cycles in $M^{*} \backslash\left\{C_{m^{\prime}}\right\}$ can be partitioned into pairs of graphs that admits α-labelings. Also note that the cycles in $M \backslash M^{*}$ all have lengths $0(\bmod 4)$ and thus admit α-labelings. By combining the results of Lemma 3.1 and Lemmas 3.25-3.27, we obtain a G-decomposition of $K_{(2 k+1) \times n}$ for all positive integers k. By combining Lemma 3.2 and Lemmas 3.25-3.27, a G-decomposition of $K_{k^{\prime} \times 2 n}$ exists for all integers $k^{\prime} \geq 3$.

If a G-decomposition of K_{n} exists (i.e., if the Oberwolfach problem has a solution in this case), then a G-decomposition of $K_{2 k n+n}$ will also exist.

Theorem 3.30. Let G of order n be a 2-regular almost bipartite graph. If a G decomposition of K_{n} exists, then there exists a G-decomposition of $K_{2 k n+k}$ for all positive integers k.

Proof. Observe that $K_{2 k n+n}=(2 k+1) K_{n} \cup K_{(2 k+1) \times n}$. Since a G-decomposition of K_{n} exists, a G-decomposition of $(2 k+1) K_{n}$ will also exist. By Theorem 3.29, there exists a G-decomposition of $K_{(2 k+1) \times n}$. The result follows.

3.3.3 G consisting of three odd cycles

Finally we consider the case where G consists of three cycles of odd length.
Lemma 3.31. Let $n \geq 3$ be an odd integer and let $m \leq(n-1) / 2$ be a positive integer. Let $K_{n, n}$ have vertex set $\mathbb{Z}_{n} \times\{1,2\}$ with the obvious vertex partition. Let $d_{1}, d_{2}, \ldots, d_{m-1}$ be an increasing sequence of consecutive positive integers with $d_{m-1} \leq(n-1) / 2$. There exists a path P in $K_{n, n}$ of size $2 m-1$ whose edges have lengths $0, \pm d_{1}, \pm d_{2}, \ldots, \pm d_{m-1}$ with endpoints 0_{1} and 0_{2}. Furthermore, $V(P) \subseteq$ $\left(\left[0,\left\lceil\frac{m}{2}\right\rceil-1\right] \cup\left[d_{m-1}-\left\lfloor\frac{m}{2}\right\rfloor+1, d_{m-1}\right]\right) \times[1,2]$.

Proof. If $m=1$, let P be the path consisting of the edge $\left\{0_{1}, 0_{2}\right\}$. Otherwise, for $k \in[1, m-1]$, define $v_{k}=\sum_{i=0}^{k-1}(-1)^{i} d_{m-1-i}$. Note that since $d_{i+1}-d_{i}=1$, we have $v_{2 j}=j$ and $v_{2 j+1}=d_{m-1}-j$. Thus, $v_{m-1}=\left\lceil\frac{m}{2}\right\rceil-1$ if $m-1$ is even and $v_{m-1}=d_{m-1}-\left\lfloor\frac{m}{2}\right\rfloor+1$ if $m-1$ is odd. Similarly, $v_{m-2}=\left\lceil\frac{m}{2}\right\rceil-1$ or $d_{m-1}-\left\lfloor\frac{m}{2}\right\rfloor+1$ if $m-1$ is odd or even, respectively.

Consider the path of size $m-1$ given by $P^{\prime}: 0_{1},\left(v_{1}\right)_{2},\left(v_{2}\right)_{1},\left(v_{3}\right)_{2}, \ldots$ where P^{\prime} ends with $\left(v_{m-1}\right)_{2}$ if $m-1$ is odd or $\left(v_{m-1}\right)_{1}$ if $m-1$ is even. Thus, $V\left(P^{\prime}\right) \subseteq$ $\left(\left[0,\left\lceil\frac{m}{2}\right\rceil-1\right] \cup\left[d_{m-1}-\left\lfloor\frac{m}{2}\right\rfloor+1, d_{m-1}\right\rfloor\right) \times[1,2]$. Also, observe that the lengths of the edges of P^{\prime}, in the order encountered, are $d_{m-1}, d_{m-2}, \ldots, d_{1}$.

Next consider the path $P^{\prime \prime}: 0_{2},\left(v_{1}\right)_{1},\left(v_{2}\right)_{2},\left(v_{3}\right)_{1}, \ldots$ where $P^{\prime \prime}$ ends with $\left(v_{m-1}\right)_{1}$ if $m-1$ is odd or $\left(v_{m-1}\right)_{2}$ if $m-1$ is even, and observe that the edges on $P^{\prime \prime}$, in the order encountered, are $-d_{m-1},-d_{m-2}, \ldots,-d_{1}$. Since $P^{\prime \prime}$ is constructed in the same way as P^{\prime} with the corresponding vertices lying in the opposite parts of $V\left(K_{n, n}\right)$, we have $V\left(P^{\prime \prime}\right) \subseteq\left(\left[0,\left\lceil\frac{m}{2}\right\rceil-1\right] \cup\left[d_{m-1}-\left\lfloor\frac{m}{2}\right\rfloor+1, d_{m-1}\right]\right) \times[1,2]$, and $V\left(P^{\prime}\right) \cap V\left(P^{\prime \prime}\right)=\varnothing$.

Construct the path P from the paths P^{\prime} and $P^{\prime \prime}$ by adding the edge from $\left(v_{m-1}\right)_{1}$ to $\left(v_{m-1}\right)_{2}$. Note that P has size $2 m-1$, the edges of P have lengths $0, \pm d_{1}, \pm d_{2}, \ldots, \pm d_{m-1}$, and $V(P) \subseteq\left(\left[0,\left\lceil\frac{m}{2}\right\rceil-1\right] \cup\left[d_{m-1}-\left\lfloor\frac{m}{2}\right\rfloor+1, d_{m-1}\right]\right) \times$ [1, 2].

Theorem 3.32. Let G be a 2-regular graph of order n consisting of exactly three odd cycles. For every positive integer k, there exists a G-decomposition
of $K_{(2 k+1) \times n}$.

Proof. Let $G=C_{2 x+1} \cup C_{2 y+1} \cup C_{2 z+1}$ where x, y, and z are positive integers and let $n=2 x+2 y+2 z+3$. Let $k \geq 1$ be an integer. Label the vertex set of $K_{(2 k+1) \times n}$ with the elements of the group $\mathbb{Z}_{n} \times[1,2 k+1]$ with the obvious vertex partition. Let (Q, \circ) be an idempotent commutative quasigroup of order $2 k+1$, where $Q=[1,2 k+1]$.

Fix r and s with $1 \leq r<s \leq 2 k+1$. We will construct a graph $G_{r, s}$ consisting of the vertex-disjoint union of the following three cycles: $C_{r, s}$ of size $2 x+1, C_{r, s}^{\prime}$ of size $2 y+1$, and $C_{r, s}^{\prime \prime}$ of size $2 z+1$. We will consider two cases.

Case 1. G has at least two cycles of size 3. Without loss of generality, we may assume that $x=y=1$. Then the vertex sets of $C_{r, s}$ and $C_{r, s}^{\prime}$ can be given by $\left\langle 0_{r}, 1_{s}, 3_{\text {ros }}\right\rangle$ and $\left\langle 3_{r}, 2_{s}, 5_{\text {ros }}\right\rangle$, respectively. If $z=1$, then the vertex set of $C_{r, s}^{\prime \prime}$ can be given by $\left\langle 4_{r}, 4_{s}, 8_{\text {ros }}\right\rangle$. Suppose that $z \geq 2$. By Lemma 3.31, there exists a path $P_{r, s}^{*}$ of size $2 z-1$ whose edges have lengths $\{0\} \cup \pm[5, z+3]$. In the lemma, we would use $d_{1}=5, d_{2}=6, \ldots, d_{z-1}=z+3$, so $V\left(P_{r, s}^{*}\right) \subseteq[0, z+3] \times\{r, s\}$ with endpoints 0_{r} and 0_{s}. Let $P_{r, s}^{\prime \prime}=P_{r, s}^{*}+4$. Thus $P_{r, s}^{\prime \prime}$ has endpoints 4_{r} and 4_{s}. Then $V\left(P_{r, s}^{\prime \prime}\right) \subseteq[4, z+7] \times\{r, s\}$. Thus, $P_{r, s}^{\prime \prime}$ is vertex disjoint from $C_{r, s}$ and $C_{r, s}^{\prime}$. Construct the cycle $C_{r, s}^{\prime \prime}$ of length $2 z+1$ from the path $P_{r, s}^{\prime \prime}$ by adding the edges $\left\{4_{r}, 8_{\text {ros }}\right\}$ and $\left\{4_{s}, 8_{\text {ros }}\right\}$.

Note that in the subgraph of $K_{(2 k+1) \times n}$ with vertex set $\mathbb{Z}_{n} \times\{r, s\}, G_{r, s}$ contains one edge of each length $i \in[-1,1] \cup \pm[5, z+3]$ (if $z=1$, the $G_{r, s}$ contains one edge of each length $i \in[-1,1]$). Moreover, the three edges of $G_{r, s}$ that are incident with vertices in $\mathbb{Z}_{n} \times\{r, r \circ s\}$ are all of different lengths. For instance, the edges $\left\{0_{r}, 3_{r \circ s}\right\}$ in $C_{r, s},\left\{3_{r}, 5_{r \circ s}\right\}$ in $C_{r, s}^{\prime}$, and $\left\{4_{r}, 8_{r \circ s}\right\}$ in $C_{r, s}^{\prime \prime}$, have lengths 3 , 2 , and 4, respectively, if $r<r \circ s$, and lengths $-3,-2$, and -4 , respectively, otherwise. Similarly, the three edges of $G_{r, s}$ that are incident only with vertices in $\mathbb{Z}_{n} \times\{s, r \circ s\}$ are all of different lengths. For instance, the edges $\left\{1_{s}, 3_{r o s}\right\}$ in $C_{r, s},\left\{2_{s}, 5_{r o s}\right\}$ in $C_{r, s}^{\prime}$, and $\left\{4_{s}, 8_{r o s}\right\}$ in $C_{r, s}^{\prime \prime}$, have lengths 2,3 , and 4 , respectively, if $s<r \circ s$, and lengths $-2,-3$, and -4 , respectively, otherwise. Figure 3.23 shows an example of $C_{r, s}, C_{r, s}^{\prime}$ and $C_{r, s}^{\prime \prime}$ where $x=y=1$ and $z=4$.

Next, let $G_{r, s}^{*}=\left\{G_{r, s}+\ell: 0 \leq \ell<n-1\right\}$. Thus $G_{r, s}^{*}$ contains n distinct copies of G. Moreover, in the subgraph of $K_{(2 k+1) \times n}$ with vertex set $\mathbb{Z}_{n} \times\{r, s\}$, G^{*} contains all edges of length i for all $i \in[-(n-1) / 2,(n-1) / 2] \backslash \pm[2,4]$. Let $\mathcal{C}=\left\{G_{r, s}+\ell: 1 \leq r<s \leq 2 k+1,0 \leq \ell \leq n-1\right\}$ and note that \mathcal{C} contains $\binom{2 k+1}{2} n$ distinct copies of G. We will show that every edge of $K_{(2 k+1) \times n}$ appears on some copy of G in \mathcal{C}. Let $e=\left\{i_{r}, j_{s}\right\}$ with $r<s$ be an arbitrary edge of $K_{(2 k+1) \times n}$. Let t^{\prime} be the unique solution to $r \circ t^{\prime}=s$ and let $\alpha^{\prime}=\min \left\{r, t^{\prime}\right\}$ and $\beta^{\prime}=\max \left\{r, t^{\prime}\right\}$. Let $t^{\prime \prime}$ be the unique solution to $s \circ t^{\prime \prime}=r$ and let $\alpha^{\prime \prime}=\min \left\{s, t^{\prime \prime}\right\}$ and $\beta^{\prime \prime}=\max \left\{s, t^{\prime \prime}\right\}$. If $j-i \in[-(n-1) / 2,(n-2) / 2] \backslash \pm[2,4]$ then e belongs to $G_{r, s}+\ell$ where $0 \leq \ell \leq n-1$.

Note that if $j-i=2$, then e belongs to the triple $\left\{(i, r),\left(i-1, t^{\prime}\right),(j, s)\right\}$ which is a copy of $C_{t^{\prime}, r}$ if $t^{\prime}<r$, or a copy of $C_{r, t^{\prime}}^{\prime}$ if $r<t^{\prime}$. If $j-i=3$, then e belongs to the triple $\left\{(i, r),\left(i+1, t^{\prime}\right),(j, s)\right\}$ which is a copy of $C_{t^{\prime}, r}^{\prime}$ if $t^{\prime}<r$, and a copy of $C_{r, t^{\prime}}$ if $r<t^{\prime}$. Also, if $j-i=4$, then e belongs to some copy of $C_{\alpha^{\prime}, \beta^{\prime}}^{\prime \prime}$. Thus, if $j-i \in[2,4]$, then e belongs to $G_{\alpha^{\prime}, \beta^{\prime}}+\ell$ where $0 \leq \ell \leq n-1$.

Observe that if $j-i=-2$, then e belongs to the triple $\left\{(j, s),\left(j-1, t^{\prime \prime}\right),(i, r)\right\}$ which is a copy of $C_{t^{\prime \prime}, s}$ if $t^{\prime \prime}<s$, or a copy of $C_{s, t^{\prime \prime}}^{\prime \prime}$ if $s<t^{\prime \prime}$. If $j-i=-3$, then e belongs to the triple $\left\{(j, s),\left(j+1, t^{\prime \prime}\right),(i, r)\right\}$ which is a copy of $C_{t^{\prime \prime}, s}^{\prime}$ if $t^{\prime \prime}<s$, or a copy of $C_{s, t^{\prime \prime}}$ if $s<t^{\prime \prime}$. Also, if $i-j=-4$, then e belongs to some copy of $C_{\alpha^{\prime \prime}, \beta^{\prime \prime}}^{\prime \prime}$. Thus, if $j-i \in[-4,-2]$, then e belongs to $G_{\alpha^{\prime \prime}, \beta^{\prime \prime}}+\ell$ where $0 \leq \ell \leq n-1$. Since every edge of $K_{(2 k+1) \times n}$ appears on some copy of H in \mathcal{C} and since \mathcal{C} contains $\binom{2 k+1}{2} n$ distinct copies of G, it follows that \mathcal{C} is a decomposition of $K_{(2 k+1) \times n}$ into copies of G.

Figure 3.23: $C_{r, s}, C_{r, s}^{\prime}$ and $C_{r, s}^{\prime \prime}$ where $x=y=1$ and $z=4$

Case 2. G has at most one cycle of size 3. Suppose $y \geq 2$ and $z \geq 2$. By

Lemma 3.31, there exist a path $P_{r, s}$ of size $2 x-1$ using the edge lengths in $\{0\} \cup \pm[y+z+3, x+y+z+1]$ with endpoints 0_{r} and 0_{s}. In the lemma, we would use $d_{1}=y+z+3, d_{2}=y+z+4, \ldots, d_{x-1}=x+y+z+1$, so $V\left(P_{r, s}\right) \subseteq\left(\left[0,\left\lceil\frac{x}{2}\right\rceil-1\right] \cup\left[\left\lceil\frac{x}{2}\right\rceil+y+z+2, x+y+z+1\right]\right) \times\{r, s\}$. We construct the cycle $C_{r, s}$ of size $2 x+1$ from $P_{r, s}$ by adding the edges $\left\{0_{r},(y+z)_{\text {ros }}\right\}$ and $\left\{0_{s},(y+z)_{r o s}\right\}$.

Next, we will construct the cycle $C_{r, s}^{\prime}$ of size $2 y+1$. Let $P_{r, s}^{\prime}=G_{1}^{\prime}+G_{2}^{\prime}+G_{3}^{\prime}$ where

$$
\begin{aligned}
& G_{1}^{\prime}=P\left(\left\lceil\frac{x}{2}\right\rceil,\left\lceil\frac{x}{2}\right\rceil+3, y-2\right) \\
& G_{2}^{\prime}= \begin{cases}\left.\left(\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y+5}{2}\right)_{s},\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y+1}{2}\right)_{r},\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y-1}{2}\right)_{s},\left\lceil\frac{x}{2}\right\rceil+\frac{y+5}{2}\right)_{r}\right), & \text { if } y-2 \text { odd } ; \\
\left.\left(\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y-2}{2}\right)_{r},\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y+2}{2}\right)_{s},\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y+4}{2}\right)_{r},\left\lceil\frac{x}{2}\right\rceil+\frac{y-2}{2}\right)_{s}\right), & \text { if } y-2 \text { even, }\end{cases} \\
& G_{3}^{\prime}= \begin{cases}P\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y+5}{2},\left\lceil\frac{x}{2}\right\rceil-\frac{y-1}{2}, y-2\right), & \text { if } y-2 \text { odd; } \\
Q\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y+6}{2},\left\lceil\frac{x}{2}\right\rceil-\frac{y-2}{2}, y-2\right), & \text { if } y-2 \text { even. }\end{cases}
\end{aligned}
$$

If $y=2$, then $P_{r, s}^{\prime}=G_{2}^{\prime}=\left(\left\lceil\frac{x}{2}\right\rceil_{r},\left(\left\lceil\frac{x}{2}\right\rceil+2\right)_{s},\left(\left\lceil\frac{x}{2}\right\rceil+3\right)_{r},\left\lceil\frac{x}{2}\right\rceil_{s}\right)$.
Note that by P1, the first vertex of G_{1}^{\prime} is $\left\lceil\frac{x}{2}\right\rceil_{r}$, and the last vertex is $\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y+5}{2}\right)_{s}$ if $y-2$ is odd and $\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y-2}{2}\right)_{r}$ if $y-2$ is even; the first vertex of G_{3}^{\prime} is $\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y+5}{2}\right)_{r}$ and the last vertex is $\left\lceil\frac{x}{2}\right\rceil_{s}$ if $y-2$ is odd. By Q1, the first vertex of G_{3}^{\prime} is $\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y-2}{2}\right)_{s}$ and the last vertex is $\left\lceil\frac{x}{2}\right\rceil_{s}$ if $y-2$ is even.

For $i=1$ or 3, let A_{i}^{\prime} and B_{i}^{\prime} denote the sets labeled A^{\prime} and B^{\prime} in P2 and Q2 corresponding to the graph G_{i}. Then using P2 and Q2, we compute

$$
\begin{aligned}
& A_{1}^{\prime}=\left[\left\lceil\frac{x}{2}\right\rceil_{r},\left(\left\lceil\frac{x}{2}\right\rceil+\left\lfloor\frac{y-2}{2}\right\rfloor\right)_{r}\right], \\
& B_{1}^{\prime}=\left[\left(\left\lceil\frac{x}{2}\right\rceil+\left\lceil\frac{y+5}{2}\right\rceil\right)_{s},\left(\left\lceil\frac{x}{2}\right\rceil+y+1\right)_{s}\right], \\
& A_{3}^{\prime}=\left[\left(\left\lceil\frac{x}{2}\right\rceil+\left\lceil\frac{y+5}{2}\right\rceil\right)_{r},\left(\left\lceil\frac{x}{2}\right\rceil+y+1\right)_{r}\right], \\
& B_{3}^{\prime}=\left[\left\lceil\frac{x}{2}\right\rceil_{s},\left(\left\lceil\frac{x}{2}\right\rceil+\left\lfloor\frac{y-2}{2}\right\rfloor\right)_{s}\right] .
\end{aligned}
$$

Thus,

$$
A_{1}^{\prime}<A_{3}^{\prime} \text { and } B_{1}^{\prime}<B_{3}^{\prime} .
$$

Note that $V\left(G_{1}^{\prime}\right) \cap V\left(G_{2}^{\prime}\right)=\left\{\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y+5}{2}\right)_{s}\right\}$ if $y-2$ is odd and $V\left(G_{1}^{\prime}\right) \cap V\left(G_{2}^{\prime}\right)=$ $\left\{\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y-2}{2}\right)_{r}\right\}$ if $y-2$ is even and, $V\left(G_{2}^{\prime}\right) \cap V\left(G_{3}^{\prime}\right)=\left\{\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y+5}{2}\right)_{r}\right\}$ if $y-2$ is odd and $V\left(G_{2}^{\prime}\right) \cap V\left(G_{3}^{\prime}\right)=\left\{\left(\left\lceil\frac{x}{2}\right\rceil+\frac{y-2}{2}\right)_{s}\right\}$ if $y-2$ is even; otherwise, $G_{1}^{\prime}, G_{2}^{\prime}$ and G_{3}^{\prime} are vertex disjoint. Therefore, $G_{1}^{\prime}+G_{2}^{\prime}+G_{3}^{\prime}$ is a path of size $2 y-1$ with the endpoints $\left\lceil\frac{x}{2}\right\rceil_{r}$ and $\left\lceil\frac{x}{2}\right\rceil_{s}$. Since $V\left(P_{r, s}^{\prime}\right) \subseteq\left[\left\lceil\frac{x}{2}\right\rceil,\left\lceil\frac{x}{2}\right\rceil+y+1\right] \times\{r, s\}, P_{r, s}^{\prime}$ is vertex disjoint from $P_{r, s}$.

Next, let E_{i}^{\prime} denote the set of edge lengths in G_{i}^{\prime} for $i=1$ or 3 . By P3 and Q3, we have edge lengths

$$
\begin{aligned}
& E_{1}^{\prime}=[4, y+1], \\
& E_{3}^{\prime}=[-(y+1),-4] .
\end{aligned}
$$

Notice that the set of edge lengths in G_{2}^{\prime} is $\{2,-1,-3\}$. Then construct the cycle $C_{r, s}^{\prime}$ of size $2 y+1$ from the path $P_{r, s}^{\prime}$ by adding the edges $\left\{\left\lceil\frac{x}{2}\right\rceil_{r},\left(\left\lceil\frac{x}{2}\right\rceil+y+z+1\right)_{r o s}\right\}$ and $\left\{\left\lceil\frac{x}{2}\right\rceil_{s},\left(\left\lceil\frac{x}{2}\right\rceil+y+z+1\right)_{\text {ros }}\right\}$.

Finally we will construct the cycle $C_{r, s}^{\prime \prime}$ of size $2 z+1$. Let $P_{r, s}^{\prime \prime}=G_{1}^{\prime \prime}+G_{2}^{\prime \prime}+G_{3}^{\prime \prime}$ where

$$
\begin{aligned}
& G_{1}^{\prime \prime}=P(x+y+z+2, x+2 y+z+3, z-2), \text { RSITYY } \\
& G_{2}^{\prime \prime}= \begin{cases}\left(\left(\frac{2 x+4 y+3 z+5}{2}\right)_{s},\left(\frac{2 x+4 y+3 z-1}{2}\right)_{r},\left(\frac{2 x+4 y+3 z+1}{2}\right)_{s},\left(\frac{2 x+4 y+3 z+5}{2}\right)_{r}\right), & \text { if } z-2 \text { odd }, \\
\left(\left(\frac{2 x+2 y+3 z+2}{2}\right)_{r},\left(\frac{2 x+2 y+3 z+8}{2}\right)_{s},\left(\frac{2 x+2 y+3 z+6}{2}\right)_{r},\left(\frac{2 x+2 y+3 z+2}{2}\right)_{s}\right), & \text { if } z-2 \text { even },\end{cases} \\
& G_{3}^{\prime \prime}= \begin{cases}P\left(\frac{2 x+4 y+3 z+5}{2}, \frac{2 x+2 y+z+5}{2}, z-2\right), & \text { if } z-2 \text { odd } ; \\
Q\left(\frac{2 x+4 y+3 z+6}{2}, \frac{2 x+2 y+z+6}{2}, z-2\right), & \text { if } z-2 \text { even. }\end{cases}
\end{aligned}
$$

If $z=2$, then $P_{r, s}^{\prime \prime}=G_{2}^{\prime \prime}=\left((x+y+4)_{r},(x+y+7)_{s},(x+y+6)_{r},(x+y+4)_{s}\right)$.
Note that by P1, the first vertex of $G_{1}^{\prime \prime}$ is $(x+y+z+2)_{r}$, and the last vertex is $\left(\frac{2 x+4 y+3 z+5}{2}\right)_{s}$ if $z-2$ is odd and $\left(\frac{2 x+2 y+3 z+2}{2}\right)_{r}$ if $z-2$ is even; the first vertex
of $G_{3}^{\prime \prime}$ is $\left(\frac{2 x+4 y+3 z+5}{2}\right)_{r}$ and the last vertex is $(x+y+z+2)_{s}$ if $z-2$ is odd. By Q1, the first vertex of $G_{3}^{\prime \prime}$ is $\left(\frac{2 x+2 y+3 z+2}{2}\right)_{s}$ and the last vertex is $(x+y+z+2)_{r}$ if $z-2$ is even.

For $i=1$ or 3 , let $A_{i}^{\prime \prime}$ and $B_{i}^{\prime \prime}$ denote the sets labeled A^{\prime} and B^{\prime} in P2 and Q2 corresponding to the graph $G_{i}^{\prime \prime}$. Then using P2 and Q2, we compute

$$
\begin{aligned}
& A_{1}^{\prime \prime}=\left[(x+y+z+2)_{r},\left(x+y+\left\lfloor\frac{3 z}{2}\right\rfloor+1\right)_{r}\right], \\
& B_{1}^{\prime \prime}=\left[\left(x+2 y+\left\lceil\frac{3 z+5}{2}\right\rceil\right)_{s},(x+2 y+2 z+1)_{s}\right], \\
& A_{3}^{\prime \prime}=\left[\left(x+2 y+\left\lceil\frac{3 z+5}{2}\right\rceil\right)_{r},(x+2 y+2 z+1)_{r}\right], \\
& B_{3}^{\prime \prime}=\left[(x+y+z+2)_{s},\left(x+y+\left\lfloor\frac{3 z}{2}\right\rfloor+1\right)_{s}\right] .
\end{aligned}
$$

Thus,

$$
A_{1}^{\prime \prime}<A_{3}^{\prime \prime} \text { and } B_{1}^{\prime \prime}<B_{3}^{\prime \prime} .
$$

Note that $V\left(G_{1}^{\prime \prime}\right) \cap V\left(G_{2}^{\prime \prime}\right)=\left\{\left(x+2 y+\left\lceil\frac{3 z+5}{2}\right\rceil\right)_{s}\right\}$ if $z-2$ is odd and $V\left(G_{1}^{\prime \prime}\right) \cap V\left(G_{2}^{\prime \prime}\right)=$ $\left\{\left(x+y+\left\lfloor\frac{3 z}{2}\right\rfloor+1\right)_{r}\right\}$ if $z-2$ is even and, $V\left(G_{2}^{\prime \prime}\right) \cap V\left(G_{3}^{\prime \prime}\right)=\left\{\left(x+2 y+\left\lceil\frac{3 z+5}{2}\right\rceil\right)_{r}\right\}$ if $z-2$ is odd and $V\left(G_{2}^{\prime \prime}\right) \cap V\left(G_{3}^{\prime \prime}\right)=\left\{\left(x+y+\left\lfloor\frac{3 z}{2}\right\rfloor+1\right)_{s}\right\}$ if $z-2$ is even; otherwise, $G_{1}^{\prime \prime}, G_{2}^{\prime \prime}$ and $G_{3}^{\prime \prime}$ are vertex disjoint. Therefore, $G_{1}^{\prime \prime}+G_{2}^{\prime \prime}+G_{3}^{\prime \prime}$ is a path of size $2 z-1$ with the endpoints $(x+y+z+2)_{r}$ and $(x+y+z+2)_{s}$. Since $V\left(P_{r, s}^{\prime \prime}\right) \subseteq[x+y+z+2, x+2 y+2 z+1] \times\{r, s\}, P_{r, s}^{\prime \prime}$ is vertex disjoint from $P_{r, s}$ and $P_{r, s}^{\prime}$.

Next, let $E_{i}^{\prime \prime}$ denote the set of edge lengths in $G_{i}^{\prime \prime}$ for $i=1$ or 3 . By P3 and Q3, we have edge lengths

$$
\begin{aligned}
& E_{1}^{\prime \prime}=[y+2, y+z-1] \\
& E_{3}^{\prime \prime}=[-(y+z-1),-(y+2)] .
\end{aligned}
$$

Notice that the set of edge lengths in $G_{2}^{\prime \prime}$ is $\{3,1,-2\}$. Then, construct the cycle $C_{r, s}^{\prime \prime}$ of size $2 z+1$ from the path $P_{r, s}^{\prime \prime}$ by adding the edges $\left\{(x+y+z+2)_{r},(x+\right.$ $\left.2 y+2 z+4)_{r o s}\right\}$ and $\left\{(x+y+z+2)_{s},(x+2 y+2 z+4)_{r o s}\right\}$.

Since $(y+z)_{\text {ros }},\left(\left\lceil\frac{x}{2}\right\rceil+y+z+1\right)_{\text {ros }}$ and $(x+2 y+2 z+4)_{\text {ros }}$ are different vertices, and $P_{r, s}, P_{r, s}^{\prime}$ and $P_{r, s}^{\prime \prime}$ are vertex disjoint, we have $C_{r, s}, C_{r, s}^{\prime}$ and $C_{r, s}^{\prime \prime}$ are
also vertex disjoint. Figure 3.24 shows an example of $C_{r, s}, C_{r, s}^{\prime}$ and $C_{r, s}^{\prime \prime}$ where $x=4, y=2$ and $z=5$.

Let $G_{r, s}^{*}=\left\{G_{r, s}+\ell: 0 \leq \ell \leq n-1\right\}$. Then $G_{r, s}^{*}$ contains n distinct copies of G and all the edges of each length $i \in[-(n-1) / 2,(n-1) / 2] \backslash \pm[y+z, y+z+2]$ in the subgraph of $K_{(2 k+1) \times n}$ with vertex set $\mathbb{Z}_{n} \times\{r, s\}$. Let $\mathcal{C}=\left\{G_{r, s}+\ell: 1 \leq\right.$ $r<s \leq 2 k+1,0 \leq \ell \leq n-1\}$ and note that \mathcal{C} contains $\binom{2 k+1}{2} n$ distinct copies of G. We will show that every edge of $K_{(2 k+1) \times n}$ appears on some copy of G in \mathcal{C}. Let $e=\left\{i_{r}, j_{s}\right\}$ with $r<s$ be an arbitrary edge of $K_{(2 k+1) \times n}$. Let t^{\prime} be the unique solution to $r \circ t^{\prime}=s$ and let $\alpha^{\prime}=\min \left\{r, t^{\prime}\right\}$ and $\beta^{\prime}=\max \left\{r, t^{\prime}\right\}$. Let $t^{\prime \prime}$ be the unique solution to $s \circ t^{\prime \prime}=r$ and let $\alpha^{\prime \prime}=\min \left\{s, t^{\prime \prime}\right\}$ and $\beta^{\prime \prime}=\max \left\{s, t^{\prime \prime}\right\}$. If $j-i \in[-(n-1) / 2,(n-1) / 2] \times \pm[y+z, y+z+2]$, then e belongs to $G_{r, s}+\ell$ for some ℓ with $0 \leq \ell \leq n-1$. If $j-i \in[y+z, y+z+2]$, then e belongs to $G_{\alpha^{\prime}, \beta^{\prime}}+\ell$ where $0 \leq \ell \leq n-1$. If $j-i \in[-(y+z+2),-(y+z)]$, then e belongs to $G_{\alpha^{\prime \prime}, \beta^{\prime \prime}}+\ell$ where $0 \leq \ell \leq n-1$. Since every edge of $K_{(2 k+1) \times n}$ appears on some copy of $G_{r, s}$ in \mathcal{C} and since \mathcal{C} contains $\binom{2 k+1}{2} n$ distinct copies of G, it follows that \mathcal{C} is a decomposition of $K_{(2 k+1) \times n}$ into copies of G.

Figure 3.24: $C_{r, s}, C_{r, s}^{\prime}$ and $C_{r, s}^{\prime \prime}$ where $x=4, y=2$ and $z=5$

In the proof of Theorem 3.32, if we replace idempotent symmetric quasigroups with symmetric quasigroups with holes, then we obtain a G-decomposition of $K_{k \times 2 n}$ for every integer $k \geq 3$.

Theorem 3.33. Let G be a 2-regular graph of order n consisting of exactly three odd cycles. For every integer $k \geq 3$, there exists a G-decomposition of $K_{k \times 2 n}$.

Proof. Let $G=C_{2 x+1} \cup C_{2 y+1} \cup C_{2 z+1}$, where $x, y, z \geq 1$. Let $k \geq 3$ be an integer and let $Q=[1,2 k]$. For $i \in[1, k]$, let $h_{i}=\{2 i-1,2 i\}$ and $g_{i}=\mathbb{Z}_{n} \times h_{i}$. Let
$n=2 x+2 y+2 z+3$ and let $V\left(K_{k \times 2 n}\right)=\mathbb{Z}_{n} \times[1,2 k]$ with the vertex-set partition $\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}$. Let (Q, \circ) be a commutative quasigroup of order $2 k$ with holes H.

Fix r and s with $1 \leq r<s \leq 2 k$ and $\{r, s\} \notin H$. We proceed in the same fashion as in the proof of Theorem 3.32 producing the graph $G_{r, s}$ consisting of a cycle $C_{r, s}$ of size $2 x+1$, a cycle $C_{r, s}^{\prime}$ of size $2 y+1$ and a cycle $C_{r, s}^{\prime \prime}$ of size $2 z+1$ such that $C_{r, s}, C_{r, s}^{\prime}$ and $C_{r, s}^{\prime \prime}$ are vertex disjoint.

Note that for fixed r and s with $1 \leq r<s \leq 2 k$ and with $\{r, s\} \notin H$, the set $\left\{G_{r, s}+\ell: 0 \leq \ell \leq n-1\right\}$ contains n distinct copies of G and all the edges of lengths $i \in[-(x+y+z+1), x+y+z+1] \backslash \pm[y+z, y+z+2]$ in the subgraph of $K_{k \times 2 n}$ with vertex set $\mathbb{Z}_{n} \times\{r, s\}$. Let $\mathcal{C}=\left\{G_{r, s}+\ell: 1 \leq r<s \leq\right.$ $2 k,\{r, s\} \notin H, 0 \leq \ell \leq n-1\}$ and note that \mathcal{C} contains $\binom{2 k}{2} n$ distinct copies of G. We wish to show that every edge of $K_{k \times 2 n}$ appears on some copy of G in \mathcal{C}. Let $e=\left\{i_{r}, j_{s}\right\}$ be an arbitrary edge of $K_{k \times 2 n}$. Without loss of generality, we may assume $r<s$. If $j-i \in[0, x+y+z+1] \backslash[y+z, y+z+2]$, then e belongs to $G_{r, s}+\ell$ for some ℓ with $0 \leq \ell \leq n-1$. If $j-i=[y+z, y+z+2]$, then e belongs to $G_{r, t}+\ell$ where t is the unique solution to $r \circ t=s$ and $0 \leq \ell \leq n-1$. If $j-i=[-(y+z+2),-(y+z)]$, then e belongs to $G_{s, t}+\ell$ where t is the unique solution to $s \circ t=r$ and $0 \leq \ell \leq n-1$. Since every edge of $K_{k \times 2 n}$ appears on some copy of G in \mathcal{C} and since \mathcal{C} contains $\binom{2 k}{2} n$ distinct copies of G, it follows that \mathcal{C} is a decomposition of $K_{k \times 2 n}$ into copies of G.

Let G of order n be the vertex-disjoint union of three odd cycles. It is shown in [7] and [6] that there exists a G-decomposition of $K_{2 n+1}$. It was not known whether a G-decomposition of $K_{2 k n+1}$ exists for every positive integer k. Using the decomposition of $K_{2 n+1}$ and the result from Theorem 3.33, we can answer this question in the affirmative for $k \geq 3$.

Theorem 3.34. Let G of order n be the vertex-disjoint union of three odd cycles. There exists a G-decomposition of $K_{2 k n+1}$ for every positive integer $k \neq 2$.

Proof. Since there exists a G-decomposition of $K_{2 n+1}$, we can assume that $k \geq 3$. For $i \in[1, k]$, let S_{i} be a set with $2 n$ elements and let H_{i} be a complete graph of
order $2 n+1$ with vertex set $S_{i} \cup\{\infty\}$. Let $V\left(K_{2 k n+1}\right)=S_{1} \cup S_{2} \cup \ldots \cup S_{k} \cup\{\infty\}$. Thus, $K_{2 k n+1}=H_{1} \cup H_{2} \cup \ldots \cup H_{k} \cup K_{k \times 2 n}$. Since there is a G-decomposition of H_{i} for $i \in[1, k]$ and there is a G-decomposition of $K_{k \times 2 n}$, the result follows.

If a G-decomposition of K_{n} exists (i.e., if the Oberwolfach problem has a solution in this case), then a G-decomposition of $K_{2 k n+n}$ will also exist.

Theorem 3.35. Let G of order n be the vertex-disjoint union of three odd cycles. If a G-decomposition of K_{n} exists, then there exists a G-decomposition of $K_{2 k n+k}$ for every positive integer k.

Proof. Observe that $K_{2 k n+n}=(2 k+1) K_{n} \cup K_{(2 k+1) \times n}$. Since a G-decomposition of K_{n} exists, a G-decomposition of $(2 k+1) K_{n}$ will also exist. By Theorem 3.32, there exists a G-decomposition of $K_{(2 k+1) \times n}$. The result follows.

CHAPTER IV

SUMMARY AND OPEN PROBLEMS

4.1 Summary

Let G be a 2-regular graph of odd order n such that either G is almost bipartite or G consists of three cycles of odd lengths. By using novel extensions of the Bose construction for Steiner triple systems, we proved the existence of G-decompositions of several classes of complete multipartite graphs as well as of some complete graphs. Our results are summarized below.
(i) If G is C_{n}, then there exist G-decompositions of $K_{(2 k+1) \times n}$ and of $K_{2 k n+n}$ for every positive integer k, and of $K_{k^{\prime} \times 2 n}$ for every integer $k^{\prime} \geq 3$.
(ii) If G is almost-bipartite, then there exist G-decompositions of $K_{(2 k+1) \times n}$ and of $K_{k^{\prime} \times 2 n}$ for all positive integers k and $k^{\prime} \geq 3$.
(iii) If G is the vertex-disjoint union of one even cycle and one odd cycle, then there exist G-decompositions of K_{v} for all $v \equiv n(\bmod 2 n)$, unless $(G, v)=$ $\left(C_{4} \cup C_{5}, 9\right)$.
(iv) If G consists of three odd cycles, then there exist G-decompositions of $K_{(2 k+1) \times n}$ and of $K_{k^{\prime} \times 2 n}$ for all positive integers k and $k^{\prime} \geq 3$. We also found G-decompositions of K_{v} for all $v \equiv 1(\bmod 2 n), v \neq 4 n+1$.

4.2 Open Problems

Several open problems related to the results in this dissertation warrant further investigation.
(i) If G is almost-bipartite of order n, find G-decompositions of K_{v} for all $v \equiv n$ $(\bmod 2 n)$.
(ii) If G of order n consists (or contains) of an odd number of odd cycles, find G-decompositions of $K_{(2 k+1) \times n}$ and of $K_{k^{\prime} \times 2 n}$ for all positive integers k and $k^{\prime} \geq 3$. Also, find G-decompositions of K_{v} for all $v \equiv 1$ or $n(\bmod 2 n)$.
(iii) If G of order n is the vertex-disjoint union of one even cycle and one odd cycle, find G-decompositions of K_{v} for all odd v that satisfy $v(v-1) \equiv 0$ $(\bmod 2 n)$.
(iv) Investigate the Oberwolfach problem for three odd cycles and for almostbipartite 2-regular graphs.

REFERENCES

[1] J. Abrham and A. Kotzig, All 2-regular graphs consisting of 4-cycles are graceful, Discrete Math. 135 (1996), 1-14.
[2] J. Abrham and A. Kotzig, Graceful valuations of 2-regular graphs with two components, Discrete Math. 150 (1996), 3-15.
[3] P. Adams, D. Bryant, and M. Buchanan, A survey on the existence of G designs, J. Combin. Des. 16 (2008), 373-410.
[4] B. Alspach, The Wonderful Walecki Construction. Bull. Inst. Combin. Appl. 52 (2008), 7-20.
[5] P. Adams, D. Bryant and H. Gavlas, Decompositions of the complete graph into small 2-regular graphs, J. Combin. Math. Combin. Comput. 43 (2002), 135-146.
[6] A. Aguado, S. I. El-Zanati, H. Hake, J. Stob, and H. Yayla, On ρ-labeling the union of three cycles, Australas. J. Combin. 37 (2007), 155-170.
[7] A. Aguado and S. I. El-Zanati, On σ-labeling the union of three cycles, J. Combin. Math. Combin. Comput. 64 (2008), 33-48.
[8] B. Alspach and H. Gavlas, Cycle decompositions of K_{n} and of $K_{n}-I J$. Combin. Theory Ser. B 81 (2001), 77-99.
[9] B. Alspach, P. Schellenberg, D. R. Stinson, and D. Wagner, The Oberwolfach problem and factors of uniform odd length cycles, J. Combin. Theory Ser. A 52 (1989), 20-43.
[10] A. Blinco and S. I. El-Zanati, A note on the cyclic decomposition of complete graphs into bipartite graphs, Bull. Inst. Combin. Appl. 40 (2004), 77-82.
[11] A. Blinco, S. I. El-Zanati and C. Vanden Eynden, On the decomposition of complete graphs into almost-bipartite graphs, Discrete Math. 284 (2004), 71-81.
[12] D. Bryant and S. El-Zanati, "Graph decompositions," in Handbook of Combinatorial Designs, C. J. Colbourn and J. H. Dinitz (Editors), 2nd ed., Chapman \& Hall/CRC, Boca Raton, 2007, pp. 477-485.
[13] D. Bryant and C. Rodger, "Cycle decompositions," in Handbook of Combinatorial Designs, C. J. Colbourn and J. H. Dinitz (Editors), 2nd ed., Chapman \& Hall/CRC, Boca Raton, 2007, pp. 373-382.
[14] R. C. Bunge, A. Chantasartrassmee, S. I. El-Zanati, and C. Vanden Eynden, On cyclic decompositions of complete graphs into tripartite graphs, J. Graph Theory 72 (2013), 90-111.
[15] R. C. Bunge, S. I. El-Zanati, and C. Vanden Eynden, On cyclic decompositions of complete graphs into 2-regular almost-bipartite graphs, submitted.
[16] I. J. Dejter, F. Franek, E. Mendelsohn and A. Rosa, Triangles in 2factorizations, J. Graph Theory 26 (1997), 83-94.
[17] S. El-Zanati, U. Jongthawonwuth, H. Jordon, and C.Vanden Eynden, On decomposing the complete graph into the disjoint union of two cycles, submitted.
[18] S. I. El-Zanati, C. Vanden Eynden, On Rosa-type labelings and cyclic decompositions, Math. Slovaca 59 (2009), 1-18.
[19] S. I. El-Zanati, C. Vanden Eynden, and N. Punnim, On the cyclic decomposition of complete graphs into bipartite graphs, Australas. J. Combin. 24 (2001), 209-219.
[20] K. Eshghi, The existence and construction of alpha-valuations of 2-regular graphs with three components', Ph.D. thesis, Univ. Toronto, Toronto, 1997;
[21] J. A. Gallian, A dynamic survey of a graph labeling. Dynamic Survey 6, Electron. J. Combin. 24 (2001), 209-219.
[22] D. I. Gannon and S. I. El-Zanati, All 2-regular graphs with uniform odd components admit ρ-labelings, Australas. J. Combin. 53 (2012), 207-219.
[23] G. Ge, "Group divisible designs," in Handbook of Combinatorial Designs, C. J. Colbourn and J. H. Dinitz (Editors), 2nd ed., Chapman \& Hall/CRC, Boca Raton, 2007, pp. 255-260.
[24] R. K. Guy, Unsolved combinatorial problems, Proceedings of the Conference on Combinatorial Mathematics and Its Applications, Oxford, 1967 (ed. D. J. A. Welsh, Academic Press, New York, 1971) p. 121.
[25] R. Häggkvist, A lemma on cycle decompositions, Ann. Discrete Math. 27 (1985), 227-232.
[26] A. J. W. Hilton and M. Johnson, Some results on the Oberwolfach problem, J. London. Math. Soc. 64 (2001), 513-522.
[27] D. G. Hoffman, C. C. Lindner and C. A. Rodger, On the construction of odd cycle systems, J. Graph Th. 13 (1989), 417-426.
[28] C. Huang and A. Rosa, Decomposition of complete graph into trees, Ars. Combin. 5 (1978), 23-63.
[29] B. Jackson, Some cycle decompositions of complete graphs, J. Combin. Inform. System Sci. 13 (1988), 20-32.
[30] U. Jongthawonwuth, S. I. El-Zanati, and R. C. Bunge, On decomposing complete multipartite graphs into 2-regular almost-bipartite graphs, preprint.
[31] U. Jongthawonwuth, S. I. El-Zanati, and C. Uiyyasathian, On Extending the Bose Construction for Triple Systems to Decompositions of Complete Multipartite Graphs into 2-regular Graphs of Odd Order, Australas. J. Combin. to appear.
[32] T. P. Kirkman, On a problem in combinations, Cambridge and Dublin Math. Journal B2 (1847), 191-204.
[33] A. Kotzig, On decompositions of complete graphs into $4 k$-gons, Mat.-Fyz. Cas. 15 (1965), 227-233.
[34] C. C. Lindner and C. A. Rodger, Design Theory, Second Edition, Discrete Mathematics and its Applications, CRC Press, Boca Raton, FL, 2009.
[35] J. Liu, The equipartite Oberwolfach problem with uniform tables, J. Combin. Theory Ser. A 101 (2003), 20-34.
[36] W. L. Piotrowski, The solution of the bipartite analogue of the Oberwolfach problem, Discrete Math. 97 (1991), 339-356.
[37] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Symposium, Rome, July 1966), Gordon and Breach, N. Y. and Dunod Paris (1967) 349-355.
[38] A. Rosa, On Cyclie decompositions of the complete graph into ($4 m+2$)-gons, Mat.-Fyz. Cas. 16 (1966), 349-352.
[39] A. Rosa, On the cyclic decompositions of the complete graph into polygons with an odd number of edges, Casopis Pest. Math. 91 (1966), 53-63.
[40] M. Šajna, Cycle decompositions III: complete graphs and fixed length cycles, J. Combin. Des. 10 (2002), 27-78.
[41] D. Sotteau, Decomposition of $K_{m, n}\left(K_{m, n}^{*}\right)$ into cycles (circuits) of length $2 k$, J. Combin. Theory, Ser. B, 30 (1981), 75-81.
[42] Q. Sui and B. Du, The Oberwolfach problem for a unique 5-cycle and all others of length 3, Utilitas. Math. 65 (2004), 243-254.
[43] T. Traetta, A complete solution to the two-table Oberwolfach problems, J. Combin. Theory Ser. A 120 (2013), 984-997.
[44] W. S. B. Woolhouse, Prize question 1733, Lady's and gentleman's diary, (1844).

VITA

Name	Miss Uthoomporn Jongthawonwuth
Date of Birth	12 August 1984
Place of Birth	Lopburi, Thailand
Education	B.Sc. (Mathematics) (Second Class Honors), Kasetsart University, 2007
Scholarship	Mevelopment and Promotion of Science and Technology Talents Project (Royal Government of Thailand
	scholarship)

